初二下册数学公式总结归纳

合集下载

初二数学下册知识点归纳6篇

初二数学下册知识点归纳6篇

初二数学下册知识点归纳6篇初中数学公式和规律速记口诀篇一最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

特殊点的坐标特征:坐标平面点(某,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;某轴上y为0,某为0在y轴。

象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

平行轴的直线:平行轴的直线,点的坐标有讲究,直线平行某轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。

对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,某轴对称y相反,y轴对称,某前面添负号;原点对称最好记,横纵坐标变符号。

自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

函数图象的移动规律:若把一次函数解析式写成y=k(某+0)+b,二次函数的解析式写成y=a(某+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,某增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。

二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。

(完整版)部编版八年级下册数学公式梳理

(完整版)部编版八年级下册数学公式梳理

(完整版)部编版八年级下册数学公式梳理1. 整数整数是由正整数、负整数和0组成的数集。

以下是一些常用的整数公式:- 加法公式:整数加法符合交换律和结合律。

例如:$a + b = b + a$- 减法公式:整数减法可以转化为加法。

例如:$a - b = a + (-b)$- 乘法公式:整数乘法符合交换律和结合律。

例如:$a \times b = b \times a$- 除法公式:整数除法可以转化为乘法和减法。

例如:$\frac{a}{b} = a \div b = a \times \frac{1}{b}$2. 分数分数是整数和整数的比值,通常表示为$\frac{a}{b}$的形式,其中$a$为分子,$b$为分母。

以下是一些常用的分数公式:- 加法公式:分数加法需要分母相同。

例如:$\frac{a}{b} +\frac{c}{b} = \frac{a+c}{b}$- 减法公式:分数减法需要分母相同。

例如:$\frac{a}{b} -\frac{c}{b} = \frac{a-c}{b}$- 乘法公式:分数乘法只需分子相乘,分母相乘。

例如:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$ - 除法公式:分数除法可以转化为乘法。

例如:$\frac{a}{b}\div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}$3. 均值均值是一组数据的平均值,计算方法是将所有数据相加后除以数据个数。

以下是一些常用的均值公式:- 算术均值:将所有数据相加后除以数据个数。

例如:$\bar{x} = \frac{a_1 + a_2 + \dots + a_n}{n}$- 加权均值:将每个数据乘以相应的权重后相加,然后除以权重总和。

例如:$\bar{x} = \frac{a_1 \times w_1 + a_2 \times w_2 + \dots + a_n \times w_n}{w_1 + w_2 + \dots + w_n}$以上是部编版八年级下册数学公式的梳理。

八年级下册数学知识点总结归纳

八年级下册数学知识点总结归纳

⼋年级下册数学知识点总结归纳 为了⽅便同学们进⾏2020年中考数学考试复习备考,下⾯是⼩编为⼤家整理的关于⼋年级下册数学知识点总结,希望对您有所帮助。

欢迎⼤家阅读参考学习! 第1章分式 ⼀.知识框架 ⼆.知识概念 1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A叫做分式的分⼦,B叫做分式的分母。

2.分式有意义的条件:分母不等于0 3.约分:把⼀个分式的分⼦和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这⼀过程叫做通分。

分式的基本性质:分式的分⼦和分母同时乘以(或除以)同⼀个不为0的整式,分式的值不变。

⽤式⼦表⽰为:A/B=A_/B_ A/B=A÷C/B÷C (A,B,C为整式,且C≠0) 5.最简分式:⼀个分式的分⼦和分母没有公因式时,这个分式称为最简分式.约分时,⼀般将⼀个分式化为最简分式. 6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分⼦相加减.⽤字母表⽰为:a/c±b/c=a±b/c 2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进⾏计算.⽤字母表⽰为:a/b±c/d=ad±cb/bd 3.分式的乘法法则:两个分式相乘,把分⼦相乘的积作为积的分⼦,把分母相乘的积作为积的分母.⽤字母表⽰为:a/b _c/d=ac/bd 4.分式的除法法则:(1).两个分式相除,把除式的分⼦和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc (2).除以⼀个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_/c 7.分式⽅程的意义:分母中含有未知数的⽅程叫做分式⽅程. 8.分式⽅程的解法:①去分母(⽅程两边同时乘以最简公分母,将分式⽅程化为整式⽅程);②按解整式⽅程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式⽅程化为整式⽅程的过程中,扩⼤了未知数的取值范围,可能产⽣增根). 分式和分数有着许多相似点。

八年级数学下册知识点归纳非常全面

八年级数学下册知识点归纳非常全面

八年级下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

②非负性考点:几个非负数相加为0,那么这几个数都为0.如:-+++=2310a b c 则:30,10,0a b c -=+==2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是小数就化成分数,带分数化成假分数,是多项式就先分解因式。

4.同类二次根式:二次根式化成最简二次根式后,被开方数相同的几个二次根式就是同类二次根式。

5、二次根式有关公式 (1))0()(2≥=a a a (2)⎩⎨⎧<-≥==)0a (a )0a (aa a 2(3)乘法公式)0,0(≥≥∙=b a b a ab (4)除法公式(0,0)a aa b b b=≥> (5)完全平方公式222()2a b a ab b ±=++ 平方差公式:22()()a b a b a b -=+- (6)01(0)a a =≠ 1-=nn aa6、二次根式的加减法则:先将二次根式化为最简,再将被开方数相同的二次根式进行合并。

7、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

二次根式计算的最后结果必须化为最简二次根式.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

①已知a ,b ,求c ,则c=22a b + ②已知a ,c ,求b,则b=22c a -③已知b ,c 求a ,则a=22c b - 没有指明直角边和斜边时要分类讨论2.勾股定理逆定理:如果一个三角形三边长a,b,c 满足a 2+b 2=c 2。

关于初二数学下册必备知识点归纳

关于初二数学下册必备知识点归纳

关于初二数学下册必备知识点归纳初二数学下册必备知识点归纳第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;。

异分母分式相加减,先通分,变为同分母的分式,再加减。

3、整数指数幂的加减乘除法。

4、分式方程及其解法。

第二章反比例函数1、反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用。

第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1、平行四边形。

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

初二下册数学公式总结浙教版

初二下册数学公式总结浙教版

初二下册数学公式总结浙教版导读:本文初二下册数学公式总结浙教版,仅供参考,如果觉得很不错,欢迎点评和分享。

1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。

初二数学下册全部知识点

初二数学下册全部知识点

数学八年级下册全册知识点汇总(北师大版)第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

人教版八年级下册数学知识点总结

人教版八年级下册数学知识点总结

人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

2024年八年级下册数学知识点总结归纳(2篇)

2024年八年级下册数学知识点总结归纳(2篇)

2024年八年级下册数学知识点总结归纳一、实数的认识与运算1. 数轴及实数的表示- 数轴的绘制及利用- 实数的表示及其在数轴上的位置2. 实数的相关性质- 加法运算的性质- 减法运算的性质- 乘法运算的性质- 除法运算的性质3. 实数的运算规则- 加法的运算法则- 减法的运算法则- 乘法的运算法则- 除法的运算法则4. 实数的逆运算- 加法逆元和减法逆元- 乘法逆元和除法逆元5. 有理数的认识与运算- 有理数的表示及其分类- 有理数的加法与减法- 有理数的乘法与除法6. 无理数的认识与运算- 无理数的表示及其性质- 无理数与有理数的关系7. 实数的运算律及运算顺序- 混合运算的顺序和运算律二、线性方程与不等式1. 一元一次方程- 一元一次方程的解的概念- 一元一次方程的解的判断- 一元一次方程的解的求法2. 一元一次方程的应用- 应用问题的方程建立- 使用方程解决实际问题3. 一元一次不等式- 一元一次不等式的解的概念- 一元一次不等式的解的判断- 一元一次不等式的解的求法4. 一元一次不等式的应用- 应用问题的不等式建立- 使用不等式解决实际问题三、平面图形与立体图形1. 平面图形的性质与判断- 五角星和六角星的性质- 四边形的性质- 三角形的性质- 直角三角形的性质2. 平面图形的分类与应用- 三角形的分类- 几何图形的应用3. 立体图形的认识与分类- 立体图形的基本概念- 空间几何图形的识别和分类4. 立体图形的体积与表面积- 直方体和正方体的体积和表面积- 柱体和锥体的体积和表面积四、统计与概率1. 数据的汇总与处理- 数据的收集和整理- 数据的图表表示2. 参数与统计量- 参数的含义与计算- 统计量的含义与计算3. 概率与事件- 概率的概念与性质- 事件与概率的计算4. 概率的应用- 简单事件的计算- 互斥事件的计算- 包含事件的计算五、函数与图像1. 函数的概念与表示- 函数的定义与表示- 函数的自变量和因变量2. 函数的性质与运算- 函数的奇偶性- 函数的增减性- 函数的周期性3. 函数的图像与应用- 函数的图像的绘制- 函数的应用问题解决4. 解析几何的初步认识- 直线的性质与方程- 圆的性质与方程总结:以上是____年八年级下册数学的知识点总结归纳,主要涵盖了实数的认识与运算、线性方程与不等式、平面图形与立体图形、统计与概率、函数与图像等重要内容。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

最全面八年级下册数学知识点归纳总结

最全面八年级下册数学知识点归纳总结

最全面八年级下册数学知识点归纳总结八年级下册数学知识点归纳总结一、代数基础1.数的基础知识正数、负数的概念,求相反数,绝对值。

2.代数式代数式的概念,如何列代数式,代数式的简单加减乘除。

3.一元一次方程一元一次方程的概念,如何列一元一次方程,方程的解。

4.解一元一次方程组一元一次方程组的概念,如何列一元一次方程组,解一元一次方程组。

二、图形的性质1.平面图形各种多边形的定义、性质和判定方法。

2.圆的相关知识圆的定义和性质、弧、圆周角、相交弧、相切弧的性质。

3.相似三角形相似三角形的概念、性质、判定方法及三倍线定理。

4.勾股定理勾股定理的概念、性质、证明及应用场景。

5.解锐角三角函数正弦、余弦、正切函数,锐角函数基本关系式。

三、空间几何1.空间图形的计算长方体、正方体、球体等几何体的体积、表面积的计算。

2.解同面直线和平面的关系两个平面的交线是直线,两个直线的位置关系是什么,两个直线的夹角,两条垂直直线之间的夹角。

3.平面与立体图形的关系平面和立体图形的交、相交线,截面的形状及性质。

四、统计数学1.概率的基本概念概率的概念、事件、随机事件的计算公式,样本空间、基本事件。

2.事件的独立性事件的并、交、余、互斥,两个事件的独立性及其判定。

3.频率与概率的关系频率与概率的定义及其区别,频率越大,概率越小。

五、函数初步1.函数的定义函数的概念及表示方法,自变量、因变量和函数值。

2.函数的图像与性质函数图像的概念,单调性、奇偶性、周期性、对称性等。

3.函数的应用如何应用函数进行模型建立,自变量和因变量的定量关系。

六、反比例函数1.反比例函数的概念反比例函数的定义,反比例函数图像。

2.反比例函数的性质反比例函数的单调性、渐近线、变化率,反比例函数与直线的关系。

3.应用反比例函数如何应用反比例函数进行模型建立,自变量和因变量的定量关系。

七、数列1.等差数列等差数列的概念、通项公式、通项公式的推导及应用。

2.等比数列等比数列的概念、通项公式、通项公式的推导及应用。

八年级下册数学知识点归纳

八年级下册数学知识点归纳

八年级下册数学知识点归纳学习好八年级下册数学的知识点,和初二学生自己的努力是分不开的。

为大家整理了八年级下册数学知识点归纳,欢迎大家阅读!八年级下册数学知识点归纳(一)分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2&plusmn;2ab+b2=(a&plusmn;b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。

2、运用公式法。

八年级下册数学知识点归纳(二)证明一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。

一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果&hellip;&hellip;,那么&hellip;&hellip;”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

初二下册数学公式大全

初二下册数学公式大全

初二下册数学公式大全初二下册数学公式(一)1、过两点有且只要一条直线2 、两点之间线段最短3、同角或等角的补角相等4 、同角或等角的余角相等5 、过一点有且只要一条直线和直线垂直6 、直线外一点与直线上各点衔接的一切线段中,垂线段最短7 、平行公理经过直线外一点,有且只要一条直线与这条直线平行8 、假设两条直线都和第三条直线平行,这两条直线也相互平行[1]9 、同位角相等,两直线平行10 、内错角相等,两直线平行11 、同旁内角互补,两直线平行12、两直线平行,同位角相等13 、两直线平行,内错角相等14 、两直线平行,同旁内角互补15 、定理三角形两边的和大于第三边初二下册数学公式(二)16 、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180&deg;18 、推论1 直角三角形的两个锐角互余19 、推论2 三角形的一个外角等于和它不相邻的两个内角的和20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角21 、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 、边边边公理(SSS) 有三边对应相等的两个三角形全等[2]26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 、定理1 在角的平分线上的点到这个角的两边的距离相等28 、定理2 到一个角的两边的距离相反的点,在这个角的平分线上29 、角的平分线是到角的两边距离相等的一切点的集合30 、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)初二下册数学公式(三)31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 、等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合33 、推论3 等边三角形的各角都相等,并且每一个角都等于60&deg;34 、等腰三角形的判定定理假设一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36 、推论 2 有一个角等于60&deg;的等腰三角形是等边三角形37 、在直角三角形中,假设一个锐角等于30&deg;那么它所对的直角边等于斜边的一半38 、直角三角形斜边上的中线等于斜边上的一半39 、定理线段垂直平分线上的点和这条线段两个端点的距离相等40 、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 、线段的垂直平分线可看作和线段两端点距离相等的一切点的集合42 、定理1 关于某条直线对称的两个图形是全等形43 、定理 2 假设两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,假设它们的对应线段或延伸线相交,那么交点在对称轴上45、逆定理假设两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247、勾股定理的逆定理假设三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48、定理四边形的内角和等于360&deg;49、四边形的外角和等于360&deg;50、多边形内角和定理n边形的内角的和等于(n-2)&times;180&deg;。

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结Jenny was compiled in January 2021八年级下册数学概念、定义、公式归纳1.2.3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。

分子和分母没有公因式的分式叫做最简分式。

4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。

通分一般要找各分式的最简公分母。

()5.6.7.8.9.10.11.12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。

勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

13.题设、结论正好相反的两个命题称为互逆命题。

其中一个叫原命题,另一个叫逆命题。

14.平行四边形的性质:①对边平行且相等②对角相等,邻角互补③对角线互相平分15.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形。

②两组对边分别相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。

④一组对边平行且相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

16.矩形的性质:①两组对边平行且相等。

②四个角都是直角。

③对角线互相平分且相等17.矩形的判定方法:①一个角是直角的平行四边形是矩形。

②对角线相等的平行四边形是矩形。

③三个角都是直角的四边形是矩形。

18.菱形的性质:①四条边都相等②对角相等,邻角互补③对角线互相垂直平分,且每一条对角线平分一组对角19.菱形的判定方法:①一组邻边相等的平行四边形是菱形。

②对角线互相垂直的平行四边形是菱形。

③四边相等的四边形是菱形。

20.正方形的性质:①四条边都相等,对边平行②四个角都是直角③对角线相等且互相垂直平分,且每一条对角线平分一组对角21.正方形的判定方法:①一组邻边相等的矩形是正方形。

初二下册数学公式归纳总结苏教版

初二下册数学公式归纳总结苏教版

初二下册数学公式归纳总结苏教版2.3分组分解法当多项式的项数较多之前,可将多项式进行合理分组,降至顺利分解的目的。

当然可能要综合其他分法,且初赛方法也不一定。

例1分解因式:x15+m12+m9+m6+m3+1解原式=(x15+m12)+(m9+m6)+(m3+1)=m12(m3+1)+m6(m3+1)+(m3+1)=(m3+1)(m12+m6++1)=(m3+1)[(m6+1)2-m6]=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)例2分解因式:x4+5x3+15x-9解析可根据系数特征或进行分组解原式=(x4-9)+5x3+15x=(x2+3)(x2-3)+5x(x2+3)=(x2+3)(x2+5x-3)2.4十字相乘法对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字圣乔治相乘法,即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相加进行相乘操作。

例3分解因式:①x2-x-6②6x2-x-12解①1x21x-3原式=(x+2)(x-3)②2x-33x4原式=(2x-3)(3x+4)注:“ax4+bx2+c”型也可综合考虑此种方法。

2.5双十字相乘法在分解二次三项式时,盾牌相乘法是常用的三者基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以充分运用十字相乘法分解因式,其具体步骤为:(1)用相乘法分解由前三次组成的二次三项式,得到一个十字相除图(2)把常数项分解成两个因式填在第二个十字的右边且使这因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还第一个与必须十字中左端的两个因式交叉之积的和等于原式中含x的一次项例5分解因式① 4x2-4xy-3y2-4x+10y-3② ②x2-3xy-10y2+x+9y-2③ ab+b2+a-b-2④ ④6x2-7xy-3y2-xz+7yz-2z2解①原式=(2x-3y+1)(2x+y-3)2x-3y 12x y-3②原式=(x-5y+2)(x+2y-1)x-5y 2x 2y-1③原式=(b+1)(a+b-2)0ab 1a b-2④原式=(2x-3y+z)(3x+y-2z)2x-3yz3x-y-2z说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。

初二下册数学公式归纳总结苏教版

初二下册数学公式归纳总结苏教版

1、单独的⼀个数或⼀个字母也是单向式。

2、单向式中的数字因数叫做这个单向式的系数。

3、⼀个单向式中,所有字母的指数的和叫做这个单向式的次数。

4、⼏个单向式的和叫做多项式。

在多项式中,每个单向式叫做多项式的项,其中,不含字母的项叫做常数项。

5、⼀般地,多项式⾥次数的项的次数,就是这个多项式的次数。

6、单项式和多项式统称整式。

7、所含字母相同,并且相同字母的指数也相同的项叫做同类项。

⼏个常数项也是同类项。

8、吧多项式中的同类项合并成⼀项,即把它们的系数相加作为新的系数,⽽字母部分不变,叫做合并同类项。

9、⼏个整式相加减,通常⽤括号把每个整式括起来,再⽤加减号连接:然后去括号,合并同类项。

10、幂的乘⽅,底数不变,指数相同。

11、同底数幂相乘,底数不变,指数相加。

12、幂的乘⽅,底数不变,指数相乘。

13、积的乘⽅,等于把积的每⼀个因式分别乘⽅,再把所得的幂相乘。

14、单向式与单向式相乘,把它们的系数、相同字母分别相乘,对于只在⼀个单向式⾥含有的字母,则连同它的指数作为积的因式。

15、单向式与多项式相乘,就是⽤单项式去乘多项式的每⼀项,再把所得的积相加。

16、多项式与多项式相乘,先⽤⼀个多项式的每⼀项乘另⼀个多项式的每⼀项,再把所得的积相加。

17、两个数的和与这两个数的差的积=这两个数的平⽅差。

这个公式叫做(乘法的)平⽅差公式。

18、两数和(或差)的平⽅=它们的平⽅和,加(或减)它们积的2倍。

这两个公式叫做(乘法的)完全平⽅公式。

19、添括号时,如果括号前⾯是正号,括到括号⾥的各项都不变符号;如果括号前⾯是负号,括到括号⾥的各项都改变符号。

20、同底数幂相加,底数不变,指数相减。

21、任何不等于0的数的0次幂都等于1.22、单向式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式⾥含有的字母,则连同它的指数作为商的⼀个因式。

23、多项式除以单向式,先把这个多项式的每⼀项除以这个单项式,再把所得的商相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二下册数学公式总结归纳
1、过两点有且只有一条直线
2 、两点之间线段最短
3、同角或等角的补角相等
4 、同角或等角的余角相等
5 、过一点有且只有一条直线和已知直线垂直
6 、直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 、如果两条直线都和第三条直线平行,这两条直线也互相平行[1]
9 、同位角相等,两直线平行
10 、内错角相等,两直线平行
11 、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13 、两直线平行,内错角相等
14 、两直线平行,同旁内角互补
15 、定理三角形两边的和大于第三边
16 、推论三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18 、推论1 直角三角形的两个锐角互余
19 、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 、边边边公理(SSS) 有三边对应相等的两个三角形全等[2]
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 、定理1 在角的平分线上的点到这个角的两边的距离相等
28 、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 、角的平分线是到角的两边距离相等的所有点的集合
30 、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36 、推论 2 有一个角等于60°的等腰三角形是等边三角形
37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39 、定理线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 、定理1 关于某条直线对称的两个图形是全等形
43 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,
那么交点在对称轴上
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两
个图形关于这条直线对称
46、勾股定理直角三角形两直角边a、 b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理如果三角形的三边长a、 b、 c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48、定理四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°。

相关文档
最新文档