高一数学必修5试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标人教版必修5高中数学 综合检测试卷

1.如果33log log 4m n +=,那么n m +的最小值是( ) A .4

B .34

C .9

D .18

2、数列{}n a 的通项为n a =12-n ,*

N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为( )

A .7

B .8

C .9

D .10

3、若不等式897x +<和不等式022

>-+bx ax 的解集相同,则a 、b 的值为( )

A .a =﹣8 b =﹣10

B .a =﹣4 b =﹣9

C .a =﹣1 b =9

D .a =﹣1

b =2

4、△ABC 中,若2cos c a B =,则△ABC 的形状为( )

A .直角三角形

B .等腰三角形

C .等边三角形

D .锐角三角

5、在首项为21,公比为

1

2

的等比数列中,最接近1的项是( ) A .第三项 B .第四项 C .第五项 D .第六项 6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则10

20

a a 等于( )

A .

3

2

B .

2

3

C .23或32

D .﹣32或﹣2

3

7、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )

A .

120 B .60 C .

150 D .30

8、数列{}n a 中,1a =15,2331-=+n n a a (*

N n ∈),则该数列中相邻两项的乘积是负数

的是( ) A .2221a a

B .2322a a

C .2423a a

D .2524a a

9、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )

A .41.1

B .5

1.1 C .610(1.11)⨯- D . 5

11(1.11)⨯-

10、已知钝角△ABC 的最长边为2,其余两边的长为a 、b ,则集合{}b y a x y x P ===,|),(所表示的平面图形面积等于( )

A .2

B .2-π

C .4

D .24-π 11、在△ABC 中,已知BC=12,A=60°,B=45°,则AC= 12.函数2

lg(12)y x x =+-的定义域是

13.数列{}n a 的前n 项和*

23()n n s a n N =-∈,则5a =

14、设变量x 、y 满足约束条件⎪⎩

⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为

15、《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的

1

3

是较小的两份之和,则最小1份的大小是 16、已知数列{}n a 、{}n b 都是等差数列,1a =1-,41-=b ,用k S 、'k S 分别表示数列{}n a 、

{}n b 的前k 项和(k 是正整数),若k S +'k S =0,则k k b a +的值为

17、△ABC 中,c b a ,,是A ,B ,C 所对的边,S 是该三角形的面积,且

cos cos 2B b

C a c

=-

+ (1)求∠B 的大小;

(2)若a =4,35=S ,求b 的值。

18、已知等差数列{}n a 的前四项和为10,且237,,a a a 成等比数列

(1)求通项公式n a

(2)设2n a

n b =,求数列n b 的前n 项和n s

19、已知:ab a x b ax x f ---+=)8()(2,当)2,3(-∈x 时,

0)(>x f ;),2()3,(+∞--∞∈ x 时,0)(

(1)求)(x f y =的解析式

(2)c 为何值时,02

≤++c bx ax 的解集为R.

20、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成。已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米。

(1)若设休闲区的长11A B x =米,求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;

(2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?

21、设不等式组⎪⎩

⎨⎧+-≤>>n nx y y x 300所表示的平面区域为n D ,记n D 内的格点(格点即横坐标和

纵坐标均为整数的点)个数为))((*

N n n f ∈

(1)求)2(),1(f f 的值及)(n f 的表达式;

(2)记()(1)

2

n n

f n f n T ⋅+=

,试比较1n n T T +与的大小;若对于一切的正整数n ,总有m T n ≤成立,求实数m 的取值范围;

(3)设n S 为数列{}n b 的前n 项的和,其中)

(2n f n b =,问是否存在正整数t n ,,使

16

1

11<-+++n n n n tb S tb S 成立?若存在,求出正整数t n ,;若不存在,说明理由

必修5综合测试

1.D;

2.B;

3.B;

4.B;

5.C;

6.C;

7.A;

8.C;

9.D;

10.B;11. ; 12.{}

34x x -<<; 13. 48 ; 14.18; 15.10; 16.5; 17、⑴由

cos cos sin cos 2cos 2sin sin B b B B

C a c C A C =-⇒=-

++ 2sin cos cos sin sin cos A B B C B C ⇒+=- 2sin cos sin cos cos sin A B B C B C ⇒=--

2sin cos sin()2sin cos sin A B B C A B A ∴=-+⇒=-

12

cos ,0,23

B B B ππ⇒=-<<∴=又

⑵114,sin 5222

a S S ac B c c ===

=⨯⨯⇒=由

22222cos 1625245b a c ac B b b =+-⇒=+-⨯⨯⇒=18、⑴由题意知12

1114610

(2)()(6)

a d a d a d a d +=⎧⎨+=++⎩

相关文档
最新文档