基本不等式应用题

合集下载

不等式练习题

不等式练习题

不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。

2. 已知x > 3,求证:x^2 > 9。

3. 已知0 < x < 1,求证:x^3 < x。

4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。

5. 已知|x| > |y|,求证:x^2 > y^2。

二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。

2. 解不等式:5 2(x 3) ≤ 3x 1。

3. 解不等式:2(x 1) 3(x + 2) > 7。

4. 解不等式:4 3(x 2) ≥ 2x + 5。

5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。

三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。

2. 解不等式:2x^2 3x 2 < 0。

3. 解不等式:x^2 4x + 4 ≤ 0。

4. 解不等式:3x^2 + 4x 4 > 0。

5. 解不等式:x^2 + 5x 6 < 0。

四、分式不等式1. 解不等式:x / (x 1) > 2。

2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。

3. 解不等式:(x 1) / (x + 1) < 0。

4. 解不等式:(2x + 3) / (x 4) ≥ 1。

5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。

五、含绝对值的不等式1. 解不等式:|x 2| > 3。

2. 解不等式:|2x + 1| ≤ 5。

3. 解不等式:|3x 4| < 2。

4. 解不等式:|x + 3| |x 2| > 1。

5. 解不等式:|x 5| + |x + 1| < 6。

六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

基本不等式经典例题(学生用)

基本不等式经典例题(学生用)

根本不等式 【2 】 常识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x +≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+a bb a(当且仅当b a =时取“=”)若0ab ≠,则22-2abab a bb a b a b a +≥+≥+≤即或(当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)留意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的前提“一正,二定,三取等”(3)均值定理在求最值.比较大小.求变量的取值规模.证实不等式.解决现实问题方面有普遍的运用 运用一:求最值例:求下列函数的值域(1)y =3x2+12x 2 (2)y =x +1x技能一:凑项例 已知54x <,求函数14245y x x =-+-的最大值.技能二:凑系数例: 当时,求(82)y x x =-的最大值.变式:设230<<x ,求函数)23(4x x y -=的最大值.技能三: 分别换元 例:求2710(1)1x x y x x ++=>-+的值域.技能五:在运用最值定理求最值时,若遇等号取不到的情形,. 例:求函数2y =的值域.技能六:整体代换(“1”的运用)多次连用最值定理求最值时,要留意取等号的前提的一致性,不然就会出错.. 例:已知0,0x y >>,且191x y+=,求x y +的最小值. 技能七例:已知x,y 为正实数,且x 2+y 22=1,求x 1+y2 的最大值. 技能八:已知a,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值. 技能九.取平方例: 求函数15()22y x <<的最大值. 运用二:运用均值不等式证实不等式例:已知a.b.c R +∈,且1a b c ++=.求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭ 运用三:均值不等式与恒成立问题例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值规模. 运用四:均值定理在比较大小中的运用:例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是.。

应用题 基本不等式类型1

应用题  基本不等式类型1

应用题 基本不等式类型16、运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.7、某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?4、小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年 起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车 运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其 销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)5、要制作一个如图的框架(单位:米),要求所围成的总面积为19.5(平方米),其中四边形ABCD 是一个矩形,四边形EFCD 是一个等腰梯形,梯形高h =12AB ,tan ∠FED =34,设AB =x 米,BC =y 米.(1)求y 关于x 的表达式;(2)如图设计x ,y 的长度,才能使所用材料最少?答案1、解 (1)设所用时间为t =130x(h), y =130x ×2×⎝⎛⎭⎫2+x 2360+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100]. (或y =2 340x +1318x ,x ∈[50,100]). (2)y =130×18x +2×130360x ≥2610, 当且仅当130×18x =2×130360x ,即x =1810时,等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.2、解 (1)设扇环的圆心角为θ,则30=θ(10+x )+2(10-x ),所以θ=10+2x 10+x. (2)花坛的面积为12θ(102-x 2)=(5+x )(10-x ) =-x 2+5x +50(0<x <10).装饰总费用为9θ(10+x )+8(10-x )=170+10x ,所以花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x=-x 2-5x -5010(17+x ), 令t =17+x ,则y =3910-110⎝⎛⎭⎫t +324t ≤310, 当且仅当t =18时取等号,此时x =1,θ=1211. 答:当x =1时,花坛的面积与装饰总费用的比最大.4、解 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ),即y =-x 2+20x -50(0<x ≤10,x ∈N ),由-x 2+20x -50>0,解得10-52<x <10+5 2.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为 y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎫x +25x ,而19-⎝⎛⎭⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.5、解 (1)如图,等腰梯形CDEF 中,DH 是高. 依题意,DH =12AB =12x , EH =DH tan ∠FED =43×12x =23x , ∴392=xy +12⎝⎛⎭⎫x +x +43x 12x =xy +56x 2, ∴y =392x -56x . ∵x >0,y >0,∴392x -56x >0,解得0<x <3655, ∴所求表达式为y =392x -56x (0<x <3655). (2)Rt △DEH 中,∵tan ∠FED =34, ∴sin ∠FED =35, ∴DE =DH sin ∠FED =12x ×53=56x , ∴l =(2x +2y )+2×56x +⎝⎛⎭⎫2×23x +x =2y +6x =39x -53x +6x =39x +133x ≥2 39x ×13x 3=26. 当且仅当39x =133x ,即x 2=9,即x =3时取等号,此时y =392x -56x =4, ∴AB =3米,BC =4米时,能使整个框架用材料最少.1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.(1)为控制预算,要求每批产品的总费用控制在1000元,求x的范围;(2)为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品多少件.2.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则当每台机器运转多少年时,年平均利润最大,并求出最大值.3.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200 辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时) f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)1、解析 设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x 8=20,当且仅当800x =x 8(x >0),即x =80时“=”成立.答案 802、解析 每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案 5 83、解 (1)由题意:当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax +b再由已知得⎩⎨⎧ 200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧ a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧ 60,0≤x ≤20,13(200-x ),20<x ≤200. (2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧ 60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +(200-x )22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003.。

基本不等式应用题型

基本不等式应用题型

基本不等式应用题型1. 一个长方形的长是x+3,宽是x-2,求长方形的周长和面积。

解答:周长=2(x+3+x-2)=2(2x+1)=4x+2,面积=(x+3)(x-2)=x^2+x-6。

2. 一个三角形的两边长分别是x和x+2,第三边长是2x-1,求三角形的周长。

解答:周长=x+(x+2)+(2x-1)=4x+1。

3. 一个矩形的长是x+4,宽是x-1,求矩形的周长和面积。

解答:周长=2(x+4+x-1)=2(2x+3)=4x+6,面积=(x+4)(x-1)=x^2+3x-4。

4. 一个正方形的边长是2x-1,求正方形的周长和面积。

解答:周长=4(2x-1)=8x-4,面积=(2x-1)^2=4x^2-4x+1。

5. 一个圆的半径是x+2,求圆的周长和面积。

解答:周长=2π(x+2)=2πx+4π,面积=π(x+2)^2=π(x^2+4x+4)。

6. 一个等腰三角形的底边长是2x-1,两腿长分别是x和x+3,求三角形的周长。

解答:周长=(2x-1)+x+(x+3)=4x+2。

7. 一个梯形的上底长是x+2,下底长是2x-1,高是x,求梯形的面积。

解答:面积=((x+2)+(2x-1))×x/2=(3x+1)×x/2=3x^2+x/2。

8. 一个圆的直径是2x+1,求圆的周长和面积。

解答:周长=π(2x+1)=2πx+π,面积=π[(2x+1)/2]^2=π(x+1/2)^2。

9. 一个等边三角形的边长是2x-1,求三角形的周长和面积。

解答:周长=3(2x-1)=6x-3,面积=(2x-1)^2=4x^2-4x+1。

10. 一个平行四边形的边长分别是x和x+3,高是x-1,求平行四边形的周长和面积。

解答:周长=2(x+x+3)=4x+6,面积=(x+3)(x-1)=x^2+2x-3。

基本不等式实际应用题

基本不等式实际应用题
基本不等式实际应用
• 基本不等式的概念和性质 • 基本不等式的应用场景 • 基本不等式的解题技巧 • 基本不等式的实际应用案例 • 基本不等式的扩展和深化
01
基本不等式的概念和性质
基本不等式的定义
定义
基本不等式是数学中常用的一个不等 式,它表示两个正数的平均数总是大 于或等于它们的几何平均数。
总结词:代数变换技巧是基本不等式 解题中的重要技巧之一,通过代数运 算对项进行变换,可以简化计算过程, 提高解题效率。
放缩法技巧
放缩法技巧是指通过放缩不等式的两边,使不等式更易于解 决。例如,在利用基本不等式求最值时,可以通过放缩法技 巧将问题转化为更容易求解的形式。
总结词:放缩法技巧是基本不等式解题中的重要技巧之一, 通过放缩不等式的两边,可以将问题转化为更容易求解的形 式,提高解题效率。
构造函数技巧
构造函数技巧是指根据题目的特点,构造一个函数来解决问题。例如,在利用基本不等式求最值时,可以通过构造函数技巧 将问题转化为求函数的最值问题。
总结词:构造函数技巧是基本不等式解题中的重要技巧之一,通过构造函数可以将问题转化为求函数的最值问题,简化计算 过程,提高解题效率。
04
基本不等式的实际应用案例
VS
详细描述
在资源有限的条件下,如何合理分配资源 以达到最优效果是资源分配问题的核心。 基本不等式可以用来解决这类问题,例如 在农业生产、资金分配等方面,通过优化 资源配置,可以提高整体效益。
最短路径问题
总结词
在交通、通信和工程领域,最短路径问题至关重要,基本不等式为寻找最短路径提供了 理论支持。
极值问题
在极值问题中,基本不等式可以用来确定函数的极值点,以及极值的大小。
优化问题的求解

常考经典不等式应用题6道

常考经典不等式应用题6道

1、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表,设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润。

甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大2、某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表甲(kg)已(kg)件数(件)A5x xB4(40-x)40-x(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.3、我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:湘莲品种A B C每辆汽车运载量(吨)12108每吨湘莲获利(万元)342设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案并求出最大利润的值。

4、为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少5、我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.苦荞茶 青花椒 野生蘑菇每辆汽车运载量(吨)A 型2 2 B 型 4 2 C 型16(1)设A 型汽车安排x 辆,B 型汽车安排y 辆,求y 与x 之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案并写出每种方案. (3)为节约运费,应采用(2)中哪种方案并求出最少运费.6、小明到一家批发兼零售的文具店给九年级学生购买考试用2B 铅笔,请根据下列情景解决问题。

基本不等式经典题目答案

基本不等式经典题目答案

基本不等式经典题目答案基本不等式经典习题1、已知x,y 为正数,则22x y x y x y +++的最大值为▲ 2.实数a 、b 、c 满足2225a b c ++=,则 2687ab bc c -+的最大值为▲ .3、已知正实数x ,y 满足24310x y x y +++=,则xy 的取值范围为▲ .【答案】[1,83]4、设x,y 是正实数,且x+y=1,则2221x y x y +++的最小值为▲ 45 5.(浙江理16)设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是.2106、(2010重庆理数)(7)已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是D. 112A. 3B. 4C. 解析:考察均值不等式7(2010四川理数)(12)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是(A )2 (B )4 (C ) 25 (D )58、设0a >b >,则()211a ab a a b ++-的最小值是(A )1 (B )2 (C )3 (D )49(2013考湖南卷(理))已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为______.【答案】12 10、[2014·辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a+b |最大时,3a -4b +5c的最小值为________. 16.-211.设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-的最大值为(A )0 (B )1 (C )94 (D )3 12、若实数,a b 满足12ab a b+=ab 的最小值为 9213. 设实数,x y 满足2214x y -=,则232x xy -的最小值是▲ .。

基本不等式及其应用 习题及解析

基本不等式及其应用 习题及解析

基本不等式及其应用习题及解析基本不等式及其应用一、选择题(共15小题)1.已知$x,XXX{R}$,$x+y+xy=315$,则$x+y-xy$的最小值是()A。

35B。

105C。

140D。

2102.设正实数$x,y$满足$x>1,y>1$,不等式$\frac{x}{y-1}+\frac{y}{x-1}\geq 4$的最小值为()A。

2B。

4C。

8D。

163.已知$a>0,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$,当且仅当()A。

$a=b$B。

$a=b=1$XXX 1$D。

$a\neq b$4.已知$x,y$都是非负实数,且$x+y=2$,则$xy$的最大值为()A。

0B。

$\frac{1}{4}$C。

$\frac{1}{2}$D。

15.已知$x,y,z$为正实数,则$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$的最大值为()A。

3B。

4C。

5D。

66.若$a,b\in\mathbb{R},ab\neq 0$,且$a+b=1$,则下列不等式中,XXX成立的是()A。

$ab\leq \frac{1}{4}$XXX{1}{4}$XXX{1}{8}$D。

$ab\geq \frac{1}{8}$7.设向量$\vec{OA}=(1,-2),\vec{OB}=(a,-1),\vec{OC}=(-b,2)$,其中$O$为坐标原点,$a>0,b>0$,若$A,B,C$三点共线,则$\vec{AB}+\vec{BC}+\vec{CA}$的最小值为()A。

4B。

6C。

8D。

98.若$x>0,y>0,x+y=1$,则$\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{xy}}$的最小值为()A。

2B。

3C。

4D。

59.在下列函数中,最小值是2的是()A。

$y=x^2+1$B。

$y=2-x^2$C。

基本不等式应用题

基本不等式应用题

基本不等式应用题
例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。

最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
例3.某工厂要建造一个长方体无盖贮水池,其容积为34800m ,深为3m ,如果池底每21m 的造价为150元,池壁每21m 的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
例4.如图,设矩形()ABCD AB AD >的周长为24,把它关于AC 折起来,AB 折过去后,交DC 于P ,设AB x =,求ADP ∆的最大面积及相应的x 值。

例5.甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度x (千米/时)的平方成正比,比例系数为b ,固定部分为a 元,
(1)把全程运输成本......y (元)表示为速度x (千米/时)的函数,指出定义域;
(2)为了使全程运输成本......
最小,汽车应以多大速度行驶?
例6:某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,以后逐年递增0.2万元。

问这种汽车使用多少年时,它的年平均费用最小?最小值是多少?。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

以基本不等式为背景的应用题

以基本不等式为背景的应用题

以基本不等式为背景的应用题1、【优质试题高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x+⨯=+≥⨯=,当且仅当900x x =,即30x =时等号成立.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、【优质试题高考江苏卷】某兴趣小组要测量电视塔AE 的高度H (单位:m).示意图如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1) 该小组已测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?规范解答 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β,解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=()h hH H d d-+,又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.3、【优质试题高考江苏卷】如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力.满分14分.规范解答 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。

基本不等式的题目

基本不等式的题目

基本不等式的题目1. 求解不等式|x+2| > 5。

解:首先,去掉绝对值,得到两个不等式,x+2 > 5 或 x+2 < -5。

解第一个不等式:x > 5 - 2 = 3。

解第二个不等式:x < -5 - 2 = -7。

综合来看,解集为x < -7 或 x > 3。

2. 求解不等式3x+4 ≤ 2x-3。

解:首先,将不等式中的项移到一边,得到3x-2x ≤ -3-4,即x ≤ -7。

3. 求解不等式2x+5 ≥ 3(x-4)。

解:首先,将不等式中的项展开,得到2x+5 ≥ 3x-12。

接下来,将x的项移到一边,得到2x-3x ≥ -12-5,即-x ≥ -17。

由于-x的系数是负数,所以将不等号翻转,得到x ≤ 17。

4. 求解不等式|2x-1| ≤ 3。

解:首先,去掉绝对值,得到两个不等式,2x-1 ≤ 3 或 2x-1 ≥ -3。

解第一个不等式:2x ≤ 3+1 = 4,即x ≤ 2。

解第二个不等式:2x ≥ -3+1 = -2,即x ≥ -1。

综合来看,解集为 -1 ≤ x ≤ 2。

5. 求解不等式x²-7x+10 > 0。

解:首先,将不等式中的二次项系数和常数项用因式分解的方式表示,得到(x-2)(x-5) > 0。

接下来,考虑两个因子相乘大于零的情况:当 x-2 > 0 且 x-5 > 0 时,即 x > 2 且 x > 5,但这个条件不成立;当 x-2 < 0 且 x-5 < 0 时,即 x < 2 且 x < 5,这时不等式成立;综合来看,解集为 2 < x < 5。

以上是五道基本不等式的题目解答,希望对你有帮助!。

(完整版)基本不等式全题型

(完整版)基本不等式全题型

题型1 基本不等式正用a +b ≥2ab例1:(1)函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x(x ∈R )值域为________;(2)函数f (x )=x 2+1x 2+1的值域为________. 解析:(1)∵x >0,x +1x≥2x ·1x=2,∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2x 2+1·1x 2+1-1=1,当且仅当 x =0 时等号成立.答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞)4.(2013·镇江期中)若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5 [例1] (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x +-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x=-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2.例:当x >0时,则f (x )=2xx 2+1的最大值为________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号. 3.函数y =x 2+2x -1(x >1)的最小值是________.解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2 x -13x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.答案:23+2 10.已知x >0,a 为大于2x 的常数,求y =1a -2x-x 的最小值. 解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2.当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 题型2 基本不等式反用ab ≤a +b2例:(1)函数f (x )=x (1-x )(0<x <1)的值域为__________;(2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为__________.解析:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0. x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.答案:(1)⎝ ⎛⎭⎪⎫0,14 (2)⎝ ⎛⎭⎪⎫0,18 3.(教材习题改编)已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.答案:123.函数y =x 1-x 2的最大值为________.解析:x 1-x 2=x 21-x 2≤x 2+1-x 22=12.4.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( )A.13B.12C.34D.23解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.答案 B 10.已知x >0,a 为大于2x 的常数,求函数y =x (a -2x )的最大值;解:∵x >0,a >2x ,∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a 28,当且仅当x =a4时取等号,故函数的最大值为a 28.题型三:利用基本不等式求最值2.已知t >0,则函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,且在t =1时取等号.答案 -2例:当x >0时,则f (x )=2xx 2+1的最大值为________.解析:∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号.例1:(1)求函数f (x )=1x -3+x (x >3)的最小值;(2)求函数f (x )=x 2-3x +1x -3(x >3)的最小值;思维突破:(1)“添项”,可通过减3再加3,利用基本不等式后可出现定值.(2)“拆项”,把函数式变为y =M +aM的形式. (1)∵x >3,∴x -3>0.∴f (x )=1x -3+(x -3)+3≥21x -3·x -3+3=5.当且仅当1x -3=x -3,即x =4时取等号,∴f (x )的最小值是5.(2)令x -3=t ,则x =t +3,且t >0.∴f (x )=t +32-3t +3+1t =t +1t+3≥2t ·1t+3=5. 当且仅当t =1t,即t =1时取等号,此时x =4,∴当x =4时,f (x )有最小值为5.技巧总结:当式子不具备“定值”条件时,常通过“添项”达到目的;形如y =cx 2+dx +fax +b(a ≠0,c ≠0)的函数,一般可通过配凑或变量替换等价变形化为y =t +p t(p 为常数)型函数,要注意t 的取值范围; 例:设x >-1,求函数y =x +4x +1+6的最小值;解:∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2x +1·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴当x =1时,函数y 的最小值是9. 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 解析 由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81. 答案 815.已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为_______________.解析 ∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案 36.(2013·大连期中)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3.答案:32.已知m >0,n >0,且mn =81,则m +n 的最小值为________.解析:∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.答案:18 5.已知x >0,y >0,lg x +lg y =1,则z =2x +5y的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10.则2x +5y≥210xy=2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:2(2012·天津高考)已知log 2a +log 2b ≥1,则3a +9b的最小值为________. 解析:由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号).∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a+9b≥2×32=18.即当a =2b 时,3a+9b有最小值18. 3.设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为 ( )A .2 B.32 C .1 D.12解析 由a x =b y=3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b =log 3ab ≤log 3⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y的最大值 为1. 答案 C6.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.解析 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案 9例:若正数x ,y 满足x +3y =5xy ,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.4.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________. 答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22xy -6≥0, ∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18. ∴xy 的最小值为18.例:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 ( )A .3B .4 C.92 D.112解析 依题意,得(x +1)(2y +1)=9, ∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.3.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30xx +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32 =-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时,等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).例:已知a >b >0,则a 2+16b a -b的最小值是________.解析:∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24, 当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16ba -b取得最小值16. 8.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.答案:3例:已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.解析:由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.1.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________. 解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xyx +y的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.答案:21.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________. 解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a+2a ≥22x -a ·2x -a+2a =2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32.答案:325.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0D.⎝⎛⎭⎪⎫-∞,14 答案 A解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(a =b 时取等号).故ab 的取值范围是⎝⎛⎦⎥⎤-∞,14.典例:(12分)已知a 、b 均为正实数,且a +b =1,求y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b 的最小值.易错分析 在求最值时两次使用基本不等式,其中的等号不能同时成立,导致最小值不能取到.审题视角 (1)求函数最值问题,可以考虑利用基本不等式,但是利用基本不等式,必须保证“正、定、等”,而且还要符合已知条件.(2)可以考虑利用函数的单调性,但要注意变量的取值范围. 规范解答解 方法一 y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b=⎝⎛⎭⎪⎫ab +1ab +⎝ ⎛⎭⎪⎫b a +a b ≥⎝ ⎛⎭⎪⎫ab +1ab +2=⎝ ⎛⎭⎪⎫ab +1ab 2=⎝ ⎛⎭⎪⎫4ab +1ab -3ab 2≥⎝ ⎛⎭⎪⎫24ab ·1ab -3×a +b 22=⎝⎛⎭⎪⎫4-322=254.[10分] 当且仅当a =b =12时,y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b 取最小值,最小值为254.[12分] 方法二 y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +a b +b a =ab +1ab +a 2+b 2ab =ab +1ab +a +b 2-2abab=2ab+ab -2.[8分]令t =ab ≤⎝⎛⎭⎪⎫a +b 22=14,即t ∈⎝ ⎛⎦⎥⎤0,14.又f (t )=2t +t 在⎝ ⎛⎦⎥⎤0,14上是单调递减的,[10分] ∴当t =14时,f (t )min =334,此时,a =b =12.∴当a =b =12时,y 有最小值254.[12分]温馨提醒 (1)这类题目考生总感到比较容易下手.但是解这类题目却又常常出错.(2)利用基本不等式求最值,一定要注意应用条件:即一正、二定、三相等.否则求解时会出现等号成立、条件不具备而出错.(3)本题出错的原因前面已分析,关键是忽略了等号成立的条件. 方法与技巧1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点. 2.恒等变形:为了利用基本不等式,有时对给定的代数式要进行适当变形.比如:(1)当x >2时,x +1x -2=(x -2)+1x -2+2≥2+2=4.(2)0<x <83,x (8-3x )=13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163.失误与防范1.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.3.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 题型四:利用基本不等式整体换元例2:若正数 a ,b 满足 ab =a +b +3,求 ab 及 a +b 的取值范围.思维突破:本题主要考查均值不等式在求最值时的运用,并体现了换元法、构造法等重要思想. 自主解答:方法一:由ab =a +b +3≥2ab +3, 即ab -2ab -3≥0. 即(ab -3)(ab +1)≥0. ∵ab ≥0,∴ab +1≥1. 故ab -3≥0,∴ab ≥9. 当且仅当a =b =3时取等号. 又∵ab ≤a +b2,∴ab =a +b +3≤⎝⎛⎭⎪⎫a +b 22.当且仅当a =b =3时取等号. 即(a +b )2-4()a +b -12≥0,(a +b -6)(a +b +2)≥0.∵a +b +2>0,有a +b -6≥0,即a +b ≥6. ∴a +b 的取值范围是[6,+∞). 方法二:由ab =a +b +3,则b =a +3a -1. ab =a +4a a -1=a +4+4a -1=a -1+4a -1+5≥2a -1·4a -1+5=9,当且仅当a =b =3时取等号. ∴ab 的取值范围是[9,+∞). 由ab =a +b +3,得b =a +3a -1, a +b =a +a +3a -1=a +1+4a -1=(a -1)+4a -1+2≥2()a -1·4a -1+2=6, 当且仅当a =b =3时取等号. ∴a +b 的取值范围是[6,+∞).技巧总结:整体思想是分析这类题目的突破口,即a +b 与ab 分别是统一的整体,把a +b 转换成ab 或把ab 转换成a +b .例3:已知正数a ,b 满足a +2b =1,则1a +1b的最小值是____.试解:1a +1b =a +2b a +a +2b b=3+2b a+ab≥3+22b a ·ab=3+2 2.易错点评:多次利用基本不等式解题,没有考虑等号能否同时成立。

基本不等式练习题带答案

基本不等式练习题带答案
• a. 假设 a > b,则 ab > b^2(反面结论); • b. 根据已知条件,推导出 ab - b^2 = b(a - b) < 0(矛盾); • c. 否定反面结论,得出 a ≤ b,从而证明原命题成立。
06
基本不等式的扩展 知识
基本不等式的推广形式
单击此处添加标题
平方和与平方差形式:a²+b² ≥ 2ab 和 a²-b² ≥ 2ab
• 题目:已知 x > 0,y > 0,且 xy = 4,则下列结论正确的是 ( ) A. x + y ≥ 4 B. x + y ≤ 4 C. x + y ≥ 8 D. x + y ≤ 8 答案: A
• A. x + y ≥ 4 B. x + y ≤ 4 • C. x + y ≥ 8 D. x + y ≤ 8 • 答案:A
基本不等式的应用:在数学、物 理、工程等领域有广泛的应用, 用于解决最优化问题、估计值域 和解决一些数学竞赛问题等。
添加标题
添加标题
添加标题
添加标题
基本不等式的形式:常见的形式 有AM-GM不等式、CauchySchwarz不等式和Holder不等式 等。
基本不等式的证明方法:可以通 过代数、几何和概率统计等方法 证明基本不等式。
• 题目:若 a > b > c,且 a + b + c = 1,则下列结论正确的是 ( ) A. ac + bc ≥ ab B. ac + bc ≤ ab C. ac + bc > ab D. ac + bc < ab 答案:B
• A. ac + bc ≥ ab B. ac + bc ≤ ab • C. ac + bc > ab D. ac + bc < ab

基本不等式典型例题

基本不等式典型例题

基本不等式典型例题一、利用基本不等式求最值1. 例1:已知x > 0,求y = x+(1)/(x)的最小值。

- 解析:对于基本不等式a + b≥slant2√(ab)(a,b>0,当且仅当a = b时等号成立)。

- 在y=x+(1)/(x)中,a = x,b=(1)/(x),因为x>0,所以(1)/(x)>0。

- 根据基本不等式y=x+(1)/(x)≥slant2√(x×frac{1){x}} = 2。

- 当且仅当x=(1)/(x)(x > 0),即x = 1时等号成立。

所以y的最小值为2。

2. 例2:已知x <0,求y=x+(1)/(x)的最大值。

- 解析:因为x<0,则-x>0。

- 此时y=x+(1)/(x)=-<=ft[(-x)+(1)/(-x)]。

- 对于-x和(1)/(-x),根据基本不等式a + b≥slant2√(ab)(a,b>0),这里a=-x,b = (1)/(-x),则(-x)+(1)/(-x)≥slant2√((-x)×frac{1){-x}}=2。

- 所以y =-<=ft[(-x)+(1)/(-x)]≤slant - 2,当且仅当-x=(1)/(-x),即x=-1时等号成立。

所以y的最大值为-2。

二、基本不等式在实际问题中的应用1. 例3:用篱笆围一个面积为100m^2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短?最短的篱笆是多少?- 解析:设矩形菜园的长为x m,宽为y m,则xy = 100。

- 篱笆的周长C=2(x + y)。

- 根据基本不等式x + y≥slant2√(xy),因为xy = 100,所以x +y≥slant2√(100)=20。

- 则C = 2(x + y)≥slant40。

- 当且仅当x=y时等号成立,由xy = 100且x=y,可得x=y = 10。

基本不等式全题型

基本不等式全题型

题型1 根本不等式正用a +b ≥2ab例1:(1)函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x(x ∈R )值域为________;(2)函数f (x )=x 2+1x 2+1的值域为________. 解析:(1)∵x >0,x +1x≥2x ·1x=2,∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2x 2+1·1x 2+1-1=1,当且仅当 x =0 时等号成立. 答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞)4.(2021·XX 期中)假设x >1,那么x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5 [例1] (1)x <0,那么f (x )=2+4x+x 的最大值为________.(1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x +-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2. 例:当x >0时,那么f (x )=2xx 2+1的最大值为________.解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号. 3.函数y =x 2+2x -1(x >1)的最小值是________.解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2 x -13x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.答案:23+2 10.x >0,a 为大于2x 的常数,求y =1a -2x-x 的最小值.解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2.当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 题型2 根本不等式反用ab ≤a +b2例:(1)函数f (x )=x (1-x )(0<x <1)的值域为__________;(2)函数f (x )=x (1-2x )⎝⎛⎭⎪⎫0<x <12的值域为__________.解析:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0. x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.答案:(1)⎝ ⎛⎭⎪⎫0,14 (2)⎝ ⎛⎭⎪⎫0,183.(教材习题改编)0<x <1,那么x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.答案:123.函数y =x 1-x 2的最大值为________.解析:x 1-x 2=x21-x2≤x 2+1-x 22=12. 4.0<x <1,那么x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23 解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.答案 B10.x >0,a 为大于2x 的常数,求函数y =x (a -2x )的最大值;解:∵x >0,a >2x ,∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a 28,当且仅当x =a4时取等号,故函数的最大值为a 28.题型三:利用根本不等式求最值2.t >0,那么函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,且在t =1时取等号.答案 -2例:当x >0时,那么f (x )=2xx 2+1的最大值为________.解析:∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号.例1:(1)求函数f (x )=1x -3+x (x >3)的最小值;(2)求函数f (x )=x 2-3x +1x -3(x >3)的最小值;思维突破:(1)“添项〞,可通过减3再加3,利用根本不等式后可出现定值.(2)“拆项〞,把函数式变为y =M +a M的形式.(1)∵x >3,∴x -3>0.∴f (x )=1x -3+(x -3)+3≥21x -3·x -3+3=5.当且仅当1x -3=x -3,即x =4时取等号,∴f (x )的最小值是5.(2)令x -3=t ,那么x =t +3,且t >0.∴f (x )=t +32-3t +3+1t =t +1t+3≥2t ·1t+3=5. 当且仅当t =1t,即t =1时取等号,此时x =4,∴当x =4时,f (x )有最小值为5.技巧总结:当式子不具备“定值〞条件时,常通过“添项〞到达目的;形如y =cx 2+dx +fax +b(a ≠0,c ≠0)的函数,一般可通过配凑或变量替换等价变形化为y =t +pt(p 为常数)型函数,要注意t 的取值X 围;例:设x >-1,求函数y =x +4x +1+6的最小值; 解:∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2x +1·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴当x =1时,函数y 的最小值是9. 1.假设x >0,y >0,且x +y =18,那么xy 的最大值是________.解析 由于x >0,y >0,那么x +y ≥2xy ,所以xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81. 答案 815.x ,y ∈R +,且满足x 3+y4=1,那么xy 的最大值为_______________.解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案 3 6.(2021·XX 期中)x ,y 为正实数,且满足4x +3y =12,那么xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎨⎧4x =3y ,4x +3y =12,即⎩⎨⎧x =32,y =2时xy 取得最大值3.答案:32.m >0,n >0,且mn =81,那么m +n 的最小值为________.解析:∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.答案:185.x >0,y >0,lg x +lg y =1,那么z =2x +5y的最小值为________.解析:由条件lg x +lg y =1,可得xy =10.那么2x +5y≥210xy=2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:2(2021·XX 高考)log 2a +log 2b ≥1,那么3a +9b的最小值为________. 解析:由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a+9b=3a+32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号).∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.3.设x ,y ∈R ,a >1,b >1,假设a x=b y=3,a +b =23,那么1x +1y的最大值为( )A .2 B.32 C .1 D.12解析 由a x=b y=3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b =log 3ab ≤log 3⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=〞成立,那么1x +1y的最大值为1. 答案 C6.(2021·)设x ,y ∈R ,且xy ≠0,那么⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________.解析 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=〞成立.答案 9例:假设正数x ,y 满足x +3y =5xy ,求xy 的最小值.解:∵x >0,y >0,那么5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.4.假设正实数x ,y 满足2x +y +6=xy ,那么xy 的最小值是________. 答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=〞),即(xy )2-22xy -6≥0,∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18. ∴xy 的最小值为18.例:x >0,y >0,x +2y +2xy =8,那么x +2y 的最小值是( )A .3B .4 C.92 D.112解析 依题意,得(x +1)(2y +1)=9, ∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎨⎧ x +1=2y +1,x +2y +2xy =8,即⎩⎨⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.3.假设x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值X 围; (2)求x +y 的取值X 围.解:由x +2y +xy =30,(2+x )y =30-x , 那么2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30x x +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32 =-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值X 围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎪⎨⎪⎧x =42-2,y =42-1时,等号成立,又x +y =x +2+32x +2-3<30,因此x+y 的取值X 围是[82-3,30).例:a >b >0,那么a 2+16ba -b的最小值是________.解析:∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16ba -b取得最小值16.8.设x ,y ,z 为正实数,满足x -2y +3z =0,那么y 2xz的最小值是________.解析:由条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.答案:3例:x >0,y >0,xy =x +2y ,假设xy ≥m -2恒成立,那么实数m 的最大值是________.解析:由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.1.正数x ,y 满足x +22xy ≤λ(x +y )恒成立,那么实数λ的最小值为________. 解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xyx +y的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.答案:21.关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,那么实数a 的最小值为________. 解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a+2a ≥22x -a ·2x -a+2a =2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32.答案:325.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,那么ab 的取值X 围是( )A.⎝ ⎛⎦⎥⎤-∞,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0 D.⎝ ⎛⎭⎪⎫-∞,14答案 A解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(a =b 时取等号). 故ab 的取值X 围是⎝⎛⎦⎥⎤-∞,14.典例:(12分)a 、b 均为正实数,且a +b =1,求y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b 的最小值.易错分析 在求最值时两次使用根本不等式,其中的等号不能同时成立,导致最小值不能取到.审题视角 (1)求函数最值问题,可以考虑利用根本不等式,但是利用根本不等式,必须保证“正、定、等〞,而且还要符合条件.(2)可以考虑利用函数的单调性,但要注意变量的取值X 围. 规X 解答解 方法一 y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b=⎝⎛⎭⎪⎫ab +1ab +⎝ ⎛⎭⎪⎫b a +a b ≥⎝ ⎛⎭⎪⎫ab +1ab +2=⎝ ⎛⎭⎪⎫ab +1ab 2=⎝ ⎛⎭⎪⎫4ab +1ab -3ab 2≥⎝ ⎛⎭⎪⎫24ab ·1ab -3×a +b 22=⎝ ⎛⎭⎪⎫4-322=254.[10分]当且仅当a =b =12时,y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b 取最小值,最小值为254.[12分]方法二 y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +a b +b a=ab +1ab +a 2+b 2ab =ab +1ab +a +b 2-2ab ab=2ab+ab -2.[8分]令t =ab ≤⎝⎛⎭⎪⎫a +b 22=14,即t ∈⎝ ⎛⎦⎥⎤0,14. 又f (t )=2t +t 在⎝ ⎛⎦⎥⎤0,14上是单调递减的,[10分]∴当t =14时,f (t )min =334,此时,a =b =12.∴当a =b =12时,y 有最小值254.[12分]温馨提醒 (1)这类题目考生总感到比拟容易下手.但是解这类题目却又常常出错.(2)利用根本不等式求最值,一定要注意应用条件:即一正、二定、三相等.否那么求解时会出现等号成立、条件不具备而出错.(3)此题出错的原因前面已分析,关键是忽略了等号成立的条件. 方法与技巧1.根本不等式具有将“和式〞转化为“积式〞和将“积式〞转化为“和式〞的放缩功能,常常用于比拟数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的构造特点,选择好利用根本不等式的切入点. 2.恒等变形:为了利用根本不等式,有时对给定的代数式要进展适当变形.比方:(1)当x >2时,x +1x -2=(x -2)+1x -2+2≥2+2=4.(2)0<x <83,x (8-3x )=13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163.失误与防X1.使用根本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等〞的无视.要利用根本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆〞“拼〞“凑〞等技巧,使其满足重要不等式中“正〞“定〞“等〞的条件.3.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 题型四:利用根本不等式整体换元例2:假设正数 a ,b 满足 ab =a +b +3,求 ab 及 a +b 的取值X 围. 思维突破:此题主要考察均值不等式在求最值时的运用,并表达了换元法、构造法等重要思想.自主解答:方法一:由ab =a +b +3≥2ab +3, 即ab -2ab -3≥0.即(ab -3)(ab +1)≥0. ∵ab ≥0,∴ab +1≥1. 故ab -3≥0,∴ab ≥9. 当且仅当a =b =3时取等号.又∵ab ≤a +b2,∴ab =a +b +3≤⎝ ⎛⎭⎪⎫a +b 22.当且仅当a =b =3时取等号. 即(a +b )2-4()a +b -12≥0,(a +b -6)(a +b +2)≥0.∵a +b +2>0,有a +b -6≥0,即a +b ≥6. ∴a +b 的取值X 围是[6,+∞). 方法二:由ab =a +b +3,那么b =a +3a -1. ab =a +4a a -1=a +4+4a -1=a -1+4a -1+5≥2a -1·4a -1+5=9, 当且仅当a =b =3时取等号. ∴ab 的取值X 围是[9,+∞). 由ab =a +b +3,得b =a +3a -1,a +b =a +a +3a -1=a +1+4a -1=(a -1)+4a -1+2≥2()a -1·4a -1+2=6,当且仅当a =b =3时取等号. ∴a +b 的取值X 围是[6,+∞).技巧总结:整体思想是分析这类题目的突破口,即a +b 与ab 分别是统一的整体,把a +b 转换成ab 或把ab 转换成a +b .例3:正数a ,b 满足a +2b =1,那么1a +1b的最小值是____.试解:1a +1b =a +2b a +a +2b b=3+2b a +ab≥3+22b a ·ab=3+2 2.易错点评:屡次利用根本不等式解题,没有考虑等号能否同时成立。

基本不等式练习题及答案

基本不等式练习题及答案

基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。

因为x>0,所以函数的值域为(0,+∞)。

2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。

3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。

因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。

房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。

求侧面的长度为多少时,总造价最低。

去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。

今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。

每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式应用题
最值问题
一.教学目标:1.进一步掌握用均值不等式求函数的最值问题;
2.能综合运用函数关系,不等式知识解决一些实际问题。

二.教学重点、难点:化实际问题为数学问题。

三.教学过程:
(一)复习:1.均值不等式:
2.极值定理:
(一)练习题
1、已知R y x ∈,,且2=+y x ,求xy 的取值范围。

2、已知R y x ∈,,且2=xy ,求y x +的取值范围。

3、已知R y x ∈,,且2=+y x ,求22y x +的取值范围。

4、已知0,>y x ,且211=+y
x ,求y x 2+的最小值。

5、已知0,,>z y x ,且4=++c b a ,求证:abc c b a 8)4)(4)(4(≥---。

6、(选做题)已知R y x ∈,,且222=+y x ,求y x +的取值范围。

7
3+1,a b R x y x y
∈+=+已知a,b,x,y ,且
求的最小值 (二)新课讲解: 例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,
1.4,2224,24x y x y x y x y +=++=+已知求的最小值。

变式题:已知求的最小值。

22222.,4,log log ,24,log log x y R x y x y x y R x y x y ++∈+=+∈+=+已知、求的最大值。

变式题:已知、求的最大值。

所用篱笆最短。

最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
例3.某工厂要建造一个长方体无盖贮水池,其容积为34800m ,深为3m ,如果池底每21m
的造价为150元,池壁每21m 的造价为120元,问怎样设计水池能使总造价最低,最低总
造价是多少元?
例4.如图,设矩形()ABCD AB AD >的周长为24,把它关于AC 折起来,AB 折过去后,交DC 于P ,设AB x =,求ADP ∆的最大面积及相应的x 值。

例5.甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本........
(以元为单位)由可变部分和固定部分组成:可变部分与速度x (千米/时)的平方成正比,比例系数为b ,固定部分为a 元,
(1)把全程运输成本......y (元)表示为速度x (千米/时)的函数,指出定义域;
(2)为了使全程运输成本......
最小,汽车应以多大速度行驶?
四.课后作业: 班级 学号 姓名
1.一段长为L 米的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时 菜园的面积最大,最大面积是多少?
2.在直径为d 的圆的内接矩形中,问这个矩形的长、宽各为多少时,它的面积最大,最大面积是多少?
3.已知直角三角形两条直角边的和等于10cm ,求面积最大时斜边的长,最大面积是多少?
4.(1)在面积为定值的扇形中,半径是多少时扇形周长最小?
(2)在周长为定值的扇形中,半径是多少时扇形面积最大?
5.某单位建造一间地面面积为122m 的背面靠墙的矩形小房,房屋正面的造价为1200元2
/m ,
房屋侧面的造价为800元2/m ,屋顶的造价为5800元,如果墙高为3m ,且不计房屋。

背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元
6.某工厂第一年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率
为x,求x的取值范围。

7.甲乙两人同时从A地出发,沿同一条路线到B地。

甲在前一半时间的行走速度为a,后一半时间的行走速度为b;乙用速度a走完前半段路程,用速度b走完后半段路程,问甲乙二人谁先到达?。

相关文档
最新文档