人教版数学高一上试卷6
山东省烟台市高一数学上学期期末试题(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.32.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<16.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可).12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.2015-2016学年某某省某某市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.下列命题中正确的个数是()(1)空间中如果两个角的两边分别对应平行,那么这两个角相等(2)若直线l与平面α平行,则直线l与平面α内的直线平行或异面(3)夹在两个平行平面间的平行线段相等(4)垂直于同一直线的两条直线平行.A.0 B.1 C.2 D.3【分析】根据空间中的平行与垂直关系,得出命题A、B、C正确,命题D错误【解答】解:对于(1),空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,∴命题(1)错误;对于(2),若直线l与平面α平行,则直线l与平面α内的直线平行或异面,根据线面平行的性质得到命题(2)正确;对于(3),夹在两个平行平面间的平行线段相等;命题(3)正确;对于(4),垂直于同一条直线的两个直线平行、相交或异面,∴命题(4)错误.故正确的命题有2个;故选:C.【点评】本题考查了空间中的平行与垂直关系的应用问题,是基础题目.2.如果两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,那么实数a等于()A.﹣1 B.2 C.2或﹣1 D.【分析】两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,利用两条直线相互平行的充要条件即可得出.【解答】解:∵两条直线l1:ax+2y+6=0与l2:x+(a﹣1)y+3=0平行,直线l1的斜率存在,分别化为:y=﹣x﹣3,y=﹣,∴,﹣3≠﹣,解得a=﹣1.故选:A.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.3.函数f(x)=e x+2x﹣3的零点所在的一个区间是()A.()B.()C.()D.()【分析】将选项中各区间两端点值代入f(x),满足f(a)f(b)<0(a,b为区间两端点)的为答案.【解答】解:因为f()=<0,f(1)=e﹣1>0,所以零点在区间()上,故选C.【点评】本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.4.一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为()A.B.C.D.【分析】根据三视图知几何体为一直四棱锥,结合图中数据求出该四棱锥的体积.【解答】解:由三视图知几何体为一直四棱锥,其直观图如图所示;∵正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱垂直于底面且侧棱长也为1,∴该四棱锥的体积为×12×1=.故选:B.【点评】本题考查了由三视图求几何体体积的应用问题,解题的关键是判断几何体的形状,是基础题.5.若函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则实数a的取值X围是()A.a>1 B.a<1 C.a<﹣1或a>1 D.﹣1<a<1【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值X 围.【解答】解:函数f(x)=ax+1在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.6.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.7.在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有()A.1条B.2条C.3条D.4条【分析】先求出线段AB的长度为10,等于5的2倍,故满足条件的直线有3条,其中有2条和线段AB平行,另一条是线段AB的中垂线.【解答】解:线段AB的长度为=10,故在坐标平面内,与点A(﹣2,﹣1)和点B(4,7)的距离均为5的直线共有3条,其中有2条在线段AB的两侧,且都和线段AB平行,另一条是线段AB的中垂线,故选 C.【点评】本题考查两点间的距离公式的应用,线段的中垂线的性质,体现了分类讨论的数学思想.8.若圆锥的侧面展开图的圆心角为90°,半径为r,则该圆锥的全面积为()A.B.C.D.【分析】根据扇形的弧长等于圆锥底面周长求出圆锥底面半径.【解答】解:圆锥的侧面积为,侧面展开图的弧长为=,设圆锥的底面半径为r′,则2πr′=,∴r′=.∴圆锥的全面积S=+=.故选:D.【点评】本题考查了圆锥的结构特征,面积计算,属于基础题.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,其中正确的命题是()A.①②B.①③C.②③D.①②③【分析】利用线面平行,面面平行的判定定理即可.【解答】解:点M,N分别为线段PB,BC的中点,o为AB的中点,∴MO∥PA,ON∥AC,OM∩ON=O,∴MO∥平面PAC;平面PAC∥平面MON,②③故正确;故选:C.【点评】考查了线面平行,面面平行的判断,属于基础题型,应熟练掌握.10.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1【分析】函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a 的图象交点的横坐标.作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x ≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.【解答】解:∵当x≥0时,f(x)=;即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);画出x≥0时f(x)的图象,再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,最左边两根之和为﹣6,最右边两根之和为6,∵x∈(﹣1,0)时,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和为1﹣2a.故选:A.【点评】本题考查分段函数的图象与性质的应用问题,也考查了利用函数零点与方程的应用问题,是综合性题目.二、填空题:本大题共5小题,每小题5分,共25分.11.通过市场调查知某商品每件的市场价y(单位:圆)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元 90 51 90根据上表数据,当a≠0时,下列函数:①y=ax+k;②y=ax2+bx+c;③y=alog m x中能恰当的描述该商品的市场价y与上市时间x的变化关系的是(只需写出序号即可)②.【分析】随着时间x的增加,y的值先减后增,结合函数的单调性即可得出结论【解答】解:∵随着时间x的增加,y的值先减后增,而所给的三个函数中y=ax+k和y=alog m x 显然都是单调函数,不满足题意,∴y=ax2+bx+c.故答案为:②.【点评】本题考查函数模型的选择,考查学生利用数学知识解决实际问题的能力,确定函数模型是关键.12.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,当底面四边形A1B1C1D1满足条件AC⊥BD或四边形ABCD为菱形时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).【分析】由假设A1C⊥B1D1,结合直四棱柱的性质及线面垂直的判定和性质定理,我们易得到A1C1⊥B1D1,即AC⊥BD,又由菱形的几何特征可判断出四边形ABCD为菱形,又由本题为开放型题目上,故答案可以不唯一.【解答】解:若A1C⊥B1D1,由四棱柱ABCD﹣A1B1C1D1为直四棱柱,AA1⊥B1D1,易得B1D1⊥平面AA1BB1,则A1C1⊥B1D1,即AC⊥BD,则四边形ABCD为菱形,故答案为:AC⊥BD或四边形ABCD为菱形.【点评】本题主要考查了空间中直线与直线之间的位置关系,属于知识的考查,属于中档题.13.若直线m被两条平行直线l1:x﹣y+1=0与l2:2x﹣2y+5=0所截得的线段长为,则直线m的倾斜角等于135°.【分析】由两平行线间的距离,得直线m和两平行线的夹角为90°.再根据两条平行线的倾斜角为45°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为,可得直线m 和两平行线的夹角为90°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为135°,故答案为:135°.【点评】本题考查两平行线间的距离公式,两条直线的夹角公式,本题属于基础题.14.已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣x+1,若f(x)有4个零点,则实数a的取值X围是(4,+∞).【分析】根据条件可判断函数为偶函数,则要使(x)有4个零点,只需当x≥0时,f(x)=x2﹣x+1=0有两不等正根,根据二次方程的根的判定求解.【解答】解:对任意的x∈R满足f(﹣x)=f(x),∴函数为偶函数,若f(x)有4个零点,∴当x≥0时,f(x)=x2﹣x+1=0有两不等正根,∴△=a﹣4>0,∴a>4.【点评】考查了偶函数的应用和二次方程根的性质.15.如图,在棱长都相等的四面体SABC中,给出如下三个命题:①异面直线AB与SC所成角为60°;②BC与平面SAB所成角的余弦值为;③二面角S﹣BC﹣A的余弦值为,其中所有正确命题的序号为②③.【分析】①根据线面垂直性质可判断;②根据公式cosθ=cosθ1cosθ2求解即可;③找出二面角的平面角,利用余弦定理求解.【解答】解:①取AB中点M,易证AB垂直平面SMC,可得AB垂直SC,故错误;②易知BC在平面上的射影为∠ABC的角平分线,∴cos60°=cosθcos30°,∴cosθ=,故正确;③取BC中点N,∴二面角为∠ANC,不妨设棱长为1,∴cos∠ANC==,故正确,故答案为:②③.【点评】考查了线面垂直,线面角,二面角的求法.属于基础题型.三、解答题:本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤、16.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.(1)求证:平面AA1C⊥平面BA1C;(2)若AC=BC,求几何体A1﹣ABC的体积V.【分析】(1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;(2)求出AC,直接利用体积公式求解即可.【解答】(1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,所以AC⊥BC.因为AA1⊥平面ABC,BC⊂平面ABC,所以AA1⊥BC,而AC∩AA1=A,所以BC⊥平面AA1C.又BC⊂平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,得,所以.…(12分)【点评】本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1﹣ABC的体积,考查学生分析解决问题的能力,属于中档题.17.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,E是AA1的中点.(1)求证:A1C∥平面BDE;(2)求二面角E﹣BD﹣A的正切值.【分析】(1)连AC,设AC与BD交于点O,连EO,则A1C∥EO,由此能证明A1C∥平面BDE.(2)由BD⊥AC,BD⊥EO,得∠AOE是二面角E﹣BD﹣A的平面角,由此能求出二面角E﹣BD ﹣A的正切值.【解答】证明:(1)连AC,设AC与BD交于点O,连EO,∵E是AA1的中点,O是BD的中点,∴A1C∥EO,又EO⊂面BDE,AA1⊄面BDE,所以A1C∥平面BDE.…(6分)解:(2)由(1)知,BD⊥AC,BD⊥EO,∴∠AOE是二面角E﹣BD﹣A的平面角,在Rt△AOE中,tan∠AOE==.∴二面角E﹣BD﹣A的正切值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)要使工厂有盈利,求产量x的X围;(3)工厂生产多少台产品时,可使盈利最多?【分析】(1)由题意得G(x)=2.8+x.由,f(x)=R (x)﹣G(x),能写出利润函数y=f(x)的解析式.(2)当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.由此能求出要使工厂有盈利,产量x的X围.(3)当x>5时,由函数f(x)递减,知f(x)<f(5)=3.2(万元).当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).由此能求出工厂生产多少台产品时,可使盈利最多.【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,…(4分)∴f(x)=R(x)﹣G(x)=.…(6分)(2)∵f(x)=,∴当0≤x≤5时,由f(x)=﹣0.4x2+3.2x﹣2.8>0,得1<x≤5;.…(7分)当x>5时,由f(x)=8.2﹣x>0,得5<x<8.2.∴要使工厂有盈利,求产量x的X围是(1,8.2)..…(8分)(3)∵f(x)=,∴当x>5时,函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)【点评】本题考查函数知识在生产实际中的具体应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.19.在△ABC中,A(2,﹣1),AB边上的中线CM所在直线方程为3x+2y+1=0.角B的平分线所在直线BT的方程为x﹣y+2=0.(1)求顶点B的坐标;(2)求直线BC的方程.【分析】(1)设B(x0,y0),利用中点坐标公式可得:AB的中点M,代入直线CM.又点B在直线BT上,联立即可得出.(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,利用对称的性质即可得出.【解答】解:(1)设B(x0,y0),则AB的中点M在直线CM上,所以+1=0,即3x0+2y0+6=0 ①…(2分)又点B在直线BT上,所以x0﹣y0+2=0 ②…(4分)由①②得:x0=﹣2,y0=0,即顶点B(﹣2,0).…(6分)(2)设点A(2,﹣1)关于直线BT的对称点的坐标为A′(a,b),则点A′在直线BC上,由题意知,,解得a=﹣3,b=4,即A′(﹣3,4).…(9分)因为k BC===﹣4,…(11分)所以直线BC的方程为y=﹣4(x+2),即4x+y+8=0.…(12分)【点评】本题考查了角平分线的性质、相互垂直的直线斜率之间的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.20.如图,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O 所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥面DAF;(2)求证:AF⊥面CBF.【分析】(1)先证明OM∥AN,根据线面平行的判定定理即可证明OM∥面DAF;(2)由题意可先证明AF⊥CB,由AB为圆O的直径,可证明AF⊥BF,根据线面垂直的判定定理或面面垂直的性质定理即可证明AF⊥面CBF.【解答】解:(1)设DF的中点为N,连接MN,则MN∥CD,MN=CD,又∵AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴MNAO为平行四边形,∴OM∥AN.又∵AN⊂面DAF,OM⊄面DAF,∴OM∥面DAF.(2)∵面ABCD⊥面ABEF,CB⊥AB,CB⊂面ABCD,面ABCD∩面ABEF=AB,∴CB⊥面ABEF.∵AF⊂面ABEF,∴AF⊥CB.又∵AB为圆O的直径,∴AF⊥BF,又∵CB∩BF=B,CB,BF⊂面CBF.∴AF⊥面CBF.【点评】本题主要考查了平面与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和转化思想,属于中档题.21.设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,某某数a的取值X围;(3)若l与x轴正半轴的交点为A,与y轴负半轴的交点为B,求△AOB(O为坐标原点)面积的最小值.【分析】(1)对a分类讨论,利用截距式即可得出;(2)y=﹣(a+1)x+a﹣2,由于l不经过第二象限,可得,解出即可得出.(3)令x=0,解得y=a﹣2<0,解得aX围;令y=0,解得x=>0,解得aX围.求交集可得:a<﹣1.利用S△AOB= [﹣(a﹣2)]×,变形利用基本不等式的性质即可得出.【解答】解:(1)若2﹣a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=﹣1,化为y+3=0,舍去.若a≠﹣1,2,化为: +=1,令=a﹣2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.(2)y=﹣(a+1)x+a﹣2,∵l不经过第二象限,∴,解得:a≤﹣1.∴实数a的取值X围是(﹣∞,﹣1].(3)令x=0,解得y=a﹣2<0,解得a<2;令y=0,解得x=>0,解得a>2或a<﹣1.因此,解得a<﹣1.∴S△AOB=|a﹣2|||==3+≥3+=6,当且仅当a=﹣4时取等号.∴△AOB(O为坐标原点)面积的最小值是6.【点评】本题考查了直线的方程、不等式的性质、三角形的面积计算公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.。
高一数学试卷及答案(人教版)
高一数学试卷及答案(人教版) 研究必备,欢迎下载高一数学试卷(人教版)一、填空题1.已知log2 3=a。
log3 7=b,用含a,b的式子表示log2 14.答:log2 14=a/2+b。
2.方程XXX(x+4)的解集为。
答:{4}。
3.设α是第四象限角,tanα=−4/3,则sin2α=____________________。
答:sin2α=-24/25.4.函数y=2sinx−1的定义域为__________。
答:R。
5.函数y=2cosx+sin2x,x∈R的最大值是。
答:3.6.把−6sinα+2cosα化为Asin(α+φ)(其中A>0,φ∈(0,2π))的形式是。
答:2sin(α+2.094)。
7.函数f(x)=(1/|cosx|)在[−π,π]上的单调减区间为___。
答:[-π,-π/2)∪(π/2,π]。
8.函数y=−2sin(2x+π/3)与y轴距离最近的对称中心的坐标是____。
答:(π/12,-1)。
9.若。
且。
则。
答。
10.设函数f(x)是以2为周期的奇函数,且。
若。
则f(4cos2α)的值。
答:-2.11.已知函数,则。
答:f(x)=x^3-6x^2+11x-6.12.设函数y=sin(ωx+φ)的最小正周期为π,且其图像关于直线x=π/2对称;(2)图像关于点(π/4,0)对称;(3)在[0,π/2]上是增函数,那么所有正确结论的编号为____。
答:2,3.二、选择题13.已知正弦曲线y=Asin(ωx+φ),(A>0,ω>0)上一个最高点的坐标是(2,3),由这个最高点到相邻的最低点,曲线交x 轴于(6,0)点,则这条曲线的解析式是(。
)。
答:(D)y=3sin(x-5π/6)。
14.函数y=sin(2x+π/2)的图象是由函数y=sin2x的图像()。
答:(C)向左平移π/4单位。
15.在三角形△ABC中,a=36,b=21,A=60,不解三角形判断三角形解的情况(。
高中高一数学上学期第三次月考试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市航天高中高一(上)第三次月考数学试卷一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合A={x|x﹣1>0},B={x|2x>0},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|x<﹣1} D.{x|x<﹣1或x>1}2.若,且α是第二象限角,则cosα的值等于()A. B. C.D.3.为了得到函数的图象,只需把函数y=sinx的图象上所有的点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|5.幂函数y=x m(m∈Z)的图象如图所示,则m的值可以为()A.1 B.﹣1 C.﹣2 D.26.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定7.根据表格内的数据,可以断定方程e x﹣x﹣2=0的一个根所在的区间是()x ﹣1 0 1 2 3e x0.37 1 2.72 7.39 20.08x+2 1 2 3 4 5A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)8.将下列各式按大小顺序排列,其中正确的是()A.cos0<cos<cos1<cos30°B.cos0<cos<cos30°<cos1C.cos0>cos>cos1>cos30°D.cos0>cos>cos30°>cos19.若lgx﹣lgy=a,则=()A.3a B.C.a D.10.若sinα,cosα是关于x的方程4x2+2x+3m=0的两根,则m的值为()A.B. C.D.11.设函数f(x)=,若方程f(x)=m有三个不同的实数解,则m的取值X围是()A.m>0或m<﹣1 B.m>﹣1 C.﹣1<m<0 D.m<012.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知角α的终边经过点P(﹣4,3),则cosα=.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是.15.函数,则=.16.当x>0时,不等式(a2﹣3)x>(2a)x恒成立,则实数a的取值X围是.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)17.已知(1)求tanα的值;(2)求的值.18.设,(1)在下列直角坐标系中画出f(x)的图象;(2)若f(t)=3,求t值.19.已知x∈[﹣,],(1)求函数y=cosx的值域;(2)求函数y=﹣3(1﹣cos2x)﹣4cosx+4的值域.20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3;当x=6π时,y有最小值﹣3.(1)求此函数的解析式;(2)求此函数的单调区间.21.已知二次函数f(x)=x2﹣16x+q+3(1)若函数在区间[﹣1,1]上存在零点,某某数q的取值X围;(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.22.已知函数.(1)当a=1时,求函数f(x)在(﹣∞,0)上的值域;(2)若对任意x∈[0,+∞),总有f(x)<3成立,某某数a的取值X围.2015-2016学年某某省某某市航天高中高一(上)第三次月考数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合A={x|x﹣1>0},B={x|2x>0},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|x<﹣1} D.{x|x<﹣1或x>1}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式解得:x>1,即A={x|x>1},由B中不等式变形得:2x>0,得到B=R,∴A∩B={x|x>1},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若,且α是第二象限角,则cosα的值等于()A. B. C.D.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】由sinα的值,以及α的X围,利用同角三角函数间的基本关系求出cosα的值即可.【解答】解:∵sinα=,α是第二象限角,∴cosα=﹣=﹣.故选C【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.为了得到函数的图象,只需把函数y=sinx的图象上所有的点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x﹣),只是横坐标由x变为x﹣,∴要得到函数y=sin(x﹣)的图象,只需把函数y=sinx的图象上所有的点向右平行移动个单位长度.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|【考点】正弦函数的图象;余弦函数的图象.【专题】三角函数的图像与性质.【分析】根据函数单调性,周期性和奇偶性分别进行判断即可得到结论.【解答】解:A.函数y=tanx为奇函数,不满足条件.B.函数y=|sinx|满足既是(0,)上的增函数,又是以π为周期的偶函数.C.y=cosx的周期为2π,不满足条件.D.y=|cosx|在(0,)上是减函数,不满足条件.故选:B.【点评】本题主要考查三角函数的图象和性质,要求熟练掌握三角函数的周期性,奇偶性和单调性.5.幂函数y=x m(m∈Z)的图象如图所示,则m的值可以为()A.1 B.﹣1 C.﹣2 D.2【考点】幂函数的性质.【专题】应用题;函数思想;定义法;函数的性质及应用.【分析】由给出的幂函数的图象,得到幂指数小于0,且幂函数为偶函数,即可判断答案.【解答】解:根据幂函数的图象可知函数在第一象限内单调递减,且为偶函数.则m<0且为偶数,故选:C.【点评】本题主要考查幂函数的图象和性质,要求熟练掌握幂函数的性质的应用.6.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定【考点】二次函数的性质.【专题】计算题.【分析】利用对称轴的公式求出对称轴,根据二次函数的单调区间得到,得到选项.【解答】解:∵函数y=ax2+bx+3的对称轴为∵函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数∴∴b=2a<0故选B【点评】解决与二次函数有关的单调性问题,一般要考虑二次函数的开口方向、对称轴.7.根据表格内的数据,可以断定方程e x﹣x﹣2=0的一个根所在的区间是()x ﹣1 0 1 2 3e x0.37 1 2.72 7.39 20.08x+2 1 2 3 4 5A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【考点】二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】令f(x)=e x﹣x﹣2,求出选项中的端点函数值,从而由根的存在性定理判断根的位置.【解答】解:由上表可知,令f(x)=e x﹣x﹣2,则f(﹣1)≈0.37+1﹣2<0,f(0)=1﹣0﹣2=﹣1<0,f(1)≈2.72﹣1﹣2<0,f(2)≈7.39﹣2﹣2>0,f(3)≈20.09﹣3﹣2>0.故f(1)f(2)<0,故选:C.【点评】考查了二分法求方程近似解的步骤,属于基础题.8.将下列各式按大小顺序排列,其中正确的是()A.cos0<cos<cos1<cos30°B.cos0<cos<cos30°<cos1C.cos0>cos>cos1>cos30°D.cos0>cos>cos30°>cos1【考点】余弦函数的单调性.【专题】三角函数的图像与性质.【分析】先将1和化为角度,再根据余弦函数的单调性,判断出四个余弦值的大小关系.【解答】解:∵1≈57.30°,∴≈28.56°,则0<<30°<1,∵y=cosx在(0°,180°)上是减函数,∴cos0>cos>cos30°>cos1,故选D.【点评】本题主要考查余弦函数的单调性,以及弧度与角度之间的转化,属于基础题.9.若lgx﹣lgy=a,则=()A.3a B.C.a D.【考点】对数的运算性质.【专题】计算题.【分析】直接利用对数的性质化简表达式,然后把lgx﹣lgy2a代入即可.【解答】解: =3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.【点评】本题考查对数的运算性质,考查计算能力,是基础题.10.若sinα,cosα是关于x的方程4x2+2x+3m=0的两根,则m的值为()A.B. C.D.【考点】同角三角函数基本关系的运用.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用韦达定理求得sinα+cosα=﹣,sinα•cosα=,再利用同角三角函数的基本关系求得sinα•cosα=﹣,从而求得 m的值.【解答】解:∵sinα,cosα是关于x的方程4x2+2x+3m=0的两根,∴sinα+cosα=﹣,sinα•cosα=,再根据1+2sinαcosα=,∴sinα•cosα=﹣,∴m=﹣,故选:D.【点评】本题主要考查韦达定理、同角三角函数的基本关系,属于基础题.11.设函数f(x)=,若方程f(x)=m有三个不同的实数解,则m的取值X围是()A.m>0或m<﹣1 B.m>﹣1 C.﹣1<m<0 D.m<0【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】由题意可得函数y=f(x)和直线y=m有3个不同的交点,数形结合可得m的取值X 围.【解答】解:由题意可得函数y=f(x)和直线y=m有3个不同的交点,如图所示:当﹣1<m<0时,函数y=f(x)和直线y=m有3个不同的交点,故选C.【点评】本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.12.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D不符合要求,它的振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知角α的终边经过点P(﹣4,3),则cosα=.【考点】任意角的三角函数的定义.【专题】计算题.【分析】先求出角α的终边上的点P(﹣4,3)到原点的距离为 r,再利用任意角的三角函数的定义cosα=求出结果.【解答】解:角α的终边上的点P(﹣4,3)到原点的距离为 r=5,由任意角的三角函数的定义得cosα==.故答案为:.【点评】本题考查任意角的三角函数的定义,两点间的距离公式的应用,考查计算能力.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是(π﹣2)rad .【考点】弧长公式.【专题】计算题.【分析】由题意,本题中的等量关系是扇形的周长等于弧所在的圆的半周长,可令圆心角为θ,半径为r,弧长为l,建立方程,求得弧长与半径的关系,再求扇形的圆心角.【解答】解:令圆心角为θ,半径为r,弧长为l由题意得2r+l=πr∴l=(π﹣2)r∴θ==π﹣2故答案为:(π﹣2)rad.【点评】本题考查弧长公式,解题的关键是熟练掌握弧长公式,且能利用公式建立方程进行运算,本题考查对公式的准确记忆能力15.函数,则= ﹣.【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】利用诱导公式先求出f(x)=,再把cos=代入,能求出结果.【解答】解:∵===,∵cos=,∴==.故答案为:﹣.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意诱导公式的合理运用.16.当x>0时,不等式(a2﹣3)x>(2a)x恒成立,则实数a的取值X围是a>3 .【考点】函数恒成立问题.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由题意结合幂函数的单调性列关于a的不等式组得答案.【解答】解:∵x>0时,不等式(a2﹣3)x>(2a)x恒成立,∴,解得:a>3.故答案为:a>3.【点评】本题考查函数恒成立问题,应用了幂函数的单调性,同时注意指数式的底数大于0且不等于1,是中档题.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)17.已知(1)求tanα的值;(2)求的值.【考点】同角三角函数基本关系的运用.【专题】综合题;方程思想;综合法;三角函数的求值.【分析】(1)直接弦化切,即可求tanα的值;(2)法一:求出sinα,cosα,分类讨论求的值.法二:原式分子分母同除以cos2α,弦化切,即可求的值.【解答】解:(1)∵,∴tanα=﹣tanα+1(2)法一:由(1)知:,∴或当,时,原式=当,时,原式=综上:原式=法二:原式分子分母同除以cos2α得:原式==【点评】本题考查同角三角函数关系,考查学生的转化能力,属于中档题.18.设,(1)在下列直角坐标系中画出f(x)的图象;(2)若f(t)=3,求t值.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;作图题.【分析】由分段函数,按照基本函数作图,第一段一次函数,第二次二次函数,第三次为一次函数,要注意每段的定义域.【解答】解:(1)如图(2)由函数的图象可得:f(t)=3即t2=3且﹣1<t<2.∴t=【点评】本题主要考查分段函数的作图和用数形结合解决问题的能力,分段函数知识点容量大且灵活,是高考的热点,在解决中要注意部分与整体的关系.19.已知x∈[﹣,],(1)求函数y=cosx的值域;(2)求函数y=﹣3(1﹣cos2x)﹣4cosx+4的值域.【考点】余弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用余弦函数的定义域和值域,求得函数y=cosx的值域.(2)把函数y的解析式化为y=3(cosx﹣)2﹣,结合cosx∈[﹣,1],利用二次函数的性质求得y的值域.【解答】解:(1)∵y=cosx在[﹣,0]上为增函数,在[0,]上为减函数,∴当x=0时,y取最大值1;x=时,y取最小值﹣,∴y=cosx的值域为[﹣,1].(2)原函数化为:y=3cos2x﹣4cosx+1,即y=3(cosx﹣)2﹣,由(1)知,cosx∈[﹣,1],故y的值域为[﹣,].【点评】本题主要考查余弦函数的值域,二次函数的性质,属于基础题.20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3;当x=6π时,y有最小值﹣3.(1)求此函数的解析式;(2)求此函数的单调区间.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】(1)由题意得到A和周期,代入周期公式求ω,在由点(π,3)在此函数图象上结合φ的X围求得φ,则函数解析式可求;(2)直接由复合函数的单调性求函数的单调区间.【解答】解:(1)由题意可知:A=3,,∴T=10π,则,∴y=3sin(φ),∵点(π,3)在此函数图象上,∴,.φ=.∵|φ|<,∴φ=.∴y=3sin();(2)当,即﹣4π+10kπ≤x≤π+10kπ,k∈Z时,函数y=3sin()单调递增,∴函数的单调增区间为[﹣4π+10kπ,π+10kπ](k∈Z);当,即π+10kπ≤x≤6π+10kπ,k∈Z时,函数单调递减,∴函数的单调减区间为[π+10kπ,6π+10kπ](k∈Z).【点评】本题考查y=Asin(ωx+φ)型函数图象的求法,考查了复合函数的单调性的求法,复合函数的单调性满足“同增异减”的原则,是中档题.21.已知二次函数f(x)=x2﹣16x+q+3(1)若函数在区间[﹣1,1]上存在零点,某某数q的取值X围;(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.【考点】二次函数的性质.【专题】存在型;分类讨论;转化思想;分类法;函数的性质及应用.【分析】(1)若函数在区间[﹣1,1]上存在零点,则,即,解得实数q的取值X围;(2)假定存在满足条件的q值,结合二次函数的图象和性质,对q进行分类讨论,最后综合讨论结果,可得答案.【解答】解:(1)若二次函数f(x)=x2﹣16x+q+3的图象是开口朝上,且以直线x=8为对称轴的抛物线,故函数在区间[﹣1,1]上为减函数,若函数在区间[﹣1,1]上存在零点,则,即,解得:q∈[﹣20,12];(2)若存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51,当0<q≤8时,f(8)=q﹣61=﹣51,解得:q=10(舍去),当8<q<10时,f(q)=q2﹣15q+3=﹣51,解得:q=9,或q=6(舍去),综上所述,存在q=9,使得当x∈[q,10]时,f(x)的最小值为﹣51.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.已知函数.(1)当a=1时,求函数f(x)在(﹣∞,0)上的值域;(2)若对任意x∈[0,+∞),总有f(x)<3成立,某某数a的取值X围.【考点】函数恒成立问题.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(1)法一、把a=1代入函数解析式,由指数函数的单调性求得f(x)在(﹣∞,0)上的值域;法二、令换元,由x的X围求出t的X围,转化为二次函数求值域;(2)由f(x)<3,即,分离参数a,然后利用换元法求函数的最小值得答案.【解答】解:(1)法一、当a=1时,,由指数函数单调性知f(x)在(﹣∞,0)上为减函数,∴f(x)>f(0)=3,即f(x)在(﹣∞,1)的值域为(3,+∞);法二、令,由x∈(﹣∞,0)知:t∈(1,+∞),∴y=g(t)=t2+t+1(t>1),其对称轴为直线,∴函数g(t)在区间(1,+∞)上为增函数,∴g(t)>g(1)=3,∴函数f(x)在(﹣∞,1)的值域为(3,+∞);(2)由题意知,f(x)<3,即,由于,在[0,+∞)上恒成立.若令2x=t,,则:t≥1且a≤h min(t).由函数h(t)在[1,+∞)上为增函数,故φmin(t)=φ(1)=1.∴实数a的取值X围是(﹣∞,1].【点评】本题考查函数恒成立问题,考查了指数函数的单调性,训练了分离变量法,是中档题.。
人教版高一数学上学期期中考试试题及详细答案解析全文
人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
高一数学人教版试卷
高一数学人教版试卷考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知函数,则A.1 B.2 C.3 D.42.已知,则直线与直线的位置关系是()A.平行; B.相交或异面; C.异面; D.平行或异面。
3.设集合,,则()A. B. C. D.4.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是()A.甲的极差是29B.甲的中位数是24C.甲罚球命中率比乙高D.乙的众数是215.设A为圆周上一点,在圆周上等可能地任取一点与A连接,则弦长超过半径倍的概率是()A. B. C. D.6.不等式表示的平面区域在直线的()A.左上方 B.左下方 C.右上方 D.右下方7.下列函数中,最小值是的函数是()8.已知函数是定义在上的偶函数,在上有单调性,且,则下列不等式成立的是()A.B.C.D.9.工人月工资y(元)与劳动生产率x(千元)变化的回归直线方程为,下列判断正确的是()A.劳动生产率为1000元时,月工资为130元B.劳动生产率提高1000元,则月工资提高80元C.劳动生产率提高1000元,则月工资提高130元D.当月工资为210元时,劳动生产率为2000元10.如果点位于第三象限,那么角所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥312.已知为非零实数,且,则下列命题成立的是 ()A. B. C. D.13.的内角的对边分别为,若,,则等于()A. B.2 C. D.14.在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.115.已知函数唯一的零点在区间(1,3),(1,4),(1,5)内,那么下列命题不正确的是A.函数f (x)在区间(1,2)或[2,3)内有零点B.函数f (x)在(3,5)内无零点C.函数f (x)在(2,5)内一定有零点D.函数f (x)在(2,4)内不一定有零点16.直线被圆截得的弦长等于()A. B. C. D.17.函数是A.周期为的奇函数B.周期为的偶函数C.周期为的奇函数D.周期为的偶函数18.已知及所在平面一点,符合条件:,且,则的形状为()A.正B.等腰C.直角D.等腰直角19.下列函数中,既是奇函数,又在定义域内为减函数的是()A .B .C .D .20.已知定义在上上的奇函数满足,且在区间上是增函数,则( )A .B .C .D .二、填空题21.若真函数的图像过点,则________. 22.函数是函数的反函数,则函数的图象过定点 .23.设且,则的最小值为________.24. 函数 的定义域为 . 25.直线与圆交于E 、F 两点,则弦长EF=26.(2014•上海三模)已知数列{a n }的通项公式是,其前n 项和是S n ,对任意的m ,n ∈N *且m <n ,则S n ﹣S m 的最大值是 .27.工人师傅在如图1的一块矩形铁皮的中间画了一条曲线,并沿曲线剪开,将所得的两部分卷成圆柱状,如图2,然后将其对接,可做成一个直角的“拐脖”,如图3.对工人师傅所画的曲线,有如下说法:(1)是一段抛物线; (2)是一段双曲线; (3)是一段正弦曲线; (4)是一段余弦曲线; (5)是一段圆弧. 则正确的说法序号是 . 28.设是从到的映射,下列判断正确的有 .①集合中不同的元素在中的像可以相同;②集合中的一个元素在中可以有不同的像;③集合中可以有元素没有原像.29.如图,在中,已知,是边上的一点,,,,则.30.函数的单调递减区间为三、解答题31.已知集合,集合,若A=B,求的值.32.已知等比数列中,,求其第4项及前5项和.33.(本小题满分12分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是(万元)和(万元),它们与投入资金(万元)的关系有经验公式:。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
人教版高一上册数学试卷
人教版高一上册数学试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2 - 3x + 2 = 0},B={xx∈ N, x < 3},则A∩ B = (_ )A. {1}B. {2}C. {1, 2}D. varnothing2. 函数y=√(x - 1)的定义域为(_ )A. (-∞,1]B. [1,+∞)C. (0,1]D. (-∞,0]3. 下列函数中,在(0,+∞)上为增函数的是(_ )A. y = -x + 1B. y=(1)/(x)C. y = x^2 - 1D. y=-x^2+14. 已知f(x)=2x + 3,则f( - 1)=(_ )A. 1.C. 5.D. -5.5. 若a = log_32,b=log_23,c=log_4(1)/(3),则a,b,c的大小关系是(_ )A. a < b < cB. c < a < bC. c < b < aD. b < c < a6. 函数y = 3^x - 1的图象恒过定点(_ )A. (1,0)B. (0,1)C. (1,1)D. (0,(1)/(3))7. 方程log_2(x - 1)=2 - log_2(x + 1)的解为(_ )A. √(5)B. -√(5)C. ±√(5)D. 无解。
8. 已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2+1,则f(-2)=(_ )A. - 5.C. -3.D. 3.9. 若y = f(x)是偶函数,且f(-2)=3,则f(2)=(_ )A. -3.B. 0.C. 3.D. 无法确定。
10. 函数y=(1)/(2)sin(2x+(π)/(3))的最小正周期是(_ )A. πB. 2πC. (π)/(2)D. (2π)/(3)11. 函数y = sin x在[-(π)/(2),(π)/(2)]上的反函数是(_ )A. y=arcsin x,x∈[- 1,1]B. y = -arcsin x,x∈[-1,1]C. y=π+arcsin x,x∈[-1,1]D. y=π - arcsin x,x∈[-1,1]12. 若cosα=(1)/(3),α∈(0,π),则sin(α+(π)/(3))=(_ )A. (2√(2)+√(3))/(6)B. (2√(2)-√(3))/(6)C. (-2√(2)+√(3))/(6)D. (-2√(2)-√(3))/(6)二、填空题(每题5分,共20分)13. 计算log_3√(27)=_ 。
人教版2019学年高一数学考试试卷含答案(共10套 )
人教版2019学年高一数学考试试题(一)一、选择题:(每小题5分,共50分) 1、下列计算中正确的是( )A 、633x x x =+ B 、942329)3(b a b a = C 、b a b a lg lg )lg(⋅=+ D 、1ln =e2、当时,函数和的图象只可能是( )3、若10log 9log 8log 7log 6log 98765⋅⋅⋅⋅=y ,则( )A 、()3,2∈yB 、()2,1∈yC 、()1,0∈yD 、1=y4、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、不增不减B 、增加9.5%C 、减少9.5%D 、减少7.84% 5、函数x x f a log )(= ( π≤≤x 2)的最大值比最小值大1,则a 的值( ) A 、2π B 、 π2 C 、 2π或π2D 、 无法确定 6、已知集合}1,)21(|{},1,log |{2>==>==x y y B x x y y A x,则B A ⋂等于( ) A 、{y |0<y <21} B 、{y |0<y <1} C 、{y |21<y <1} D 、 ∅ 7、函数)176(log 221+-=x x y 的值域是( )A 、RB 、[8,+∞)C 、]3,(--∞D 、[-3,+∞)8、若 ,1,10><<b a 则三个数ab b b P a N a M ===,log ,的大小关系是( )A 、P N M <<B 、P M N <<C 、N M P <<D 、M N P << 9、函数y = )A 、[12--,)] B 、(12--,)) C 、[12--,](1,2) D 、(12--,)(1,2)10、对于幂函数21)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( )A 、)2(21x x f +<2)()(21x f x f + B 、)2(21x x f +>2)()(21x f x f + C 、 )2(21x x f +=2)()(21x f x f +D 、无法确定二、填空题:(共7小题,共28分)11、若集合}1log |{},2|{25.0+====x y y N y y M x , 则N M 等于 __________;12、函数y =)124(log 221-+x x 的单调递增区间是 ;13、已知01<<-a ,则三个数331,,3a a a由小到大的顺序是 ;14、=+=a R e aa e x f xx 上是偶函数,则在)(______________; 15、函数=y (31)1822+--x x (3-1≤≤x )的值域是 ;16、已知⎩⎨⎧≥-<=-)2()1(log )2(2)(231x x x e x f x ,则=)]2([f f ________________; 17、方程2)22(log )12(log 122=+++x x 的解为 。
人教版高一上学期期末数学试卷(有答案)
人教版高一(上)期末数学试卷一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或03.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a25.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.187.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=,并求出=.14.(5分)如图所示几何体的三视图,则该几何体的表面积为.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.参考答案与试题解析一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)【解答】解:由,解得x>且x≠1.的定义域是(,1)∪(1,+∞).∴函数f(x)=log(2x﹣1)故选:B.2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或0【解答】解:当a=0时,两直线重合;当a≠0时,由,解得a=,综合可得,a=,故选:A.3.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)【解答】解:∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3,x3>﹣x1,又f(x)是定义在R上单调递减的奇函数,∴f(x1)<f(﹣x2)=﹣f(x2),f(x2)<f(﹣x3)=﹣f(x3),f(x3)<f(﹣x1)=﹣f(x1),∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,∴三式相加整理得f(x1)+f(x2)+f(x3)<0故选B4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a2【解答】解:由斜二测画法的规则知与x′轴平行的线段其长度不变以及与横轴平行的性质不变,正方形对角线在y′轴上,可求得其长度为a,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2a,∴原平面图形的面积为=故选:C.5.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③【解答】解:由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选A.6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.18【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,侧高为,故棱台的高h==2,故棱台的体积为:=,棱锥的底面是棱台上底面的一半,故底面面积为2,高为2,故棱锥的体积为:×2×2=,故组合体的体积V=﹣=,故选:B7.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.【解答】解:已知如图所示:过O做平面PBA的垂线,交平面PBC于Q,连接PQ则∠OPQ=90°﹣45°=45°.∵cos∠OPA=cos∠QPA×cos∠OPQ,∴cos∠QPA=,∴∠QPA=45°,∴∠QPB=45°∴cos∠OPB=cos∠OPQ×cos∠QPB=.故选C.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)【解答】解:设g(x)=2016x+log2016(+x)﹣2016﹣x,g(﹣x)=2016﹣x+log2016(+x)﹣2016x+=﹣g(x);g′(x)=2016x ln2016++2016﹣x ln2016>0;∴g(x)在R上单调递增;∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;∴g(3x+1)>g(﹣x);∴3x+1>﹣x;解得x>﹣;∴原不等式的解集为(﹣,+∞).故选:D.10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)【解答】解:由题意,存在x<0,使f(x)﹣g(﹣x)=0,即e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,令m(x)=e x﹣﹣ln(﹣x+a),则m(x)=e x﹣﹣ln(﹣x+a)在其定义域上是增函数,且x→﹣∞时,m(x)<0,若a≤0时,x→a时,m(x)>0,故e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,若a>0时,则e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为e0﹣﹣ln(a)>0,即lna<,故0<a<.综上所述,a∈(﹣∞,).故选:C12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=1,并求出=.【解答】解:∵函数f(x)=(a>0),x1+x2=1,∴f(x1)+f(x2)=f(x1)+f(1﹣x1)=+=+==1,∴=1007+f()=1007+=.故答案为:1,.14.(5分)如图所示几何体的三视图,则该几何体的表面积为16+2.【解答】解:由已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,其直观图如下图所示:E和F分别是AB和CD中点,作EM⊥AD,连接PM,且PD=PC,由三视图得,PE⊥底面ABCD,AB=4,CD=2,PE═EF=2在直角三角形△PEF中,PF==2,在直角三角形△DEF中,DE==,同理在直角梯形ADEF中,AD=,根据△AED的面积相等得,×AD×ME=×AE×EF,解得ME=,∵PE⊥底面ABCD,EM⊥AD,∴PM⊥AD,PE⊥ME,在直角三角形△PME中,PM==,∴该四棱锥的表面积S=×(4+2)×2+×4×2+×2×2+2×××=16+2.故答案为:16+2.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.【解答】解:当x1∈[2,5]时,可得A(2,4),B(5,﹣2).设P(﹣1,﹣1),则k PA==,k PB==,∴的取值范围是.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.【解答】解:以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂直线为z轴,建立空间直角坐标系,在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°,∴P到平面ABCD的距离为PCsin30°=.∴A(1,0,0),P(0,﹣1,),B(1,2,0),C(0,2,0),=(1,1,﹣),=(1,3,﹣),=(0,3,﹣),设平面PAB的法向量=(x,y,z),则,取z=1,得=(),设平面PBC的法向量=(a,b,c),则,取c=,得=(2,1,),设二面角A﹣PB﹣C的平面角为θ,则cosθ===,sinθ==,tanθ==.∴二面角A﹣PB﹣C的正切值为.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.【解答】解:设A(a,0),B(0,b),则直线l的方程为:+=1.把点P(3,2)代入可得:+=1.(a,b>0).∴1≥2,化为ab≥24,当且仅当a=6,b=4时取等号.=ab≥12,l的方程为:+=1,即4x+6y﹣24=0∴S△AOB18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.【解答】(Ⅰ)解:由该四棱锥的三视图可知,该四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,且PC=2.…(1分)∴V P=S▱ABCD•PC=.…(3分)﹣ABCD(Ⅱ)证明:∵E、O分别为PC、BD中点∴EO∥PA,…(4分)又EO⊄平面PAD,PA⊂平面PAD.…(6分)∴EO∥平面PAD.…(7分)(Ⅲ)不论点E在何位置,都有BD⊥AE,…(8分)证明如下:∵ABCD是正方形,∴BD⊥AC,…(9分)∵PC⊥底面ABCD且BD⊂平面ABCD,∴BD⊥PC,…(10分)又∵AC∩PC=C,∴BD⊥平面PAC,…(11分)∵不论点E在何位置,都有AE⊂平面PAC,∴不论点E在何位置,都有BD⊥AE.…(12分)19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【解答】解:(1)令x=0,得y=a﹣2.令y=0,得(a≠﹣1).∵l在两坐标轴上的截距相等,∴,解之,得a=2或a=0.∴所求的直线l方程为3x+y=0或x+y+2=0.(2)直线l的方程可化为y=﹣(a+1)x+a﹣2.∵l不过第二象限,∴,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1].20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.【解答】解:(1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点G,连接OG,因为PC∥平面BDD1B1,平面BDD1B1∩平面APC=OG,故OG∥PC,所以,OG=PC=.又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1,故∠AGO是AP与平面BDD1B1所成的角.在Rt△AOG中,tan∠AGO=,即m=.所以,当m=时,直线AP与平面BDD1B1所成的角的正切值为4.(2)可以推测,点Q应当是A I C I的中点,当是中点时因为D1O1⊥A1C1,且D1O1⊥A1A,A1C1∩A1A=A1,所以D1O1⊥平面ACC1A1,又AP⊂平面ACC1A1,故D1O1⊥AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.【解答】解:(1)证明:如图,取DA1的中点G,连FG,GE;F为A1C中点;∴GF∥DC,且;∴四边形BFGE是平行四边形;∴BF∥EG,EG⊂平面A1DE,BF⊄平面A1DE;∴BF∥平面A1DE;(2)证明:如图,取DE的中点H,连接A1H,CH;AB=4,AD=2,∠DAB=60°,E为AB的中点;∴△DAE为等边三角形,即折叠后△DA1E也为等边三角形;∴A1H⊥DE,且;在△DHC中,DH=1,DC=4,∠HDC=60°;根据余弦定理,可得:HC2=1+16﹣4=13,在△A1HC中,,,A1C=4;∴,即A1H⊥HC,DE∩HC=H;∴A1H⊥面DEBC;又A1H⊂面A1DE;∴面A1DE⊥面DEBC;(3)如上图,过H作HO⊥DC于O,连接A1O;A1H⊥面DEBC;∴A1H⊥DC,A1H∩HO=H;∴DC⊥面A1HO;∴DC⊥A1O,DC⊥HO;∴∠A1OH是二面角A1﹣DC﹣E的平面角;在Rt△A1HO中,,;故tan;所以二面角A1﹣DC﹣E的正切值为2.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.【解答】附加题:(本题共10分)解:(1)g(x)=a(x﹣1)2+1+b﹣a,当a>0时,g(x)在[2,3]上为增函数,故,可得,⇔.当a<0时,g(x)在[2,3]上为减函数.故可得可得,∵b<1∴a=1,b=0即g(x)=x2﹣2x+1.f(x)=x+﹣2.…(3分)(2)方程f(2x)﹣k•2x≥0化为2x+﹣2≥k•2x,k≤1+﹣令=t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=0,∴k≤0.…(6分)(3)由f(|2x﹣1|)+k(﹣3)=0得|2x﹣1|+﹣(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|+﹣(2+3k)=0有三个不同的实数解,∴由t=|2x﹣1|的图象(如右图)知,t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,记φ(t)=t2﹣(2+3k)t+(1+2k),则或∴k>0.…(10分)。
2019最新人教版高一数学必修1第一次月考试卷及答案
高一上学期第一次月考数学试卷(时间:120分钟 总分:150分)一.选择题:(本大题共10小题;每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个 2.图中的阴影表示的集合中是( ) A .B C A u ⋂ B .A C B u ⋂ C .)(B A C u ⋂ D .)(B A C u ⋃3. 以下五个写法中:①{0}∈{0,1,2};②⊆∅{1,2};③{0,1,2}={2,0,1};④∅∈0;⑤A A =∅⋂,正确的个数有( )A .1个B .2个C .3个D .4个 4.下列从集合A 到集合B 的对应f 是映射的是( )A B A B A B A BA B C D 5.函数5||4--=x x y 的定义域为( )A .}5|{±≠x xB .}4|{≥x xC .}54|{<<x xD .}554|{><≤x x x 或6.若函数,则的值为( )A .5B .-1C .-7D .27.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为………………………………………………………( ) A . 1 B .0 C .1或0 D . 1或2 8.给出函数)(),(x g x f 如下表,则f 〔g (x )〕的值域为( )()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩)3(-fA.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合}|{,}21|{a x x B x x A <=<≤-=,若A ∩B ≠∅,则a 的取值范围是( )A .1-≥aB .2>aC .1->aD .21≤<-a10.设}4,3,2,1{=I , A 与B 是I 的子集, 若A ∩B =}3,1{,则称(A ,B )为一个“理想配集”.那么符合此条件的“理想配集”的个数是 (规定(A ,B )与(B ,A )是两个不同的“理想配集”)A. 4B. 8C. 9D. 16 二.填空题(本大题共5个小题,每小题4分,共20分)11.已知集合, 则A B =12.若函数1)1(2-=+x x f ,则)2(f =_____ __ _____13.若函数)(x f 的定义域为[-1,2],则函数)23(x f -的定义域是 14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是____ __ 15.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(只要求写出命题的序号)①若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数; ③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数; ④若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数。
高中高一数学上学期11月月考试卷(含解析)-人教版高一全册数学试题
某某省某某市西湖高中2014-2015学年高一上学期11月月考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(3分)如图所示,集合M,P,S是全集V的三个子集,则图中阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩S)∩(∁V P)D.(M∩P)∪(∁V S)3.(3分)已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a B.b<c<a C.b<a<c D.a<b<c4.(3分)函数的定义域为()A.{x|1≤x<3} B.{x|1<x<2}C.{x|1≤x<2或2<x<3} D.{x|1≤x<2}5.(3分)函数y=e﹣|x|(e是自然底数)的大致图象是()A.B.C.D.6.(3分)若函数是一个单调递增函数,则实数a 的取值X围()A.(1,2]∪C.(0,2]∪=的实数a的个数为()A.2 B.4 C.6 D.89.(3分)函数f(x)=x(|x|﹣1)在上的最小值为,最大值为2,则n﹣m的最大值为()A.B.C.D.210.(3分)设函数(a∈R).若方程f(f(x))=x有解,则a的取值X围为()A.B.C.D.(a<b)的实数对(a,b)有对.14.(4分)在同一坐标系中,y=2x与y=log2x的图象与一次函数y=﹣x+b的图象的两个交点的横坐标之和为6,则b=.15.(4分)已知函数f(x)满足f(1﹣x)=f(1+x),且f(x)在(x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共4小题.共42分.解答应写出文字说明、证明过程或演算步骤. 18.(8分)设集合A={y|y=2x,1≤x≤2},B={x|0<lnx<1},C={x|t+1<x<2t,t∈R}.(1)求A∩B;(2)若A∩C=C,求t的取值X围.19.(10分)已知是奇函数.(1)求a的值;(2)判断并证明f(x)在(0,+∞)上的单调性;(3)若关于x的方程k•f(x)=2x在(0,1]上有解,求k的取值X围.20.(12分)已知函数f(x)=x2﹣ax+2a﹣1(a为实常数).(1)若a=0,求函数y=|f(x)|的单调递增区间;(2)设f(x)在区间的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间上是增函数,某某数a的取值X围.21.(12分)设f(x)是R上的奇函数,且当x>0时,f(x)=lg(x2﹣ax+10),a∈R.(1)若f(1)=lg5,求f(x)的解析式;(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,某某数k的取值X围;(3)若f(x)的值域为R,求a的取值X围.某某省某某市西湖高中2014-2015学年高一上学期11月月考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}考点:交、并、补集的混合运算.专题:计算题.分析:根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.解答:解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选D点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(3分)如图所示,集合M,P,S是全集V的三个子集,则图中阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩S)∩(∁V P)D.(M∩P)∪(∁V S)考点:Venn图表达集合的关系及运算.专题:计算题.分析:分析阴影部分的元素的性质,根据交集,补集的定义求解.解答:解:由图中阴影部分的元素属于集合M,属于集合S,但不属于集合P,∴阴影部分所表示的集合(M∩S)∩(C U P),故选C.点评:本题考查了Venn图表示集合的关系,也可表示为M∩(C S P).3.(3分)已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a B.b<c<a C.b<a<c D.a<b<c考点:奇偶性与单调性的综合;对数值大小的比较.专题:综合题;函数的性质及应用.分析:由f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,可得出自变量的绝对值越小,函数值越大,由此问题转化为比较自变量的大小,问题即可解决.解答:解:f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,要得函数在(0,+∞)上是减函数,图象越靠近y轴,图象越靠上,即自变量的绝对值越小,函数值越大,由于0<0.20.6<1<log47<log49=log23,可得b<a<c,故选C.点评:本题解答的关键是根据函数的性质得出自变量的绝对值越小,函数值越大这一特征,由此转化为比较自变量的大小,使得问题容易解决.这也是本题解答的亮点.4.(3分)函数的定义域为()A.{x|1≤x<3} B.{x|1<x<2}C.{x|1≤x<2或2<x<3} D.{x|1≤x<2}考点:对数函数的定义域;函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,结合对数函数,根式函数和分式函数的性质,求函数的定义域即可.解答:解:要使函数有意义,则,即,∴解得1≤x<3且x≠2,即1≤x<2或2<x<3.∴函数的定义域为{x|1≤x<2或2<x<3}.故选:C.点评:本题主要考查函数定义域的求法,要求熟练常见函数成立的条件.5.(3分)函数y=e﹣|x|(e是自然底数)的大致图象是()A.B.C.D.考点:指数函数的图像与性质.专题:函数的性质及应用.分析:由于y=e﹣|x|=.利用指数函数的图象与性质即可得出.解答:解:∵y=e﹣|x|=.根据指数函数的图象与性质可知:应选C.故选C.点评:本题考查了指数函数的图象与性质、分类讨论,属于基础题.6.(3分)若函数是一个单调递增函数,则实数a的取值X围()A.(1,2]∪C.(0,2]∪∪∪,故选:C.点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.8.(3分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f=的实数a的个数为()A.2 B.4 C.6 D.8考点:函数奇偶性的性质.专题:计算题.分析:令f(a)=x,则f=转化为f(x)=.先解f(x)=在x≥0时的解,再利用偶函数的性质,求出f(x)=在x<0时的解,最后解方程f(a)=x即可.解答:解:令f(a)=x,则f=变形为f(x)=;当x≥0时,f(x)=﹣(x﹣1)2+1=,解得x1=1+,x2=1﹣;∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(a)=1+,1﹣,﹣1﹣,﹣1+;当a≥0时,f(a)=﹣(a﹣1)2+1=1+,方程无解;f(a)=﹣(a﹣1)2+1=1﹣,方程有2解;f(a)=﹣(a﹣1)2+1=﹣1﹣,方程有1解;f(a)=﹣(a﹣1)2+1=﹣1+,方程有1解;故当a≥0时,方程f(a)=x有4解,由偶函数的性质,易得当a<0时,方程f(a)=x也有4解,综上所述,满足f=的实数a的个数为8,故选D.点评:本题综合考查了函数的奇偶性和方程的解的个数问题,同时运用了函数与方程思想、转化思想和分类讨论等数学思想方法,对学生综合运用知识解决问题的能力要求较高,是2015届高考的热点问题.9.(3分)函数f(x)=x(|x|﹣1)在上的最小值为,最大值为2,则n﹣m的最大值为()A.B.C.D.2考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:根据二次函数的图象和性质,求出最大值和最小值对应的x的取值,然后利用数形结合即可得到结论.解答:解:当x≥0时,f(x)=x(|x|﹣1)=x2﹣x=(x﹣)﹣,当x<0时,f(x)=x(|x|﹣1)=﹣x2﹣x=(x+)+,作出函数f(x)的图象如图:当x≥0时,由f(x)=x2﹣x=2,解得x=2.当x=时,f()=.当x<0时,由f(x)=)=﹣x2﹣x=.即4x2+4x﹣1=0,解得x==,∴此时x=,∵上的最小值为,最大值为2,∴n=2,,∴n﹣m的最大值为2﹣=,故选:B.点评:本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.10.(3分)设函数(a∈R).若方程f(f(x))=x有解,则a的取值X围为()A.B.C.D.∴t=x,即f(x)=x,∴在x≥0时有解,即x﹣a=x2,∴a=﹣x2+x在x≥0时成立,设g(x)=,∵x≥0∴当x=时,g(x)取得最大值,∴g(x)≤,即a≤,故选:A.点评:本题主要考查方程有解的判断,利用换元法将方程进行转化,利用二次函数的图象和性质是解决本题的关键,综合性较强,难度较大.二、填空题:本大题共7小题,每小题4分共28分.11.(4分)已知集合A={x|1≤2x<16},B={x|0≤x<3,x∈N},则A∩B={0,1,2}.考点:交集及其运算.专题:计算题.分析:求出A中不等式的解集确定出A,列举出集合B,找出两集合的交集即可.解答:解:由A中的不等式变形得:20≤2x<24,即A={x|0≤x≤4},∵B={x|0≤x<3,x∈N}={0,1,2},∴A∩B={0,1,2}.故答案为:{0,1,2}点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.(4分)计算,结果是.考点:有理数指数幂的化简求值.专题:计算题.分析:利用指数幂的运算法则和分母有理化即可得出.解答:解:原式=+1﹣5.5+==2.5+2﹣4.5+2=.故答案为:.点评:本题考查了指数幂的运算法则和有理化因式,属于基础题.13.(4分)使得函数f(x)=x2﹣x﹣(a≤x≤b)的值域为(a<b)的实数对(a,b)有2对.考点:函数的值域;函数的定义域及其求法.专题:计算题;函数的性质及应用.分析:令f(x)﹣x=x2﹣x﹣﹣x=0得方程,从而观察方程根的情况,再由对称轴可得实数对的个数.解答:解:令f(x)﹣x=x2﹣x﹣﹣x=0,即x2﹣9x﹣7=0,方程有两个不同的解,且在对称轴的两侧,又∵f(x)=x2﹣x﹣=(x﹣2)2﹣,﹣在方程x2﹣9x﹣7=0的两根之间,故有2对,故答案为:2.点评:本题考查了对新定义的应用,属于基础题.14.(4分)在同一坐标系中,y=2x与y=log2x的图象与一次函数y=﹣x+b的图象的两个交点的横坐标之和为6,则b=6.考点:反函数;指数函数与对数函数的关系.专题:计算题;函数的性质及应用.分析:通过两个函数是反函数,利用已知条件求出交点的坐标,然后求出b的值.解答:解:因为y=2x与y=log2x互为反函数,所以它们的图象关于y=x对称,又y=2x与y=log2x的图象与一次函数y=﹣x+b的图象的两个交点的横坐标之和为6,y=﹣x+b与y=x垂直,∴交点的坐标为(3,3),∴3=﹣3+b,解得b=6.故答案为:6.点评:本题考查指数函数与对数函数的图象的关系,反函数的应用,考查分析问题解决问题的能力.15.(4分)已知函数f(x)满足f(1﹣x)=f(1+x),且f(x)在是减函数,通过对m≥1与m≤1的讨论,利用函数单调性即可求得实数m的取值X围.解答:解:∵f(1﹣x)=f(1+x),∴函数y=f(x)的图象关于直线x=1对称,又f(x)在是减函数,∴f(1﹣m)<f(m)⇔f(1+m)<f(m),∵m≤1+m恒成立,∴当m≥1时,f(x)在是减函数,要使f(1﹣m)<f(m)成立,必须,解得m<.故答案为:(﹣∞,).点评:本题考查抽象函数及其应用,着重考查函数的对称性与单调性的综合应用.考查分类讨论思想与运算能力,属于中档题.16.(4分)已知函数,若|f(x)|≥ax恒成立,则a的取值X 围是.考点:函数恒成立问题.专题:计算题;函数的性质及应用.分析:分x>0,x≤0两种情况进行讨论,x>0时可知要使不等式恒成立,须有a≤0;x≤0时,再分x=0,x<0两种情况讨论,分离参数a后化为函数最值可求,注意最后对aX围取交集.解答:解:(1)当x>0时,ln(x+1)>0,要使|f(x)|=ln(x+1)≥ax恒成立,则此时a≤0.(2)当x≤0时,﹣x2+2x≤0,则|f(x)|=x2﹣x≥ax,若x=0,则左边=右边,a取任意实数;若x<0,|f(x)|=x2﹣x≥ax可化为a则有a≥x﹣1,此时须满足a≥﹣1.综上可得,a的取值为,故答案为:.点评:本题考查函数恒成立问题,考查转化思想、分类讨论思想,考查学生分析解决问题的能力,恒成立问题常常转化为函数最值解决.17.(4分)设a∈R,若x>0时均有(x2﹣ax﹣1)≥0,则a=.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.解答:解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有(x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.点评:本题考查不等式恒成立问题,解题的关键是构造函数,利用函数的性质求解.三、解答题:本大题共4小题.共42分.解答应写出文字说明、证明过程或演算步骤. 18.(8分)设集合A={y|y=2x,1≤x≤2},B={x|0<lnx<1},C={x|t+1<x<2t,t∈R}.(1)求A∩B;(2)若A∩C=C,求t的取值X围.考点:集合的包含关系判断及应用;交集及其运算.专题:规律型.分析:(1)求出集合A,B,利用集合的基本运算求A∩B;(2)根据A∩C=C,转化为C⊆A,然后求t的取值X围.解答:解:(1)∵A={y|y=2x,1≤x≤2}={y|2≤y≤4},B={x|0<lnx<1}={x|1<x<e},∴A∩B={x|2≤x<e},(2)∵A∩C=C,∴C⊆A,若C是空集,则2t≤t+1,得到t≤1;若C非空,则,得1<t≤2;综上所述,t≤2.点评:本题主要考查集合的基本运算以及集合关系的应用,注意对集合C要注意讨论.19.(10分)已知是奇函数.(1)求a的值;(2)判断并证明f(x)在(0,+∞)上的单调性;(3)若关于x的方程k•f(x)=2x在(0,1]上有解,求k的取值X围.考点:奇偶性与单调性的综合;根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析:(1)由奇函数的定义可得f(x)=﹣f(﹣x),即f(x)+f(﹣x)=0,合理变形可求a;(2)设任意的0<x1<x2,通过作差可判断f(x1)与f(x2)的大小关系,根据单调性的定义可作出判断;(3)方程k•f(x)=2x可化为:2(2x)2﹣(k+2)•2x﹣k=0,令2x=t∈(1,2],则可分离出参数k,进而转化为函数的值域问题,借助“对勾”函数的单调性可求得函数值域;解答:解:(1)∵是奇函数,∴对定义域内的x,都有f(x)=﹣f(﹣x),即f(x)+f(﹣x)=0,则,∴a=2.(2)f(x)在(0,+∞)上的单调递减.对任意的0<x1<x2、,故f(x1)>f(x2),即f(x)在(0,+∞)上的单调递减;(3)方程k•f(x)=2x可化为:2(2x)2﹣(k+2)•2x﹣k=0,令2x=t∈(1,2],于是2t2﹣(k+2)t﹣k=0,则,又在(1,2]上单调递增,∴的值域为,故.点评:本题考查函数的奇偶性、单调性的综合应用、方程根的分布问题,考查转化思想、函数思想,考查学生解决问题的能力.20.(12分)已知函数f(x)=x2﹣ax+2a﹣1(a为实常数).(1)若a=0,求函数y=|f(x)|的单调递增区间;(2)设f(x)在区间的最小值为g(a),求g(a)的表达式;(3)设h(x)=,若函数h(x)在区间上是增函数,某某数a的取值X围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)当a=0时,f(x)=x2﹣1,结合函数y=|f(x)|的图象可得它的增区间.(2)函数f(x)=x2﹣ax+2a﹣1的对称轴为 x=,分当时、当时、和当时三种情况,分别求得g(a),综合可得结论.(3)根据,再分当2a﹣1≤0和当2a﹣1>0时两种情况,根据h(x)在区间上是增函数,分别求得a的X围,再取并集.解答:解:(1)当a=0时,f(x)=x2﹣1,则结合y=|f(x)|的图象可得,此函数在(﹣1,0),(1,+∞)上单调递增.(2)函数f(x)=x2﹣ax+2a﹣1的对称轴为 x=,当时,即a≤2,g(a)=f(1)=a;当时,即2<a<4,;当时,即a≥4,g(a)=f(2)=3;综上:g(a)=.(3)∵,当2a﹣1≤0,即,h(x)是单调递增的,符合题意.当2a﹣1>0,即时,h(x)在单调递减,在单调递增.令,求得.综上所述:a≤1.点评:本题主要考查二次函数的性质,求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.21.(12分)设f(x)是R上的奇函数,且当x>0时,f(x)=lg(x2﹣ax+10),a∈R.(1)若f(1)=lg5,求f(x)的解析式;(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,某某数k的取值X围;(3)若f(x)的值域为R,求a的取值X围.考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:(1)由f(1)=lg5,求得a=6.求得当x<0时f(x)的解析式,再由f(0)=0,可得f(x)在R上的解析式.(2)若a=0,则由f(x)为奇函数可得它在R上单调递增,不等式等价于k•2x+4x+k+1>0.令t=2x(t>0),可得t2+kt+k+1>0在(0,+∞)恒成立,分离参数k,利用基本不等式求得k 的X围.(3)首先需满足x2﹣ax+10>0在(0,+∞)上恒成立,于是根据求得a的X围.其次,需要x2﹣ax+10=0在(0,+∞)上有解,再根据,利用基本不等式求得a的X围.再把以上两个a的X围取交集,即得所求.解答:解:(1)∵f(1)=lg5,∴f(1)=lg(11﹣a)=lg5,所以a=6.此时,当x<0时,﹣x>0,f(x)=﹣f(﹣x)=﹣lg(x2+6x+10),又f(0)=0,故.(2)若a=0,则由f(x)为奇函数可得它在R上单调递增,故f(k•2x)+f(4x+k+1)>0,等价于k•2x+4x+k+1>0.令t=2x(t>0),于是,t2+kt+k+1>0在(0,+∞)恒成立,即因为的最大值为,所以.(3)要使f(x)有意义,首先需满足x2﹣ax+10>0在(0,+∞)上恒成立,即.再利用基本不等式求得 x+≥2,当且仅当x=时,取等号,∴.其次,要使f(x)的值域为R,需要x2﹣ax+10=1能取遍所有的正数,故x2﹣ax+10=1在(0,+∞)上有解,可是,当且仅当x=3时,等号成立.综上可得,.点评:本题主要考查对数函数的图象和性质综合应用,二次函数的性质,体现了转化的数学思想,属于中档题.。
河南省郑州市一中高一数学上学期期末试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市一中高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}2.下列函数中,在(﹣∞,1)内是增函数的是()A.y=1﹣x3B.y=x2+x C.y=D.y=3.已知a=log5,b=log23,c=1,d=3﹣0.6,那么()A.a<c<b<d B.a<d<c<b C.a<b<c<d D.a<c<d<b4.若函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,则a的取值X围是()A.(1,+∞)B.(﹣∞,﹣1) C.(﹣1,1)D.[0,1)5.下列命题中正确的是()A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱B.有一个面是多边形,其余各面都是三角形的几何体叫棱锥C.由五个面围成的多面体一定是四棱锥D.棱台各侧棱的延长线交于一点6.四面体ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD所成的角等于()A.30° B.45° C.60° D.90°7.如图,在正方体ABCD﹣A1B1C1D1中,A1B与平面BB1D1D所成的角的大小是()A.90° B.30° C.45° D.60°8.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为()A.πB.πC.πD.π9.函数f(x)=log a(ax﹣2)在[1,3]上单调递增,则a的取值X围是()A.(1,+∞)B.(0,2)C.(0,)D.(2,+∞)10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),且AC=BC,则△ABC的欧拉线的方程为()A.x+2y+3=0 B.2x+y+3=0 C.x﹣2y+3=0 D.2x﹣y+3=011.方程=k(x﹣1)+2有两个不等实根,则k的取值X围是()A.(,+∞)B.(,1] C.(0,)D.(,1]12.设集合A={(x,y)|x2+y2≤|x|+|y|,x,y∈R},则集合A所表示图形的面积为()A.1+π B.2 C.2+π D.π二、填空题:本大题共4小题,每小题5分,共20分.13.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为.14.(log3)2﹣3+log0.25+()﹣4=.15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值X围是.16.圆C的方程为x2+y2﹣6x+8=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合A={x|x2﹣x﹣12<0},集合B={x|x2+2x﹣8>0},集合C={x|x2﹣4ax+3a2<0,a≠0},(Ⅰ)求A∩(C R B);(Ⅱ)若C⊇(A∩B),试确定实数a的取值X围.18.分别求出适合下列条件的直线方程:(Ⅰ)经过点a>2,t=2且在x轴上的截距等于在y轴上截距的2倍;(Ⅱ)经过直线2x+7y﹣4=0与7x﹣21y﹣1=0的交点,且和A(﹣3,1),B(5,7)等距离.19.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?20.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.(Ⅰ)求证:BC⊥A1D;(Ⅱ)求证:平面A1BC⊥平面A1BD;(Ⅲ)求点C到平面A1BD的距离.21.如图,已知圆心坐标为(,1)的圆M与x轴及直线y=x分别相切于A,B两点,另一圆N与圆M外切、且与x轴及直线y=x分别相切于C、D两点.(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.22.已知函数,其反函数为y=g(x).(Ⅰ)若g(mx2+2x+1)的定义域为R,某某数m的取值X围;(Ⅱ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(Ⅲ)是否存在实数m>n>2,使得函数y=h(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.2015-2016学年某某省某某市一中高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}【考点】交集及其运算.【专题】计算题.【分析】求出集合N,然后直接求解M∩N即可.【解答】解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.【点评】本题考查集合的基本运算,考查计算能力,送分题.2.下列函数中,在(﹣∞,1)内是增函数的是()A.y=1﹣x3B.y=x2+x C.y=D.y=【考点】函数单调性的判断与证明.【专题】计算题;规律型;函数的性质及应用.【分析】逐一判断函数的单调性,推出正确结果即可.【解答】解:y=1﹣x3函数在(﹣∞,1)内是减函数.y=x2+x对称轴为x=﹣,在(﹣∞,1)内不是增函数.y==﹣1,在(﹣∞,1)内是增函数,满足题意.y=,函数在(﹣∞,1)内是减函数.故选:C.【点评】本题考查函数的单调性的判断,是基础题.3.已知a=log5,b=log23,c=1,d=3﹣0.6,那么()A.a<c<b<d B.a<d<c<b C.a<b<c<d D.a<c<d<b【考点】对数值大小的比较.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用对数函数、指数数的性质求解.【解答】解:∵a=log5<=﹣2,b=log23>log22=1,c=1,0<d=3﹣0.6<30=1,∴a<d<c<b.故选:B.【点评】本题考查四个数的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数数的性质的合理运用.4.若函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,则a的取值X围是()A.(1,+∞)B.(﹣∞,﹣1) C.(﹣1,1)D.[0,1)【考点】函数零点的判定定理.【专题】计算题.【分析】根据函数零点存在性定理,若函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,则f(0)f(1)<0,可得关于a的不等式,解不等式,即可求出a的X围.【解答】解:当△=0时,a=﹣,此时有一个零点x=﹣2,不在(0,1)上,故不成立.∵函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,∴f(0)f(1)<0,即﹣1×(2a﹣1)<0,解得,a>1,故选A【点评】本题考查了函数零点存在性定理,属基础题,必须掌握.5.下列命题中正确的是()A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱B.有一个面是多边形,其余各面都是三角形的几何体叫棱锥C.由五个面围成的多面体一定是四棱锥D.棱台各侧棱的延长线交于一点【考点】命题的真假判断与应用.【专题】综合题;转化思想;综合法;简易逻辑.【分析】根据棱柱、棱锥、棱台的几何特征,即可得出结论.【解答】解:有两个面平行,其余各面是相邻的公共边都相互平行的平行四边形的几何体叫棱柱,故A错误;有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故B错误;由5个面成的多面体可能是四棱锥或三棱柱,故C不正确;拿一个平行于底面的平面截棱锥,底面与截面之间的部分叫棱台,故棱台各侧棱的延长线交于一点,即D正确.【点评】本题考查的知识点是棱柱的几何特征,棱锥的几何特征,棱台的几何特征,熟练掌握相关定义是解答的关键.6.四面体ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD所成的角等于()A.30° B.45° C.60° D.90°【考点】异面直线及其所成的角.【专题】空间角.【分析】取AD的中点G,连接EG、FG,由三角形中位线定理得EG∥CD,从而得到∠GEF是EF与CD所成的角,由此能求出EF与CD所成的角的大小.【解答】解:设CD=2AB=2,取AD的中点G,连接EG、FG,∵E、F分别为AC、BD中点,∴EG∥CD,且EG=,FG∥AB,且FG==.∵EF⊥AB,FG∥AB,∴EF⊥FG.∵EG∥CD,∴∠GEF是EF与CD所成的角,在Rt△EFG中,∵EG=1,GF=,EF⊥FG,∴∠GEF=30°,即EF与CD所成的角为30°.故选:A.【点评】本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.7.如图,在正方体ABCD﹣A1B1C1D1中,A1B与平面BB1D1D所成的角的大小是()A.90° B.30° C.45° D.60°【考点】直线与平面所成的角.【专题】计算题.【分析】连接A1C1交B1D1于O,连接OB,说明∠A1BO为A1B与平面BB1D1D所成的角,然后求解即可.【解答】解:连接A1C1交B1D1于O,连接OB,因为B1D1⊥A1C1,A1C1⊥BB1,所以A1C1⊥平面BB1D1D,所以∠A1BO为A1B与平面BB1D1D所成的角,设正方体棱长为1,所以A1O=,A1B=,sin∠A1BO=,∠A1BO=30°.故选B.【点评】本题考查直线与平面所成角的求法,找出直线与平面所成角是解题的关键,考查计算能力.8.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为()A.πB.πC.πD.π【考点】球的体积和表面积.【专题】计算题.【分析】球心到球面各点的距离相等,即可知道外接球的半径,就可以求出其体积了.【解答】解:由题意知,球心到四个顶点的距离相等,所以球心在对角线AC上,且其半径为AC长度的一半,则V球=π×()3=.故选C.【点评】本题考查学生的思维意识,对球的结构和性质的运用,是基础题.9.函数f(x)=log a(ax﹣2)在[1,3]上单调递增,则a的取值X围是()A.(1,+∞)B.(0,2)C.(0,)D.(2,+∞)【考点】复合函数的单调性.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得可得,由此解得a的X围.【解答】解:函数f(x)=log a(ax﹣2)在[1,3]上单调递增,可得,解得a>2,【点评】本题主要考查复合函数的单调性,对数函数的性质,属于基础题.10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),且AC=BC,则△ABC的欧拉线的方程为()A.x+2y+3=0 B.2x+y+3=0 C.x﹣2y+3=0 D.2x﹣y+3=0【考点】待定系数法求直线方程.【专题】直线与圆.【分析】由于AC=BC,可得:△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,求出线段AB的垂直平分线,即可得出△ABC的欧拉线的方程.【解答】解:线段AB的中点为M(1,2),k AB=﹣2,∴线段AB的垂直平分线为:y﹣2=(x﹣1),即x﹣2y+3=0.∵AC=BC,∴△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,因此△ABC的欧拉线的方程为:x﹣2y+3=0.故选:C.【点评】本题考查了欧拉线的方程、等腰三角形的性质、三角形的外心重心垂心性质,考查了推理能力与计算能力,属于中档题.11.方程=k(x﹣1)+2有两个不等实根,则k的取值X围是()A.(,+∞)B.(,1] C.(0,)D.(,1]【考点】函数的零点与方程根的关系.【专题】计算题;函数思想;数形结合法;函数的性质及应用.【分析】由题意可得,函数y=的图象和直线y=k(x﹣1)+2有2个交点,数形结合求得k的X围.【解答】解:方程=k(x﹣1)+2有两个不等实根,即函数y=的图象和直线y=k(x﹣1)+2有2个交点.而函数y=的图象是以原点为圆心,半径等于1的上半圆(位于x轴及x轴上方的部分),直线y=k(x﹣1)+2,即kx﹣y+2﹣k=0 的斜率为k,且经过点M(1,2),当直线和半圆相切时,由=1,求得k=.当直线经过点A(﹣1,0)时,由0=k(﹣1﹣2)+3求得k=1.数形结合可得k的X围为(,1],【点评】本题主要考查方程的根的存在性及个数判断,体现了函数和方程的转化及数形结合的数学思想,属于中档题.12.设集合A={(x,y)|x2+y2≤|x|+|y|,x,y∈R},则集合A所表示图形的面积为()A.1+π B.2 C.2+π D.π【考点】圆方程的综合应用;Venn图表达集合的关系及运算.【专题】综合题;数形结合;分类讨论;直线与圆.【分析】根据不等式,分别讨论x,y的取值,转化为二元二次不等式组,结合圆的性质进行求解即可.【解答】解:若x≥0,y≥0,则不等式等价为x2+y2≤x+y,即(x﹣)x2+(y﹣)2≤,若x≥0,y<0,则不等式等价为x2+y2≤x﹣y,即(x﹣)x2+(y+)2≤,若x≤0,y≤0,则不等式等价为x2+y2≤﹣x﹣y,即(x+)x2+(y+)2≤,若x<0,y≥0,则不等式等价为x2+y2≤﹣x+y,即(x+)x2+(y﹣)2≤,则对应的区域如图:在第一象限内圆心坐标为C(,),半径=,则三角形OAC的面积S==,圆的面积为×=π,则一个弓弧的面积S=π﹣,则在第一象限的面积S=π×()2﹣2×(π﹣)=﹣+=+,则整个区域的面积S=4×(+)=2+π,故选:C【点评】本题主要考查区域面积的计算,根据条件利用分类讨论的数学数学化简条件,利用圆的面积公式是解决本题的关键.综合性较强,比较复杂.二、填空题:本大题共4小题,每小题5分,共20分.13.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为.【考点】由三视图求面积、体积.【专题】图表型.【分析】由已知中的三视图,我们可以判断出该几何体的形状,及关键数据,代入棱锥体积公式,即可求出答案.【解答】解:由已知中的三视图可得,该几何体有一个半圆锥和一个四棱维组合而成,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2为正方形,他们的高均为则V=(+4)•=故答案为:【点评】本题考查的知识点是由三视图求体积,其中根据已知中的三视图判断出几何体的形状是解答本题的关键.14.(log3)2﹣3+log0.25+()﹣4=.【考点】对数的运算性质.【专题】计算题;规律型;函数的性质及应用.【分析】直接利用对数运算法则化简求解即可.【解答】解:(log3)2﹣3+log0.25+()﹣4=﹣4+1+4=.故答案为:.【点评】本题考查对数运算法则的应用,考查计算能力.15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值X围是(﹣∞,﹣5].【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.【解答】解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m≤﹣5.∴m的取值X围是(﹣∞,﹣5].故答案为:(﹣∞,﹣5].【点评】本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.圆C的方程为x2+y2﹣6x+8=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】由于圆C的方程为(x﹣3)2+y2=1,由题意可知,只需(x﹣43)2+y2=4与直线y=kx ﹣2有公共点即可.【解答】解:∵圆C的方程为x2+y2﹣6x+8=0,整理得:(x﹣3)2+y2=1,即圆C是以(3,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣3)2+y2=4与直线y=kx﹣2有公共点即可.设圆心C′(3,0)到直线y=kx﹣2的距离为d,则d=≤2,即5k2﹣12k≤0,∴0≤k≤.∴k的最大值.故答案为:.【点评】本题考查直线与圆的位置关系,将条件转化为“(x﹣3)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合A={x|x2﹣x﹣12<0},集合B={x|x2+2x﹣8>0},集合C={x|x2﹣4ax+3a2<0,a≠0},(Ⅰ)求A∩(C R B);(Ⅱ)若C⊇(A∩B),试确定实数a的取值X围.【考点】一元二次不等式的解法;集合的包含关系判断及应用;交集及其运算;补集及其运算.【专题】计算题.【分析】(Ⅰ)先通过解一元二次不等式化简集合A和B,再求集合B的补集,最后求出A∩(C R B)即可;(Ⅱ)由于一元二次方程x2﹣4ax+3a2=0的两个根是:a,3a.欲表示出集合C,须对a进行分类讨论:①若a=0,②若a>0,③若a<0,再结合C⊇(A∩B),列出不等关系求得a的取值X围,最后综合得出实数a的取值X围即可.【解答】解:(Ⅰ)依题意得:A={x|﹣3<x<4},B={x|x<﹣4或x>2},(C R B)={x|﹣4≤x≤2}∴A∩(C R B)=(﹣3,2](Ⅱ)∴A∩B={x|2<x<4}①若a=0,则C={x|x2<0}=∅不满足C⊇(A∩B)∴a≠0②若a>0,则C={x|a<x<3a},由C⊇(A∩B)得③若a<0,则C={x|3a<x<a},由C⊇(A∩B)得综上,实数a的取值X围为【点评】本小题主要考查一元二次不等式的解法、集合的包含关系判断及应用、交集及其运算=补集及其运算不等式的解法等基础知识,考查运算求解能力,考查分类讨论思想.属于基础题.18.分别求出适合下列条件的直线方程:(Ⅰ)经过点a>2,t=2且在x轴上的截距等于在y轴上截距的2倍;(Ⅱ)经过直线2x+7y﹣4=0与7x﹣21y﹣1=0的交点,且和A(﹣3,1),B(5,7)等距离.【考点】直线的一般式方程.【专题】方程思想;综合法;直线与圆.【分析】(Ⅰ)分别讨论直线过原点和不过原点两种情况,设出直线方程,解出即可;(Ⅱ)先求出直线的交点坐标,设出直线方程,再根据点到直线的距离公式求出斜率k即可.【解答】解:(Ⅰ)当直线不过原点时,设所求直线方程为+=1,将(﹣3,2)代入所设方程,解得a=,此时,直线方程为x+2y﹣1=0.当直线过原点时,斜率k=﹣,直线方程为y=﹣x,即2x+3y=0,综上可知,所求直线方程为x+2y﹣1=0或2x+3y=0.…(Ⅱ)有解得交点坐标为(1,),当直线l的斜率k存在时,设l的方程是y﹣=k(x﹣1),即7kx﹣7y+(2﹣7k)=0,由A、B两点到直线l的距离相等得,解得k=,当斜率k不存在时,即直线平行于y轴,方程为x=1时也满足条件.所以直线l的方程是21x﹣28y﹣13=0或x=1.…【点评】本题考察了求直线方程问题,考察点到直线的距离公式,是一道中档题.19.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?【考点】函数模型的选择与应用.【专题】应用题.【分析】(1)根据每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,设每年砍伐面积的百分比为x 可建立方程,解之即可得到每年砍伐面积的百分比;(2)设经过m年剩余面积为原来的.根据题意:到今年为止,森林剩余面积为原来的.可列出关于m的等式,解之即可;(3)根据题意设从今年开始,以后砍了n年,再求出砍伐n年后剩余面积,由题意,建立关于n的不等关系,利用一些不等关系即可求得今后最多还能砍伐多少年.【解答】解:(1)设每年砍伐面积的百分比为x ( 0<x<1).则,即,解得(2)设经过m年剩余面积为原来的,则,即,,解得m=5故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍了n年,则n年后剩余面积为令≥,即(1﹣x)n≥,≥,≤,解得n≤15故今后最多还能砍伐15年.【点评】本题主要考查函数模型的选择与应用、不等式的解法及指数式与对数式的互化.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.20.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.(Ⅰ)求证:BC⊥A1D;(Ⅱ)求证:平面A1BC⊥平面A1BD;(Ⅲ)求点C到平面A1BD的距离.【考点】点、线、面间的距离计算;平面与平面垂直的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(Ⅰ)由线面垂直得A1O⊥BC,再由BC⊥DC,能证明BC⊥A1D.(Ⅱ)由BC⊥A1D,A1D⊥A1B,得A1D⊥平面A1BC,由此能证明平面A1BC⊥平面A1BD.(III)由=,能求出点C到平面A1BD的距离.【解答】证明:(Ⅰ)∵A1O⊥平面DBC,∴A1O⊥BC,又∵BC⊥DC,A1O∩DC=O,∴BC⊥平面A1DC,∴BC⊥A1D.(Ⅱ)∵BC⊥A1D,A1D⊥A1B,BC∩A1B=B,∴A1D⊥平面A1BC,又∵A1D⊂平面A1BD,∴平面A1BC⊥平面A1BD.解:(III)设C到平面A1BD的距离为h,∵=,∴=,又∵=S△DBC,,∴.∴点C到平面A1BD的距离为.【点评】本题考查异面直线垂直的证明,考查面面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.21.如图,已知圆心坐标为(,1)的圆M与x轴及直线y=x分别相切于A,B两点,另一圆N与圆M外切、且与x轴及直线y=x分别相切于C、D两点.(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.【考点】直线和圆的方程的应用.【专题】计算题;证明题.【分析】(1)圆M的圆心已知,且其与x轴及直线y=x分别相切于A,B两点,故半径易知,另一圆N与圆M外切、且与x轴及直线y=x分别相切于C、D两点,由相似性易得其圆心坐标与半径,依定义写出两圆的方程即可.(2)本题研究的是直线与圆相交的问题,由于B点位置不特殊,故可以由对称性转化为求过A点且与线MN平行的线被圆截得弦的长度,下易解.【解答】解:(1)由于⊙M与∠BOA的两边均相切,故M到OA及OB的距离均为⊙M的半径,则M在∠BOA的平分线上,同理,N也在∠BOA的平分线上,即O,M,N三点共线,且OMN为∠BOA的平分线,∵M的坐标为(,1),∴M到x轴的距离为1,即⊙M的半径为1,则⊙M的方程为,设⊙N的半径为r,其与x轴的切点为C,连接MA,NC,由Rt△OAM∽Rt△O可知,OM:ON=MA:NC,即得r=3,则OC=,则⊙N的方程为;(2)由对称性可知,所求的弦长等于过A点直线MN的平行线被⊙N截得的弦的长度,此弦的方程是,即:x﹣﹣=0,圆心N到该直线的距离d=,则弦长=2.【点评】本题考查直线与圆的位置关系以及直线与圆相交的性质,属于直线与圆的方程中综合性较强的题型,题后注意题设中条件转化的技巧.22.已知函数,其反函数为y=g(x).(Ⅰ)若g(mx2+2x+1)的定义域为R,某某数m的取值X围;(Ⅱ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(Ⅲ)是否存在实数m>n>2,使得函数y=h(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.【考点】函数的最值及其几何意义;反函数.【专题】分类讨论;分析法;函数的性质及应用.【分析】(Ⅰ)求得g(x)=,由定义域为R,可得mx2+2x+1>0恒成立,即有m>0,判别式小于0,解不等式即可得到所求X围;(Ⅱ)令,即有y=t2﹣2at+3=(t﹣a)2+3﹣a2,讨论对称轴和区间的关系,运用单调性,即可得到所求最小值;(III)h(x)=7﹣4x,x∈(2,+∞),且h(x)在x∈(2,+∞)上单调递减,可得h(n)=m2,h(m)=n2,两式相减,即可判断.【解答】解:(Ⅰ)由函数,可得其反函数为y=,因为定义域为R,即有mx2+2x+1>0恒成立,所以,解得m∈(1,+∞);(Ⅱ)令,即有y=t2﹣2at+3=(t﹣a)2+3﹣a2,当a>2,区间[,2]为减区间,t=2时,y min=7﹣4a;当≤a≤2,t=a时,y min=3﹣a2;当a<,区间[,2]为增区间,t=时,y min=﹣a.则;(III)h(x)=7﹣4x,x∈(2,+∞),且h(x)在x∈(2,+∞)上单调递减.所以,两式相减得,m+n=4,与m>n>2矛盾,所以不存在m,n满足条件.【点评】本题考查函数的定义域和值域的求法,考查二次函数的最值的求法,注意运用分类讨论的思想方法,考查运算能力,属于中档题.。
人教A版新教材高一上学期期末考试数学试卷(共五套)
人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高一上学期数学期末考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一
的值可以是(
)
A.3
B.4
C.5
D. 16 3
【答案】BC
【解析】作出函数 f x 的图象,如图所示,
设 f x1 f x2 f x3 f x4 t , 由图可知,当 0 t 1时,直线 y t 与函数 f x 的图象有四个交点,
交点的横坐标分别为 x1, x2 , x3, x4 ,且 x1 x2 x3 x4 ,
因为
x
0,
π 3
,
2x
π 6
π, 6
5π 6
,函数
y
sint
在
π 6
,
5π 6
上不单调,故
D
错误.
故选:ABC.
10.(2023 秋·江苏南通 )下列命题中,真命题的是( )
A. x R ,都有 x2 x x 1
B.
x 1,
,使得
x
x
4
1
6
.
C.任意非零实数 a,b ,都有 b a 2 ab
f x 在 , 上不具单调性,故 B 错误;
f x 图象与 x 轴只一个交点,即有且只有一个零点,故 C 正确;
令
yቤተ መጻሕፍቲ ባይዱ
0
,解得
x
3 2
,从图象看,
f
(x)
关于
3 2
,
0
对称,下面证明:
由 f x x 1 x 2 ,
得
f
3 2
x
x
1 2
x1 2
,
f
3 2
x
x
1 2
x 1 2
x 1 2
x 1, 2
则
f
3 2
高一数学人教版试卷
高一数学人教版试卷考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列命题正确的个数是①;②;③;④A.1 B.2 C.3 D.42.已知O,A,B是平面上的三个点,直线AB上有一点C,满足,则A. B. C. D.3.已知二次函数y=ax2+bx+c的图象的顶点坐标为(2,-1),与y轴的交点坐标为(0,11),则()A.a="1,b=" -4,c=" -11"B.a="3,b=12,c=11"C.a="3,b=" -6,c="11"D.a="3,b=" -12,c=114.把点M的直角坐标(﹣1,1,1)化为柱坐标是()A.,,1) B.,,1) C.,,1) D.,,1)5.如图,在圆O中,若弦,弦,则·的值是A.-16 B.-2 C.32 D.166.已知定义在上的函数为偶函数,,则的大小关系为A.B.C.D.7.如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是、4m,不考虑树的粗细,现在用16m长的篱笆,借助墙角围成一个矩形的共圃ABCD,设此矩形花圃的面积为Sm2,S的最大值为,若将这棵树围在花圃中,则函数的图象大致是()8.用样本频率分布估计总体频率分布的过程中,下列说法正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确9.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为A.4 B.2 C.4 D.310.若则=()A. B. C. D.11.已知,则函数的图象不可能是()A.B.C.D.12.集合,则()A. B. C. D.13.一个单位有职工120人,其中业务人员60人,管理人员40人,后勤人员20人,为了了解职工健康情况,要从中抽取一个容量为24的样本,如用分层抽样,则管理人员应抽到的人数为A.4 B.12 C.5 D.814.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A. B. C. D.15.等比数列中,已知,则此数列前17项之积为()A .B .C .D .16.如图是“集合”的知识结构图,如果要加入“子集”,则应该放在( )A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位 17.在中,角所对的边分别是,若,,则( )。
高一数学试题及答案上册人教版
高一数学试题及答案上册人教版一、选择题(每小题3分,共30分)1. 函数y=f(x)=2x+3的值域是()A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [2, +∞)2. 若直线l的方程为y=2x+b,且直线l与x轴交于点(1,0),则b的值为()A. -2B. 2C. -1D. 13. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B=()A. {1}B. {2}C. {1,2}D. 空集4. 若函数f(x)=x^3-3x在区间[-2,2]上单调递增,则f(1)的值为()A. -2B. -1C. 2D. 15. 已知等差数列{an}的首项a1=1,公差d=2,则其前n项和Sn的公式为()A. Sn=n^2B. Sn=n(n+1)C. Sn=n(n+1)/2D. Sn=n^2+n6. 函数y=f(x)=x^2-4x+4的图像关于直线x=()A. 0B. 2C. -2D. 47. 若复数z=1+i,则|z|=()A. 1B. √2C. 2D. √38. 已知向量a=(2,1),b=(1,-1),则向量a+b的坐标为()A. (3,0)B. (1,2)C. (3,-2)D. (1,0)9. 函数y=f(x)=x^3-3x+1的极值点个数为()A. 0B. 1C. 2D. 310. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),若双曲线C的渐近线方程为y=±(1/2)x,则a/b的值为()A. 2B. 1/2C. 1D. 4二、填空题(每小题4分,共20分)11. 函数y=f(x)=x^2-4x+m的顶点坐标为()。
12. 若直线l的倾斜角为45°,则直线l的斜率为()。
13. 已知等比数列{bn}的首项b1=2,公比q=1/2,则其前n项积Tn的公式为()。
14. 函数y=f(x)=x^3+3x^2-9x+5的单调递减区间为()。
高中高一数学上学期9月月考试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市文华高中高一(上)9月月考数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{a,b,c}当中的元素是△ABC的三边长,则该三角形是()A.正三角形 B.等腰三角形C.不等边三角形 D.等腰直角三角形2.集合{1,2,3}的子集共有()A.5个B.6个C.7个D.8个3.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是()A.0 B.0 或1 C.1 D.不能确定5.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣2} B.{x|x<2} C.{x|﹣2<x<2} D.{x|﹣2≤x<2}6.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1 B.2 C.3 D.47.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=8.函数的定义域是()A.(﹣∞,3)B.(3,+∞)C.(﹣∞,3)∩(3,+∞)D.(﹣∞,3)∪(3,+∞)9.设集合M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为()A.11 B.10 C.16 D.1510.设U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,3∉B B.3∉A,3∈B C.3∈A,3∉B D.3∈A,3∈B11.函数f(x)=x2﹣2x∈{﹣2,﹣1,0,1}的值域是()A.{2,﹣1,﹣2} B.{2,﹣1,﹣2,﹣1} C.{4,1,0,﹣1} D.[2,﹣1,﹣2]12.已知f(x)=3x2+1,则f[f(1)]的值等于()A.25 B.36 C.42 D.49二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.{x|x>3}用区间表示为,{x|﹣2≤x≤5}用区间表示为,{x|﹣2≤x<5}用区间表示为.14.0N,Q,N*, Z.15.如图,全集为U,A和B是两个集合,则图中阴影部分可表示为.16.若A={1,4,x},B={1,x2},且A∩B=B,则x=.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,某某数a的取值集合.18.设A={x|a≤x≤a+3},B={x|x<﹣1或x>5},当a为何值时,①A∩B=∅;②A∩B≠∅;③A⊆B.19.已知函数(1)求函数的定义域(2)求f(4)20.已知函数,(1)点(3,14)在函数的图象上吗?;(2)当x=4时,求g(x)的值;(3)当g(x)=2时,求x的值.21.已知f(x)=,求f(f(3))的值.22.已知集合U={x|﹣3≤x≤3},M={x|﹣1<x<1},C U N={x|0<x<2}.求:(1)集合N;(2)集合M∩(C U N);(3)集合M∪N.2015-2016学年某某省某某市文华高中高一(上)9月月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{a,b,c}当中的元素是△ABC的三边长,则该三角形是()A.正三角形 B.等腰三角形C.不等边三角形 D.等腰直角三角形【考点】集合的确定性、互异性、无序性.【专题】阅读型;集合思想;分析法;集合.【分析】由集合中元素的互异性可知,a,b,c互不相等,又a,b,c是△ABC的三边长,由此可得三角形的形状.【解答】解:由集合中元素的互异性可知,a,b,c互不相等,又a,b,c是△ABC的三边长,∴该三角形是不等边三角形.故选:C.【点评】本题考查集合中元素的互异性,考查了三角形形状的判断,是基础题.2.集合{1,2,3}的子集共有()A.5个B.6个C.7个D.8个【考点】子集与真子集.【专题】计算题.【分析】集合{1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:集合{1,2,3}的子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}共8个.故选:D.【点评】本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.3.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【专题】集合.【分析】先化简集合N,得N={﹣1,0},再看集合M,可发现集合N是M的真子集,对照韦恩(Venn)图即可选出答案.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、一元二次方程的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是()A.0 B.0 或1 C.1 D.不能确定【考点】元素与集合关系的判断.【专题】分类讨论.【分析】从集合A只有一个元素入手,分为a=0与a≠0两种情况进行讨论,即可得到正确答案.【解答】∵A={x|ax2+2x+1=0}中只有一个元素,当a=0时,A={x|2x+1=0},即A={}.当a≠0时,需满足△=b2﹣4ac=0,即22﹣4×a×1=0,a=1.∴当a=0或a=1时满足A中只有一个元素.故答案为:B【点评】本题考查了元素与集合的关系,需分情况对问题进行讨论,为基础题.5.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣2} B.{x|x<2} C.{x|﹣2<x<2} D.{x|﹣2≤x<2}【考点】交集及其运算;函数的定义域及其求法.【专题】集合.【分析】求出f(x)的定义域确定出M,求出g(x)的定义域确定出N,找出M与N的交集即可.【解答】解:由f(x)=,得到2﹣x>0,即x<2,∴M={x|x<2},由g(x)=,得到x+2≥0,即x≥﹣2,∴N={x|x≥﹣2},则M∩N={x|﹣2≤x<2},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.6.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1 B.2 C.3 D.4【考点】集合的含义.【专题】阅读型.【分析】据“∈”于元素与集合;“∩”用于集合与集合间;判断出①⑤错,∅是不含任何元素的集合且是任意集合的子集判断出②④的对错;据集合元素的三要素判断出③对【解答】解:对于①,“∈”是用于元素与集合的关系故①错对于②,∅是任意集合的子集,故②对对于③,集合中元素的三要素有确定性、互异性、无序性故③对对于④,因为∅是不含任何元素的集合故④错对于⑤,因为∩是用于集合与集合的关系的,故⑤错故选C【点评】本题考查集合部分的一些特定符号、一些特殊的集合、集合中元素的三要素.7.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】两个函数的定义域相同,对应关系也相同,这样的函数是同一函数,它们的图象相同.【解答】解:对于A,f(x)=x(x∈R),与g(x)=()2=x(x≥0)的定义域不同,∴不是同一函数,图象不同;对于B,f(x)=x2(x∈R),与g(x)=(x+1)2(x∈R)的对应关系不同,∴不是同一函数,图象不同;对于C,f(x)=1(x∈R),与g(x)=x0=1(x≠0)的定义域不同,∴不是同一函数,图象不同;对于D,f(x)=|x|=,与g(x)=的定义域相同,对应关系也相同,∴是同一函数,图象相同.故选:D.【点评】本题考查了判断两个函数是否为同一函数的问题,是基础题目.8.函数的定义域是()A.(﹣∞,3)B.(3,+∞)C.(﹣∞,3)∩(3,+∞)D.(﹣∞,3)∪(3,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】利用分式函数的定义域求解.【解答】解:要使函数有意义,则x﹣3≠0,所以x≠3,即函数的定义域为(﹣∞,3)∪(3,+∞).故选D.【点评】本题主要考查分式函数的定义域,比较基础.9.设集合M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为()A.11 B.10 C.16 D.15【考点】并集及其运算.【专题】集合思想;分析法;集合.【分析】直接由M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },找出M、N中的元素,则M∪N中元素的个数可求.【解答】解:∵M={x|x∈Z且﹣10≤x≤﹣3}={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3},N={x|x∈Z且|x|≤5 }={﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5},∴M∪N={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3}∪{﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5}={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5}.则M∪N中元素的个数为:16.故选:C.【点评】本题考查了并集及其运算,是基础题.10.设U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,3∉B B.3∉A,3∈B C.3∈A,3∉B D.3∈A,3∈B【考点】交、并、补集的混合运算.【专题】计算题.【分析】利用集合间的关系画出韦恩图,结合韦恩图即可得到答案.【解答】解:因为:U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},对应的韦恩图为:故只有答案C符合.故选:C.【点评】本题考查集合的表示法,学会利用韦恩图解决集合的交、并、补运算.11.函数f(x)=x2﹣2x∈{﹣2,﹣1,0,1}的值域是()A.{2,﹣1,﹣2} B.{2,﹣1,﹣2,﹣1} C.{4,1,0,﹣1} D.[2,﹣1,﹣2] 【考点】函数的值域.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件,x取﹣2,﹣1,0,1时,可以求出对应的f(x)的值为2,﹣1,﹣2,﹣1,这样便可得出f(x)的值域.【解答】解:x∈{﹣2,﹣1,0,1};∴f(x)∈{2,﹣1,﹣2};∴f(x)的值域为{2,﹣1,﹣2}.故选A.【点评】考查函数值域的概念,定义域为孤立点函数的值域的求法,以及列举法表示集合.12.已知f(x)=3x2+1,则f[f(1)]的值等于()A.25 B.36 C.42 D.49【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】直接利用函数的解析式求解函数值即可.【解答】解:f(x)=3x2+1,则f(1)=3+1=4,f[f(1)]=f(4)=3×42+1=49.故选:D.【点评】本题考查函数值的求法,解析式的应用,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.{x|x>3}用区间表示为(3,+∞),{x|﹣2≤x≤5}用区间表示为[﹣2,5],{x|﹣2≤x<5}用区间表示为[﹣2,5).【考点】区间与无穷的概念.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用区间的表示求解即可.【解答】解:{x|x>3}用区间表示为:(3,+∞);{x|﹣2≤x≤5}用区间表示为:[﹣2,5];{x|﹣2≤x<5}用区间表示为:[﹣2,5);故答案为::(3,+∞);[﹣2,5];[﹣2,5);【点评】本题考查区间与集合的表示,是基础题.14.0∈N,∉Q,∈N*,∉ Z.【考点】元素与集合关系的判断.【专题】集合思想;演绎法;集合.【分析】分析给定元素的分类,进而可得元素与集合的关键.【解答】解:0是自然数,故0∈N,是无理数,故∉Q,=4是正整数,故∈N*,是分数,故∉Z;故答案为:∈,∉,∈,∉【点评】本题考查的知识点是元素与集合关系的判断,熟练掌握各种数集的字母表示,是解答的关键.15.如图,全集为U,A和B是两个集合,则图中阴影部分可表示为C U(A∪B).【考点】Venn图表达集合的关系及运算.【专题】应用题;数形结合;定义法;集合.【分析】根据所给图形知,阴影部分所表示的集合代表着不在集合A∪B中的元素组成的.【解答】解:∵图中阴影部分所表示的集合中的元素为不在集合A∪B中元素,即为C U(A∪B),故答案为:C U(A∪B).【点评】本小题主要考查Venn图表达集合的关系及运算等基础知识,考查数形结合思想.属于基础题.16.若A={1,4,x},B={1,x2},且A∩B=B,则x= 0,2,或﹣2 .【考点】交集及其运算.【专题】计算题.【分析】由A∩B=B转化为B⊆A,则有x2=4或x2=x求解,要注意元素的互异性.【解答】解:∵A∩B=B∴B⊆A∴x2=4或x2=x∴x=﹣2,x=2,x=0,x=1(舍去)故答案为:﹣2,2,0【点评】本题主要考查集合的子集运算,及集合元素的互异性.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,某某数a的取值集合.【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】利用子集的定义,即可解得实数a的取值集合.【解答】解:∵集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,∴a≥4∴实数a的取值集合为{a|a≥4}.【点评】本题主要考查了集合的包含关系判断及应用,属于以不等式为依托,求集合的子集的基础题,也是高考常会考的题型.18.设A={x|a≤x≤a+3},B={x|x<﹣1或x>5},当a为何值时,①A∩B=∅;②A∩B≠∅;③A⊆B.【考点】交集及其运算.【专题】计算题;集合.【分析】①由A与B,以及A与B的交集为空集,确定出a的X围即可;②由A与B,以及A与B的交集不为空集,确定出a的X围即可;③由A与B,以及A是B的子集,确定出a的X围即可.【解答】解:①∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A∩B=∅,∴,解得:﹣1≤a≤2;②∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A∩B≠∅,∴a<﹣1或a>2;③∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A⊆B,∴a+3<﹣1或a>5,解得:a<﹣4或a>5.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.19.已知函数(1)求函数的定义域(2)求f(4)【考点】函数的定义域及其求法;函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】(1)利用分母不为0,开偶次方被开方数非负,列出不等式组求解即可.(2)利用函数的解析式直接求解函数值即可.【解答】解:(1)要使函数有意义,自变量的取值需要满足.函数的定义域为:(0,+∞).(2)=.【点评】本题考查函数的定义域的求法,函数值的求法,是基础题.20.已知函数,(1)点(3,14)在函数的图象上吗?;(2)当x=4时,求g(x)的值;(3)当g(x)=2时,求x的值.【考点】函数的值;函数的图象.【专题】计算题;函数的性质及应用.【分析】(1)把x=3代入g(x),求出g(3)的值,即可作出判断;(2)把x=4代入g(x),求出g(x)的值即可;(3)根据g(x)=2,求出x的值即可.【解答】解:(1)把x=3代入得:g(3)==﹣≠14,则点(3,14)不在函数的图象上;(2)把x=4代入得:g(4)==﹣3;(3)根据g(x)=2,得到=2,解得:x=14.【点评】此题考查了函数的值,以及函数的图象,熟练掌握运算法则是解本题的关键.21.已知f(x)=,求f(f(3))的值.【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数化简求值即可.【解答】解:f(x)=,f(f(3))=f(32+1)=f(10)=10﹣5=5,∴f(f(3))=5.【点评】本题考查分段函数的应用,函数值的求法,是基础题.22.已知集合U={x|﹣3≤x≤3},M={x|﹣1<x<1},C U N={x|0<x<2}.求:(1)集合N;(2)集合M∩(C U N);(3)集合M∪N.【考点】并集及其运算;交集及其运算;补集及其运算.【专题】常规题型;转化思想.【分析】(1)由集合U={x|﹣3≤x≤3},C U N={x|0<x<2},利用数轴即可解答;(2)由M={x|﹣1<x<1},C U N={x|0<x<2}结合数轴即可获得解答;(3)结合(1)由数轴即可获得解答..【解答】解:(1)∵U={x|﹣3≤x≤3},C U N={x|0<x<2}.∴N={x|﹣3≤x≤0或2≤x≤3};(2)∵M={x|﹣1<x<1},C U N={x|0<x<2}.∴M∩(∁U N)={x|0<x<1};(3)由(1)知N={x|﹣3≤x≤0或2≤x≤3}又∵M={x|﹣1<x<1}∴M∪N={x|﹣3≤x<1或2≤x≤3}.【点评】本题考查的是集合的交集、并集、补集及其运算.在解答的过程当中充分体现了数形结合的思想以及集合交并补的运算.值得同学们体会反思.。
人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)
-2-
18.(本小题满分 12 分)
已知函数 f x log4 4x 1 kx k R 是偶函数.
(1)证明:对任意实数 b ,函数 y
f
x 的图象与直线 y
3 2
x b 最多只有一个交点;
(2)若方程 f x log4
a 2 x
4 3
有且只有一个解,求实数 a 的取值范围.
19.(12 分)某投资公司投资甲乙两个项目所获得的利润分别是 M (亿元)和 N (亿元),它们与
投资额 t (亿元)的关系有经验公式: M
1 3
t,
N
1 6
t
,今该公司将
3
亿元投资这个项目,若设甲
项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
集为
.
14.幂函数 y
x
1 2
p
2
p
3 2
p Z 为偶函数,且
f
1
f
4 ,则实数 p
.
15.用 min a, b, c 表示 a 、 b 、 c 三个数中的最小值设 f x min 2x, x 2,10 x x 0 ,则
f x 的最大值为
22.(12
分)已知函数
f
x
11x1x1
, ,
0 x1
. x 1
(1)当 0
a
log1 a ,
3
1 3
b
log1 b,
3
1 3
c
lo g3 c ,则
高一上学期数学试卷及答案(人教版)
高一数学试卷一、填空题1.已知b a ==7log ,3log 32,用含b a ,的式子表示=14log 2 。
2. 方程)4lg(12lg lg +-=x x 的解集为 。
3. 设α是第四象限角,43tan -=α,则=α2sin ____________________. 4. 函数1sin 2y -=x 的定义域为__________。
5. 函数22cos sin 2y x x =+,x R ∈的最大值是 .6. 把ααcos 2sin 6+-化为)2,0(,0)(sin(πφφα∈>+A A 其中)的形式是 。
7. 函数f (x )=(31)|cos x |在[-π,π]上的单调减区间为__ _。
8. 函数2sin(2)3y x π=-+与y 轴距离最近的对称中心的坐标是____。
9. ,且,则。
10.设函数f(x)是以2为周期的奇函数,且 ,若,则(4cos2)f α的值 .11.已知函数,求 .12.设函数()⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-∈>+=2,2,0sin ππϕωϕωx y 的最小正周期为π,且其图像关于直线12x π=对称,则在下面四个结论中:(1)图像关于点⎪⎭⎫⎝⎛0,4π对称;(2) 图像关于点⎪⎭⎫ ⎝⎛0,3π对称;(3)在⎥⎦⎤⎢⎣⎡6,0π上是增函数;(4)在⎥⎦⎤⎢⎣⎡-0,6π上是增函数,那么所有正确结论的编号为____二、选择题13.已知正弦曲线y =A sin(ωx +φ),(A >0,ω>0)上一个最高点的坐标是(2,3),由这个最高点到相邻的最低点,曲线交x 轴于(6,0)点,则这条曲线的解析式是 ( )(A) y =3sin(8πx +4π)(B) y =3sin(8πx -2) (C) y =3sin(8πx +2)(D) y =3sin(8πx -4π)14.函数y=sin(2x+3π)的图象是由函数y=sin2x 的图像 ( ) (A) 向左平移3π单位 (B) 向左平移6π单位2. (C) 向左平移56π单位(D) 向右平移56π单位 15.在三角形△ABC 中, 36=a ,21=b ,60=A ,不解三角形判断三角形解的情况( ). (A) 一解 (B ) 两解 (C) 无解 (D) 以上都不对 16. 函数f (x )=cos2x +sin(2π+x )是 ( ). (A) 非奇非偶函数 (B) 仅有最小值的奇函数(C) 仅有最大值的偶函数(D) 既有最大值又有最小值的偶函数三、解答题17.(8分)设函数)1(),1(log )(2->+=x x x f (1)求其反函数)(1x f -;(2)解方程74)(1-=-x x f .18.(10分)已知2cos sin cos sin =+-xx xx .(1)求x tan 的值;(2)若x x cos ,sin 是方程02=+-n mx x 的两个根,求n m 22+的值. 19.(分)已知函数;(1).求f(x)的定义域;(2).写出函数()f x 的值域;(3).求函数()f x 的单调递减区间;20.(12分)设关于的方程在内有两相异解,;(1).求的取值范围; (2).求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一试卷精选6一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣x2+7x﹣12<0},B={x∈N|x(x﹣6)≤0},则A∩B=()A.[0,3)∪(4,6]B.(0,3)∪(4,6)C.{1,2,5,6}D.{0,1,2,5,6}2.(5分)已知tanα=,且α为第三象限角,则cos()的值为()A.B.C.﹣D.﹣3.(5分)已知角α的终边经过点(1,﹣),则sinα=()A.﹣B.﹣C.D.4.(5分)若x>y,则下列不等式正确的是()A.x2>y2B.C.D.lnx>lny5.(5分)下列函数中,不能用二分法求函数零点的是()A.f(x)=3x﹣1B.f(x)=x2﹣2x+1C.f(x)=log3x D.f(x)=e x﹣26.(5分)《九章算术》是我国算术名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思是说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法,以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,在此问题中,扇形的圆心角的弧度数是()A.B.C.D.1207.(5分)非零向量,互相垂直,则下面结论正确的是()A.||=||B.+=﹣C.|+|=|﹣|D.(+)•(﹣)=08.(5分)设a=ln,b=lg3,c=,则a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<c<a 9.(5分)函数f(x)=log0.6(x2+6x﹣7)的单调递减区间是()A.(﹣∞,﹣7)B.(﹣∞,﹣3)C.(﹣3,+∞)D.(1,+∞)10.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则以下关于f(x)性质的叙述正确的是()A.最小正周期为B.是偶函数C.x=是其一条对称轴D.(﹣,0)是其一个对称中心11.(5分)已知函数f(x)是定义在R上的奇函数,对于任意的x1,x2∈(0,+∞),且x1≠x2,有(x1﹣x2)[f(x1)﹣f(x2)]>0,若f(2)=0,则(x﹣2)f(x)>0的解集为()A.(﹣2,0)∪(0,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣∞,﹣2)∪(0,2)∪(2,+∞)12.(5分)设函数f(x)=|x2﹣5x|﹣a(x+4),若函数f(x)恰有4个零点,则实数a的取值范围为()A.(0,)B.(0,1)C.(,25)D.(1,25)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知命题p为∀x∈[0,+∞),ax+1≥0,则¬p为.14.(5分)函数f(x)=的定义域为.15.(5分)已知向量=(1,λ),=(﹣2,3),若﹣与共线,则λ=.16.(5分)设函数f(x)=mx2﹣2mx﹣4,若对于x∈[2,3],f(x)<4﹣m恒成立,则实数m的取值范围为.三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知函数f(x)=log a x(a>0且a≠1)的图象过点(,2).(Ⅰ)求f(2)的值;(Ⅱ)计算a﹣lga+lg5.18.(12分)如图,在平行四边形ABCD中,M为DC的中点,,设.(1)用向量表示向量;(2)若,与的夹角为,求的值.19.(12分)已知函数f(x)是奇函数,当x∈(0,1]时,f(x)=2x﹣1.(Ⅰ)求x∈[﹣1,0)时,f(x)的解析式;(Ⅱ)当x∈[﹣1,0)时,判断f(x)的单调性并加以证明.20.(12分)已知函数f(x)=2sin(2x+),将f(x)的图象向右平移单位长度,再向下平移1个单位长度得到函数g(x)的图象.(Ⅰ)求函数g(x)的递增区间;(Ⅱ)当x∈[0,]时,求g(x)的最小值以及取得最小值时x的集合.21.(12分)美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的A,B两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产,经市场调查与预测,生产A芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=kx a(x>0),其图象如图所示.(Ⅰ)试分别求出生产A,B两种芯片的毛收入y(千万元)与投入资金x(千万元)的函数关系式;(Ⅱ)如果公司只生产一种芯片,生产哪种芯片毛收入更大?(Ⅲ)现在公司准备投入4亿元资金同时生产A,B两种芯片,设投入x千万元生产B 芯片,用f(x)表示公司所获利润,当x为多少时,可以获得最大利润?并求最大利润.(利润=A芯片毛收入+B芯片毛收入﹣研发耗费资金)22.(12分)已知向量=(1,a﹣x),=(a x,﹣1),其中a>0,且a≠1,设函数f(x)=•,且f(2)=.(Ⅰ)求a的值;(Ⅱ)当x∈[0,1]时,是否存在实数λ使g(x)=a2x+a﹣2x﹣2λf(x)的最小值为﹣2?若存在,求出λ的值;若不存在,请说明理由.高一试卷精选6参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣x2+7x﹣12<0},B={x∈N|x(x﹣6)≤0},则A∩B=()A.[0,3)∪(4,6]B.(0,3)∪(4,6)C.{1,2,5,6}D.{0,1,2,5,6}【解答】解:∵A={x|x<3或x>4},B={x∈N|0≤x≤6}={0,1,2,3,4,5,6},∴A∩B={0,1,2,5,6}.故选:D.2.(5分)已知tanα=,且α为第三象限角,则cos()的值为()A.B.C.﹣D.﹣【解答】解:∵tan=,且α为第三象限角,∴sinα=﹣,cosα=﹣,则cos(+α)=﹣sinα=,故选:A.3.(5分)已知角α的终边经过点(1,﹣),则sinα=()A.﹣B.﹣C.D.【解答】解:∵角α的终边经过点(1,﹣),∴sinα==﹣,故选:B.4.(5分)若x>y,则下列不等式正确的是()A.x2>y2B.C.D.lnx>lny【解答】解:x>y.A.取x=1,y=﹣2,可知:x2<y2,因此不正确.B.取x=1,y=﹣2,可知:>,因此不正确.C.根据函数y=在R上单调递减,可得:<,因此正确.D.取x=﹣1,y=﹣2,可知:lnx,lny不存在,因此不正确.故选:C.5.(5分)下列函数中,不能用二分法求函数零点的是()A.f(x)=3x﹣1B.f(x)=x2﹣2x+1C.f(x)=log3x D.f(x)=e x﹣2【解答】解:f(x)=x2﹣2x+1=(x﹣1)2,所以f(1)=0,当x<1时,f(x)>0;当x>1时,f(x)>0,在零点两侧函数值同号,不能用二分法求零点,其余的零点两侧函数值异号.故选:B.6.(5分)《九章算术》是我国算术名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思是说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法,以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,在此问题中,扇形的圆心角的弧度数是()A.B.C.D.120【解答】解:扇形中,弧长为l=30,直径为d=16,面积为S=30×16÷4=120;扇形的圆心角弧度数是α===.故选:B.7.(5分)非零向量,互相垂直,则下面结论正确的是()A.||=||B.+=﹣C.|+|=|﹣|D.(+)•(﹣)=0【解答】解:非零向量,互相垂直,则•=0;∴=+2•+=+,=﹣2•+=+;∴|+|=|﹣|,C正确.故选:C.8.(5分)设a=ln,b=lg3,c=,则a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<c<a【解答】解:,∴a<b<c.故选:A.9.(5分)函数f(x)=log0.6(x2+6x﹣7)的单调递减区间是()A.(﹣∞,﹣7)B.(﹣∞,﹣3)C.(﹣3,+∞)D.(1,+∞)【解答】解:由x2+6x﹣7>0,解得x<﹣7或x>1,∴f(x)=log0.6(x2+6x﹣7)的定义域为(﹣∞,﹣7)∪(1,+∞).令t=x2+6x﹣7,此内层函数在(﹣∞,﹣7)上单调递减,在(1,+∞)上单调递增,而y=log0.6t是定义域内的减函数,∴f(x)=log0.6(x2+6x﹣7)的单调递减区间是(1,+∞).故选:D.10.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则以下关于f(x)性质的叙述正确的是()A.最小正周期为B.是偶函数C.x=是其一条对称轴D.(﹣,0)是其一个对称中心【解答】解:由图象知A=2,=﹣=,则T=π,即=π,得ω=2,即f(x)=2sin(2x+φ),由五点对应法得2×+φ=得φ=﹣=﹣,即f(x)=2sin(2x﹣).则函数的周期T==π,故A错误,f(x)为非奇非偶函数,故B错误,f()=2sin[2×()﹣]=2sin(﹣)=﹣2为最小值,则x=是函数的一条对称轴,故C正确,f(﹣)=2sin[2×(﹣)﹣]=2sin(﹣)≠0,则(﹣,0)不是函数的对称中心,故D错误,故选:C.11.(5分)已知函数f(x)是定义在R上的奇函数,对于任意的x1,x2∈(0,+∞),且x1≠x2,有(x1﹣x2)[f(x1)﹣f(x2)]>0,若f(2)=0,则(x﹣2)f(x)>0的解集为()A.(﹣2,0)∪(0,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣∞,﹣2)∪(0,2)∪(2,+∞)【解答】解:对于任意的x1,x2∈(0,+∞),且x1≠x2,有(x1﹣x2)[f(x1)﹣f(x2)]>0,即f(x)在(0,+∞)上单调递增,且f(2)=0,∵函数f(x)是定义在R上的奇函数,∴f(﹣2)=0,f(0)=0,且在(﹣∞,0)上单调递增,则(x﹣2)f(x)>0等价于或,解可得,x>2或x<﹣2或0<x<2,故不等式的解集为{x|x>2或x<﹣2或0<x<2,}.故选:D.12.(5分)设函数f(x)=|x2﹣5x|﹣a(x+4),若函数f(x)恰有4个零点,则实数a的取值范围为()A.(0,)B.(0,1)C.(,25)D.(1,25)【解答】解:记g(x)=|x2﹣5x|,h(x)=a(x+4),函数f(x)恰有4个零点,等价于函数g(x)与函数h(x)的图象恰有4个不同的交点,作出两个函数的图象,易知a>0,因为y=h(x)的图象过点(﹣4,0),由得,x2+(a﹣5)x+4a =0,由△=(a﹣5)2﹣16a>0,解得a<1或a>25(舍去),故0<a<1,故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知命题p为∀x∈[0,+∞),ax+1≥0,则¬p为∃x∈[0,+∞),ax+1<0.【解答】解:命题为全称命题,则命题p为∀x∈[0,+∞),ax+1≥0的否定为∃x∈[0,+∞),ax+1<0,故答案为:∃x∈[0,+∞),ax+1<0.14.(5分)函数f(x)=的定义域为(5,6].【解答】解:函数f(x)=中,令(x﹣5)≥0,所以0<x﹣5≤1,解得5<x≤6;所以函数f(x)的定义域为(5,6].故答案为:(5,6].15.(5分)已知向量=(1,λ),=(﹣2,3),若﹣与共线,则λ=﹣.【解答】解:向量=(1,λ),=(﹣2,3),则﹣=(3,λ﹣3),又﹣与共线,则﹣2(λ﹣3)﹣3×3=0,解得λ=﹣.故答案为:﹣.16.(5分)设函数f(x)=mx2﹣2mx﹣4,若对于x∈[2,3],f(x)<4﹣m恒成立,则实数m的取值范围为(﹣∞,2).【解答】解:函数f(x)=mx2﹣2mx﹣4,即mx2﹣2mx﹣4<4﹣m,x∈[2,3]恒成立,x∈[2,3],f(x)max<4﹣m;当m=0时,f(x)=﹣4<4,不等式恒成立,当m≠0时,f(x)=mx2﹣2mx﹣4=m(x﹣1)2﹣m﹣4∵二次函数的对称轴为x=1.∴若m>0,f(x)max=f(3)=3m﹣4由3m﹣4<4﹣m,得0<m<2;若m<0,f(x)max=f(2)=﹣4;由﹣4<4﹣m,得m<8,∴m<0;综上,可得实数m的取值范围为(﹣∞,2).故答案为:(﹣∞,2).三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知函数f(x)=log a x(a>0且a≠1)的图象过点(,2).(Ⅰ)求f(2)的值;(Ⅱ)计算a﹣lga+lg5.【解答】解:(Ⅰ)∵f(x)=log a x(a>0,且a≠1)的图象过点,∴,∴,且a>0,∴,∴,则;(Ⅱ)∵,∴=.18.(12分)如图,在平行四边形ABCD中,M为DC的中点,,设.(1)用向量表示向量;(2)若,与的夹角为,求的值.【解答】解:(1)因为在平行四边形ABCD中,M为DC的中点,,又,故===,===,==()﹣()=﹣.(2)=()•(﹣)=a2+=﹣,故答案为:﹣.19.(12分)已知函数f(x)是奇函数,当x∈(0,1]时,f(x)=2x﹣1.(Ⅰ)求x∈[﹣1,0)时,f(x)的解析式;(Ⅱ)当x∈[﹣1,0)时,判断f(x)的单调性并加以证明.【解答】解:(I)设x∈[﹣1,0),则﹣x∈(0,1],x∈(0,1]时,f(x)=2x﹣1.f(﹣x)=2﹣x﹣1=﹣f(x),∴f(x)=,(II)函数f(x)在[﹣1,0)上单调递增,设﹣1≤x1<x2<0,∴<0,则f(x1)﹣f(x2)=<0,f(x)在(﹣1,1)上单调递增.20.(12分)已知函数f(x)=2sin(2x+),将f(x)的图象向右平移单位长度,再向下平移1个单位长度得到函数g(x)的图象.(Ⅰ)求函数g(x)的递增区间;(Ⅱ)当x∈[0,]时,求g(x)的最小值以及取得最小值时x的集合.【解答】解:(Ⅰ)把函数f(x)=2sin(2x+)的图象向右平移单位长度,可得y=2sin(2x﹣+)=2sin(2x+)的图象;再向下平移1个单位长度得到函数g(x)=sin(2x+)﹣1的图象.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数g(x)的递增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)当x∈[0,]时,2x+∈[,],当2x+=时,函数g(x)取得最小值为0,此时,x的取值集合为{x|x=}.21.(12分)美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的A,B两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产,经市场调查与预测,生产A芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=kx a(x>0),其图象如图所示.(Ⅰ)试分别求出生产A,B两种芯片的毛收入y(千万元)与投入资金x(千万元)的函数关系式;(Ⅱ)如果公司只生产一种芯片,生产哪种芯片毛收入更大?(Ⅲ)现在公司准备投入4亿元资金同时生产A,B两种芯片,设投入x千万元生产B 芯片,用f(x)表示公司所获利润,当x为多少时,可以获得最大利润?并求最大利润.(利润=A芯片毛收入+B芯片毛收入﹣研发耗费资金)【解答】解:(Ⅰ)因为生产A芯片的毛收入与投入的资金成正比,所以设为y=k0x,且x=1时,y=,代入解得,则生产A芯片的毛收入;将(1,1),(4,2)代入y=kx a,得,解得,所以生产B芯片的毛收入为.(Ⅱ)由(1)知,当时,解得x>16,可知当投入资金大于16千万元时,生产A芯片的毛收入大;当投入资金等于16千万元时,生产A、B两种芯片的毛收入相等;当投入资金小于16千万元时,生产B芯片的毛收入大.(Ⅲ)公司投入4亿元资金同时生产A、B两种芯片,设投入x千万元生产B芯片,则投入(40﹣x)千万元资金生产A芯片,公司所获利润,故当,即x=4千万元时,公司所获利润最大,最大利润为9千万元.22.(12分)已知向量=(1,a﹣x),=(a x,﹣1),其中a>0,且a≠1,设函数f(x)=•,且f(2)=.(Ⅰ)求a的值;(Ⅱ)当x∈[0,1]时,是否存在实数λ使g(x)=a2x+a﹣2x﹣2λf(x)的最小值为﹣2?若存在,求出λ的值;若不存在,请说明理由.【解答】解:(Ⅰ),,∴9a4﹣80a2﹣9=0,解得a2=9,即a=3;(Ⅱ)当a=3时,g(x)=32x+3﹣2x﹣2λ(3x﹣3﹣x)=(3x﹣3﹣x)2﹣2λ(3x﹣3﹣x)+2,当x∈[0,1]时,假设存在实数λ,使g(x)的最小值﹣2,令t=3x﹣3﹣x,∵x∈[0,1],t=3x﹣3﹣x在[0,1]是增函数,∴,函数g(x)可化为,若,当t=λ时,,解得λ=2;若λ<0,当t=0时,g(x)min=h(0)=2≠﹣2,舍去;若,当时,,解得,舍去;故当x∈[0,1]时,存在实数λ=2时g(x)的最小值为﹣2.。