相似三角形基础训练及答案
经典相似三角形练习题(附参考答案)
考点: 相似三角形的判定;平行线的性质。菁优网版权所有
专题: 证明题。
分析: 根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.
解答: 证明:∵DE∥BC,
∴DE∥FC,
∴∠AED=∠C.
又∵EF∥AB,
∴EF∥AD,
∴∠A=∠FEC.
专题: 证明题。
分析: 由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.
30.(1)已知 ,且3x+4z﹣2y=40,求x,y,z的值;
(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.
参考答案与试题解析
一.解答题(共30小题)
1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.
(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;
(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.
27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.
(1)所需的测量工具是: _________ ;
(2)请在下图中画出测量示意图;
(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.
24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.
相似三角形(含答案)
相似三角形练习题1.方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在图示的10×10的方格纸中,画出两个相似但不全等的格点三角形,并加以证明(要求所画三角形是钝角三角形,并标明相应字母).2 如图,△ABC 中,CD ⊥AB 于D ,E 为BC 中点,延长AC 、DE 相交于点F ,求证BC AC =DFAF..3 如图,在△ABC 中,AB =AC ,延长BC 至D ,使得CD =BC ,CE ⊥BD 交AD 于E ,连结BE 交AC 于F ,求证AF =FC .4 已知:如图,F 是四边形ABCD 对角线AC 上一点,EF ∥BC ,FG ∥AD .求证:AB AE +CDCG=1.5. 如图,BD 、CE 分别是△ABC 的两边上的高,过D 作DG ⊥BC 于G ,分别交CE 及BA 的延长线于F 、H ,求证:(1)DG 2=BG ·CG ;(2)BG ·CG =GF ·GH .6. 如图,∠ABC =∠CDB =90°,AC =a ,BC =b .(1)当BD 与a 、b 之间满足怎样的关系时,△ABC ∽△CDB ?(2)过A 作BD 的垂线,与DB 的延长线交于点E ,若△ABC ∽△CDB . 求证四边形AEDC 为矩形(自己完成图形).7 如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC(AB >AE ).(1)△AEF 与△EFC 是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设BCAB=k ,是否存在这样的k 值,使得△AEF ∽△BFC ,若存在,证明你的结论并求出k 的值;若不存在,说明理由.8 如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,CA =8 cm ,动点P 从点C 出发,以每秒2 cm 的 速度沿CA 、AB 运动到点B ,则从C 点出发多少秒时,可使S△BCP =41S △ABC ?9. 如图,小华家(点A 处)和公路(L )之间竖立着一块35m•长且平 行于公路的巨型广告牌(DE ).广告牌挡住了小华的视线,请在图中画出视点A 的盲区,并将盲区内的那段公路设为BC .一辆以60km/h 匀速行驶的汽车经过公路段BC 的时间是3s ,已知广告牌和公路的距离是40m ,求小华家到公路的距离(精确到1m ).10. 某老师上完“三角形相似的判定”后,出了如下一道思考题:如图所示,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,试问:△AOB 和△DOC 是否相似? 某学生对上题作如下解答:答:△AOB ∽△DOC .理由如下:在△AOB 和△DOC 中,∵AD ∥BC ,∴AO DOOC OB=, ∵∠AOB=∠DOC ,∴△AOB ∽△DOC .请你回答,该学生的解答是否正确?如果正确,请在每一步后面写出根据;如果不正确,请简要说明理由.11. 如图:四边形ABCD 中,∠A=∠BCD=90°,①过C 作对角线BD 的垂线交BD 、AD 于点E 、F ,求证:DA DF CD ⋅=2;②如图:若过BD 上另一点E 作BD 的垂线交BA 、BC 延长线于F 、G ,又有什么结论呢?你会证明吗?ABCD FEABCDF EG12. 阳光通过窗口照射到室内,在地面上留下2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.13. (1)如图一,等边△ABC 中,D 是AB 上的动点,以CD 为一边,向上作等边△EDC ,连结AE 。
相似三角形基础模型练习题(带答案))
相似三角形基础模型-题集1.如图,矩形内接于,且边落在上.若,,,那么的长为.【答案】【解析】如图,设与的交点为,∵四边形是矩形,∴,∴,∵,∴,设,则,,∴,解得:,则.【标注】【知识点】三角形内接四边形问题2.如图,在中,点、分别在边、上,且,则的值为四边形().A. B. C. D.【答案】C【解析】,,,,故选.【标注】【知识点】相似反A字型四边形A. B. C. D.3.如图,已知、、都与垂直,垂足分别是、、,且,,那么的长是().【答案】C【解析】∵、、都与垂直,∴,∴,,∴,,∴.∵,,∴,∴.故选.【标注】【知识点】相似A字型A. B.C. D.4.已知是斜边上的高,则下列各式中不正确的是().【答案】D【解析】由题可知:,所以,所以选项错误.【标注】【知识点】射影定理(双垂直)5.如图,在中,,平分,且,,求的值.【答案】.【解析】∵在中,,平分,∴,∴,∴,∵是公共角,∴,∴,∴,∴.【标注】【知识点】相似三角形的性质与判定综合(1)(2)6.如图,四边形的对角线,交于点,点是上一点,且.求证:.若,,,求的长.【答案】(1)(2)证明见解析..【解析】(1)(2)∵,∴,即.又∵,,∴.即.∴.∵,∴.又∵,∴,∴,∴.【标注】【知识点】相似三角形的性质与判定综合(1)7.已知,是的平分线,将一个直角的直角顶点在射线上移动,点不与点重合.(2)(3)如图,当直角的两边分别与射线、交于点、时,请判断与的数量关系,并证明你的结论.如图,在()的条件下,设与的交点为点,且,求的值.若直角的一边与射线交于点,另一边与直线、直线分别交于点、,且以、、为顶点的三角形与相似,请画出示意图;当时,直接写出的长.【答案】(1)(2)(3)与的数量关系是相等,证明见解析..若与射线相交,则.若与直线的交点与点在点的两侧,则.【解析】(1)过点作,,垂足分别为点、.∵,易得.∴,而,∴.∵是的平分线,∴,又∵,∴≌.∴.(2)(3)∵,,∴,∵,∴.又∵,∴.∴.∵,∴.如图所示,若与射线相交,则.如图所示,若与直线的交点与点在点的两侧,则.图图【标注】【知识点】相似三角形的性质与判定综合。
相似三角形基础(含答案)
一.填空题(共7小题)1.如图,在△ABC中,D是AB中点,DE∥BC,若△ADE的周长为6,则△ABC的周长为.2.如图,矩形ABCD中,AB=2,E为CD的中点,连接AE、BD交于点P,过点P作PQ ⊥BC于点Q,则PQ=.3.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.4.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD =2,BC=4,则EF=.5.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=.6.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB =6,AD:AB=1:3,则MD+的最小值为.7.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为S,则四边形BOGC的面积=.二.解答题(共4小题)8.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.9.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE 于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)10.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;11.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.一.填空题(共7小题)1.如图,在△ABC中,D是AB中点,DE∥BC,若△ADE的周长为6,则△ABC的周长为12.【分析】由平行可知△ADE∽△ABC,且=,再利用三角形的周长比等于相似比求得△ABC的周长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴=,∴=∵△ADE的周长为6,∴△ABC的周长为12,故答案为:12.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比是解题的关键.2.如图,矩形ABCD中,AB=2,E为CD的中点,连接AE、BD交于点P,过点P作PQ ⊥BC于点Q,则PQ=.【分析】根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,∵E为CD的中点,∴DE=CD=AB,∴△ABP∽△EDP,∴=,∴=,∴=,∵PQ⊥BC,∴PQ∥CD,∴△BPQ∽△DBC,∴==,∵CD=2,∴PQ=,故答案为:.【点评】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.3.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD 交AC于点E,DE=.【分析】由CD∥AB,∠D=∠ABE,∠D=∠CBE,所以CD=BC=6,再证明△AEB∽△CED,根据相似比求出DE的长.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CBD,∵CD∥AB,∴∠D=∠ABD,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE=,DE=BE=×=,故答案为.【点评】本题考查了相似三角形,熟练掌握相似三角形的判定与性质以及勾股定理是解题的关键.4.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=.【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【解答】解:∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF﹣DE=2﹣,故答案为:【点评】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.5.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=.【分析】如图,连接EF.首先求出DM、DF的长,证明△DEF∽△DPC,可得=,求出DE即可解决问题.【解答】解:如图,连接EF.∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∴AM=BM=1,在Rt△ADM中,DM===,∵AM∥CD,∴==,∴DP=,∵PF=,∴DF=DP﹣PF=,∵∠EDF=∠PDC,∠DFE=∠DCP,∴△DEF∽△DPC,∴=,∴=,∴DE=,∴CE=CD﹣DE=2﹣=.故答案为.【点评】本题考查正方形的性质、相似三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.6.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB =6,AD:AB=1:3,则MD+的最小值为2.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD+∠A=∠EDF+∠BDN,然后求出∠AMD=∠BDN,从而得到△AMD和△BDN相似,根据相似三角形对应边成比例可得=,求出MA•DN=4MD,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD:AB=1:3,∴AD=6×=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴==,∴MA•DN=BD•MD=4MD,∴,∴MD+=MD+=()2+()2﹣2+2=(﹣)2+2,∴=,即MD=,如图,连接CD,过点C作CG⊥AB于G,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG﹣AD=3﹣2=1,在Rt△CDG中,根据勾股定理得,CD==当点M和点C重合时,DM最大,即:DM最大=当DM⊥AC时,DM最小,过点D作DH⊥AC于H,即:DM最小=DH,在Rt△ACG中,sin∠A==,在Rt△ADH中,sin∠A=,∴DH=AD sin∠A=2×=,∵≤DM≤,∴DM=时,MD+有最小值为2.故答案为:2.【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.7.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为S,则四边形BOGC的面积=S.【分析】由点D、E分别是边AB、AC的中点,可得DE∥BC,DE=BC,即可得△ADE ∽△ABC与△ODE∽△OFB,又由EC的中点是G,则可得△DEG≌△FCG,然后由相似三角形的面积比等于相似比的平方与等高三角形的面积比等于对应底的比即可求得答案.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=,∵△ADE的面积为S,∴S△ABC=4S,∵DE∥BC,∴△ODE∽△OFB,∠EDG=∠F,∠DEG=∠GCF,∴,又EG=CG,∴△DEG≌△FCG(AAS),∴DE=CF,∴BF=3DE,∵DE∥BC,∴△ODE∽△OFB,∴,∵AD=BD,∴S△BDE=S△ADE=S,∵AE=CE=2EG,∴S△DEG=S△ADE=S,∵,∴S△ODE=S△BDE=S,∴S△OEG=S△DEG﹣S△ODE=S,∵S四边形DBCE=S△ABC﹣S△ADE=3S,∴S四边形OBCG=S四边形DBCE﹣S△BDE﹣S△OEG=3S﹣S﹣S=S.故答案为:S.【点评】此题考查了三角形的中位线定理,相似三角形的判定与性质以及全等三角形与相似三角形的判定与性质等知识.此题综合性较强,解题的关键是数形结合思想的应用,还要注意相似三角形的面积比等于相似比的平方与等高三角形的面积比等于对应底的比.二.解答题(共4小题)8.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EF A得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EF A;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EF A,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.9.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE 于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)【分析】(1)根据同角的余角相等求出∠1=∠E,再利用“角角边”证明△ABD和△CEB 全等,根据全等三角形对应边相等可得AB=CE,然后根据AC=AB+BC整理即可得证;(2)(i)过点Q作QF⊥BC于F,根据△BFQ和△BCE相似可得=,然后求出QF=BF,再根据△ADP和△FPQ相似可得=,然后整理得到(AP﹣BF)(5﹣AP)=0,从而求出AP=BF,最后利用相似三角形对应边成比例可得=,从而得解;(ii)判断出DQ的中点的路径为△BDQ的中位线MN.求出QF、BF的长度,利用勾股定理求出BQ的长度,再根据中位线性质求出MN的长度,即所求之路径长.【解答】(1)证明:∵BD⊥BE,∴∠1+∠2=180°﹣90°=90°,∵∠C=90°,∴∠2+∠E=180°﹣90°=90°,∴∠1=∠E,∵在△ABD和△CEB中,,∴△ABD≌△CEB(AAS),∴AB=CE,∴AC=AB+BC=AD+CE;(2)(i)如图,过点Q作QF⊥BC于F,则△BFQ∽△BCE,∴=,即=,∴QF=BF,∵DP⊥PQ,∴∠APD+∠FPQ=180°﹣90°=90°,∵∠APD+∠ADP=180°﹣90°=90°,∴∠ADP=∠FPQ,又∵∠A=∠PFQ=90°,∴△ADP∽△FPQ,∴=,即=,∴5AP﹣AP2+AP•BF=3•BF,整理得,(AP﹣BF)(AP﹣5)=0,∵点P与A,B两点不重合,∴AP≠5,∴AP=BF,由△ADP∽△FPQ得,=,∴=;(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.由(2)(i)可知,QF=AP.当点P运动至AC中点时,AP=4,∴QF=.∴BF=QF×=4.在Rt△BFQ中,根据勾股定理得:BQ===.∴MN=BQ=.∴线段DQ的中点所经过的路径(线段)长为.【点评】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,(1)求出三角形全等的条件∠1=∠E是解题的关键,(2)(i)根据两次三角形相似求出AP=BF是解题的关键,(ii)判断出路径为三角形的中位线是解题的关键.10.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【分析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到BD=CE;(2)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB ∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.【点评】本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.11.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x 的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND求解.【解答】解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=DN:BN=1:2,∴S△MND=S△CND=1,S△BNC=2S△CND=4.∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6∴S四边形ABNM=S△ABD﹣S△MND=6﹣1=5.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.。
经典相似三角形练习题(附参考答案)
类似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=_________°,BC=_________;(2)断定△ABC与△DEC是否类似,并证实你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD 面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q 两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC 上活动的两点.若P自点A动身,以1cm/s的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM与△MAN类似?若能,请给出证实,若不克不及,请解释来由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上肯定点P 的地位,使得以P,A,D为极点的三角形与以P,B,C为极点的三角形类似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的极点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E扭转,使得DE与BA的延伸线交于点M,EF与AC交于点N,于是,除(1)中的一对类似三角形外,可否再找出一对类似三角形并证实你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开端向B以2cm/s的速度移动;点Q沿DA边从点D开端向点A以1cm/s的速度移动.假如P.Q同时动身,用t (秒)暗示移动的时光,那么当t为何值时,以点Q.A.P为极点的三角形与△ABC类似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA地点的直线行走14米到B点时,身影的长度是变长了照样变短了?变长或变短了若干米?23.阳光亮媚的一天,数学兴致小组的同窗们去测量一棵树的高度(这棵树底部可以到达,顶部不轻易到达),他们带了以下测量对象:皮尺,标杆,一副三角尺,小平面镜.请你在他们供给的测量对象中选出所需对象,设计一种测量计划.(1)所需的测量对象是:_________;(2)请鄙人图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母暗示)求出x.24.问题布景在某次活动课中,甲.乙.丙三个进修小组于统一时刻在阳光下对校园中一些物体进行了测量.下面是他们经由过程测量得到的一些信息:甲组:如图1,测得一根竖立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得黉舍旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细疏忽不计)的高度为200cm,影长为156cm.义务请求:(1)请依据甲.乙两组得到的信息盘算出黉舍旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请依据甲.丙两组得到的信息,求景灯灯罩的半径.(友谊提醒:如图3,景灯的影长等于线段NG的影长;须要时可采取等式1562+2082=2602)25.阳光经由过程窗口照耀到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下漫步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的程度距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请解释来由;(3)若李华在点A朝着影子(如图箭头)的偏向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分离以直角三角形ABC三边为直径向外作三个半圆,其面积分离用S1,S2,S3暗示,则不难证实S1=S2+S3.(1)如图②,分离以直角三角形ABC三边为边向外作三个正方形,其面积分离用S1,S2,S3暗示,那么S1,S2,S3之间有什么关系;(不必证实)(2)如图③,分离以直角三角形ABC三边为边向外作三个正三角形,其面积分离用S1.S2.S3暗示,请你肯定S1,S2,S3之间的关系并加以证实;(3)若分离以直角三角形ABC三边为边向外作三个一般三角形,其面积分离用S1,S2,S3暗示,为使S1,S2,S3之间仍具有与(2)雷同的关系,所作三角形应知足什么前提证实你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD.CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两类似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证实:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考核的是平行线的性质及类似三角形的剖断定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证实:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证实:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.解答:证实:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考核类似三角形的剖断定理,症结是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证实:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M.N分离是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证实:在图②中准确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN 都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.剖析:依据平行线的性质和两角对应相等的两个三角形类似这一剖断定理可证实图中类似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:类似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=135°°,BC=;(2)断定△ABC与△DEC是否类似,并证实你的结论.解答:解:(1)∠ABC=135°,BC=;(2)类似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由解:(1)设经由x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经磨练,可知x1=1,x2=2相符题意,所以经由1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经由t秒时,以A,M,N为极点的三角形与△ACD类似,由矩形ABCD,可得∠CDA=∠MAN=90°,是以有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经磨练,t=或t=都相符题意,所以动点M,N同时动身后,经由秒或秒时,以A,M,N为极点的三角形与△ACD类似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.解答:解:(1)任选两个三角形的所有可能情形如下六种情形:①②,①③,①④,②③,②④,③④(2分)个中有两组(①③,②④)是类似的.∴拔取到的二个三角形是类似三角形的概率是P=(4分)证实:(2)选择①.③证实.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②.④证实.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考核概率的求法:假如一个事宜有n种可能,并且这些事宜的可能性雷同,个中事宜A消失m种成果,那么事宜A的概率P(A)=,即类似三角形的证实.还考核了类似三角形的剖断.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形类似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延伸线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题重要考核了直角三角形的性质,类似三角形的剖断及三角形面积的求法等,规模较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.解答:证实:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q 两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.解答:解:(1)过D 作DH ∥AB交BC于H 点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴SABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长等分.②第一种情形:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情形:8<t≤10,P.A.D三点不克不及构成三角形;第三种情形:10<t≤12△ADP为钝角三角形与Rt△CQE不类似;∴t=或t=时,△PAD与△CQE类似.③第一种情形:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E.H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情形:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情形:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC 上活动的两点.若P自点A动身,以1cm/s的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?解答:解:设经x秒后,△PBQ∽△BCD,因为∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经由秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.解答:设经由秒后t秒后,△PBQ与△ABC类似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经由2.5s或1s时,△PBQ与△ABC类似(10分).解法二:设ts后,△PBQ与△ABC类似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情形:(1)当BP与AB对应时,有=,即=(2)当BP与BC对应时,有=,即=,解得t=1s所以经由1s或2.5s时,以P.B.Q三点为极点的三角形与△ABC类似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形类似,有两种情形:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形类似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM与△MAN类似?若能,请给出证实,若不克不及,请解释来由.解答:证实:分两种情形评论辩论:①若△CDM∽△MAN,则=.∵边长为a,M是AD的中点,∴AN=a.②若△CDM∽△NAM,则.∵边长为a,M是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N(不含A.B),使得△CDM与△MAN类似.当AN=a时,N点的地位知足前提.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?解答:解:设经由x秒后,两三角形类似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形类似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经由秒或秒后,两三角形类似.(6分)点评:本题分解考核了旅程问题,类似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上肯定点P 的地位,使得以P,A,D为极点的三角形与以P,B,C为极点的三角形类似.解答:解:(1)若点A,P,D分离与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分离与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.磨练:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.是以,点P的地位有三处,即在线段AB距离点A的1..6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的极点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E扭转,使得DE与BA的延伸线交于点M,EF与AC交于点N,于是,除(1)中的一对类似三角形外,可否再找出一对类似三角形并证实你的结论.解答:证实:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开端向B以2cm/s的速度移动;点Q沿DA边从点D开端向点A以1cm/s的速度移动.假如P.Q同时动身,用t(秒)暗示移动的时光,那么当t为何值时,以点Q.A.P为极点的三角形与△ABC类似.解答:解:以点Q.A.P为极点的三角形与△ABC类似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q.A.P为极点的三角形与△ABC类似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA地点的直线行走14米到B点时,身影的长度是变长了照样变短了?变长或变短了若干米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光亮媚的一天,数学兴致小组的同窗们去测量一棵树的高度(这棵树底部可以到达,顶部不轻易到达),他们带了以下测量对象:皮尺,标杆,一副三角尺,小平面镜.请你在他们供给的测量对象中选出所需对象,设计一种测量计划.(1)所需的测量对象是:;(2)请鄙人图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母暗示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分离为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题布景在某次活动课中,甲.乙.丙三个进修小组于统一时刻在阳光下对校园中一些物体进行了测量.下面是他们经由过程测量得到的一些信息:甲组:如图1,测得一根竖立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得黉舍旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细疏忽不计)的高度为200cm,影长为156cm.义务请求:(1)请依据甲.乙两组得到的信息盘算出黉舍旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请依据甲.丙两组得到的信息,求景灯灯罩的半径.(友谊提醒:如图3,景灯的影长等于线段NG的影长;须要时可采取等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,黉舍旗杆的高度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)在Rt△NGH中,依据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,衔接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,衔接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,依据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光经由过程窗口照耀到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题根本上难度不大,应用类似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下漫步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的程度距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请解释来由;(3)若李华在点A朝着影子(如图箭头)的偏向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)依据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时刻,他的影子也从C移到C',是以速度与旅程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分离以直角三角形ABC三边为直径向外作三个半圆,其面积分离用S1,S2,S3暗示,则不难证实S1=S2+S3.(1)如图②,分离以直角三角形ABC三边为边向外作三个正方形,其面积分离用S1,S2,S3暗示,那么S1,S2,S3之间有什么关系;(不必证实)(2)如图③,分离以直角三角形ABC三边为边向外作三个正三角形,其面积分离用S1.S2.S3暗示,请你肯定S1,S2,S3之间的关系并加以证实;(3)若分离以直角三角形ABC三边为边向外作三个一般三角形,其面积分离用S1,S2,S3暗示,为使S1,S2,S3之间仍具有与(2)雷同的关系,所作三角形应知足什么前提证实你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC.CA.AB的长分离为a.b.c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证实如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形类似时,S1=S2+S3.证实如下:∵所作三个三角形类似∴∴=1∴S1=S2+S3;(4)分离以直角三角形ABC三边为一边向外作类似图形,其面积分离用S1.S2.S3暗示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD.CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,依据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两类似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:(1)设=k,那么x=2k,y=3k,z=5k,因为3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分离为240cm,800cm。
相似三角形基础练习题(附解题答案)
相似三角形基础练习题一.选择题(共27小题)1.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.2.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B.=C.△ADE∽△ABC D.S△ADE=S△ABC4.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:26.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.7.若△ABC∽△DEF,相似比为1:3,则△ABC与△DEF的面积比为()A.1:9 B.1:3 C.1:2 D.1:8.已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为()A.2:3 B.3:2 C.4:9 D.9:49.如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A.(1,)B.(,)C.(,2)D.(,2)10.如图,M是Rt△ABC 的斜边BC上一点(M不与B、C重合),过点M作直线截△ABC,所得的三角形与△ABC相似,这样的直线共有()A.0条B.2条C.3条D.无数条11.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值()A.只有1个B.可以有2个C.可以有3个D.有无数个12.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.13.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.14.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②=;③=;④=其中正确的个数有()A.1个B.2个C.3个D.4个15.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.516.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或17.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米18.已知,如图所示的一张三角形纸片ABC,边AB的长为20cm,AB边上的高为25cm,在三角形纸片ABC中从下往上依次裁剪去宽为4cm的矩形纸条,若剪得的其中一张纸条是正方形,那么这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张19.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为 1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m20.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树(AB )的高度约为()A.4.2米B.4.8米C.6.4米D.16.8米21.如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是()A.乙>丙>甲B.丙>乙>甲C.甲>丙>乙D.无法判断22.下列说法:①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④有一个底角相等的两个等腰三角形相似;⑤两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的个数有()个.A.1 B.2 C.3 D.423.如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A.B.+1 C.4 D.224.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a= b B.a=2b C.a=2 b D.a=4b25.彼此相似的矩形A1B1C1D1,A2B2C2D2,A3B3C3D3,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2的坐标分别为(1,2),(3,4),则Bn的坐标是()A.(2n﹣1,2n)B.(2n﹣,2n)C.(2n﹣1﹣,2n﹣1)D.(2n﹣1﹣1,2n﹣1)26.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:927.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)二.解答题(共3小题)28.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA 交△ABC的外接圆于点F,连接FB,FC.(1)求证:∠FBC=∠FCB;(2)已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.29.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.30.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.相似三角形基础练习题参考答案与试题解析一.选择题(共27小题)1.(2016•兰州)如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.故选C.2.(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n 交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1故选B.3.(2016•黔西南州)如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E ,则下列结论不正确的是()A.BC=3DE B.=C.△ADE∽△ABC D.S△ADE=S△ABC故选:D.4.(2016•淄博)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.5.(2016•临夏州)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2故选:D.6.(2016•兰州)已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.故选:A.7.(2016•如皋市校级二模)若△ABC∽△DEF,相似比为1:3,则△ABC与△DEF的面积比为()A.1:9 B.1:3 C.1:2 D.1:故选:A.8.(2016•重庆模拟)已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为()A.2:3 B.3:2 C.4:9 D.9:4【解答】解:∵△ABC∽△DEF,且相似比为2:3,∴△ABC与△DEF的对应高之比为2:3,故选:A.9.(2016•嘉善县模拟)如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A.(1,)B.(,)C.(,2)D.(,2)【解答】解:∵A(﹣4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴====,∴CO=2CB,AC=2CO,∴AC=4CB,∴=,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴===,∴CD=AO=,BD=OB=,∴OD=OB+BD=2+=,∴点C的坐标为(,).故选B.10.(2016春•房山区期末)如图,M是Rt△ABC 的斜边BC上一点(M不与B、C重合),过点M作直线截△ABC,所得的三角形与△ABC相似,这样的直线共有()A.0条B.2条C.3条D.无数条【解答】解:∵截得的三角形与△ABC相似,∴过点M作AB的垂线,或作AC的垂线,或作BC的垂线,所得三角形满足题意.∴过点M作直线l共有三条,故选:C.11.(2015•武汉校级自主招生)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值()A.只有1个B.可以有2个C.可以有3个D.有无数个【解答】解:∵一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,∴x可能是斜边或4是斜边,∴x=5或.∴x的值可以有2个.故选:B.12.(2016•金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.13.(2016•河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.14.(2016•咸宁)如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②=;③=;④=其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=BC,即=,DE∥BC,∴△DOE∽△COB,∴=()2=()2=,===,故①正确,②错误,③正确;设△ABC的BC边上的高AF,则S△ABC=BC•AF,S△ACD=S△ABC=BC•AF,∵△ODE中,DE=BC,DE边上的高是×AF=AF,∴S△ODE=×BC×AF=BC•AF,∴==,故④错误.故正确的是①③.故选B.15.(2016•达州)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5【解答】解:∵AF⊥BF,∴∠AFB=90°,∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即,解得:DE=8,∴EF=DE﹣DF=3,故选:B.16.(2016•富顺县校级一模)如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN 的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.17.(2016•河西区模拟)阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米【解答】解:连接AE、BD,∵光是沿直线传播的,∴AE∥BD,∴△BCD∽△ACE,∴=即=解得:BC=4.故选A.18.(2016春•威海期末)已知,如图所示的一张三角形纸片ABC,边AB的长为20cm,AB边上的高为25cm,在三角形纸片ABC中从下往上依次裁剪去宽为4cm的矩形纸条,若剪得的其中一张纸条是正方形,那么这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则=,解得x=5,所以另一段长为25﹣5=20,因为20÷4=5,所以是第5张.故选:B.19.(2015•聊城模拟)如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m【解答】解:如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,∴BD=0.96,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,∴x=4.45,∴树高是4.45m.故选C.20.(2015•兰州二模)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树(AB)的高度约为()A.4.2米B.4.8米C.6.4米D.16.8米【解答】解:过点E作EF⊥BD于点E,则∠1=∠2,∵∠DEF=∠BEF=90°,∴∠DEC=∠AEB,∵CD⊥BD,AB⊥BD,∴∠CDE=∠ABE=90°,∴△CDE∽△ABE,∴=,∵DE=3.2米,CD=1.6米,EB=8.4米,∴=,解得AB=4.2(米).故选A.21.(2015•海曙区模拟)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是()A.乙>丙>甲B.丙>乙>甲C.甲>丙>乙D.无法判断【解答】解:如图:过点B作BH⊥GF于点H,则S乙=AB•AC,∵AC∥DE,∴△ABC∽△DBE,∴==,∵BC=7,CE=3,∴DE=AC,DB=AB,∴AD=BD﹣BA=AB,∴S丙=(AC+DE)•AD=AB•AC,∵AD∥GF,BH⊥GF,AC⊥AB,∴BH∥AC,∴四边形BDFH是矩形,∴BH=DF,FH=BD=AB,∴△GBH∽△BCA,∴==,∵GB=2,BC=7,∴GH=AB,BH AC,∴DF=AC,GF=GH+FH=AB,∴S甲=(BD+GF)•DF=AB•AC,∴甲<乙<丙.故选:B.22.(2016秋•陕西校级月考)下列说法:①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④有一个底角相等的两个等腰三角形相似;⑤两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的个数有()个.A.1 B.2 C.3 D.4【解答】解:①正方形四个角都是直角,四条边都相等,所以对应成比例,所以都相似,正确;②等腰三角形的两底角相等,而与另一个等腰三角形的两个底角不一定相等,所以不一定相似,本选项错误;③等腰直角三角形都有一个直角,且另两角都是45°的锐角,所以都相似,正确;④有一个底角相等的两个等腰三角形相似,正确;⑤两个相似多边形的面积比为4:9,则周长的比应为2:3,本选项错误.所以①③④三项正确.故选C.23.(2016春•重庆校级月考)如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE 将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A.B.+1 C.4 D.2【解答】解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=2,设AD=x,则FD=x﹣2,FE=2,∵四边形EFDC与矩形ABCD相似,∴,,解得x1=1+,x2=1﹣(负值舍去),经检验x1=1+是原方程的解.故选B24.(2015秋•宁波期末)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a= b B.a=2b C.a=2 b D.a=4b【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选B.25.(2014•杭州模拟)彼此相似的矩形A1B1C1D1,A2B2C2D2,A3B3C3D3,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2的坐标分别为(1,2),(3,4),则Bn的坐标是()A.(2n﹣1,2n)B.(2n﹣,2n)C.(2n﹣1﹣,2n﹣1)D.(2n﹣1﹣1,2n﹣1)【解答】解:∵B1(1,2),∴相似矩形的长是宽的2倍,∵点B1、B2的坐标分别为(1,2),(3,4),∴A1(0,2),A2(1,4),∵点A1,A2在直线y=kx+b上,∴,解得,∴y=2x+2,∵点A3在直线y=2x+2上,∴y=2×3+2=8,∴点A3的坐标为(3,8),∴点B3的横坐标为3+×8=7,∴点B3(7,8),…,B n的坐标为(2n﹣1,2n).故选A.26.(2016•十堰)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选D27.(2016•烟台)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.二.解答题(共3小题)28.(2016•呼和浩特)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.(1)求证:∠FBC=∠FCB;(2)已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.【解答】(1)证明:∵四边形AFBC内接于圆,∴∠FBC+∠FAC=180°,∵∠CAD+∠FAC=180°,∴∠FBC=∠CAD,∵AD是△ABC的外角∠EAC的平分线,∴∠EAD=∠CAD,∵∠EAD=∠FAB,∴∠FAB=∠CAD,又∵∠FAB=∠FCB,∴∠FBC=∠FCB;(2)解:由(1)得:∠FBC=∠FCB,又∵∠FCB=∠FAB,∴∠FAB=∠FBC,∵∠BFA=∠BFD,∴△AFB∽△BFD,∴,∴BF2=FA•FD=12,∴BF=2,∵FA=2,∴FD=6,AD=4,∵AB为圆的直径,∴∠BFA=∠BCA=90°,∴tan∠FBA===,∴∠FBA=30°,又∵∠FDB=∠FBA=30°,∴CD=AD•cos30°=4×=2.29.(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.30.(2016•邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.【解答】解:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即==,∴PB=2n,PA=2m,在Rt△AEP中,∵PE2+PA2=AE2,∴n2+4m2=b2①,在Rt△AEP中,∵PF2+PB2=BF2,∴m2+4n2=a2②,①+②得5(n2+m2)=(a2+b2),在Rt△EFP中,∵PE2+PF2=EF2,∴n2+m2=EF2=c2,∴5•c2=(a2+b2),∴a2+b2=5c2;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得MB2+MC2=5BC2=5×32=45,∵AG∥BC,∴△AEG∽△CEB,∴==,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴===,∴MB=3GM,MC=3MH,∴9MG2+9MH2=45,∴MG2+MH2=5.。
(完整版)相似三角形的判定基础训练及答案
、选择题1.下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似.A. 1个B . 2个C . 3个D . 4个2 .下列命题中正确的有()①有一个角等于80°的两个等腰三角形相似;②两边对应成比例的两个等腰三角形相似;③有一个角对应相等的两个等腰三角形相似;④底边对应相等的两个等腰三角形相似.A. 0个 B . 1个C . 2个D . 3个3.如图,△ ABC中,AE交BC于点D,/ C=Z E, AD=4, BC=8 BD DC=5 3,贝U DE的长等于()fl 20B15 c16D17A. C34344 .如图,给出下列条件:① B ACD :② ADC其中单独能够判定△ ABC ACD的个数为()A、1 B 、2 C 、3 D 、4P为AB上一点,连结CP,不能判断厶ABS A ACP的是(AC AB./ APC=/ ACB C . = -AP AC相似三角形的判定基础训练ABC相似的是()5.如图小正方形的边长均为I,则下列图中的三角形(阴影部分)与厶6 .下列四个选项中的三角形,与图中的三角形相似的是()LABC中,在厶r■LrD7 .如图, D为AC边上一点,/ DBC=/ A, BC= .6 , AC= 3,贝U CD的长为(ACB :③ AC AB:④ AC2 AD AB . CD BC)AC = CpAB BCB2ABCA. / ACF^Z B B9 .如图,在△ ABC中,10 CDE// BC,若AB.11 D . 12AD 1—=-,DE= 4,贝U BC的值为(310.如图,在△A . 9 B那么下列条件中,不能判断△ADABABC中,DE与BC不平行,A.Z ADE N C .上AED玄B AD AEAC ABDE DBC)正方形都相似;11.下面给出了一些关于相似的命题,其中真命题有((1)菱形都相似;(2)等腰直角三角形都相似;A . 1个B . 2个C . 3个D . 4个12 .如图,已知Z 仁Z 2,那么添加下列一个条件后,仍无法判定△A AB AC DA . = BAB BC(3) (4)矩形都相似.ABC ADE的是(C . Z B=ZD D .Z C=Z AEDAD DEA.些ADACBAE那么添加下列一个条件后,仍无法判定△ABADABC^A ADE的是(14 .如图, 在厶ABC中, DE// BC,BCC .DE.AD 1AEDB . 10C 11ABD3.12DE= 4,贝UBC的值为(E分别在边AB , AC 上,DE // BC ,AE=6 ,则 EC 的长是( )A.4.5 B.8 C.10.5 D.1416.如图,在口 ABCD 中,点E 是边AD 的中点,EC 交对角线 BD 于点F ,则EF : FC 等于() A . 3 : 2 B . 3 : 1 C . 1 : 1 D . 1 : 217.如图,为了测量一池塘的宽 DE 在岸边找一点 C,测得CD=30m 在DC 的延长线上找一点 A ,测得AC=5m 过点A 作AB// DE,交EC 的延长线于B ,测得AB=6m 则池塘的宽 DE %( )18 •如图,A, B 两点分别位于一个池塘的两端,小明想用绳子测量 A, B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达 A , B 的点C ,找到AC BC 的中点D, E ,并且测出DE 的长为10m 贝U A , B 间的距离为().A. 15m B . 25m C . 30m D . 20m19.如图,在 Rt △ ABC 中,/ ACB=90 , CD!AB 于点 D,如果 AC=3, AB=6,那么 AD 的值为( )A . 25mB .30m20. 如图,下列条件不能判定△ADB^A ABC的是()5 .如_________ 使得△ ADE^AACBA . / ABD=/ ACB B ./ ADB 玄 ABC C. AE^ADPACD . AB BC 21.如图,在矩形 ABCD中, E 、F 分别是CD BC 上的点,若/ AEF=90°,则一定有 (△ ECF^A AEF C. A ADE^A ECF D. A AEF^A ABFABC 和△ EPD 的顶点均在格点上,要使△ AB3A EPD 则点P 所在的格点为( )D. P i 23 .如图,P 是Rt △ ABC 的斜边BC 上异于B , C 的一点,过 P 点作直线截△ ABC 使截得的三角形与△ ABCt 目24 .如图,P 是Rt △ ABC 斜边AB 上任意一点(A , B 两点除外),过P 点作一直线,使截得的三角形与Rt A ABC 相似,这样的直线可以作()A 1条B . 2条C . 3条 D . 4条二、填空题1.如图,在△ ABC 中, DE// BC, EC = 2AE, BD= 6,贝U AD= _________ .A. △ ADEEV A AEFB.)。
初中数学经典相似三角形练习题(附参考答案)
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;。
经典相似三角形练习题(附参考答案)
经典练习题一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=,解得16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==时,有=,∴AB=时,有=,∴AB==3317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=.∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或时,两三角形相似.)当时,,∴x=;)当时,,∴x=.所以,经过秒或秒后,两三角形相似.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴.∴,中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.,所以,所以;=,即,;=,即,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴,∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即,与①类似得:,即∴(∴,与①类似得:,∴,,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴.∴,26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵,∴,∴解得:∴,,即.∴.同理可得:,∴=是定值.)可知,即,∴同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)。
相似三角形经典练习题(4套)附带答案
练习(一)一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。
题3 题7 题84. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。
5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2A. 104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:题3 题4 题5①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。
相似三角形试题及答案
相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。
答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。
答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。
答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。
这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。
四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。
答案:首先,利用余弦定理计算BC的长度。
根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。
代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。
然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。
7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。
答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。
人教版九年级数学下册27.2.1相似三角形的判定基础训练(有答案)
人教版九年级数学下学期27.2.1相似三角形的判定基础训练一、单选题1.下列命题是假命题的是()A.所有等边三角形一定相似B.所有等腰直角三角形一定相似C.有一个角为120︒的两个等腰三角形相似D.有一条边对应成比例的两个等腰三角形相似2.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=3.如图,AD、BC相交于点O,由下列条件不能判定△AOB与△DOC相似的是()A.AB∥CD B.A D∠=∠C.OA OBOD OC=D.OA ABOD CD=4.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°5.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②AE DE AB BC=,③AD AEAC AB=,使△ADE与△ACB一定相似()12A .①②B .②C .①③D .①②③6.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB =3∶5,那么CF ∶CB 等于( )A .5∶8B .3∶8C .3∶5D .2∶57.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对8.如图,在△ABC 中,∠B=80°,∠C=40°,直线l 平行于BC .现将直线l 绕点A 逆时针旋转,所得直线分别交边AB 和AC 于点M 、N ,若△AMN 与△ABC 相似,则旋转角为( )A .20°B .40°C .60°D .80°9.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAE CAD ∆~∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )3A .①②③B .①C .①②D .②③10.如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上,则CE :CF 的值为( )A .45B .35C .56D .67二、填空题11.如图:使△AOB ∽△COD ,则还需添加一个条件是: .(写一个即可)12.如图,E 为平行四边形ABCD 的对角线BD 上一点,AE 的延长线交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形:________________.13.如图,////,::2:3:4DE FG BC AD DF FB =,如果4EG =,那么AC =________.14.若线段AB =2,且点C 是AB 的黄金分割点且AC >BC ,则BC 等于_____.415.如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =,则BD 的长为_______.16.如图,已知,20,60AB BC AC BAD DAE AD DE AE︒︒==∠=∠=,则DAC ∠的度数为_________.17.如图,在矩形ABCD 中,6AB =,12AD =,点E 在边AD 上,8AE =,点F 在边DC 上,则当EF =________时,ABE △与DEF V 相似.18.如图,ABC ∆中,AB AC =,AD BC ⊥于D 点,DE AB ⊥于点E ,BF AC ⊥于点F ,3cm DE =,则BF =__________cm .19.如图,正方形ABCD 的边长为2,连接BD ,点P 是线段AD 延长线上的一个动点,45PBQ ∠=︒,点Q 是BQ 与线段CD 延长线的交点,当BD 平分PBQ ∠时,PD ______QD (填“>”“<”或“=”):当BD 不平分PBQ ∠时,PD QD ⋅=__________.三、解答题20.在△ABC和△A′B′C′中,已知:AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm.试证明△ABC与△A′B′C′相似.21.如图,E是□ ABCD的边BA延长线上一点,连接EC,交AD于点F.求证:△EBC∽△CDF.22.在△ABC中,点D、E分别边AB、AC上的点,若AD=2,DB=7,AE=3,EC=3,求DE:BC的值.523.如图,已知AB∥EF∥CD,AD与BC相交于点O.(1)如果CE=3,EB=9,DF=2,求AD的长;(2)如果BO:OE:EC=2:4:3,AB=3,求CD的长.24.如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证:△DEH∽△BCA.25.已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE =∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.6726.如图所示,⊙O 的半径为4,点A 是⊙O 上一点,直线l 过点A ;P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l 于点B ,交⊙O 于点E ,直径PD 延长线交直线l 于点F ,点A 是»DE的中点. (1)求证:直线l 是⊙O 的切线;(2)若PA=6,求PB 的长.27.已知,如图1,抛物线2l y ax bx c =++:过(1,0),(3,0),(0,3)A B C -三点,顶点为点D ,连接,,AC CD DB ,点P 为抛物线对称轴上一点,连接,PC PA ,直线'l y kx n =+:过点,B C 两点. (1)求抛物线l 及直线'l 的函数解析式;(2)求PC PA +的最小值;(3)求证:AOC ∆∽DCB ∆;(4)如图2,若点M 是在抛物线l 上且位于第一象限内的一动点,请直接写出MBC ∆面积的最大值及此时点M 的坐标.8参考答案1.D2.D3.D4.B5.C6.A7.B8.B9.A10.A11.∠A=∠C(答案不唯一).12.△ABE∽△FDE13.1214.315.16.40°17.5或20318.619.= 820.略21.略22.1323.(1)8;(2)21224.略25.略26.(1)略;(2)PB=92.27.(1)2y x 2x 3=-++,3y x =-+;(2)(3)详见解析;(4)(4)278MBC S ∆=最大,此时315(,)24M .。
相似三角形练习题(附答案)
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________°,BC=_________;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB 方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B?A?D?C方向,向点C运动;动点Q从点C 出发,以1cm/s的速度,沿C?D?A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B?A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P 自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC= ,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N (不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
相似三角形经典练习题及答案
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
相似三角形性质 基础训练 及答案
相似三角形性质 基础训练一、选择题1.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD=30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB=6m ,则池塘的宽DE 为( )A .25mB .30mC .36mD .40m2.已知△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′ 的面积的比为( )A .1:2B .2:1C .1:4D .4:13.如果两个相似多边形面积的比为1:5,则它们的相似比为( )A .1:25B .1:5C .1:2.5D .1 4.两个相似三角形的周长比为1∶4,则它们的对应边上的高比为( )A .1∶2B .1∶4C .1∶8D .1∶165.如图,△ABC 中,DE ∥BC ,DE=1,AD=2,DB=3,则BC 的长是( )A .21B .23C .25D .276.如图,在△ABC 中,DE ∥BC ,若 AD AB =13,DE =4,则BC 的值为( ) A .9 B .10 C . 11 D .127.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于( )A .12B .14C .18D .198.如图,在△ABC 中,DE ∥BC ,AD =3,BD =2,则△ADE 与四边形DBCE 的面积比是( )(A )3︰2; (B )3︰5; (C )9︰16; (D )9︰4.9.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若AD=1,BC=3,则AO CO 的值为( ) A .12 B .13 C .14 D .1910.如图, AD ∥BC ,2BC AD =,AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是( )A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅;11.如图,DE ∥BC ,BD ,CE 相交于O ,13EOOC =,3AE =,则EB =( ).A .6B .9C .12D .1512.如图,AD 、BE 是△ABC 的两条中线,则EDC ABC S S △△:等于( ).A .1:2B .2:3C .1:3D .1:413.如图,△ABC 中,∠ACB=90°,CD⊥AB,∠A=30°,那么S △ABC ∶S △BCD =( )A 、2∶1 B、3∶1 C、3∶1 D、4∶114.如图,AB ∥CD ,BO :OC=1:4,点E 、F 分别是OC ,OD 的中点,则EF :AB 的值为() A 、1 B 、2 C 、3 D 、415.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :FC 等于() A 、3:2 B 、3:1 C 、1:1 D 、1:216.如图,在平行四边形ABCD 中, DE ∶EC =2∶3,则:DEF ABF S S ∆∆等于( )A .4∶25B .4∶9C .9∶25D .2∶317.如图,在ABCD 中, :4:25DEF ABF S S ∆∆=,则DE :BC =( )A 、2:5B 、2:3C 、3:5D 、3:218.如图,□ABCD 中,E 是BC 边的中点,已知△BEF 的面积为S ,则△ABF 的面积为()A .SB .2SC .3SD .4SB19.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2=( )A .16B .17C .18D .19.20.将直角三角形彩纸裁成长度不等的矩形纸条.如图,在Rt △ABC 中,AC=30cm ,BC=40cm .依此裁下宽度为1cm 的纸条,若使裁得的纸条的长都不小于5cm ,则能裁得的纸条的张数是( )A .24B .25C .26D .27二、填空题1.若△ABC ∽△DEF ,且∠A =30°,∠B =50°,则∠F =______度.2.已知两相似三角形对应高之比是1︰2,则它们的面积之比为 .3.两个相似三角形对应边上的中线之比为2:3,则这两个三角形的面积之比为 .4.两个相似三角形的面积比为9∶16,则它们的周长之比为 .5.如图,在△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3.则CE 的值为 .6.在Rt △ABC 中,AD 为斜边BC 上的高,且S △ABC =4S △ABD ,则AB ∶BC= .7.如图,△ABC 中,点D 、E 分别为AB 、AC 的中点,连接DE ,线段BE 、CD 相交于点O ,若OD=2,则OC= .8.如图, AD ∥BC ,AD=1,BC=2,若△AOD 、△AOB 、△BOC 的面积分别为S 1、S 2、S 3,则S 1:S 2:S 3= .9.在△ABC 中,点D 是AB 边的中点,且DE//BC ,则:__________ADE DBCE S S ∆= .ED C B A10.如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等.则AD AB=_____ 参考答案一、1. C .2. C3. D .4. B .5. C6. D7. D .8. C .9. B 10. B11. A .12. D .13. D .14. B .15. D .16. A . 17. B .18. B .19. B .20. C .二1. 100 2. 1:4.3. 4:9 4. 3:4 5. 6 6. 1:2. 7. 4. 8. 1:2:4 9. 1:3. 10.2 ADB O。
经典相似三角形练习题(附参考答案)
相似三角形一.解答题(共30小题) 1如图,在△ABC 中,DE// BC, EF// AB,求证:△ AD0A EFC.2.如图,梯形 (1) 求证:△ (2) 当点F 是BC 的中点时,过 F 作EF // CD 交AD 于点E ,若AB=6cm EF=4cm 求 CD 的 长. ABCD 中, AB// CD 点F 在BC 上,连DF 与AB 的延长线交于点 G. CD3A BGF ;3.如图, 求证:△ 点 D, E 在 BC 上,且 FD// AB, FE// AC. AB3A FDE D ___ C4•如图, 已知 E 是矩形 ABCD 的边CD 上一点,BF 丄AE 于F ,试说明:△ ABS A EAD 6.如图,E 是?ABCD 的边BA 延长线上一点,连接 EC,交AD 于点F .在不添加辅助线 的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在 4X 3的正方形方格中,△ ABC^D ^ DEF 的顶点都在边长为1的小正方形的顶点上. (1) 填空:Z ABC= ____________ ° , BC= (2) 判断△ ABC 与△ DEC 是否相似,并证明你的结论.&如图,已知矩形 ABCD 勺边长 AB=3cm BC=6cm某一时刻,动点 M 从A 点出发沿AB 方向以1cm/s 的速度向 点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动, B 点匀速运动;同时,动问: (1) 经过多少时间,△ AMN 的面积等于矩形 ABCD 面积的* ?g(2) 是否存在时刻t ,使以A , M N 为顶点的三角形与△ ACD 相似?若存在,求t 的值;若不存在,请说明理由.5.已知: A, D 在一条直线上,连接 BE, CD M, N 分别为BE CD 的中点. (1) 求证:①BE=CD ②厶AMN 是等腰三角形;(2) 在图①的基础上,将厶ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得 到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3) 在(2)的条件下,请你在图②中延长 ED 交线段BC 于点P .求证:△ PBD^A AMN 如图①所示,在△ ABC 和△ ADE 中, AB=AC AD=AE 9.如图,在梯形 ABCD 中,若AB// DC, AD=BC 对角线BD AC 把梯形分成了四个小 三角形.(1 )列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两 个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ ABC 中,D 为 AC 上一点,CD=2DA Z BAC=45 , / BDC=60 , CE! BD 于 E, 连接AE.(1)写出图中所有相等的线段,并加以证明; (2 )图中有无相似三角形?若有,请写出一对; 若没有,请说明理由;(3)求厶BEC 与△ BEA 的面积之比.11.如图,在厶ABC中,AB=AC=a M为底边BC上的任意一点,过点M分别作AB AC 的平行线交AC于P,交AB于Q(1)(2)(3) 求四边形AQMP的周长;写出图中的两对相似三角形(不需证明);M位于BC的什么位置时,四边形AQMP^菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC △ADMh A MCP13.如图,已知梯形ABCD中 , AD// BC, AD=2 AB=BC=8(1)求梯形ABCD勺面积S;(2)动点P从点B出发,以1cm/s的速度,沿B? A? D? Q从点C出发,以1cm/s的速度,沿C? D? A方向,向点CD=10C方向,向点A运动,过点14.已知矩形ABCD长BC=12cm宽AB=8cm P、Q分别是AB BC上运动的两点.若P自点A出发,以1cm/s的速度沿沿BC方向运动,问经过几秒,以AB方向运动,同时,Q自点B出发以2cm/s的速度P、B Q为顶点的三角形与△15.如图,在△ ABC中,AB=10cm的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A B同时出发,问经过几秒钟,△BC=20cm点P从点A开始沿AB边向B点以2cm/sC运动;动点Q作QEL BC16.如图,/ ACB=/ ADC=90 , AC祈,AD=2.问当AB的长为多少时,这两个直角三角形相似.于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B? A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD勺周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t ,使得以P、A D为顶点的三角形与△ CQE相似? 若存在,请求出所有符合条件的③在运动过程中,是否存在这样的为一腰的等腰三角形?若存在,由. 17.已知,如图,在边长为a的正方形ABCD中, M是AD的中点,能否在边AB上找一点N (不含A B),使得△ CDMtf A MANf 似?若能,请给出证明,若不能,请说明理由.t的值;若不存在,请说明理由;t,使得以P、D Q为顶点的三角形恰好是以DQ 请求出所有符合条件的t的值;若不存在,请说明理18.如图在△ ABC中,/ C=90°, BC=8cm AC=6cm 点Q从B 出发,的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△沿BC方向以2cm/sQ P分别同时从BCBA相相似?19 .如图所示,梯形ABCD中,AD// BC,/ A=90°, AB=7, AD=2 BC=3,试在腰AB 上确定点P的位置,使得以P, A, D为顶点的三角形与以P, B, C为顶点的三角形相似.20. A ABC和△ DEF是两个等腰直角三角形,/ A=/ D=90°,△ DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M, EF与AC交于点N,求证:△ BEM h^ CNE(2)如图2,将△ DEF绕点E旋转,使得DE与BA的延长线交于点M, EF与AC交于21. 如图,在矩形ABCD中, AB=15cm BC=10cm点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t (秒)表示移动的时间,那么当与厶ABC相似.22. 如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20 米的A 点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:—_ ;(2 )请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.B24 •问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量•下面是他们通过测量得到的一些信息:甲组:如图1测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细忽略不计)的高度为200cm,影长为156cm任务要求:(1 )请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与O O相切于点M请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)点N,于是,的结论.除(1)中的一对相似三角形外,能否再找出对相似三角形并证明你t为何值时,以点E2Q A、P为顶点的三角形25. 阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26. 如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O P' =l ,两灯柱之间的距离OO =m.(1)若李华距灯柱OP的水平距离OA=a求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v i匀速行走,试求他影子的顶端在地面上移动的速度V2.27. 如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S, S>, S表示,则不难证明S i=S2+S.)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S, S, S3表示,那么S, S, S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S、S、S3表示,请你确定S i, S2, S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S, S2, S3表示,为使S , S2, S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1 ), (2), ( 3)的结论,请你总结出一个更具一般意义的结论.28. 已知:如图,△ AB3A ADE AB=1 5, AC=9, BD=5.求AE.29. 已知:如图Rt△ AB3 Rt △ BDC 若AB=3, AC=4.(1 )求BD CD的长;(2 )过B作BE丄DC于E,求BE的长.30. (1 )已知:''二,且3x+4z - 2y=40 ,求x, y, z 的值;2 3 5(2)已知:两相似三角形对应高的比为3: 10,且这两个三角形的周长差为560cm,求它们的周长.3.如图,点D, E在BC上,且FD// AB, 求证:△ ABC^A FDE解答:一.解答题(共30小题)1.如图,在厶ABC中,DE// BC, EF// AB,求证:△ ADE^A EFC 解答:证明:T DE// BC•DE// FC,•/ AED/ C.又••• EF// AB,•EF// AD,•/ A=/ FEC•△ADE^A EFC点评:本题考查的是平行线的性质及相似三角形的判定定理.2 .如图,梯形ABCD中 , AB// CD点F在BC上 ,连DF与AB的延长线交于点G.(1)求证:△ CD3A BGF;(2)当点F是BC的中点时,过F作EF// CD交AD于点E,若AB=6cm EF=4cm,求CD的长.解答:(1)证明:•••梯形ABCD AB// CD •••/CDF=/ FGB / DCF=/ GBF (2 分)•••△ CDF^A BGF (3 分)证明:••• FD// AB, FE// AC, •••/ B=Z FDE / C=Z FED, • △AB3A FDE4.如图,已知E是矩形ABCD的边CD上一点,BF丄AE于F,试说明:△ ABF^A EAD 解答:证明:•••矩形ABCD中 , AB// CD / D=90°•/ BAF=/ AED (4 分)•/ BF丄AE,•/ AFB=90 .•/ AFB=/ D. (5 分)•△ABF^A EAD (6 分)点评: 考查相似三角形的判定定理,关键是找准对应的角.(2)解:由(〔)△ CDF^A BGF 又F是BC的中点,BF=FC •••△CDF^A BGF•DF=GF CD=BG (6 分)•/ AB// DC// EF, F 为BC中点,•E为AD中点,•EF是△ DAG的中位线,•2EF=AG=AB+BG•BG=2EF- AB=2X 4 - 6=2 ,•CD=BG=2cm( 8 分)5.已知:如图①所示,在厶ABC和△ ADE中,AB=AC AD=AE / BAC/ DAE 且点B, A, D在一条直线上,连接BE, CD M N分别为BE CD的中点.(1 )求证:①BE=CD②厶AMN是等腰三角形;(2)在图①的基础上,将厶ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1 )中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△ PBD^A AMN 解答:(1)证明:①I/ BACN DAE •/•/ AB=AC AD=AE•△ABE^A ACD •- BE=CD②由△ABE^A ACD得/ ABE=/ ACD BE=CD•/ M N分别是BE, CD的中点,•BM=CN 又T AB=AC•△ABM^A ACN• AM=AN即厶AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.BAEK CADVE 團②B A(3)证明:在图②中正确画出线段PD,由(1)同理可证厶ABN^A ACN•••/ CAN M BAM••/ BAC=z MAN又•••/ BAC=/ DAE•••/ MAN N DAE2 BAC•△ AMN^ ADE^D^ ABC都是顶角相等的等腰三角形. •△ PBD^D^ AMN都为顶角相等的等腰三角形,•••/ PBD N AMN / PDB N ANM •△PBM A AMN &如图,已知矩形ABCD勺边长AB=3cm BC=6cm某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:解答: 根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△ AEF^A BEC △ AEF^A DCF △ BE3A DCF解:相似三角形有△ AEF^A BEC △ AEF^A DCF △ BE3A DCF (3 分)如:△AEF^A BEC 在?ABCD中, AD// BC,•••/ 仁/ B,Z 2=Z 3. (6 分)• △AEF^A BEC (7 分)(1)经过多少时间,△ AMN的面积等于矩形ABCD面积的* ?9(2)是否存在时刻t,使以A, M N为顶点的三角形与△ ACD相似?若存在,求t 的值;若不存在,请说明理由解:(1)设经过x秒后,△ AMN的面积等于矩形ABCD面积的-,9D则有:(6 - 2x) x= X 3 X 6,2 92即x - 3x+2=0, (2 分)解方程,得x i=1 , X2=2, (3分) 经检验,可知x i=1, X2=2符合题意,7.如图,在4X 3的正方形方格中,△ ABC^D^ DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:/ ABC= 135°° , BC= .匚;(2)判断△DEC是否相似,并证明你的结论.解答:解:(1)Z ABC=135 , BC犬讥;(2)相似;•- BC=t「_F_. .[, EC=J 1=匚;.AB_ 2 _ l BC 2^2 p-…,厂•一 _;•远五;又/ ABC=z CED=135 ,所以经过1秒或2秒后,△ AMN的面积等于矩形ABCD面积的'.(4分)9(2)假设经过t秒时,以A, M N为顶点的三角形与△ ACD相似,由矩形ABCD 可得/ CDA=/ MAN=90 , 因此有——或''(5分)AN DA AN DC即‘①,或一:一丄②(6分)6 - 2t 6 6- 2t 33 12t=;解②,得t== (7分)2 5t=—或t=一都符合题意,2 5解①,得经检验,所以动点3 1QM N同时出发后,经过,秒或…秒时,以A, M, N为顶点的三角形2 5与厶ACD相似.(8分)9.如图,在梯形ABCD中,若AB// DC AD=BC对角线BD AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.(3)求厶BEC与△ BEA的面积之比. 解答:解答: 解: (1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有两组(①③,②④)是相似的.• ••选取到的二个三角形是相似三角形的概率是P=](4分)证明:(2)选择①、③证明. 在厶AOB与△ COC中,•/ AB// CD•••/ CDB M DBA / DCA M CAB •△ AOB^A COD( 8 分)选择②、④证明.•••四边形ABCD是等腰梯形,•••/ DAB=/ CBADAB与△ CBA中有AD=BC/ DAB=/ CAB AB=AB •△ DAB^A CBA (6 分)•••/ ADO M BCO又/ DOA M COB•••△ DO MA COB( 8 分).解: (1)AD=DE AE=CE•/ CE1 BD, M BDC=60 , •••在Rt△ CED中, M ECD=30 .•CD=2ED v CD=2DA•AD=DE •••/ DAE玄DEA=30 =M•AE=CE(2)图中有三角形相似,△ AD0A AEC•••/ CAE玄CAE M ADE玄AEC•△ADE^A AEC(3)作AF丄BD的延长线于F,设AD=DE=x在Rt △ CED 中, 可得CE= = .「故AE= p:,.M ECD=30 .在Rt△ AEF中,AE=P> ,M AED M DAE=30 ,•sin M AEF=1,AE• AF=AE?sir M AEF= ”:—孚CE2 *点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=-,即相似三角形的证明•还考查了相似三角形的判定.10 .附加题:如图厶ABC中,D 为AC上一点,CD=2DA/ BAC=45,/ BDC=60 , CE 丄BD于E,连接AE(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;.. 点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广.11.如图,在△ ABC中,AB=AC=a M为底边BC上的任意一点,过点M分别作AB AC 的平行线交AC于P,交AB于Q(1 )求四边形AQMP勺周长;(2) 写出图中的两对相似三角形(不需证明) ;(3) M位于BC的什么位置时,四边形AQMP^菱形并证明你的结论.解答:解:(1)T AB// MP QM/ AC,•Q四边形APMQ是平行四边形,Z B=Z PMC Z C=Z QMB•/ AB=AC Q-Z B=Z C, Q.Z PMC Z QMB ・• BQ=QM PM=PC•Q四边形AQM啲周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a(2) T PM// AB PCMh A ACB TQM/ AC BMQ^A BCA(3)当点M中BC的中点时,四边形APMQ是菱形,•••点M是BC的中点,AB// MP QM/ AC,•Q QM PM是三角形ABC 的中位线.I AB=AC ・• QM=PM=AB=;AC.2 2又由(1)知四边形APMQ是平行四边形,Q.平行四边形APMQ是菱形.②在运动过程中,是否存在这样的t ,使得以P、A、D为顶点的三角形与△ CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D Q为顶点的三角形恰好是以DQ•/ AD// BH DH// AB,「.四边形ABHD是平行四边形.••• DH=AB=8 BH=AD=2 /• CH=8- 2=6.v CD=10••• D H+C H=C D「./ DHC=90 . Z B=Z DHC=90 .•梯形ABCD是直角梯形.•S A BCD^ (AD+BC AB丄X( 2+8) X 8=40.2 2(2)① T BP=CQ=t • AP=8- t , DQ=10- t ,•/ AP+AD+DQ=PB+BC+,C Q 8 - t+2+10 - t=t+8+t .•t=3 V &Q当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0 V t < 8若厶PAD^A QEC则Z ADP Z CQ 4•Q tan Z ADP=tan Z C==6 3•—t=4 Q t= 16= ,・・l -----2 3 3若厶PAD^A CEQ则Z APD=/ C ・• tan Z APD=tan Z C==,・•一—=解答:证明:•••正方形ABCD M为CD中点,•Q CM=MD=AD.2•/ BP=3PC•Q PC」BC」AD」CM4 4 2.CP HD 15D AZCM AD 2•/Z PCMZ ADM=90 , •••△ MC» ADM B P c12.已知:P是正方形ABCD勺边BC上的点,且BP=3PC M是CD的中点,试说明:△ ADM P AMCP13.如图,已知梯形ABCD中 , AD// BC, AD=2 AB=BC=8 CD=10(1)求梯形ABCD勺面积S;(2)动点P从点B出发,以1cm/s的速度,沿B? A? D? C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C? D? A方向,向点A运动,过点Q作QELBC 于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B? A上运动时,是否存在这样的t ,使得直线PQ将梯形ABCD勺周长平分?若存在,请求出t的值;若不存在,请说明理由;为一腰的等腰三角形?若存在, 请求出所有符合条件的t的值;若不存在,请说明理6 3 8 -t 3••• t=「;2第二种情况:8 v t w 10, P、A D三点不能组成三角形;第三种情况:10 v t w 12 △ ADP为钝角三角形与Rt△ CQE不相似;••• t=-l或t=「时,△ PAM A CQE相似.32③第一种情况:当O w t w 8时•过Q点作QE! BC, QH L AB垂足为E、H. •/ AP=8- t , AD=2,•PD=」-jl「=-'二―二.•/ CE= :t , QE= t , • QH=BE=- ;t , BH=QE=t .5 5 5 5•PH=t-T t=g t . • PQ=」J「|| = , DQ=10- t.I:DQ=DP 10-t= — . ,解得t=8 秒.n:DQ=PQ 10- t=』- | _i - 1 ,2化简得:3t - 52t+180=0解得:t=26 -戈帧,t=玄十以乔>8 (不合题意舍去)3 3•t= 26-2^34…3第二种情况:8 w t w 10 时.DP=DQ=1 -t.•••当8w t v 10时,以DQ为腰的等腰△ DPQt亘成立.第三种情况:10 v t w 12 时.DP=DQ=- 10.•••当10v t w 12时,以DQ为腰的等腰△ DPQ亘成立.26 - 2^34综上所述,t= 或8w t v 10或10v t w 12时,以DQ为腰的等腰△解答: 解:设经x秒后,△ PBQ^^ BCD由于/ PBQ M BCD=90 ,(1)当/仁/ 2时,有: PB BQDC^BC(2)当/仁/ 3时,有:PB BQBC^P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B Q为顶点的三角形与△ BDC相似?4)即—二―12 一8’经过竺秒或2秒,△ PBQ^^ BCD 7 故当AB 的长为3或3 .:时,这两个直角三角形相似.17.已知,如图,在边长为 a 的正方形ABCD 中, M 是AD 的中点,能否在边 AB 上找 一点N (不含A 、B ),使得△ CDM^A MAN 相似?若能,请给出证明,若不能,请说明 理由. 解答:15.如图,在△ ABC 中,AB=10cm BC=20cm 点P 从点A 开始沿 AB 边向B 点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度移动,如果P 、Q 分别从 A 、B 同时出发,问经过几秒钟,△ PBQ 与△ ABC 相似. 设解过秒后 t 秒后,△ PBQ 与△ ABC 相似,则有 AP=2t , BQ=4t , BP=10- 2t , 答 当厶PBQ^^ ABC 时,有 BP: :即(10- 2t ): 10=4t : 20,解得 t=2.5 (s ) (6 分)当厶QBP^A ABC 时,有BQ 即 4t : 10= 所以,经过 解法二:设 分两种情况: AB=BQ BCAB=BP BC 解得t=1 .(10 - 2t ): 20, 2.5s 或 1s 时,△ PBQ M^ ABC 相似(10 分).ts 后,△ PBQ 与△ ABC 相似,则有, AP=2t , BQ=4t , BP=10- 2t(1)当BP 与AB 对应时,有 (2)当BP 与BC 对应时,有 「=丁 1,即丄丄「一,解得AB BC 1020 「=「,即」解得AB BC 1020P 、B Q 三点为顶点的三角形与厶t=2.5s t=1sABC 相似.所以经过1s 或2.5s 时,以16 .如图,/ ACB=/ ADC=90 , AC 铠,AD=2.问当AB 的长为多少时,这两个直角 三角形相似.解答: 解:••• AC= :, AD=2,• CD =—_7=匚.要使这两个直角三角形相似,有两种情况:当 Rt △ AB3 Rt △ ACD 时,有—=丄,• AB="=3;AD AC AD当 Rt △ ACB^ Rt △ CDA 时, 有」=儿 有 ,=3 ^. 证明:分两种情况讨论: ①若△ CDMh ^ MAN 则旦型 AN AM•••边长为a , M 是AD 的中点, ••• AN= a .4②若△ CDMh ^ NAM 则3二呱.AN _AM•••边长为a , M 是AD 的中点, • AN=a 即N 点与B 重合,不合题意. 所以,能在边AB 上找一点N (不含A 时,N 点的位置满足条件.B),使得△ CDMff A MAN 相似.当 AN= a418.如图在△ ABC 中,/ C=90°, BC=8cm AC=6cm 点 Q 从 B 出发, 的速度移动,点P 从C 出发,沿CA 方向以1cm/s 的速度移动.若 C 出发,试探究经过多少秒后,以点 C 、P 、Q 为顶点的三角形与△沿BC 方向以2cm/sQ P 分别同时从B CBA 相似?解答: 解:设经过x 秒后,两三角形相似,则 CQ=( 8 - 2x ) cm, CP=xcm (1分) •••/ C=ZC=90°,时,两三角形相似.—匕.I—匕|6 E 艾—— •••当.「或(1)当」‘时, (.㈡:,⑵当门'时,CA CB1 9» 所以,经过 亠秒或一秒后,两三角形相似. 5 1112•-X =;• x=::. 11点评: 本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.19 .如图所示,梯形ABCD中, AD// BC,/ A=90°, AB=7, AD=2 BC=3 试在腰AB 上确定点P的位置,使得以P, A, D为顶点的三角形与以P, B, C为顶点的三角形相似.解:(1)若点A P, D分别与点B, C, P对应,即△ APM A BCPBP BC• 2 =AP.〒-丽~3,•AF2- 7AP+6=0,•AP=1 或AP=6检测:当AP=1 时,由BC=3 AD=2 BP=6, •••越=越,又•••/ A=/ B=90°, APM A BCP BC BP 证明:(1)v^ ABC是等腰直角三角形,•/ MBE=45 , BME/ MEB=135又•••△ DEF是等腰直角三角形,•/ DEF=45•/ NEC/ MEB=135 BEM/ NEC (4 分)而/ MBE/ ECN=45 , BEM h^ CNE (6 分)(2)与(1)同理△ BEMT A CNE.「;.(8分)又••• BE=EC<.|,(10分)当AP=6时,由BC=3 AD=2 BP=1,又•••/ A=/ B=90°,• △APS A BCP贝^厶ECIN^A MEN中有又/ ECN/ MEN=45 ,CH~EN21. 如图,在矩形ABCD中, AB=15cm BC=10cm点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出检验:当AP丄!时,由BP旦,AD=2 BC=3 •——,5 5 BP BC又•••/ A=/ B=90°, APD^A BPC因此,点P的位置有三处,即在线段AB距离点A的1、21 6处.520. A ABC和△ DEF是两个等腰直角三角形,/ A=/ D=90°, △ DEF的顶点E位于边BC的中点上.(1)如图1 ,设DE与AB交于点M, EF与AC交于点N,求证:△ BEM h^ CNE(2)如图2,将厶DEF绕点E旋转,使得DE与BA的延长线交于点M, EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论. - 发,用t (秒)表示移动的时间,那么当t为何值时,以点Q A、P为顶点的三角形与厶ABC 相似.解:以点Q A、P为顶点的三角形与△ ABC相似,所以△ AB3A PAQ或△ AB3A QAP①当△ AB3A PAQ时,坐县,所以匹1。
相似三角形基础训练及答案
相似三角形基础训练及答案一、选择题1 △ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为 ( )(A)1:2 (B)1:4 (C)2:1 (D)4:12下图1,给出下列条件:①;②;③;④.其中单独能够判定的个数为()A.1B.2C.3D.43 上2图,已知等边三角形ABC的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4、其中正确的有:( )A.0个B.1个C.2个D.3个4上图3若△ABC∽△DEF的相似比为1∶2,则△ABC与△DEF的周长比为()A.1∶4B.1∶2C.2∶1D.1∶5小明发现自己的一本书的宽与长之比为黄金比。
书的长为20cm,则它的宽约为()A.12、36cmB、13、6cmC、32、36cmD、7、64cm6、若,则=()A.2 B. C. D.7上图4,小东用长为3、2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为()A.12mB.10mC.8mD.7m8美是一种感觉,当人体下半身长与身高的比值越接近0、618时,越给人一种美感.下图1,某女士身高165cm,下半身长x与身高l的比值是0、60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为 ( )A.4cmB.6cmC.8cmD.10cmA、9上图2,小正方形的边长均为1,则下列图中的三角形与相似的是()10下图1,于一定能确定为直角三角形的条件的个数是()①②③④⑤ A.1 B.2 C.3 D.411上图2,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A、2 cm2B、4 cm2C、8 cm2D、16 cm212 上图3,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN,B.3DE=2MN, C.3∠A=2∠F D.2∠A=3∠F13下图1,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A. B. C. D.14上图2,在正三角形中,,,分别是,,上的点,,,,则的面积与的面积之比等于()A.1∶3B.2∶3C.∶2D.∶315上图3、一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A.第4张 B.第5张C、第6张 D.第7张16上图4,丁轩同学在晚上由路灯走向路灯,当他走到点时,发现身后他影子的顶部刚好接触到路灯的底部,当他向前再步行20m到达点时,发现身前他影子的顶部刚好接触到路灯的底部,已知丁轩同学的身高是1、5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25mC.28m D.30m17下图1,、分别是、的中点,则()A.1∶2 B.1∶3 C.1∶4 D.2∶3 AFECB18上图2,在中,的垂直平分线交的延长线于点,则的长为()A. B. C. D.219上图3,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A. B. C. D.20、上图4,已知点分别是中边的中点,相交于点,,则的长为() A.4 B.4、5 C.5 D.6二、填空题1、下图1,△ABC与△A′B′C ′是位似图形,点O是位似中心,若OA=2A A′,S△ABC=8,则S△A′B′C ′=________.2上图2是一种贝壳的俯视图,点分线段近似于黄金分割.已知=10,则的长约为.(结果精确到0、1)3上图3,与中,交于.给出下列结论:①;②;③;④.其中正确的结论是(填写所有正确结论的序号).4上图4,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.5下图1,三角尺在灯泡的照射下在墙上形成影子,、现测得,这个三角尺的周长与它在墙上形成的影子的周长的比是.6上图2,点M 是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是.7、上图3,中,直线交于点交于点交于点若则.8上图4将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是9、与相似且面积比为4∶25,则与的相似比为.10、下图1,两处被池塘隔开,为了测量两处的距离,在外选一适当的点,并分别取线段的中点,测得=20m,则=______m.11、上图2,△ABC与△DEF是位似图形,位似比为2∶3,已知AB=4,则DE的长为 ____.12上图3,在中,,若,则.13、上图4,与是位似图形,则位似中心的坐标是14、在□ABCD中,在上,若,则.三、解答题1、如图,在矩形中,,,求的长.2如图,DE∥BC,AD=4,DB=8,DE=3,(1)求的值,(2)求BC的长3如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.4图,在中,,线段 AB 的垂直平分线交 AB于 D,交 AC于 E,连接BE.(1)求证:∠CBE=36;(2)求证:.相似三角形板块训练试题及答案一、选择题1 B2 C3 D4 B5A6、 B7 A8C9A10C11C12B13D14A15C16D17 C18B19 B20、二、填空题1、【答案】 182【答案】6、2、3【答案】①,③,④4【答案】(,0)5【答案】6【答案】144;7、【答案】8【答案】或2;9、【答案】 2:5.10 答案:4011、【答案】 612【答案】813、【答案】(9,0)14、【答案】三、解答题1、解:∵四边形是矩形,AB=6 ∴∠A=∠D=90,DC=AB=6又∵AE=9 ∴在Rt△ABE中,由勾股定理得:BE=∵,∴,即∴EF=2解:(1)所以(2)因为,所以所以因为所以所以3证明:(1)∵ ∴ 又∠ACB=∠DCE=90,∴△ACB∽△DCE.(2)∵ △ACB∽△DCE,∴ ∠ABC=∠DEC.又∠ABC+∠A =90,∴ ∠DEC+∠A=90.∴ ∠EFA=90.∴EF⊥AB.4、.证明:(1)∵DE是AB的垂直平分线,∴,∴.∵,∴.∴.(2)由(1)得,在△BCE中,,∴,∴.在△ABC 与△BEC中,,,∴.∴,即.故.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形板块训练试题及答案一、选择题1 △ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 ( )(A)1:2 (B)1:4 (C)2:1 (D)4:12下图1,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC =; ④2AC AD AB =.其中单独能够判定ABC ACD △∽△的个数为( )A .1B .2C .3D .43 上2图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4. 其中正确的有:( )A .0个 B .1个 C .2个 D .3个4上图3若△ABC ∽△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .1∶4B .1∶2C .2∶1D .1∶25小明发现自己的一本书的宽与长之比为黄金比。
书的长为20cm ,则它的宽约为( )A .12.36cm B.13.6cm C.32.36cm D.7.64cm6.若21CD DE ==,,则BC =( )A .2 B .433C .23D .43 7上图4,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A .12m B .10m C .8m D .7m8美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.下图1,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为 ( )A .4cm B .6cm C .8cm D .10cm9上图2,小正方形的边长均为1,则下列图中的三角形与ABC △相似的是( ) 10下图1, CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DB AD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶, ⑤CD AC BD AC •=• A .1B .2C .3D .4A .11上图2,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2 cm 2 B. 4 cm 2 C. 8 cm 2 D. 16 cm 212 上图3,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )A .2DE=3MN ,B .3DE=2MN , C .3∠A=2∠F D .2∠A=3∠F 13下图1,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DO AO 等于( ) A .352 B .31 C .32 D .2114上图2,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶315上图3.一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张 B .第5张 C.第6张 D .第7张16上图4,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m , 则两路灯之间的距离是 ( )A .24m B .25m C .28m D .30m17下图1,D 、E 分别是AB 、AC 的中点,则:ADE ABC S S =△△( )A . 1∶2B .1∶3C .1∶4D . 2∶318上图2,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2 19上图3,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:620.上图4,已知点E F 、分别是ABC △中AC AB 、边的中点,BE CF 、相交于点G ,2FG =,则CF 的长为( ) A .4 B .4.5 C .5 D .6AFE CB1.下图1,△ABC 与△A ′B ′C ′是位似图形,点O 是位似中心,若OA=2A A ′,S △ABC =8, 则S △A ′B ′C ′=________.2上图2是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知AB =10cm , 则AC 的长约为 cm .(结果精确到0.1cm ) 3上图3,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D . 给出下列结论:①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 4上图4,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 .5下图1,三角尺在灯泡O 的照射下在墙上形成影子,.现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .6上图2,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 . 7.上图3,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CF AD= . 8上图4将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是9.ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .10.下图1,A B 、两处被池塘隔开,为了测量A B 、两处的距离,在AB 外选一适当的点C ,并分别取线段AC BC 、的中点E F 、,测得EF =20m ,则AB =______m .11.上图2,△ABC 与△DEF 是位似图形,位似比为2∶3,已知AB =4,则DE 的长为 ____. 12上图3,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .13.上图4,ABC △与A B C '''△是位似图形,则位似中心的坐标是14.在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .1.如图,在矩形ABCD 中,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.2如图,DE ∥BC ,AD =4,DB =8,DE =3,(1)求AD AB的值,(2)求BC 的长3如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点. △ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .4图 ,在ABC △中,36AB AC A =∠=,°,线段 AB 的垂直平分线交 AB 于 D , 交 AC 于 E ,连接BE . (1)求证:∠CBE =36°; (2)求证:2AE AC EC =.相似三角形板块训练试题及答案一、选择题1 B2 C 3 D 4 B 5A6. B7 A 8C 9 A10C 11C12B 13D14A15C16D17 C18B19 B 20.二、填空题1.【答案】182 【答案】6.2.3 【答案】①,③,④4 【答案】(2-,0)5【答案】25 6 【答案】144;7. 【答案】128【答案】712或2; 9.【答案】2:5. 10 答案:4011.【答案】612【答案】813.【答案】(9,0)14.【答案】5:3 三、解答题1.解:∵四边形ABCD 是矩形,AB=6 ∴∠A=∠D=90°,DC=AB=6又∵AE=9 ∴在Rt △ABE 中,由勾股定理得:BE=117692222=+=+AB AE ∵ABE DEF △∽△, ∴EF BE DE AB =,即EF 11726= ∴EF=3117 2解:(1)4812AB AD DB 所以41123AD AB (2)因为DE BC ∥,所以ADE ABC △∽△ 所以DE AD BC AB因为3DE 所以313BC 所以9BC 3证明:(1)∵ 3,2AC DC = 63,42BC CE == ∴ .AC BC DC CE = 又 ∠ACB =∠DCE =90°, ∴ △ACB ∽△DCE .(2)∵ △ACB ∽△DCE ,∴ ∠ABC =∠DEC .又 ∠ABC +∠A =90°,∴ ∠DEC +∠A =90°.∴ ∠EF A =90°. ∴ EF ⊥AB .4.. 证明:(1)∵DE 是A B 的垂直平分线,∴EA EB =,∴36EBA A ∠=∠=°.∵36AB AC A =∠=,°,∴72ABC C ∠=∠=°. ∴36CBE ABC EBA ∠=∠-∠=°.(2)由(1)得,在△BCE 中,7236C CBE ∠=∠=°,°,∴72BEC C ∠=∠=°,∴BC BE AE ==.在△ABC 与△BEC 中,CBE A ∠=∠,C C ∠=∠,∴ABC BEC △∽△. ∴AC BC BC EC=,即2 BC AC EC =. 故2 AE AC EC =.。