数学分类讨论思想与“零点分段法”(8班)精品PPT课件

合集下载

数学分类讨论思想课件

数学分类讨论思想课件


F a
2、在直角坐标系中,O为坐标原点, 已知 A(1,1),在x轴上确定点P, 使得△AOP为等腰三角形,则符合条 y 4 件的P点共有 个
1
P2(2 ,0)
A (1,1)
P1(2,0)
-1
o
-1
P4( 1, 0 )
1 P3(
2
,0) x
例7、在下图三角形的边上找出一点,使得 该点与三角形的两顶点构成等腰三角形!C
当AQ=AP时,△QAP为等腰直 角三角形, 即6-t=2t,解得t=2(秒) ∴当t=2秒时, △QAP为等腰直 角三角形。
16 17
(1)若顶角顶点与矩形顶点重合
A
F
D
16
E B
17
如图,当AE=AF=10时,S△AEF=
1 2 2×10×10=50(cm )
C
(2)若底角顶点与矩形顶点重合
A D E A D
E B F C B C
F
如图,当EA=EF=10时,BE=6, BF= 102 62 =8,
1 S△AEF= ×10×8=40(cm2) 2
例5
1、已知⊙O的半径为5cm,AB、CD是⊙O的弦, 且AB=6cm, CD=8cm,AB∥CD,则AB与CD之 间的距离为 7cm或1cm 。
A B C C A B D
O 2、在半径为1的圆O中,弦AB、AC的长分 别是 3、 2,则∠BAC的度数是 150或750 。
3、△ABC是半径为2cm的圆的内接三角形,若 0或1200 60 BC=2 cm,则∠ A的度数是 。
1)、对∠A进行讨论
110° 20° 50° B
3)、对∠C进行讨论
C

绝对值大全零点分段法化简最值

绝对值大全零点分段法化简最值

绝对值大全零点分段法、化简、最值一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号;使不等式变为不含绝对值符号的一般不等式;而后;其解法与一般不等式的解法相同..因此掌握去掉绝对值符号的方法和途径是解题关键.. 1利用定义法去掉绝对值符号根据实数含绝对值的意义;即|x |=(0)(0)x x x x ≥⎧⎨-<⎩;有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c c >0来解;如|ax b +|>c c >0可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ;再由此求出原不等式的解集..对于含绝对值的双向不等式应化为不等式组求解;也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解;这是种典型的转化与化归的数学思想方法..3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式;利用|x |2=2x 可在两边脱去绝对值符号来解;这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷;解题时还要注意不等式两边变量与参变量的取值范围;如果没有明确不等式两边均为非负数;需要进行分类讨论;只有不等式两边均为非负数式时;才可以直接用两边平方去掉绝对值;尤其是解含参数不等式时更必须注意这一点.. 4利用零点分段法去掉绝对值符号所谓零点分段法;是指:若数1x ;2x ;……;n x 分别使含有|x -1x |;|x -2x |;……;|x -n x |的代数式中相应绝对值为零;称1x ;2x ;……;n x 为相应绝对值的零点;零点1x ;2x ;……;n x 将数轴分为m +1段;利用绝对值的意义化去绝对值符号;得到代数式在各段上的简化式;从而化为不含绝对值符号的一般不等式来解;即令每项等于零;得到的值作为讨论的分区点;然后再分区间讨论绝对值不等式;最后应求出解集的并集..零点分段法是解含绝对值符号的不等式的常用解法;这种方法主要体现了化归、分类讨论等数学思想方法;它可以把求解条理化、思路直观化.. 5利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合;利用绝对值的几何意义画出数轴;将绝对值转化为数轴上两点间的距离求解..数形结合法较为形象、直观;可以使复杂问题简单化;此解法适用于||||x a x b m -+->或||||x a x b m -+-<m 为正常数类型不等式..对||||ax b cx d m +++>或<m ;当|a |≠|c |时一般不用.. 二、如何化简绝对值绝对值的知识是初中代数的重要内容;在中考和各类竞赛中经常出现;含有绝对值符号的数学问题又是学生遇到的难点之一;解决这类问题的方法通常是利用绝对值的意义;将绝对值符号化去;将问题转化为不含绝对值符号的问题;确定绝对值符号内部分的正负;借以去掉绝对值符号的方法大致有三种类型..一、根据题设条件例1:设化简的结果是 ..A B C D思路分析:由可知可化去第一层绝对值符号;第二次绝对值符号待合并整理后再用同样方法化去.解:∴应选B.归纳点评只要知道绝对值将合内的代数式是正是负或是零;就能根据绝对值意义顺利去掉绝对值符号;这是解答这类问题的常规思路.二、借助数轴例2:实数a、b、c在数轴上的位置如图所示;则代数式的值等于.A B C D思路分析由数轴上容易看出;这就为去掉绝对值符号扫清了障碍.解:原式∴应选C.归纳点评这类题型是把已知条件标在数轴上;借助数轴提供的信息让人去观察;一定弄清:1.零点的左边都是负数;右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大;牢记这几个要点就能从容自如地解决问题了.三、采用零点分段讨论法例3:化简思路分析本类型的题既没有条件限制;又没有数轴信息;要对各种情况分类讨论;可采用零点分段讨论法;本例的难点在于的正负不能确定;由于x是不断变化的;所以它们为正、为负、为零都有可能;应当对各种情况—一讨论.解:令得零点:;令得零点:;把数轴上的数分为三个部分如图①当时;∴原式②当时;;∴原式③当时;;∴原式∴归纳点评:虽然的正负不能确定;但在某个具体的区段内都是确定的;这正是零点分段讨论法的优点;采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零;求出零点不一定是两个.2.分段:根据第一步求出的零点;将数轴上的点划分为若干个区段;使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来;得到问题的答案.误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件;以免得出错误的结果.三、带绝对值符号的运算在初中数学教学中;如何去掉绝对值符号因为这一问题看似简单;所以往往容易被人们忽视..其实它既是初中数学教学的一个重点;也是初中数学教学的一个难点;还是学生容易搞错的问题..那么;如何去掉绝对值符号呢我认为应从以下几个方面着手:一、要理解数a的绝对值的定义..在中学数学教科书中;数a的绝对值是这样定义的;“在数轴上;表示数a的点到原点的距离叫做数a的绝对值..”学习这个定义应让学生理解;数a的绝对值所表示的是一段距离;那么;不论数a本身是正数还是负数;它的绝对值都应该是一个非负数..二、要弄清楚怎样去求数a的绝对值..从数a的绝对值的定义可知;一个正数的绝对值肯定是它的本身;一个负数的绝对值必定是它的相反数;零的绝对值就是零..在这里要让学生重点理解的是;当a是一个负数时;怎样去表示a的相反数可表示为“-a”;以及绝对值符号的双重作用一是非负的作用;二是括号的作用..三、掌握初中数学常见去掉绝对值符号的几种题型..1、对于形如︱a︱的一类问题只要根据绝对值的3个性质;判断出a的3种情况;便能快速去掉绝对值符号..当a>0时; ︱a︱= a性质1:正数的绝对值是它本身;当a=0 时; ︱a︱= 0性质 2:0的绝对值是0;当 a<0 时;︱a︱= –a 性质3:负数的绝对值是它的相反数..2、对于形如︱a+b︱的一类问题首先要把a+b看作是一个整体;再判断a+b的3种情况;根据绝对值的3个性质;便能快速去掉绝对值符号进行化简..当a+b>0时;︱a+b︱= a+b =a +b性质1:正数的绝对值是它本身;当a+b=0 时;︱a+b︱= a+b =0性质 2:0的绝对值是0;当 a+b<0 时;︱a+b︱= –a+b=–a-b 性质3:负数的绝对值是它的相反数..3、对于形如︱a-b︱的一类问题同样;仍然要把a-b看作一个整体;判断出a-b 的3种情况;根据绝对值的3个性质;去掉绝对值符号进行化简..但在去括号时最容易出现错误..如何快速去掉绝对值符号;条件非常简单;只要你能判断出a与b的大小即可不论正负..因为︱大-小︱=︱小-大︱=大-小;所以当a>b时; ︱a-b︱=a-b= a-b;︱b-a ︱=a-b= a-b ..口诀:无论是大减小;还是小减大;去掉绝对值;都是大减小..4、对于数轴型的一类问题;根据3的口诀来化简;更快捷有效..如︱a-b︱的一类问题;只要判断出a在b的右边不论正负;便可得到︱a-b︱=a-b=a-b;︱b-a︱=a-b=a-b ..5、对于绝对值符号前有正、负号的运算非常简单;去掉绝对值符号的同时;不要忘记打括号..前面是正号的无所谓;如果是负号;忘记打括号就惨了;差之毫厘失之千里也6、对于绝对值号里有三个数或者三个以上数的运算万变不离其宗;还是把绝对值号里的式子看成一个整体;把它与0比较;大于0直接去绝对值号;小于0的整体前面加负号..四、去绝对值化简专题练习1 设化简的结果是 B ..A B C D2 实数a、b、c在数轴上的位置如图所示;则代数式的值等于 C ..A B C D3 已知;化简的结果是 x-8 ..4 已知;化简的结果是 -x+8 ..5 已知;化简的结果是 -3x ..6 已知a、b、c、d满足且 ;那么a+b+c+d= 0 提示:可借助数轴完成7 若 ;则有A ..A B C D8 有理数a、b、c在数轴上的位置如图所示;则式子化简结果为C .A B C D9 有理数a、b在数轴上的对应点如图所示;那么下列四个式子;中负数的个数是B .A0 B1 C2 D310 化简 =1-3x x<-4 2-x+8-4≤x≤2 33xx>211 设x是实数;下列四个结论中正确的是D ..A y没有最小值B有有限多个x使y取到最小值C只有一个x使y取得最小值D 有无穷多个x 使y 取得最小值 五、绝对值培优教案绝对值是初中代数中的一个基本概念;是学习相反数、有理数运算及后续二次根式的基础.绝对值又是初中代数中的一个重要概念;在解代数式化简求值、解方程组、解不等组、函数中距离等问题有着广泛的应用;全面理解、掌握绝对值这一概念;应从以下方面人手:l .绝对值的代数意义:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值的几何意义从数轴上看;a 表示数a 的点到原点的距离长度;非负 ;b a -表示数a 、数b 的两点间的距离.3.绝对值基本性质①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 培优讲解一、绝对值的非负性问题例1若3150x y z +++++=;则x y z --= .. 总结:若干非负数之和为0; .. 二、绝对值中的整体思想例2已知4,5==b a ;且a b b a -=-;那么b a += .变式1. 若|m -1|=m -1;则m_______1; 若|m -1|>m -1;则m_______1; 三、绝对值相关化简问题零点分段法 例3阅读下列材料并解决有关问题:我们知道()()()0000<=>⎪⎩⎪⎨⎧-=x x x x xx ;现在我们可以用这一个结论来化简含有绝对值的代数式;如化简代数式21-++x x 时;可令01=+x 和02=-x ;分别求得2,1=-=x x 称2,1-分别为1+x 与2-x 的零点值..在有理数范围内;零点值1-=x 和2=x 可将全体有理数分成不重复且不遗漏的如下3种情况:1当1-<x 时;原式=()()1221+-=--+-x x x ; 2当21<≤-x 时;原式=()321=--+x x ; 3当2≥x 时;原式=1221-=-++x x x ..综上讨论;原式=()()()221112312≥<≤--<⎪⎩⎪⎨⎧-+-x x x x x 通过以上阅读;请你解决以下问题:(1) 分别求出2+x 和4-x 的零点值;2化简代数式42-++x x 变式1.化简 112-x ; 231-+-x x ;变式2.已知23++-x x 的最小值是a ;23+--x x 的最大值为b ;求b a +的值.. 四、b a -表示数轴上表示数a 、数b 的两点间的距离.例4距离问题观察下列每对数在数轴上的对应点间的距离 4与2-;3与5;2-与6-;4-与3. 并回答下列各题:1你能发现所得距离与这两个数的差的绝对值有什么关系吗 答:___ . 2若数轴上的点A 表示的数为x ;点B 表示的数为―1;则A 与B 两点间的距离可以表示为 ______________.3结合数轴求得23x x -++的最小值为 ;取得最小值时x 的取值范围为 ___. 4 满足341>+++x x 的x 的取值范围为 ______ . (5) 若1232008x x x x -+-+-++-的值为常数;试求x 的取值范围.五、绝对值的最值问题例51当x 取何值时;3-x 有最小值 这个最小值是多少 2当x 取何值时;25+-x 有最大值 这个最大值是多少 3求54-+-x x 的最小值..4求987-+-+-x x x 的最小值.. 例6.已知1,1≤≤y x ;设421--++++=x y y y x M ;求M 的最大值与最小值. 课后练习:1、若|1|a b ++与2(1)a b -+互为相反数;求321a b +-的值..2.若1++b a 与2)1(+-b a 互为相反数;则a 与b 的大小关系是 .A .b a >B .b a =C .b a <D .b a ≥ 3.已知数轴上的三点A 、B 、C 分别表示有理数a ;1;一l;那么1+a 表示 .A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和4.利用数轴分析23x x -++;可以看出;这个式子表示的是x 到2的距离与x 到3-的距离之和;它表示两条线段相加:⑴当x > 时;发现;这两条线段的和随x 的增大而越来越大;⑵当x < 时;发现;这两条线段的和随x 的减小而越来越大;⑶当 x ≤≤ 时;发现;无论x 在这个范围取何值;这两条线段的和是一个定值 ;且比⑴、⑵情况下的值都小..因此;总结;23x x -++有最小值 ;即等于 到 的距离 5. 利用数轴分析71x x +--;这个式子表示的是x 到7-的距离与x 到1的距离之差它表示两条线段相减:⑴当x ≤ 时;发现;无论x 取何值;这个差值是一个定值 ;⑵当x ≥ 时;发现;无论x 取何值;这个差值是一个定值 ;⑶当 x << 时;随着x 增大;这个差值渐渐由负变正;在中点处是零.. 因此;总结;式子71x x +--当x 时;有最大值 ;当x 时;有最小值 ;9.设0=++c b a ;0>abc ;则cba b a c a c b +++++的值是 .A .-3B .1C .3或-1D .-3或1 10.若2-<x ;则=+-x 11 ;若aa -=;则=---21a a .12.设c b a 、、分别是一个三位数的百位、十位和个位数字;并且c b a ≤≤;则ac c b b a -+-+-可能取得的最大值是 .4、当b 为______时;5-12-b 有最大值;最大值是_______当a 为_____时;1+|a +3 |有最小值是_________.5、当a 为_____时;3+|2a -1 |有最小值是________;当b 为______时;1- | 2+b|有最大值是_______. 2、已知b 为正整数;且a 、b 满足| 2a -4|+b =1;求a 、b 的值.. 7.化简:⑴13x x -++; ⑵213x x +-+4、如果2x +| 4-5x|+ |1-3x |+4恒为常数;求x 的取值范围.. 7、若|5||2|7x x ++-=;求x 的取值范围..。

绝对值大全(零点分段法-化简-最值)

绝对值大全(零点分段法-化简-最值)

绝对值大全〔零点分段法、化简、最值〕一、去绝对值符号的几种常用方法解含绝对值不等式的根本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法一样。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a 〞来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项〞绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,假如没有明确不等式两边均为非负数,需要进展分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:假设数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

《各题型解题指导专题分类讨论思想》课件 2022年人教版省一等奖PPT

《各题型解题指导专题分类讨论思想》课件 2022年人教版省一等奖PPT

B
C
AD∥BC
A
D AB∥CD
B
C
AB=CD
Ao
D
B
c
A
D
OA=OC OB=OD
AB=CD
B
C
AD=BC
四边形ABCD是□ 四边形ABCD是□ 四边形ABCD是□ 四边形ABCD是□
应用与拓展
1、如图,四个全等三角形拼成一个大的三角形, 图中所有的平行四边形,并且说明理由。
解:
A1A2A5A3
A1
几何中的分类讨论
例 2:(2021 年广东佛山)一般来说,依据数学研究对象本质 属性的相同点和差异点,将数学对象分为不同种类的数学思想 叫做“分类〞的思想;将事物进行分类,然后对划分的每一类 分别进行研究和求解的方法叫做“分类讨论〞的方法.请依据
分类的如思想图和Z分2类-讨1论,的在方法△解A决B以C下中问,题∠: ACB>∠ABC.
证明:(1)分两种情况讨论: ①当 m=0 时,方程为 x-2=0,得 x=2,方程有实数根; ②当 m≠0 时,那么一元二次方程的根的判别式:
Δ=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0. 不管 m 为何实数,Δ≥0 成立, ∴方程恒有实数根.
综合①、②可知 m 取任何实数,方程 mx2-(3m-1)x+2m -2=0 恒有实数根.
连接AC
A
∵ Aቤተ መጻሕፍቲ ባይዱ∥CD, ∴ ∠1=∠2,
又∵ AB=CD, AC=CA, ∴ △ABC≌△CDA
1
B
∴ BC=AD
D
2
C
∴四边形ABCD有两组对边相等,是一个平行四边形
一组对边平行且相等的四边形是平行四边形

数学分类讨论思想与“零点分段法”(8班)精品PPT课件

数学分类讨论思想与“零点分段法”(8班)精品PPT课件

③当 1<m1 <e,即1e<m<1 时,
函数 f (x)在 (1,m1 )上单调递增,在(m1 ,e)上单调递减,
则 f (x) max=f (m1 )=-lnm-1.…………………………7 分1,e), f ′(x)<0,函数 f (x)在(1,e)上单调递减,
即 3x2 3a 1 0 无解……………4 分
0 4 3(3a 1) 0
a 1 3
………………6 分
法 2: f / (x) 3x2 3a 3a ,……………4 分
要使直线 x y m 0 对任意的 mR 都不是曲线
y f (x) 的切线,当且仅当 1 3a 时成立,
(2)若直线 x y m 0 对任意的 m R 都不是曲线 y f (x)
的切线,求 a 的取值范围;
(3)设 g(x) | f (x) |, x [1,1],求 g(x) 的最大值 F (a) 的
解析式. (惠州市 2013 届高三上学期期末)
解:(1)当a 1时, f ' (x) 3x2 3,令f ' (x) 0,得x 1或x 1……1 分 当 x (1,1) 时 , f ' (x) 0,当x (,1] [1,) 时 ,
x a ex
…2 分
因为 x 0 为 f x 的极值点,
所以由 f 0 ae0 0 ,解得 a 0 ……………3 分
检验,当 a 0 时, f x xex ,当 x 0 时, f x 0 ,当 x 0
时, f x 0.
所以 x 0 为 f x 的极值点,故 a 0 .……………4 分
(Ⅱ) 当 a 0 时,不等式
f
x
x
1
1 2
x2
x

(浙江专版)2022中考数学专题2分类讨论思想(精讲本)课件

(浙江专版)2022中考数学专题2分类讨论思想(精讲本)课件

类型四 由图形的不确定性引起的讨论
例 4.(2021·绍兴)已知△ABC 与△ABD 在同一平面内,点 C,D 不重合,∠ABC=∠ABD=30°,AB=4,AC=AD =2 2 ,则 CD 长为____2__3__±__2__或__4__或__2___6_______.
【解析】如图,当 C,D 同侧时,过点 A 作 AE⊥CD 于 E.可求得 DE=EC=AE,∴△ADC 是等腰直角三角形, ∴CD=4;当 C,D 异侧且关于 AB 对称时,过 C′作 C′H⊥CD 于 H,∵△BCC′是等边三角形,CD′=BC =BE-EC=2 3 -2;∵△DBC′是等边三角形,∴DC′ =2 3 +2;当 C,D 异侧不关于 AB 对称时,∴CH=BH = 3 -1,C′H= 3 CH=3- 3 ,在 Rt△DC′H 中, DC′= DH2+C′H2 =2 6 ,∴CD 的长为 2 3 ±2 或 4 或2 6 .
C.1 或 3
D.4 或 6
3.(2021·菏泽)关于 x 的方程(k-1)2x2+(2k+1)x+1=0
有实数根,则 k 的取值范围是( D )
A.k>14 பைடு நூலகம் k≠1
B.k≥14 且 k≠1
C.k>14
D.k≥14
4.甲乙两地相距 50 千米.星期天上午 8:00 小聪同学在 父亲陪同下骑山地车从甲地前往乙地.2 小时后,小明的父 亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路 程 y(千米)与小聪行驶的时间 x(小时)之间的函数关系如图
10.在矩形 ABCD 中,AB=1,BC=a,点 E 在边 BC 上, 且 BE=35 a,连结 AE,将△ABE 沿 AE 折叠.若点 B 的对 应点 B′落在矩形 ABCD 的边上,则折痕的长为 _________2__或___53_0_________________________.

中考数学专题复习一分类讨论思想PPT课件

中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |〈c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |〉c (c 〉0)来解,如|ax b +|〉c (c >0)可为ax b +〉c 或ax b +〈-c ;|ax b +|〈c 可化为-c 〈ax +b 〈c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点.4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

技法专题第2讲分类讨论思想、转化与化归思想

技法专题第2讲分类讨论思想、转化与化归思想
问题的C思o想py策r略ig.h对t 问20题1实9-行20分1类9与A整sp合o,s分 e P类t标y准L等td于. 增加
一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论思想在解题中的应用
1
由数学概念而引起的分类讨论:如绝对值的定义、不等式 的定义、二次函数的定义、直线的倾斜角等.
①当 m≤0 时,g′(x)≤0,则 g(x)的单调递减区间是(-∞,
+∞);
②当m>0时,令g′(x)<0,解得x<- 2m 或x> 2m ,则
g(x)的单调递减区间E是v(a-lu∞a,ti-on2omn) l,y.( 2m,+∞). ated w综i上th所A述s,pmos≤e0.S时l,idge(xs)的fo单r调.N递E减T区3间.5是C(-li∞en,t+P∞ro);file 5.2
Evaluation only. ated witfh(a)A=s-p3o,se则.Sf(l6i-deas)=for .NET 3.5 Client P(rofi)le 5.2
AC.o-p74yright 2019-201B9.A-sp54 ose Pty Ltd.
C.-34
D.-14
解析:由于 f(a)=-3,
综上知,||PPFF21||=72或 2.
[技法领悟]
(1)本题中直角顶点的位置不定,影响边长关系,需按
直角顶点不同的位E置v进a行lu讨at论io.n only. ated with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(2o)涉py及r几ig何h问t 2题0时19,-2由0于1几9 A何s元p素os的e形P状ty、L位t置d.变化

零点分段法、参数方程、动点问题.

零点分段法、参数方程、动点问题.

4、数轴是数形结合的产物,分析数轴上点的运动要结合 图形进行分析,点在数轴上运动形成的路径可看作数轴上 线段的和差关系.
例4、已知:b是最小的正整数,且a、b、c满足 (c-5)2+|a+b|=0, 请回答问题 (1)请直接写出a、b、c的值.a=________, b=________,c=________. (2)a、b、c所对应的点分别为A、B、C,点P为一动点, 其对应的数为x,点P在0到2之间运动时(即0≤x≤2时), 请化简式子:|x+1|-|x-1|+2|x+5|. (3)若点A、点C分别以每秒1个单位和2个单位长度的 速度向左运动,请问几秒时,A,C之间的距离为1个单 位长度?
(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的 速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位 长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示 为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随 着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
解:(4)设t秒时 -1 1 5 A点对应的坐标为XA,则XA=-1-t B点对应的坐标为XB,则XB=1+2t C点对应的坐标为XC,则XC=5+5t 则BC=XC-XB=5+5t-(1+2t)=3t+4 AB=XB-XA=1+2t-(-1-t)=3t+2 则 BC-AB=3t+4- 3t-2=2 综上所述:BC-AB的值不变,BC-AB=2
五、精练——当堂训练、提升能力
4.总结综合:将各区段内的情形综合起来,得到问题的 答案.
二、引探——自主学习、探究问题
2、含字母系数的一元一次方程

微专题 思想方法(四)导数及其应用分类讨论思想的应用 课件 (共23张PPT)

微专题 思想方法(四)导数及其应用分类讨论思想的应用 课件 (共23张PPT)

x (0,x1) x1 (x1,x2) x2 (x2,+∞)
f′(x) +
0

0

f(x)
↗ 极大值 ↘ 极小值

综上所述,当 0<a≤2 2时,f(x)在(0,+∞)上为增函 数;当 a>2 2时,f(x)在0,a- 4a2-8,(a+ 4a2-8,+∞) 上单调递增,在(a- 4a2-8,a+ 4a2-8)上单调递减.
类型 由二次型函数引发的分类讨论 对函数 f(x)求导后,得到的导函数是一个二次型(或 含有二次三项式)的函数,接下来需要考虑分类讨论,一 般可从以下三个方面进行:①x2 的系数,②判别式,③根 的分布. 1.由二次函数系数引发的分类讨论 若得到的导函数中含有的二次三项式的二次项系数 含有参数,则首先需要讨论其系数:
所以 f(x)在(-∞,0)单调递减,在(0,+∞)单调递增. (2)f(x)≥12x3+1 等价于12x3-ax2+x+1e-x≤1. 设函数 g(x)=12x3-ax2+x+1e-x(x≥0),则 g′(x)=-12x3-ax2+x+1-32x2+2ax-1e-x =-12x[x2-(2a+3)x+4a+2]e-x =-12x(x-2a-1)(x-2)e-x.
所以 f(x)min=f 1a<f(1)=-2,不符合题意,舍去; ③当1a≥e,即 0<a≤1e时,当 x∈[1,e]时, f′(x)≤0,f(x)单调递减, 所以 f(x)min=f(e)<f(1)=-2,不符合题意,舍去. 综上可知,实数 a 的取值范围为[1,+∞).
类型 导函数零点的分类讨论 在讨论函数的单调性、探究函数的极值等情形时, 如果所求的导函数的零点含有参数,则需要对零点进行 分类讨论. [例 5] (2020·全国卷Ⅰ)已知函数 f(x)=ex+ax2-x. (1)当 a=1 时,讨论 f(x)的单调性; (2)当 x≥0 时,f(x)≥12x3+1,求 a 的取值范围. 解:(1)当 a=1 时,f(x)=ex+x2-x,f′(x)=ex+2x-1. 故当 x∈(-∞,0)时,f′(x)<0;当 x∈(0,+∞)时,f′(x)>0.

2021年中考数学复习专题2 分类讨论思想(教学课件)

2021年中考数学复习专题2 分类讨论思想(教学课件)

分类讨论常见类型: 类型1:由数学概念引起的的讨论,如实数、有理数、绝对值等 概念的分类讨论; 类型2:由性质、定理、公式的限制条件引起的讨论,如一元二 次方程求根公式的应用引起的讨论; 类型3:由数学运算要求引起的讨论,如不等式两边同乘一个正 数还是负数的问题; 类型4:由图形的不确定性引起的讨论,如直角、锐角、钝角三 角形中的相关问题引起的讨论。 类型5:由字母的取值引起的分类讨论,如含字母的方程、函数 、不等式,由于字母的取值不同
线 y=12 x+12 上,若抛物线 y=ax2-x+1(a≠0)与线段 AB 有两个不
同的交点,则 a 的取值范围是( C )
A.a≤-2
B.a<98
C.1≤a<98 或 a≤-2
D.-2≤a<98
重点题型
题题组组训训练练
【解析】分 a>0,a<0 两种情况讨论.∵抛物线 y=ax2-x+
1(a≠0)与线段 AB 有两个不同的交点,∴令12 x+12 =ax2-x+1,
解析式为 y=-13
x+53
,由y=-13x+53 y=ax2-x+2
,消去 y 得到,3ax2-2x
+1=0,∵Δ>0,∴a<13 ,∴14 ≤a<13 满足条件,综上所述,满
足条件的 a 的值为 a≤-1 或14 ≤a<13 .
重重点点题题型型
题组训练
重点题型
题题组组训训练练
8.在平面直角坐标系内,已知点 A(-1,0),点 B(1,1)都在直
重重点点题题型型
题 型 三 由数学运算要求引起的讨论
题组训练
例6.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成 .已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人? (2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿 童去另一景区B游玩.景区B的门票价格为100元/张,成人全票 ,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元 ?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(Ⅱ)
在(Ⅰ)的条件下,解不等式
f
x
x
1
1 2
x2
x
1

(Ⅲ) 若函数 f x 在区间 1, 2 上单调递增,求实数 a 的取
值范围. (河北衡水中学 2014 届五调考试)
【解析】(Ⅰ)因为
f
x
ax2
a
12Βιβλιοθήκη xaa12
e
x
f
x
2ax
a
12
ex
ax2
a
12
x
a
a
12
ex
ax2
a2 1
③当 1<m1 <e,即1e<m<1 时,
函数 f (x)在 (1,m1 )上单调递增,在(m1 ,e)上单调递减,
则 f (x) max=f (m1 )=-lnm-1.…………………………7 分
④当m1 ≤1,即 m≥1 时,
x∈(1,e), f ′(x)<0,函数 f (x)在(1,e)上单调递减,
x a ex
…2 分
因为 x 0 为 f x 的极值点,
所以由 f 0 ae0 0 ,解得 a 0 ……………3 分
检验,当 a 0 时, f x xex ,当 x 0 时, f x 0 ,当 x 0
时, f x 0.
所以 x 0 为 f x 的极值点,故 a 0 .……………4 分
a 1 ………………6 分 3
滚动训练
滚动练习 1:已知函数 f (x)=(m-3)x3 + 9x. (1)若函数 f (x)在区间(-∞,+∞)上是单调函数,求 m 的取
值范围; (2)若函数 f (x)在区间[1,2]上的最大值为 4,求 m 的值.
(南通市 2013 届高三二调)
【解】(1)因为 f (0)=9 > 0,所以 f (x)在区间 , 上只能是
故函数(t)在(1,+∞)上是增函数,所以(t)>(1)=0,即 lnt>2(tt+-11)成立.
所以原不等式成立.
………………………………………16 分
知识、方法扫描与提炼
1.分类讨论的原则: 2. 分类讨论的分类标准:
典型例题欣赏
典例:已知函数 f (x) x3 3ax(a R)
(1)当 a 1时,求 f (x) 的极小值;
解:(1)因为点 P(1,-1)在曲线 y=f(x)上,
所以-m=-1,解得 m=1.
因为 f ′(x)=x1-1,所以切线的斜率为 0,
所以切线方程为 y=-1.………………3 分
(2)因为 f ′(x)=x1-m=1-xmx. ① 当 m≤0 时, x∈(1,e), f ′(x)>0, 所以函数 f (x)在(1,e)上单调递增 则 f (x) max=f (e)=1-me.…………4 分 ② 当m1 ≥e,即 0<m≤1e时,x∈(1,e), f ′(x)>0, 所以函数 f (x)在(1,e)上单调递增 则 f (x)max=f (e)=1-me.……………………5 分
(2)若直线 x y m 0 对任意的 m R 都不是曲线 y f (x)
的切线,求 a 的取值范围;
(3)设 g(x) | f (x) |, x [1,1],求 g(x) 的最大值 F (a) 的
解析式. (惠州市 2013 届高三上学期期末)
解:(1)当a 1时, f ' (x) 3x2 3,令f ' (x) 0,得x 1或x 1……1 分 当 x (1,1) 时 , f ' (x) 0,当x (,1] [1,) 时 ,
高二(8)专题提升
达成目标
1.进一步巩固分类讨论思想尤其含有参数的分类讨论 思想;
2.初步掌握分类讨论中的“零点”分段法的思维.
引例欣赏
引例:已知函数 f(x)=lnx-mx(m∈R). (1)若曲线 y=f(x)过点 P(1,-1),求曲线 y=f(x)在点 P 处的切线方程; (2)求函数 f(x)在区间[1,e]上的最大值; (3)若函数 f(x)有两个不同的零点 x1,x2,求证:x1x2>e2. (南京市 2014 届三模)
则 f (x) max=f (1)=-m. …………………………9 分 综上,①当 m≤1e时,f (x)max=1-me;
②当1e<m<1 时,f (x)max=-lnm-1;
③当 m≥1 时,f (x)max=-m.
…………10 分
(3)不妨设 x1>x2>0.因为 f (x1)=f (x2)=0,所以 lnx1-mx1=0,lnx2-mx2=0, 可得 lnx1+lnx2=m(x1+x2),lnx1-lnx2=m(x1-x2). 要证明 x1x2>e2,即证明 lnx1+lnx2>2,也就是 m(x1+x2)>2.
因为
m

lnx1-lnx2 x1-x2






lnx1-lnx2 x1-x2

2 x1+x2


ln
x1 x2

2(xx11+-xx22).……12 分
令xx12=t,则 t>1,于是 lnt>2(tt+-11).
令(t)=lnt-2(tt+-11)(t>1),则 ′(t)=1t -(t+41)2=t((tt-+11))22>0.
f ' (x) 0 ,
f (x)在(1,1)上单调递减 ,在(,1],[1,)上单调递增 …………2 分
f (x) 的极小值是 f (1) 2 …………………3 分
(2)法 1: f / (x) 3x2 3a ,直线 x y m 0 即 y x m ,
依题意,切线斜率 k f / (x) 3x2 3a 1 ,
即 3x2 3a 1 0 无解……………4 分
0 4 3(3a 1) 0
a 1 3
………………6 分
法 2: f / (x) 3x2 3a 3a ,……………4 分
要使直线 x y m 0 对任意的 mR 都不是曲线
y f (x) 的切线,当且仅当 1 3a 时成立,
单调增函数. ……3 分 由 f (x)=3(m-3)x2 + 9≥0 在区间(-∞,+∞)上恒成立, 所以 m≥3. 故 m 的取值范围是[3,+∞) .…………………6 分
滚动训练
滚动练习
2:已知函数
f
x
ax2
a
12
x
a
a
12
e
x
(其
中 aR ).
(Ⅰ) 若 x 0 为 f x 的极值点,求 a 的值;
(Ⅱ) 当 a 0 时,不等式
f
x
x
1
1 2
相关文档
最新文档