2020年重庆市北碚区春招数学试卷
2020年重庆市北碚区中考数学模拟试卷解析版
2020年重庆市北碚区中考数学模拟试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形选自历届世博会会徽,其中是轴对称图形的是()A.B.C.D.3.(4分)下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x4.(4分)下列调查中,最适合采用抽样调查的是()A.对某校初三年级(2)班学生体能测试达标情况的调查B.对“神州十一号”运载火箭发射前零部件质量状况的调查C.对社区5名百岁以上老人的睡眠时间的调查D.对市场上一批LED节能灯使用寿命的调查5.(4分)函数的自变量取值范围是()A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 6.(4分)如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若△ADE的周长为10,则△ABC的周长为()A.20B.30C.35D.407.(4分)×﹣×运算结果应在哪两个连续自然数之间()A.1和2B.2和3C.3和4D.4和58.(4分)已知a2+3a﹣3=0,则代数式a2+的值是()A.3B.C.15D.99.(4分)下列图形都是用同样大小的黑点按一定规律组成的,其中第1个图形有1个黑点,第2个图形有3个黑点,第3个图形有7个黑点,第4个图形有13个黑点,…则第9个图形中黑点的个数是()A.43B.57C.64D.7310.(4分)如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.πB.+1C.πD.π+111.(4分)如图,某校初三学生数学综合实践活动小组的同学欲测量校园内一棵雪松树DE 的高度,他们在这棵树正前方的台阶上的点A处测得树顶端D的仰角为27°,再到台阶下的点B处测得树顶端D的仰角为56°,已知台阶A点的高度AC为2米,台阶AB的坡度i=1:2,则大树DE的高度约为()(参考数据:sin27°≈0.45,tan27°≈0.5,sin56°≈0.83,tan56°≈1.5)A.5米B.6米C.7米D.8米12.(4分)若关于x的不等式组至少有一个整数解,且关于x的方程=的解为整数,则符合条件的整数a的个数为()A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)据统计,2018年重庆中考报名总人数约163600人,把数163600用科学记数法表示为.14.(4分)﹣|2﹣3|﹣3tan30°=.15.(4分)唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:分数(单位:分)10090807060人数14212则这10名学生的数学成绩的中位数是分.16.(4分)现将背面完全相同,正面分别标有数﹣2,﹣1,0,1的4张卡片洗匀后,背面朝上,从中任取两张,将该卡片上的数记为a,b,则使点P(a,b)在平面直角坐标系xOy中,落在直线y=x+1上的概率为.17.(4分)如图,已知点A在反比例函数y=(x<0)上,B,C两点在x轴上,△ABC 是以AC为底边的等腰直角三角形,过点B作BD⊥AC交y轴于点E,交AC于点D,若△BCE的面积为3,则k的值为.18.(4分)近年来,网购越来越流行,某长途货运公司为给客户提供快捷准确的快递服务,确保每一件货件更安全、更有效率地运送,研发了新型能源的甲,乙两种快车,现在对这两种快车进行试运,已知甲、乙两车分别从A、B两地同时以各自的速度匀速相向而行,两车相遇后,甲车把货物转移一部分给乙车,乙车货物加重后减慢速度匀速行驶,甲车的速度不变.甲车出发9小时后,接到通知需原路返回到C处取货物,于是甲车立即调头加快速度匀速向C处行驶,甲追上乙后又经过30分钟到达C处.甲车取货后调头以加快后的速度匀速赶往B地,又经过小时甲、乙两车再次相遇,相遇后向各自原来的终点继续行驶(转移货物、接通知、调头、取货物的时间忽略不计),甲乙两车之间的距离y(千米)与甲车行驶时间x(小时)的部分函数图象如图所示,则乙车到达A地时,甲车距离A地千米.三、解答题(本大题2个小题,每小题8分,共16分)19.(8分)如图,点B,D,C,F在一条直线上,AB=EF,∠ABC=∠EFD,BD=CF.证明:AC=DE.20.(8分)为了响应“德、智、体、美、劳全面发展”的号召,某校初一年级决定开设以下体育课外活动项目:A.排球B.立定跳远C.跳绳D.实心球.为了解学生最喜欢哪一种活动项目,在初一年级学生中随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图.其中最喜欢排球项目的人数占被调查人数的10%,根据图中提供的信息:(1)被调查的学生总人数为人,并补全条形统计图;(2)学校为了及时了解体育课外活动项目的效果,决定随机访谈4名学生,其中有2名学生最喜欢排球项目,有1名学生最喜欢跳绳项目,另有1名学生最喜欢实心球项目.若从上述4名学生中随机抽取2名学生进行模拟测试,请用列表或画树状图的方法求抽出的2名学生恰好都最喜欢排球项目的概率.四、解答题(本大题4个小题,每小题10分,共40分)21.(10分)计算:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2)(﹣x+1)÷22.(10分)如图,一次函数y=kx﹣2与反比例函数y=(m≠0)相交于A,B两点,与x轴,y轴分别交于C,D两点,已知sin∠ADO=,点B的坐标为(2,n).(1)求一次函数和反比例函数的解析式;(2)连接OA,OB,求△AOB的面积.23.(10分)春漫三月,春茶飘香,重庆市永川区某茶叶基地碧绿连绵、碧浪汹涌,株株茶树冒出了新绿,此茶叶基地生产永川秀芽A,B两个品种,今年A品种每千克售价80元,B品种每千克售价100元,该地茶农今年收获A,B两个品种共500吨,其中A品种的产量不超过B品种产量的9倍.(1)该茶农今年收获B品种至少多少吨?(2)该茶农去年将A,B两个品种的茶叶全部运往市场销售,去年A,B的总产量与今年相同,而今年该茶农将收获的A,B两个品种的茶叶全部放在网店销售,且两年都全部售完去年B品种的市场销量在(1)的条件下的最低产量下减少了2m%,售价在今年的基础上增加%,去年A品种的售价与今年相同,去年向市场的运输成本一共为2050000元,今年B品种的销量为(1)中B品种的最低产量,结果去年的利润比今年减少%,求m的值.24.(10分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.五、解答题(本大题2个小题,25题10分,26题12分,共22分)25.(10分)若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x+y)+10y+x,则称实数t为“加成数”,将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h.规定q=t﹣h,f(m)=,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321﹣213=108,f(m)==12.(1)当f(m)最小时,求此时对应的“加成数”的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.26.(12分)如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A 在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.(1)求A、B两点的坐标及二次函数解析式;(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)5的相反数是()A.﹣5B.5C.﹣D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.2.(4分)下列图形选自历届世博会会徽,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.3.(4分)下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x【分析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.【解答】解:A、x2+2x2=3x2,故此选项错误;B、(﹣2x2)3=﹣8x6,故此选项错误;C、x2•(﹣x3)=﹣x5,故此选项正确;D、2x2÷x2=2,故此选项错误.故选:C.4.(4分)下列调查中,最适合采用抽样调查的是()A.对某校初三年级(2)班学生体能测试达标情况的调查B.对“神州十一号”运载火箭发射前零部件质量状况的调查C.对社区5名百岁以上老人的睡眠时间的调查D.对市场上一批LED节能灯使用寿命的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对某校初三年级(2)班学生体能测试达标情况的调查,人数较少,应采用全面调查;B、对“神州十一号”运载火箭发射前零部件质量状况的调查,意义重大,应采用全面调查;C、对社区5名百岁以上老人的睡眠时间的调查,人数较少,应采用全面调查;D、对市场上一批LED节能灯使用寿命的调查,具有破坏性,应采用抽样调查;故选:D.5.(4分)函数的自变量取值范围是()A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+3>0,解得x>﹣3.故选:B.6.(4分)如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若△ADE的周长为10,则△ABC的周长为()A.20B.30C.35D.40【分析】由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的周长比等于相似比求得答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴相似比=,∵相似三角形的周长比等于相似比,△ADE的周长为10,∴△ABC的周长=30,故选:B.7.(4分)×﹣×运算结果应在哪两个连续自然数之间()A.1和2B.2和3C.3和4D.4和5【分析】直接利用二次根式的性质化简,再结合的取值范围得出答案.【解答】解:原式=3﹣4,∵2<<2.3,∴2<3﹣4<3.故选:B.8.(4分)已知a2+3a﹣3=0,则代数式a2+的值是()A.3B.C.15D.9【分析】根据完全平方公式以及整体的思想即可求出答案.【解答】解:由于a2+3a=3,显然a≠0,∴a﹣=﹣3∴(a﹣)2=a2﹣6+∴9=a2﹣6+∴a2+=15故选:C.9.(4分)下列图形都是用同样大小的黑点按一定规律组成的,其中第1个图形有1个黑点,第2个图形有3个黑点,第3个图形有7个黑点,第4个图形有13个黑点,…则第9个图形中黑点的个数是()A.43B.57C.64D.73【分析】仔细观察图形,找到图形的变化规律,然后利用规律求解即可.【解答】解:第1个图形有1个黑点,第2个图形有2×1+1=3个黑点,第3个图形有3×2+1=7个黑点,第4个图形有4×3+1=13个黑点,…第9个图形有9×8+1=73个黑点,故选:D.10.(4分)如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.πB.+1C.πD.π+1【分析】根据扇形的面积公式可得出阴影部分的面积等于扇形BDE的面积﹣扇形ACD 的面积的一半﹣【解答】解:∵AB=2,∴BD=2,S阴影=S扇形BDE﹣S扇形ACD=﹣×=π﹣π=π,故选:A.11.(4分)如图,某校初三学生数学综合实践活动小组的同学欲测量校园内一棵雪松树DE的高度,他们在这棵树正前方的台阶上的点A处测得树顶端D的仰角为27°,再到台阶下的点B处测得树顶端D的仰角为56°,已知台阶A点的高度AC为2米,台阶AB的坡度i=1:2,则大树DE的高度约为()(参考数据:sin27°≈0.45,tan27°≈0.5,sin56°≈0.83,tan56°≈1.5)A.5米B.6米C.7米D.8米【分析】过点A作AF⊥DE于F,可得四边形ACEF为矩形,设DE=x,在Rt△DBE和Rt△ABC中分别表示出BE,BC的长度,求出DF的长度,然后在Rt△ADF中表示出AF 的长度,根据AF=BE,代入解方程求出x的值即可.【解答】解:如图,过点A作AF⊥DE于F,则四边形ACEF为矩形,∴AF=CE,EF=AC=2米,设DE=x,在Rt△BDE中,BE==x,在Rt△ABC中,∵=,AC=2,∴BC=4,在Rt△AFD中,DF=DE﹣EF=x﹣2,∴AF==2(x﹣2),∵AF=CE=BC+BE,∴2(x﹣2)=4+x,解得x=6(米).答:树高为6米.故选:B.12.(4分)若关于x的不等式组至少有一个整数解,且关于x的方程=的解为整数,则符合条件的整数a的个数为()A.2个B.3个C.4个D.5个【分析】由不等式组至少有一个整数解,可得a的取值范围,再求分式方程可得x的表达式,根据分式方程解为整数,可得整数a的个数.【解答】解:解不等式2x﹣(x﹣1)>﹣1,得:x>﹣1,解不等式(x﹣a)≤0,得:x≤a,∵不等式组至少有一个整数解,∴a≥0,解方程=得:x=,又∵x是整数,且x≠2,∴a=0,2,5,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)据统计,2018年重庆中考报名总人数约163600人,把数163600用科学记数法表示为 1.636×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于163600有6位,所以可以确定n=6﹣1=5.【解答】解:163 600=1.636×105.故答案为:1.636×105.14.(4分)﹣|2﹣3|﹣3tan30°=3.【分析】直接利用二次根式的性质以及特殊角的三角函数值化简得出答案.【解答】解:原式=3﹣(2﹣3)﹣3×=3﹣2+3﹣=3.故答案为:3.15.(4分)唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:分数(单位:分)10090807060人数14212则这10名学生的数学成绩的中位数是85分.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100,则中位数为:=85.故答案为:85.16.(4分)现将背面完全相同,正面分别标有数﹣2,﹣1,0,1的4张卡片洗匀后,背面朝上,从中任取两张,将该卡片上的数记为a,b,则使点P(a,b)在平面直角坐标系xOy中,落在直线y=x+1上的概率为.【分析】树状图列出所有等可能结果,根据概率公式解答可得.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中落在直线y=x+1上的有(﹣2,0)和(0,1)这2种,∴落在直线y=x+1上的概率为=,故答案为:.17.(4分)如图,已知点A在反比例函数y=(x<0)上,B,C两点在x轴上,△ABC 是以AC为底边的等腰直角三角形,过点B作BD⊥AC交y轴于点E,交AC于点D,若△BCE的面积为3,则k的值为﹣6.【分析】根据题意得出△BCE的面积=OB.AB=3,即可得到mn=﹣6,从而求得k 的值.【解答】解:∵△ABC是以AC为底边的等腰直角三角形,BD⊥AC,∴AB=BC,∠EBC=45°,∴△BOE是等腰直角三角形,∴OB=OE,设A(m,n),∴AB=BC=n,OB=OE=﹣m,∵△BCE的面积为3,∴BC•OE=3,∴OB•AB=3,∴(﹣m)•n=3,∴mn=﹣6,∴k=﹣6,故答案为﹣6.18.(4分)近年来,网购越来越流行,某长途货运公司为给客户提供快捷准确的快递服务,确保每一件货件更安全、更有效率地运送,研发了新型能源的甲,乙两种快车,现在对这两种快车进行试运,已知甲、乙两车分别从A、B两地同时以各自的速度匀速相向而行,两车相遇后,甲车把货物转移一部分给乙车,乙车货物加重后减慢速度匀速行驶,甲车的速度不变.甲车出发9小时后,接到通知需原路返回到C处取货物,于是甲车立即调头加快速度匀速向C处行驶,甲追上乙后又经过30分钟到达C处.甲车取货后调头以加快后的速度匀速赶往B地,又经过小时甲、乙两车再次相遇,相遇后向各自原来的终点继续行驶(转移货物、接通知、调头、取货物的时间忽略不计),甲乙两车之间的距离y(千米)与甲车行驶时间x(小时)的部分函数图象如图所示,则乙车到达A地时,甲车距离A地600千米.【分析】设甲车的初始速度为v甲km/h,乙车的初始速度为v乙km/h,从图象可求两车第一次相遇时间h,相遇前两车的速度和v甲+v乙=270,相遇后两车的速度和200km/h,从而可求相遇后乙车的速度为(v乙﹣70)km/h;由图知道甲到C后又经过小时辆车相遇,这段时间两车间距离50km,可求第二次向后时两车的速度和330km/h,求得甲车改变后的速度为(v甲+60)km/h,由图可得,两车第二次相遇后30分钟两车相距50km,得到(v甲+60)﹣(v乙﹣70)=50,v乙﹣v甲=30,从而求出v甲=120km/h,v乙=150km/h,求出乙车行驶全程的时间为小时,两车第二相遇的时间小时,甲车到C点时,一共行驶的时间是9++=小时,此时甲车距离A地的距离为1080﹣(﹣9)×180=150km,(﹣)×180=450km,450+150=600km.【解答】解:设甲车的初始速度为v甲km/h,乙车的初始速度为v乙km/h,由图可知,甲、乙行驶h时,两车相900km,∴(v甲+v乙)=900,∴v甲+v乙=270①,∵1800÷270=h,∴两车经过h时第一次相遇,由图可知,行驶9h时两车相距km,∴÷(9﹣)=200km/h,即相遇后两车的速度和为200km/h,∵相遇后甲车的速度不变,∴相遇后乙车的速度为(v乙﹣70)km/h,设甲车返回的速度为xkm/h,由图可知,甲到C后又经过小时辆车相遇,这段时间两车间距离50km,(x+v乙﹣70)=50,∴x+v乙=330,由①可得,x=v甲+60,∴甲车改变后的速度为(v甲+60)km/h,由图可得,两车第二次相遇后30分钟两车相距50km,∴(v甲+60)﹣(v乙﹣70)=50,∴v乙﹣v甲=30②,由①②可得,v甲=120km/h,v乙=150km/h,∴乙车行驶全程的时间为:1800﹣150=800km,800÷(150﹣70)=10小时,10+=小时;甲车行驶9小时的路程是120×9=1080km,乙车行驶9小时的路程是×150+(9﹣)×80=km,此时两车相距1080+﹣1800=km,两车第二相遇的时间为÷(180﹣80)=小时,∴甲车到C点时,一共行驶的时间是9++=小时,此时甲车距离A地的距离为1080﹣(﹣9)×180=150km,(﹣)×180=450km,∴450+150=600km,∴乙车到达A地时,甲车距离A地600km,故答案为600.三、解答题(本大题2个小题,每小题8分,共16分)19.(8分)如图,点B,D,C,F在一条直线上,AB=EF,∠ABC=∠EFD,BD=CF.证明:AC=DE.【分析】先求出BC=FD,再利用“边角边”证明△ABC和△EFD全等,然后根据全等三角形对应边相等证明即可.【解答】证明:∵BD=CF,∴BD+CD=CF+CD,即BC=FD,在△ABC和△EFD中,,∴△ABC≌△EFD(SAS),∴AC=DE.20.(8分)为了响应“德、智、体、美、劳全面发展”的号召,某校初一年级决定开设以下体育课外活动项目:A.排球B.立定跳远C.跳绳D.实心球.为了解学生最喜欢哪一种活动项目,在初一年级学生中随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图.其中最喜欢排球项目的人数占被调查人数的10%,根据图中提供的信息:(1)被调查的学生总人数为200人,并补全条形统计图;(2)学校为了及时了解体育课外活动项目的效果,决定随机访谈4名学生,其中有2名学生最喜欢排球项目,有1名学生最喜欢跳绳项目,另有1名学生最喜欢实心球项目.若从上述4名学生中随机抽取2名学生进行模拟测试,请用列表或画树状图的方法求抽出的2名学生恰好都最喜欢排球项目的概率.【分析】(1)由A项目人数及其所占百分比可得总人数,总人数减去A、B、D三项目的人数求得C项目人数即可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽出的2名学生恰好都最喜欢排球项目的情况,再利用概率公式即可求得答案.【解答】解:(1)被调查的学生总人数为20÷10%=200人,喜欢跳绳的人数为200﹣(20+80+40)=60,补全图形如下:故答案为:200;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中2名学生恰好都最喜欢排球项目的结果数为2种,所以2名学生恰好都最喜欢排球项目的概率为.四、解答题(本大题4个小题,每小题10分,共40分)21.(10分)计算:(1)(a+b)(a﹣2b)﹣(a﹣b)2(2)(﹣x+1)÷【分析】(1)利用多项式乘多项式及完全平方公式计算后,再去括号、合并同类项即可得;(2)先计算括号内的减法,再将除法转化为乘法,最后约分即可得.【解答】解:(1)原式=a2﹣2ab+ab﹣2b2﹣(a2﹣2ab+b2)=a2﹣2ab+ab﹣2b2﹣a2+2ab﹣b2=ab﹣3b2;(2)原式=(﹣)÷=•=﹣=.22.(10分)如图,一次函数y=kx﹣2与反比例函数y=(m≠0)相交于A,B两点,与x轴,y轴分别交于C,D两点,已知sin∠ADO=,点B的坐标为(2,n).(1)求一次函数和反比例函数的解析式;(2)连接OA,OB,求△AOB的面积.【分析】(1)根据一次函数解析式求出D点坐标,解Rt△COD,得出CD=2,OC=4,C(﹣4,0),将C点坐标代入y=kx﹣2,求出一次函数的解析式;再求出点B的坐标,然后将B点坐标代入y=,求出反比例函数解析式;(2)先联立直线与双曲线的解析式,求出A点坐标,再根据S△AOB=S△AOD+S△BOD即可求解.【解答】解:(1)∵一次函数y=kx﹣2与y轴交于D点,∴D(0,﹣2).∵Rt△COD中,sin∠ADO==,∴cos∠ADO====,∴CD=2,∴OC=4,C(﹣4,0),∵一次函数y=kx﹣2与x轴交于C点,∴﹣4k﹣2=0,解得k=﹣,∴一次函数的解析式为y=﹣x﹣2,把点B的坐标(2,n)代入,可得n=﹣×2﹣2=﹣3,∴点B的坐标为(2,﹣3).∵反比例函数y=(m≠0)的图象过B点,∴m=2×(﹣3)=﹣6,∴反比例函数解析式为y=﹣;(2)由,解得,或,∴A(﹣6,1).S△AOB=S△AOD+S△BOD=×2×6+×2×2=8.23.(10分)春漫三月,春茶飘香,重庆市永川区某茶叶基地碧绿连绵、碧浪汹涌,株株茶树冒出了新绿,此茶叶基地生产永川秀芽A,B两个品种,今年A品种每千克售价80元,B品种每千克售价100元,该地茶农今年收获A,B两个品种共500吨,其中A品种的产量不超过B品种产量的9倍.(1)该茶农今年收获B品种至少多少吨?(2)该茶农去年将A,B两个品种的茶叶全部运往市场销售,去年A,B的总产量与今年相同,而今年该茶农将收获的A,B两个品种的茶叶全部放在网店销售,且两年都全部售完去年B品种的市场销量在(1)的条件下的最低产量下减少了2m%,售价在今年的基础上增加%,去年A品种的售价与今年相同,去年向市场的运输成本一共为2050000元,今年B品种的销量为(1)中B品种的最低产量,结果去年的利润比今年减少%,求m的值.【分析】(1)设该茶农今年收获B品种茶叶x吨,则收获A品种茶叶(500﹣x)吨,根据A品种的产量不超过B品种产量的9倍,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;(2)根据总价=单价×数量结合去年的利润比今年减少%,即可得出关于m的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设该茶农今年收获B品种茶叶x吨,则收获A品种茶叶(500﹣x)吨,根据题意得:500﹣x≤9x,解得:x≥50.答:该茶农今年收获B品种茶叶至少50吨.(2)根据题意得:50×(1﹣2m%)×100×1000(1+%)+[500﹣50(1﹣2m%)]×80×1000﹣2050000=[50×100×1000+(500﹣50)×80×1000]×(1﹣%),整理得:m2﹣420m+4100=0,解得:m1=10,m2=410(不合题意,舍去).答:m的值为10.24.(10分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.【分析】(1)先证明证明△CDE≌△CBF,得到CD=CB,可得▱ABCD是菱形,则AD =AB,由DE=BF得AE=AF,则△AEF是等边三角形,根据EF的长可得△AEF的面积;(2)延长DP交BC于N,连结FN,证明△CPN≌△EPD,得到AE=BN,证明△FBN ≌△DEF,得到FN=FD,根据等腰三角形三线合一的性质可得结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,∴S△AEF=×22=;(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.五、解答题(本大题2个小题,25题10分,26题12分,共22分)25.(10分)若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x+y)+10y+x,则称实数t为“加成数”,将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h.规定q=t﹣h,f(m)=,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321﹣213=108,f(m)==12.(1)当f(m)最小时,求此时对应的“加成数”的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.【分析】(1)根据新定义,由求f(m)最小值,可知就是求q的最小值,根据定义表示q=t﹣h=100(x+y)+10y+x﹣(101y+11x)=9y+90x,可得结论;(2)根据f(m)是24的倍数,f(m)=24n(n为正整数),得q=216n,由(1)中q =9y+90x,列方程,解方程可得结论.【解答】解:(1)∵f(m)=,∴当f(m)最小时,q最小,∵t=100(x+y)+10y+x,h=100y+10x+x+y=101y+11x,∴q=t﹣h=100(x+y)+10y+x﹣(101y+11x)=9y+90x,且1≤y≤9,0≤x≤9,x、y为正整数,当x=0,y=1时,q小=9,此时对应的“加成数”是110;(2)∵f(m)是24的倍数,设f(m)=24n(n为正整数),则24n=,q=216n,由(1)知:q=9y+90x=9(y+10x),∴216n=9(y+10x),24n=y+10x,(x+y<10)①当n=1时,即y+10x=24,解得:x=2,y=4,则这样的“节气数”是24;②当n=2时,即y+10x=48,解得:x=4,y=8,x+y=12>10,不符合题意;③当n=3时,即y+10x=72,解得:x=7,y=2,则这样的“节气数”是72;①当n=4时,即y+10x=96,解得:x=9,y=6,x+y=15>10,不符合题意;①当n=5时,即y+10x=120,没有符合条件的整数解,综上,这样的“节气数”有2个,分别为24,72.26.(12分)如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A 在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.(1)求A、B两点的坐标及二次函数解析式;(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.【分析】(1)令y=0,可求A,B点坐标,由直线:y=﹣x﹣与x轴所成锐角为30°,可求D点坐标,代入可求解析式.(2)由A,D两点可求AD解析式,BE∥AD,可求BE解析式,即可求E点坐标,作点P关于AE的对称点P',作点E关于x轴的对称点E',由对称性可得PQ=P'Q,PE=EP'=P'E',则DQ+PQ+PE=DQ+P'Q+P'E',所以当D,Q,E'三点共线时,DQ+PQ+PE值最小,即求DE'的长度.(3)以AM为直角边作等腰三角形,M点为直角顶点作等腰直角三角形,分在直线AM 上方或下方讨论.【解答】解:(1)∵令y=0,∴0=mx2+3mx﹣m∴x1=,x2=﹣∴A(﹣,0),B(,0)∴顶点D的横坐标为﹣∵直线y=﹣x﹣与x轴所成锐角为30°,且D,B关于y=﹣x﹣对称.∴∠DAB=60°,且D点横坐标为﹣∴D(﹣,﹣3)∴﹣3=m﹣m﹣m∴m=∴抛物线解析式y=x2+x﹣(2)∵A(﹣,0),D(﹣,﹣3)∴直线AD解析式y=﹣x﹣∵直线BE∥AD∴直线BE解析式y=﹣x+∴﹣x﹣=﹣x+∴x=∴E(,﹣3)如图2,作点P关于AE的对称点P',作点E关于x轴的对称点E'根据对称性可得PQ=P'Q,PE=EP'=P'E'∴DQ+PQ+PE=DQ+P'Q+P'E'∴当D,Q,E'三点共线时,DQ+PQ+PE值最小即DQ+PQ+PE最小值为DE'∵D(﹣,﹣3),E'(,3)∴DE'=12∴DQ+PQ+PE最小值为12(3)∵抛物线y=(x+)2﹣3图象向右平移个单位,再向上平移3个单位∴平移后解析式y=x2当x=3时,y=3,∴M(3,3)如图3,若以AM为直角边,点M是直角顶点,在AM上方作等腰直角△AME,则∠EAM=45°,直线AE交y轴于F点,作MG⊥x轴,EH⊥MG,则△EHM≌△AMG.∵A(﹣,0),M(3,3)∴E(3﹣3,3+)∴直线AE解析式:y=x+∴F(0,)。
2020年重庆市北碚区春招数学试卷(解析版)
2020年重庆市北碚区春招数学试卷一.选择题(共12小题)1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0B.b<1C.a<b D.a>﹣22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1B.x=2,y=0C.x=1,y=2D.x=3,y=2 6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.如图,AB是⊙O的直径,点P在BA的延长线上,P A=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5B.2C.D.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k 的值是()A.4B.8C.12D.1611.若数a使关于x 的分式方程+=1有非负整数解,且使关于y 的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5B.﹣3C.0D.212.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣10123……p t n t0…y=ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1B.2C.3D.4二.填空题(共6小题)13.计算:(3﹣π)0﹣=.14.代数式有意义,则x的取值范围是.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C 为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是.(结果保留π)16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M 处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.三.解答题(共8小题)19.(1)解方程组.(2)计算:(x+)÷.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0145a 分析数据:平均数中位数众数开学初抽取学生成绩16b17学期末抽取学生成绩1818.519根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG =BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB 于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.参考答案与试题解析一.选择题(共12小题)1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0B.b<1C.a<b D.a>﹣2【分析】直接利用a,b在数轴上位置进而分别分析得出答案.【解答】解:由数轴可得:a<﹣2,故选项A错误;b>1,故选项B错误;a<b,故选项C正确;a<﹣2,故选项D错误;故选:C.【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;负整数指数幂a﹣p=(a≠0),对各选项分析判断后利用排除法求解.【解答】解:A、(x3)4=x12,故本选项错误;B、x3•x2=x5,故本选项正确;C、x+2x=3x,故本选项错误;D、x﹣2=,故本选项错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、负整数指数幂,熟练掌握运算性质和法则是解题的关键.4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等【分析】根据线段垂直平分线的性质判断即可.【解答】解:A、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;B、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;C、线段垂直平分线上任意一点到线段两端的距离相等,是真命题;D、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1B.x=2,y=0C.x=1,y=2D.x=3,y=2【分析】根据题意一一计算即可判断.【解答】解:A、当x=1,y=1时,m=x﹣y=1﹣1=0,不符合题意;B、当x=2,y=0时,m=x﹣y=2﹣0=2,不符合题意;C、当x=1,y=2时,m=﹣2x+y=﹣2+2=0,不符合题意;D、当x=3,y=2时,m=x﹣y=3﹣2=1,符合题意.故选:D.【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【分析】直接利用二次根式的性质化简,进而利用估算无理数的大小的方法得出答案.【解答】解:×+÷=+=4+,∵3<<4,∴7<4+<8,∴×+÷的值应在7和8之间;故选:A.【点评】此题主要考查了估算无理数的大小,正确估算无理数的范围是解题关键.7.如图,AB是⊙O的直径,点P在BA的延长线上,P A=AO,PD与⊙O相切于点D,BC ⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5B.2C.D.【分析】连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODP=90°,根据勾股定理求出PD,再根据勾股定理求出BC即可.【解答】解:连接OD,∵PC切⊙O于D,∴∠ODP=90°,∵⊙O的半径为1,P A=AO,AB是⊙O的直径,∴PO=1+1=2,PB=1+1+1=3,OD=1,∴由勾股定理得:PD===,∵BC⊥AB,AB过O,∴BC切⊙O于B,∵PC切⊙O于D,∴CD=BC,设CD=CB=x,在Rt△PBC中,由勾股定理得:PC2=PB2+BC2,即(+x)2=32+x2,解得:x=,即BC=,故选:D.【点评】本题考查了切线的性质和判定,圆周角定理,勾股定理,切线长定理等知识点,能综合运用定理进行推理是解此题的关键.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)【分析】根据位似变换的定义得到△ACB∽△CED,根据相似三角形的性质求出DE,根据等腰直角三角形的性质求出CE,根据△OCB∽△OED,列出比例式,代入计算得到答案.【解答】解:∵等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,∴△ACB∽△CED,∵相似比为1:3,∴=,即=,解得,DE=6,∵△CED为等腰直角三角形,∴CE=DE=6,∵BC∥DE,∴△OCB∽△OED,∴=,即=,解得,OC=3,∴OE=OC+CE=3+6=9,∴点D的坐标为(9,6),故选:A.【点评】本题考查的是位似变换、相似三角形的性质、坐标与图形性质、等腰直角三角形的性质,掌握位似变换的两个图形是相似图形是解题的关键.9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米【分析】过点F作FH⊥DC于点H,延长DC交EA于点G,可得四边形EFHG是矩形,根据AB的坡度i=1:2.4,AC=13,可得CG=5,AG=12,CH=GH﹣CG=10﹣5=5,再根据锐角三角函数即可求出信号塔CD的高度.【解答】解:如图,过点F作FH⊥DC于点H,延长DC交EA于点G,则四边形EFHG是矩形,∴FH=GE,CG=EF,∵AB的坡度i=1:2.4,AC=13,∴CG=5,AG=12,∴CH=GH﹣CG=10﹣5=5,∴GE=AG+AE=12+18=30,∴在Rt△DCF中,∠DFC=37°,FH=GE=30,∴DH=FH•tan37°≈30×0.75≈22.5,∴CD=DH+CH≈22.5+5≈27.5(米).所以信号塔CD的高度约是27.5米.故选:B.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题和坡度坡角问题,解决本题的关键是掌握仰角俯角和坡度坡角定义.10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k 的值是()A.4B.8C.12D.16【分析】根据菱形的性质得到AC⊥BD,根据勾股定理得到OA=,OD==2,求得直线AC的解析式为y=﹣2x,求得BD的解析式为y=2x,设D(a,2a),根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∵点A(﹣1,2),∴OA=,∵菱形的边长为5,∴AD=5,∴OD==2,∵对角线AC与BD相交于坐标原点O,∴直线AC的解析式为y=﹣2x,∴BD的解析式为y=2x,设D(a,2a),∴a2+(2a)2=20,∴a=2(负值舍去),∴D(2,4),∵D在反比例函数y═(k>0)的图象上,∴k=2×4=8,故选:B.【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.11.若数a使关于x的分式方程+=1有非负整数解,且使关于y的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5B.﹣3C.0D.2【分析】解出分式方程,根据题意确定a的范围,解不等式组,根据题意确定a的范围,根据分式不为0的条件得到a≠﹣2,根据题意计算即可.【解答】解:由①得y>﹣8,由②得y≤a,∴不等式组的解集为:﹣8<y≤a,∵关于y 的不等式组至少有3个整数解,∴a≥﹣5,解分式方程+=1,得x =,∵关于x 的分式方程+=1有非负整数解,且≠3,∴a≤4且a≠﹣2且a为偶数;∴﹣5≤a≤4且a≠﹣2且a为偶数,∴满足条件的整数a为﹣4,0,2,4,∴所有整数a的和=﹣4+0+2+4=2,故选:D.【点评】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.12.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣10123……p t n t0…y=ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1B.2C.3D.4【分析】由抛物线的对称性可求对称轴为:x =,可得p=0,即x=﹣1,x=3是方程ax2+bx+c=0的两个根,可判断②;当x=0,y=c=t>0,可得p+2t=0+2t>0,可判断③;由抛物线中在对称轴的右边,y随x的增大而减小,可得的a<0,由对称轴x=1可得b=﹣2a>0,可判断①;由x=3,y=0,可得c=﹣3a,由顶点坐标为(1,n),a<0,可得am2+bm+c≤a+b+c,可得am2+bm≤﹣4a﹣c,可判断④,即可求解.【解答】解:∵当x=0和x=2时,y=t,∴对称轴为:x=,∴当x=3和x=﹣1时,y的值相等,∴p=0,∴x=﹣1,x=3是方程ax2+bx+c=0的两个根,故②正确;∵当x=0时,y=t,且c>0,∴t=c>0,∴p+2t=0+2t>0,故③错误;∵x=2,y=t>0,x=3,y=0,∴在对称轴的右边,y随x的增大而减小,∴a<0,∵x=﹣,∴b=﹣2a>0,故①正确;∵当x=3时,y=0,∴9a+3b+c=0,∴3a+c=0,∴c=﹣3a,∴﹣4a﹣c=﹣4a+3a=﹣a,∵顶点坐标为(1,n),a<0,∴am2+bm+c≤a+b+c,∴am2+bm≤a+b,∴am2+bm≤﹣a,∴am2+bm≤﹣4a﹣c,故④正确,故选:C.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.二.填空题(共6小题)13.计算:(3﹣π)0﹣=﹣1.【分析】本题涉及零指数幂、三次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(3﹣π)0﹣=1﹣2=﹣1.故答案为:﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、三次根式等知识点的运算.14.代数式有意义,则x的取值范围是x>4.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C 为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是π.(结果保留π)【分析】利用斜边上的中线性质得到DA=DC=DB=AB=5,再计算出∠B得到∠DCB =40°,然后利用扇形的面积公式计算.【解答】解:∵∠ACB=90°,D是AB的中点,∴DA=DC=DB=AB=5,∵∠B=90°﹣∠A=90°﹣50°=40°,∴∠DCB=∠B=40°,∴图中阴影部分的面积==π.故答案为π.【点评】本题考查了扇形面积的计算:扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长).也考查了直角三角形斜边上的中线性质.16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.【分析】先解方程组得直线y=﹣x+5与直线y=x的交点坐标,画出图象,再画树状图展示所有6种等可能的结果数,找出其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点的个数,然后根据概率公式求解.【解答】解:解方程组得,∴直线y=﹣x+5与直线y=x的交点坐标为(3,2),如图,画树状图为:共有6种等可能的结果数,其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点为(1,2),(1,3),(2,3),(3,2),所以点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率==.故答案为.【点评】本题考查了几何概率:某随机事件的概率=这个随机事件所占有的面积与总面积之比,也可以计算利用长度比或体积比计算概率.也考查了树状图法.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M 处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.【分析】过点D作DH⊥AC于H,由等腰三角形的性质和直角三角形的性质可求∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,由折叠的性质可得DN=DC,DB=DM,∠CDF=∠NDF,可证△DMN是等边三角形,可得∠MDN=60°,由折叠的性质可求∠HDF=∠HFD=45°,由直角三角形的性质可求解.【解答】解:如图,过点D作DH⊥AC于H,∵AB=AC=2,∠ABC=30°,AD为BC边上的高,∴∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,∵MN∥AC,∴∠DAC=∠DMN=60°,∵DH⊥AF,∴∠ADH=30°,∴AH=AD=,DH=AH=,∵将△ABC分别沿DE、DF折叠,∴DN=DC,DB=DM,∠CDF=∠NDF,∴DM=DN,∴△DMN是等边三角形,∴∠MDN=60°,∴∠CDN=30°,∴∠CDF=15°,∴∠DFH=∠C+∠CDF=45°,∵DH⊥AF,∴∠HDF=∠HFD=45°,∴DH=HF=,∴AF=AH+HF=,故答案为:.【点评】本题考查了翻折变换,等边三角形的判定和性质,直角三角形的性质,折叠的性质等知识,灵活运用这些性质解决问题是本题的关键.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.【分析】如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.证明△ABF≌△KBE(SAS),推出AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,解直角三角形求出EK即可解决问题.【解答】解:如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠ABC=45°,∴∠BAD=180°﹣∠ABC=135°,∵∠BAK=60°,∴∠EAK=75°,∵∠AEK=90°,∴∠AKE=15°,∵TA=TK,∴∠TAK=∠AKT=15°,∴∠ATE=∠TAK+∠AKT=30°,设AE=a,则AT=TK=2a,ET=a,在Rt△AEK中,∵AK2=AE2+EK2,∴a2+(2a+a)2=2,∴a=,∴EK=2a+a=,∴AF的最小值为.故答案为.【点评】本题考查旋转的性质,平行四边形的性质,等边三角形的性质,全等三角形的判定和性质,垂线段最短,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全球的三角形解决问题,学会用转化的思想思考问题.三.解答题(共8小题)19.(1)解方程组.(2)计算:(x+)÷.【分析】(1)根据加减消元法可以解答此方程组;(2)根据分式的加法和除法可以解答本题.【解答】解:(1),①+②,得4x=12,解得,x=3,将x=3代入①,得y=﹣1,故原方程组的解为;(2)(x+)÷====.【点评】本题考查分式的混合运算、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.【分析】(1)由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.【解答】证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0145a 分析数据:平均数中位数众数开学初抽取学生成绩16b17学期末抽取学生成绩1818.519根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.【分析】(1)由A的两个统计图上的数据得抽取的学生人数,再用求得的总数减去学期末抽取学生成绩统计表中A、B、C、D的人数便可得E组的人数a的值,求出开学初抽取人数中成绩由小到大位于最中间的数据或中间两个数据的平均数便为中位数b的值;(2)用总人数300乘以学期末优秀学生数的百分比与开学初优秀学生数的百分比之差,便可得该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加的人数;(3)可比较再次测试成绩的中位数或平均数,进而得出小莉成绩上升情况的总结.【解答】解:(1)开学初抽取的学生总数为:2=20,∴a=20﹣0﹣1﹣4﹣5=10,开学初抽取学生中B组人数为:20﹣2﹣3﹣4﹣7=4,由此可知开学初所抽取学生的成绩A、B、C组共有2+3+4=9人,则将所抽取的20人的成绩由小到大排列,位于第10位和第11位的成绩都位于D组,∵D组中的数据是:17,17,17,17,17,18,18.∴中位数b==17,补全统计图如下:(2)根据题意得,300×=90,答:该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了90人;(3)从平均数看,小莉开学初测试成绩等于开学初抽取学生成绩的平均数16分,学期末测试成绩19分高于学期末所抽取学生成绩的平均数18分,因此小莉一分钟跳绳练习达到郎的效果;从中位数来看,小莉开学初测试成绩16分低于开学初抽取学生成绩的中位数17分,学期末测试成绩19分高于学期末抽取学生成绩的中位数18,5分,因此小莉一分钟跳绳练习达到郎的效果.【点评】本题考查读条形统计图的能力,利用统计图获取信息的能力,利用统计表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.【分析】(1)思想利用待定系数法确定b的值,再求出x=5时,y1的值即可.(2)画出x<2时,y=﹣x+2的图形即可.(3)利用图象法写出y1的图象在y2的上方时x的值即可.【解答】解:(1)由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.(2)函数图象如图所示:性质:x<3时,y随x的增大而减小,x>3时,y随x的增大而增大.(3)观察图形可知:不等式y1≥y2的解集为:x<﹣2或x>0.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是理解题意,灵活运用所学知识解决问题.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?【分析】(1)设4月份售出B型小家电x台,根据“销售这两种小家电共获利不少于800元”列出不等式并解答;(2)设两种型号的小家电都降价y元,根据“销售利润=(售价﹣进价)×销售数量”列出方程并解答.【解答】解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.【点评】本题考查一元一次不等式和一元二次方程的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.。
重庆市南岸区2020年中考数学春招试卷(含解析)
重庆市南岸区2020年中考数学春招试卷一、选择题1.在下列各数中,比﹣1小的数是()A.0 B.1 C.2 D.﹣22.计算(2x)3的结果是()A.8x3B.8x C.6x3D.2x33.下列命题是真命题的是()A.等边三角形是中心对称图形B.等腰三角形是轴对称图形C.等腰直角三角形是中心对称图形D.直角三角形是轴对称图形4.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4m C.4.5m D.5m5.下列整数中,与9﹣最接近的是()A.4 B.5 C.6 D.76.在Rt△ABC中,∠ACB=90°,∠B=30°,AB与⊙C相切于点D,若AB=6,则CD的长为()A.B.C.3 D.37.按照如图所示的流程,若输出的M=3,则输入的m为()A.﹣1 B.0 C.1 D.38.2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x人,根据题意,可列方程为()A.=×(1﹣10%)B.×(1﹣10%)=C.=×(1﹣10%)D.×(1﹣10%)=9.在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A.B.C.D.10.如图,某校教学楼AB后方有一斜坡,斜坡与教学楼剖面在同一平面内,已知斜坡CD 的长为6m,坡度i=1:0.75,教学楼底部到斜坡底部的水平距离AC=8m,在教学楼顶部B点测得斜坡顶部D点的俯角为46°,则教学楼的高度约为()(参考数据:sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)A.12.1m B.13.3m C.16.9m D.18.1m11.如图,把△ABC纸片沿DE,EF,DG折叠后,A,B,C三点都与BC边上的点M重合,得到矩形DEFG,连接DF,若△DGM和△DMF均是等腰三角形,DG=1,则△ABC的周长为()A.4+2+2B.2+4+2C.2+2+4D.4+212.如图,点A与点B关于原点对称,点C在第四象限,∠ACB=90°.点D是x轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数y=(k>0)的图象经过点A,E.若△ACE的面积为6,则k的值为()A.4 B.6 C.8 D.12二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.15题图13.不等式组的解集是.14.据了解,重庆市为确保2020年完成3万个5G基站建设目标的顺利完成,3月1日已经建设开通5G基站数超过10100个.请把数10100用科学记数法表示为.15.在如图所示的电路图中,当随机闭合开关K1,K2,K3中的两个时,能够让灯泡发光的概率为.16.在Rt△ABC中,∠ACB=90°,AC=4,BC=2.分别以点B,A为圆心,以BC长为半径画弧,交AB于点D,E,交AC于点F,则图中的阴影部分的面积为.(用含π的代数式表示)17.在一段长为1000m的笔直道路AB上,甲、乙两名运动员分别从A,B两地出发进行往返跑训练.已知甲比乙先出发30秒钟,甲距A点的距离y/m与其出发的时间x/分钟的函数图象如图所示.乙的速度是200m/分钟,当乙到达A点后立即按原速返回B点.当两人第二次相遇时,乙跑的总路程是m.18.滴滴快车是一种便捷的出行工具,某地的计价规则如表:计费项目里程费时长费远途费单价2元/公里0.3元/分钟1元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收1元.小李与小张分别从不同地点,各自同时乘坐滴滴快车,到同一地点相见,已知到达约定地点时他们的实际行车里程分别为7公里与9公里,两人付给滴滴快车的乘车费相同.其中一人先到达约定地点,他等候另一人的时间等于他自己实际乘车时间,且恰好是另一人实际乘车时间的一半,则小李的乘车费为元.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡对应的位置上.19.计算:(1)(2x+y)(x+y)+(x﹣y)2;(2)(a﹣)÷.20.如图,AB∥CD,AD与BC相交于点E,AF平分∠BAD,交BC于点F,交CD的延长线于点G.(1)若∠G=29°,求∠ADC的度数;(2)若点F是BC的中点,求证:AB=AD+CD.21.经历疫情复学后,学校开展了多种形式的防疫知识讲座,并举行了全员参加的“防疫”知识竞赛,试卷题目共10题,每题10分.现分别从七年级1,2,3班中各随机抽取10名同学的成绩(单位:分).收集整理数据如下:分析数据:平均数中位数众数1班83 a802班83 b c3班d80 80 根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(一条理由即可);(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级学生共120人,试估计需要准备多少张奖状?22.已知函数y=k|x+2|+b的图象经过点(﹣2,4)和(﹣6,﹣2),完成下面问题:(1)求函数y=k|x+2|+b的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y=x+1的图象如图所示,结合你所画出y=k|x+2|+b的图象,直接写出k|x+2|+b>x+1的解集.23.在疫情期间,某地推出线上名师公益大课堂,为广大师生、其他社会人士提供线上专业知识学习、心理健康疏导.参与学习第一批公益课的人数达到2万人,因该公益课社会反响良好,参与学习第三批公益课的人数达到2.42万人.参与学习第二批、第三批公益课的人数的增长率相同.(1)求这个增长率;(2)据大数据统计,参与学习第三批公益课的人数中,师生人数在参与学习第二批公益课的师生人数的基础上增加了80%;但因为已经部分复工,其他社会人士的人数在参与学习第二批公益课的其他社会人士人数的基础上减少了60%.求参与学习第三批公益课的师生人数.24.对于任意一个四位数,我们可以记为,即=1000a+100b+10c+d.若规定:对四位正整数进行F运算,得到整数F()=a4+b3+c2+d1.例如,F(1249)=14+23+42+91=34;F(2020)=24+03+22+01=20.(1)计算:F(2137);(2)当c=e+2时,证明:F()﹣F()的结果一定是4的倍数;(3)求出满足F()=98的所有四位数.25.如图,在平面直角坐标系内,点A,B的坐标分别为(1,0),(0,2),AC⊥AB,且AB=AC,直线BC交x轴于点D,抛物线y=ax2+bx+2经过点A,B,D.(1)求直线BC和抛物线y=ax2+bx+2的函数表达式;(2)点P是直线BD下方的抛物线上一点,求△PCD面积的最大值,以及△PCD面积取得最大值时,点P的坐标;(3)若点P的坐标为(2)小题中,△PCD的面积取得最大值时对应的坐标.平面内存在直线l,使点B,D,P到该直线的距离都相等,请直接写出所有满足条件的直线l的函数表达式.四、解答题(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.参考答案一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在下列各数中,比﹣1小的数是()A.0 B.1 C.2 D.﹣2【分析】根据有理数的大小比较法则逐个判断即可.解:A、0>﹣1,故本选项不符合题意;B、1>﹣1,故本选项不符合题意;C、2>﹣1,故本选项不符合题意;D、﹣2<﹣1,故本选项符合题意;故选:D.2.计算(2x)3的结果是()A.8x3B.8x C.6x3D.2x3【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.解:(2x)3=23•x3=8x3.故选:A.3.下列命题是真命题的是()A.等边三角形是中心对称图形B.等腰三角形是轴对称图形C.等腰直角三角形是中心对称图形D.直角三角形是轴对称图形【分析】根据中心对称图形和轴对称图形判断即可.解:A、等边三角形是轴对称图形,不是中心对称图形,原命题是假命题;B、等腰三角形是轴对称图形,是真命题;C、等腰直角三角形是轴对称图形,不是中心对称图形,原命题是假命题;D、直角三角形不是轴对称图形,原命题是假命题;故选:B.4.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4m C.4.5m D.5m【分析】利用相似三角形的性质求解即可.解:∵AB∥OP,∴△CAB∽△COP,∴=,∴=,∴OP=5(m),故选:D.5.下列整数中,与9﹣最接近的是()A.4 B.5 C.6 D.7【分析】利用16<17<25可判断最接近的整数为4,从而得到9﹣最接近的整数.解:∵16<17<25,∴4<<5,∴最接近的整数为4,∴9﹣最接近的整数为5.故选:B.6.在Rt△ABC中,∠ACB=90°,∠B=30°,AB与⊙C相切于点D,若AB=6,则CD的长为()A.B.C.3 D.3【分析】根据直角三角形的性质得到AC=AB=3,根据切线的性质得到∠ADC=90°,解直角三角形得到答案.解:在Rt△ABC中,∠ACB=90°,∠B=30°,∴AC=AB=3,∠A=60°,∵AB与⊙C相切,∴CD⊥AB,∴∠ADC=90°,∴CD=AC•sin A=3×=,故选:B.7.按照如图所示的流程,若输出的M=3,则输入的m为()A.﹣1 B.0 C.1 D.3【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m的值,从而可以解答本题.解:当m2﹣2m≥0时,=3,解得m=3,经检验,m=3是原方程的解,并且满足m2﹣2m≥0;当m2﹣2m<0时,m﹣3=3,解得m=6,不满足m2﹣2m<0,舍去.故输入的m为3.故选:D.8.2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x人,根据题意,可列方程为()A.=×(1﹣10%)B.×(1﹣10%)=C.=×(1﹣10%)D.×(1﹣10%)=【分析】根据题意,可以列出相应的分式方程,从而可以解答本题.解:由题意可得,×(1﹣10%),故选:A.9.在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A.B.C.D.【分析】利用三角形外角性质得到∠B=∠BCD,利用等腰三角形的判定得到DB=DC,然后根据线段垂直平分线的作法对各选项进行判断.解:∵∠ADC=∠B+∠BCD,∠ADC=2∠B,∴∠B=∠BCD,∴DB=DC,∴点D为BC的垂直平分线与AB的交点.故选:C.10.如图,某校教学楼AB后方有一斜坡,斜坡与教学楼剖面在同一平面内,已知斜坡CD 的长为6m,坡度i=1:0.75,教学楼底部到斜坡底部的水平距离AC=8m,在教学楼顶部B点测得斜坡顶部D点的俯角为46°,则教学楼的高度约为()(参考数据:sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)A.12.1m B.13.3m C.16.9m D.18.1m【分析】过点D作DE⊥AC,DF⊥AB于点E,F,根据题意可得,四边形FAED是矩形,再根据锐角三角函数即可求出教学楼的高度.解:如图,过点D作DE⊥AC,DF⊥AB于点E,F,根据题意可知:BA⊥AC,∴四边形FAED是矩形,∴FA=DE,DF=AE,∵斜坡CD的长为6m,坡度i=DE:CE=1:0.75,∴DE=4.8,CE=3.6,∴DF=AE=AC+CE=11.6,在Rt△BFD中,∠BDF=46°,∴BF=DF•tan46°≈11.6×1.04≈12.064,∴BA=BF+FA=12.064+4.8≈16.9(m).所以教学楼的高度约为16.9米.故选:C.11.如图,把△ABC纸片沿DE,EF,DG折叠后,A,B,C三点都与BC边上的点M重合,得到矩形DEFG,连接DF,若△DGM和△DMF均是等腰三角形,DG=1,则△ABC的周长为()A.4+2+2B.2+4+2C.2+2+4D.4+2【分析】由矩形的性质可得DG=EF=1,∠DGM=90°=∠EFM,由等腰三角形的性质和勾股定理可求DM=FM=,ME=,由折叠的性质可得BG=GM=1,AD=DM=DB=,AE=ME=EC=,MF=FC=,即可求解.解:∵四边形DEFG是矩形,∴DG=EF=1,∠DGM=90°=∠EFM,∵△DGM是等腰三角形,DG=1,∴DG=EF=1=GM,∴DM=DG=,∵△DMF均是等腰三角形,∴DM=FM=,∴ME===,∵把△ABC纸片沿DE,EF,DG折叠后,A,B,C三点都与BC边上的点M重合,∴BG=GM=1,AD=DM=DB=,AE=ME=EC=,MF=FC=,∴△ABC的周长=AB+AC+BC=AD+BD+AE+EC+BG+GM+MF+FC=4+2+2,故选:B.12.如图,点A与点B关于原点对称,点C在第四象限,∠ACB=90°.点D是x轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数y=(k>0)的图象经过点A,E.若△ACE的面积为6,则k的值为()A.4 B.6 C.8 D.12【分析】连接OC,在Rt△ABC中,点O是AB的中点,得到OC=AB=OA,根据角平分线的定义得到∠OAC=∠EAC,得到∠OCA=∠EAC,过A作AM⊥x轴于M,过D作DN⊥x 轴于N,易得S梯形AMNC=S△AOC,△DAM∽△DEN,得到S梯形AMNC=S△AOC=S△AEC=6,求得S△AOD=9,延长DA交y轴于P,易得△DAM∽△DPO,设EN=a,则AM=2a,推出S△DAM:S△AOM=2:1,于是得到结论.解:连接OC,在Rt△ABC中,点O是AB的中点,∴OC=AB=OA,∴∠OAC=∠OCA,∵AC是∠BAD的角平分线,∴∠OAC=∠EAC,∴∠OCA=∠EAC,∴AE∥OC∴S△AEC=S△AOE,过A作AM⊥x轴于M,过E作EN⊥x轴于N,∵A、E都在反比例函数y=的图象上,∴S△AOM=S△EON,∴S梯形AMNE=S△AOE,∵AM∥EN,∴△DAM∽△DEN,∵AE=DE,S梯形AMNE=S△AOE=S△AEC=6,∴S△AOD=12,延长DA交y轴于P,易得△DAM∽△DPO,设EN=a,则AM=2a,∴ON=,OM=,∴MN=,DN=,∴DM:OM=2:1,∴S△DAM:S△AOM=2:1,∴S△AOM=4,∴k=8.故选:C.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.15题图13.不等式组的解集是1<x≤5 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x﹣2≤3,得:x≤5,又x>1,∴1<x≤5,故答案为:1<x≤5.14.据了解,重庆市为确保2020年完成3万个5G基站建设目标的顺利完成,3月1日已经建设开通5G基站数超过10100个.请把数10100用科学记数法表示为 1.01×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将10100用科学记数法表示为:1.01×104.故答案为:1.01×104.15.在如图所示的电路图中,当随机闭合开关K1,K2,K3中的两个时,能够让灯泡发光的概率为.【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案.解:画树状图得:∵共有6种等可能的结果,能够让灯泡发光的是闭合(K1,K3),(K1,K2),(K3,K1),(K2,K1),∴能够让灯泡发光的概率为:=,故答案为:.16.在Rt△ABC中,∠ACB=90°,AC=4,BC=2.分别以点B,A为圆心,以BC长为半径画弧,交AB于点D,E,交AC于点F,则图中的阴影部分的面积为4﹣π.(用含π的代数式表示)【分析】先利用扇形的面积公式计算S扇形EAF+S△DBC==π,然后利用图中的阴影部分的面积=S△ABC﹣(S扇形EAF+S△DBC)计算计算.解:∵∠ACB=90°,∴∠A+∠B=90°,∴S扇形EAF+S△DBC==π,∴图中的阴影部分的面积=S△ABC﹣(S扇形EAF+S△DBC)=×4×2﹣π=4﹣π.故答案为4﹣π.17.在一段长为1000m的笔直道路AB上,甲、乙两名运动员分别从A,B两地出发进行往返跑训练.已知甲比乙先出发30秒钟,甲距A点的距离y/m与其出发的时间x/分钟的函数图象如图所示.乙的速度是200m/分钟,当乙到达A点后立即按原速返回B点.当两人第二次相遇时,乙跑的总路程是m.【分析】据函数图象中的数据求出甲的速度,进而求出两人第二次相遇时甲出发的时间,从而得出当两人第二次相遇时,乙跑的总路程.解:甲的速度为:1000÷4=250(米/分钟),两人第一次相遇时处于两人都未跑完一个1000m时,由图象可知时间处于4分钟以内;∵甲比乙先出发30秒钟,∴当x=5分钟时,乙跑了4.5分钟,此时乙跑了200×4.5=900<1000(m);设甲出发x分钟后两人第二次相遇时,根据题意得:(250+200)(x﹣5)=(1000﹣900+1000),解得:x=,当两人第二次相遇时,乙跑的总路程是200×(﹣)=(m).故答案为:.18.滴滴快车是一种便捷的出行工具,某地的计价规则如表:计费项目里程费时长费远途费单价2元/公里0.3元/分钟1元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收1元.小李与小张分别从不同地点,各自同时乘坐滴滴快车,到同一地点相见,已知到达约定地点时他们的实际行车里程分别为7公里与9公里,两人付给滴滴快车的乘车费相同.其中一人先到达约定地点,他等候另一人的时间等于他自己实际乘车时间,且恰好是另一人实际乘车时间的一半,则小李的乘车费为26 元.【分析】设先到达约定地点的实际乘车时间为x分钟,则后到达约定地点的实际乘车时间为2x分钟,根据两人的乘车费用相同,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入(2×7+0.3×2x)中即可求出结论.解:设先到达约定地点的实际乘车时间为x分钟,则后到达约定地点的实际乘车时间为2x分钟,依题意,得:2×7+0.3×2x=2×9+0.3x+1×(9﹣7),解得:x=20,∴2×7+0.3×2x=26.故答案为:26.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡对应的位置上.19.计算:(1)(2x+y)(x+y)+(x﹣y)2;(2)(a﹣)÷.【分析】(1)根据分多项式乘多项式和完全平方公式可以解答本题;(2)根据分式的减法和除法可以解答本题.解:(1)(2x+y)(x+y)+(x﹣y)2=2x2+2xy+xy+y2+x2﹣2xy+y2=3x2+xy+2y2;(2)(a﹣)÷====.20.如图,AB∥CD,AD与BC相交于点E,AF平分∠BAD,交BC于点F,交CD的延长线于点G.(1)若∠G=29°,求∠ADC的度数;(2)若点F是BC的中点,求证:AB=AD+CD.【分析】(1)根据平等线的性质得∠BAG=∠G,∠BAD=∠ADC.进而证由角平分线的性质得∠ADC=∠BAD=2∠G.便可求得结果;(2)先由角平分线条件证明AD=DG,再证明△ABF≌△GCF,便可得结论.【解答】证明:(1)∵AB∥CD,∴∠BAG=∠G,∠BAD=∠ADC.∵AF平分∠BAD,∴∠BAD=2∠BAG=2∠G.∴∠ADC=∠BAD=2∠G.∵∠G=29°,∴∠ADC=58°;(2)∵AF平分∠BAD,∴∠BAG=∠DAG.∵∠BAG=∠G,∴∠DAG=∠G.∴AD=GD.∵点F是BC的中点,∴BF=CF.在△ABF和△GCF中,∵∴△ABF≌△GCF(AAS),∴AB=GC.∴AB=GD+CD=AD+CD.21.经历疫情复学后,学校开展了多种形式的防疫知识讲座,并举行了全员参加的“防疫”知识竞赛,试卷题目共10题,每题10分.现分别从七年级1,2,3班中各随机抽取10名同学的成绩(单位:分).收集整理数据如下:分析数据:平均数中位数众数1班83 a802班83 b c3班d80 80根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(一条理由即可);(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级学生共120人,试估计需要准备多少张奖状?【分析】(1)利用折线统计图得到一班和二班的成绩,然后利用中位数的定义确定a、b 值,利用众数的定义确定c的值;利用平均数的计算方法确定d的值;(2)利用中位数和众数的意义进行判断;(3)求出样本中满分的同学所占的百分比,然后120乘以这个百分比可估计该校七年级学生的满分人数.解:(1)一班10个数据的中第5、第6个数据都是80分,所以a=80;二班10个数据的中第5、第6个数据分部是80分、90分,所以b=85;二班10个数据的中90分出现的次数最短,所以c=90;三班的平均数d=(60+70+80×4+90×2+100×2)=83;(2)我认为七年级2班的成绩比较好,随机抽取的样本中,三个班样本成绩的平均数都为83,2班成绩的中位数为85,大于1班和3班成绩的中位数80;2班成绩的众数90大于1班和3班成绩的众数80;(3)因为所抽取的样本中,样本总量是30,而其中满分人数是1+1+2=4.所以×120=16答:估计需要准备的奖状是16张.22.已知函数y=k|x+2|+b的图象经过点(﹣2,4)和(﹣6,﹣2),完成下面问题:(1)求函数y=k|x+2|+b的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y=x+1的图象如图所示,结合你所画出y=k|x+2|+b的图象,直接写出k|x+2|+b>x+1的解集.【分析】(1)根据待定系数法求得即可;(2)画出函数的图象,根据图象得出性质;(3)根据图象求得即可.解:(1)根据题意,得,解方程组,得,所求函数表达式为;(2)函数的图象如图所示,性质为:①当x<﹣2时,y随x增大而增大;当x>﹣2时,y随x增大而减少.②当x=﹣2时,该函数取得最大值,函数的最大值为4.(3)由图象可知:k|x+2|+b>x+1的解集为:﹣6<x<0.23.在疫情期间,某地推出线上名师公益大课堂,为广大师生、其他社会人士提供线上专业知识学习、心理健康疏导.参与学习第一批公益课的人数达到2万人,因该公益课社会反响良好,参与学习第三批公益课的人数达到2.42万人.参与学习第二批、第三批公益课的人数的增长率相同.(1)求这个增长率;(2)据大数据统计,参与学习第三批公益课的人数中,师生人数在参与学习第二批公益课的师生人数的基础上增加了80%;但因为已经部分复工,其他社会人士的人数在参与学习第二批公益课的其他社会人士人数的基础上减少了60%.求参与学习第三批公益课的师生人数.【分析】(1)设参与学习第二批、第三批公益课的人数的增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解.(2)设参与学习第二批公益课的人数中,师生有a万人,其他人士有b万人.根据“第三批公益课的人数=第二批公益课的师生人数×(1+80%)”、“其他社会人士的人数在参与学习第二批公益课的其他社会人士人数的基础上减少了60%”列出方程组并解答.解:(1)设参与学习第二批、第三批公益课的人数的增长率为x,根据题意,得2(1+x)2=2.42,解得x1=﹣2.1(舍去),x2=0.1=10%.答:参与学习第二批、第三批公益课的人数的增长率为10%.(2)设参与学习第二批公益课的人数中,师生有a万人,其他人士有b万人.根据题意,得.解方程组,得a×(1+80%)=1.1×1.8=1.98.答:参与第三批公益课的师生人数为1.98万人.24.对于任意一个四位数,我们可以记为,即=1000a+100b+10c+d.若规定:对四位正整数进行F运算,得到整数F()=a4+b3+c2+d1.例如,F(1249)=14+23+42+91=34;F(2020)=24+03+22+01=20.(1)计算:F(2137);(2)当c=e+2时,证明:F()﹣F()的结果一定是4的倍数;(3)求出满足F()=98的所有四位数.【分析】(1)根据F()=a4+b3+c2+d1代入数据计算即可求解;(2)根据F()=a4+b3+c2+d1得到=c2﹣e2,再根据已知条件c=e+2,可得原式=4(e+1),依此即可求解;(3)首先得到x2+y=9,再根据整数的性质确定0≤x≤3,且x为整数,可求对应的y 值,从而求解.解:(1)F(2137)=24+13+32+71=16+1+9+7=33;(2)∴=(a4+b3+c2+d)﹣(a4+b3+e2+d)=c2﹣e2,∵c=e+2,原式=(e+2)2﹣e2=4e+4=4(e+1).∵e≥0,且e是整数,∴4(e+1)是4的倍数.所以,当c=e+2时,的结果一定是4的倍数.(3)∵,∴34+23+x2+y=98,即x2+y=9.∵0≤y≤9,∴0≤x2≤9.∴0≤x≤3,且x为整数.∴或或或.所以,满足条件的四位数有3209,3218,3225,3230.25.如图,在平面直角坐标系内,点A,B的坐标分别为(1,0),(0,2),AC⊥AB,且AB=AC,直线BC交x轴于点D,抛物线y=ax2+bx+2经过点A,B,D.(1)求直线BC和抛物线y=ax2+bx+2的函数表达式;(2)点P是直线BD下方的抛物线上一点,求△PCD面积的最大值,以及△PCD面积取得最大值时,点P的坐标;(3)若点P的坐标为(2)小题中,△PCD的面积取得最大值时对应的坐标.平面内存在直线l,使点B,D,P到该直线的距离都相等,请直接写出所有满足条件的直线l的函数表达式.【分析】(1)证明△ABO≌△CAE(AAS),求出点C的坐标,进而求解;(2)利用,即可求解;(3)满足条件的直线有三条,是△PDB三条中位线所在的直线,即可求解.解:(1)过点C作CE⊥x轴,垂足为E.∵AB=AC,∠AOB=∠CEA=90°,∠ABO=∠CAE,∴△ABO≌△CAE(AAS).∴AO=CE,BO=AE.∵A(1,0),B(0,2),∴CE=AO=1,AE=BO=2.∴C(3,1).设直线BC的函数表达式为y=kx+s(k≠0).把点B(0,2),C(3,1)代入,得,解得,所以,直线BC的函数表达式为.令y=0,得x=6,则D(6,0).∵抛物线y=ax2+bx+2经过点A(1,0),D(6,0),则.解得,∴抛物线的函数表达式为.(2)过点P作x轴的垂线,垂足为H,交BD于点F.令P的横坐标为t.∵点P在BD直线下方的抛物线上移动,∴PF=.过点C作CG⊥PF,垂足为G.∴,即.所以,当t=3时,△PCD的面积取得最大值,最大值为.此时点P坐标为(3,﹣2).(3)满足条件的直线有三条,是△PDB三条中位线所在的直线.由点P、D、B的坐标可得,PD、BD、PB的中点分别为:(,﹣1)、(3,1)、(,0),设过(,﹣1)、(3,1)的直线表达式为y=mx+n,则,解得,故直线的表达式为:y=﹣x+5,同理其它两条直线的表达式为:或.三条直线的函数表达式分别为,,.四、解答题(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.【分析】(1)证明△ANK≌△MNE(ASA).得出AK=ME,NK=NE.则结论得证;(2)得出∠P=∠PCH=∠CHF=90°.则四边形PCHF是矩形.证明△ABE≌△EPF(AAS).得出BE=PF,AB=EP.可证得CP=BE=PF.得出矩形PCHF是正方形,则结论得证;(3)延长FH交AC于点Q,由中位线定理可得出AQ=2GH,由等腰直角三角形的性质可得出CQ=GH,则可得出结论.【解答】(1)证明:如图1,过点N作NK⊥NE,交AE于点K.∴∠KNE=90°.∵MN⊥AB,∴∠MNA=90°.∴∠ANK=∠MNE.∵ME⊥AE,∴∠AEM=∠ANM=90°.∴∠NAK=∠NME.∵四边形ABCD是正方形,∠ANM=90°.∴∠MAN=∠NMA=45°.∴AN=MN.在△ANK和△MNE中,∵,∴△ANK≌△MNE(ASA).∴AK=ME,NK=NE.∴KE=NE.∴AE=AK+KE=ME+NE.(2)解:CH=FH.如图2,过点F作FP⊥BC,交BC的延长线于点P.∴∠P=90°.∵∠BAE+∠AEB=∠FEP+∠AEB=90°,∴∠BAE=∠FEP.∵四边形ABCD是正方形,∴∠B=∠BCD=∠PCD=90°,AB=BC.∵FH⊥CD,∴∠FHC=90°.∴∠P=∠PCH=∠CHF=90°.∴四边形PCHF是矩形.在△ABE和△EPF中,∵,∴△ABE≌△EPF(AAS).∴BE=PF,AB=EP.∵AB=BC,∴EP=BC.∴CP=BE=PF.∴矩形PCHF是正方形.∴FH=CH.(3)AC=GH.如图3,延长FH交AC于点Q,在正方形ABCD中,∠ACD=45°,∵∠FHC=90°,∴∠HQC=∠HCQ=45°,∴CH=HQ,CQ=CH,∵CH=FH,∴HQ=FH,∵G是AF的中点,∴GH=AQ,又∵GH=CH,∴CQ=GH,∴AC=AQ+CQ=2GH+GH=(2+)GH.。
重庆名校联盟2020届春季联考全科试题及答案--数学试题
高2020级【文科数学试题】·第1页(共2页)1 是=2x y =x +2y x 秘密★启用前重庆市名校联盟2019~2020学年度第二次联合考试文科数学试题(高2020级)【命题:永川中学 赵永正 审题 永川中学 盘如春】(本试卷共2页,总分150分,考试时间120分钟) 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,并认真核对条形码上的姓名、准考证号、座位号及科类名称。
2.请将准考证条形码粘贴在右侧的[考生条形码粘贴处]的方框内。
3.选择题必须使用2B 铅笔填涂;非选择题必须用0.5毫米黑色字迹的签字笔填写,字体工整、笔迹清楚。
4.请按题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。
5.保持答题卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷(选择题60分) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合},1,0,1,3{},2,1,0,1,2{--=--=B A 则A B =IA.}2,1,0,1,2,3{---B.}1,0,1{-C.}2,1,0,1{-D.}23|{≤≤-x x 2.复数=+ii 1A.i -1B.i +1C.i --1D.i +-1 3.已知132211log 3,,log ,23a b c ⎛⎫=== ⎪⎝⎭则c b a ,,的大小关系为 A.c b a >> B.c a b >> C.b c a >> D.a c b >> 4.利用系统抽样法从编号分别为1,2,3,..,80的80件不同产品中抽出一个容量为16的样本,如果抽出的产品中有一件产品的编号为13,则抽出的产品的最大编号为 A.73 B.76 C.78 D.77 5. 函数)1()(2-=x x x f 的大致图象为A B C D6. 已知1cos 0,22παα=-<<,则cos 3πα⎛⎫- ⎪⎝⎭的值是 A.21 B.32 C.21- D.1 7. 若,,2||,1||b a c b a ρρρρρ+===且,a c ρρ⊥则向量a ρ与b ρ的夹角为 A.30o B.60o C.120o D.150o 8. 若执行右侧的程序框图,当输入的x 的值为4时,输出 的y 的值为2,则空白判断框中的条件可能为 A .3x > B .4x > C .4x ≤ D .5x ≤ 9. 设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴 垂直,l 与C 交于点B A ,两点,||AB 为C 的实轴长的2倍, 则C 的离心率为 A.2 B.3 C.2 D.310. 在ABC ∆中,c b a ,,分别是角C B A ,,的对边,,21cos =B且,2=+c a 则边长b 的最小值为 A.4 B.3 C.2 D.1 11. 已知函数)(x f 的定义域为.R 当0<x 时,;1)(3-=x x f 当11≤≤-x 时,);()(x f x f -=- 当21>x 时,11.22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭则=)6(fA.-2B.2C.0D.-1 12. 过点)0,2(-M 的直线m 与椭圆1222=+y x 交于,,21P P 线段21P P 的中点为,P 设直线m 的斜率为),0(11≠k k 直线OP 的斜率为,2k 则21k k 的值为A.2B.2-C.21D.21-第Ⅱ卷(非选择题90分)二、填空题(每小题5分,4个小题共20分)13. 曲线x x y 22+=在点(1,3)处的切线的斜率为____.14. 设n S 为等比数列}{n a 的前n 项和,且,0852=+a a 则.___23=S S15. 若函数,21cos sin sin )(2-+=x x x x f 则)(x f 的最大值为_____.16. 已知三棱锥ABC P -的所有棱长都相等,现沿PC PB PA ,,三条侧棱剪开,将其表面展 成一个平面图形,若这个平面图形外接圆的半径为,62则三棱锥ABC P -的内切球的表面 积为_____.高2020级【文科数学试题】·第2页(共2页)2 DB 1A 1CBAC 1三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.)17.(12分)为了解人们对于国家颁布的“生育二胎放开”政策的热度,现在某市进行调年龄 [5,15) [15,25) [25,35) [35,45) [45,55) [55,65) 频数 5 10 15 10 5 5 支持“生二胎” 4 5 12 8 2 1(Ⅰ)由以上统计数据填下面22⨯列联表,并问是否有的把握认为以45岁为分界点对 年龄不低于45岁的人数 年龄低于45岁的人数 合计 支持 不支持 合计二胎放开”的概率是多少?参考数据及公式:.))()()(()(22d b c a d c b a bc ad n K ++++-=(其中d c b a n +++=) .001.0)828.10(,010.0)635.6(,050.0)841.3(222=≥=≥=≥K P K P K P18. (12分)已知单调递增数列}{n a 为等差数列,且2a 与4a 是方程045142=+-x x 的两个根.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若记,2n n n a b +=求数列}{n b 的前n 项和n S .19. (12分)如图所示几何体,111C B A ABC -为三棱柱,且⊥1AA 平面ABC ,,1AC AA =四边形ABCD 为平行四边形,.60,20=∠=ADC CD AD(Ⅰ)求证:⊥AB 平面;11A ACC(Ⅱ)若,2=CD 求四棱锥CD B A C 111-的体积.20. (12分)已知函数.2ln )(2xx x f -= (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若mx x f x g 2)()(-=在区间),1(+∞上有零点,求实数m 的取值范围.21.(12分)已知抛物线px y C 2:2=过点).1,1(P 过点10,2⎛⎫ ⎪⎝⎭作直线l 与抛物线C 交于不同的两点,,N M 过点M 作x 轴的垂线分别与直线ON OP ,交于点,,B A 其中O 为坐标原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做则按所做的第题计分.22. [选修4-4:坐标系与参数方程]在直角坐标系xoy 中,曲线1C 的参数方程为t t y t x (sin 2cos 1⎩⎨⎧+=+-=αα为参数),其中).(,2Z k k ∈+≠ππα以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为.04sin 4cos 22=+--θρθρρ (Ⅰ)求曲线2C 的直角坐标方程;(Ⅱ)已知点)2,1(-P ,曲线1C 与曲线2C 交于B A ,两点,求||||PB PA +的取值范围.23. [选修4-5:不等式选讲]已知函数.||||)(b x a x x f -++=(Ⅰ)当1,1==b a 时,求不等式()4≤x f 的解集;(Ⅱ)若,0,0>>b a )(x f 的最小值为2,求ba 21+的最小值。
2020年重庆市中考招生考试数学试题(B卷)(解析版)
A. 23 米
B. 24 米
C. 24.5 米
D. 25 米
2x 1 3x 2
10.若关于
x的一元一次不等式组x 2a Nhomakorabea1
的解集为 x≥5,且关于 y 的分式方程
y
y
2
2
a
y
1 有非负整数解,则符合条件的所有整数
a
的和为(
)
A. -1
B. -2
C. -3
D. 0
11.如图,在△ABC 中,AC= 2 2 ,∠ABC=45°,∠BAC=15°,将△ACB 沿直线 AC 翻折至△ABC 所在的平
上一动点,点 N 为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A, E,M,N 为顶点的四边形为平行四边形,若存在,直接写出点 N 的坐标;若不存在,请说明理由.
四、解答题(本大题 1 个小题,共 8 分) 26.△ABC 为等边三角形,AB=8,AD⊥BC 于点 D,E 为线段 AD 上一点,AE= 2 3 .以 AE 为边在直线 AD
4.如图,AB 是⊙O 的切线,A 为切点,连接 OA,OB,若∠B=35°,则∠AOB 的度数为( )
重庆市 2020 年初中学业水平暨高中招生考试数学试题(B 卷)
(全卷共四个大题,满分 150 分,考试时间 120 分钟)
参考公式:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为( b ,4ac b2 ),对称轴公式为 x= b .
2a 4a
2a
一、选择题(本大题 12 个小题,每小题 4 分,共 48 分)
为 2510 元,第三时段返现金额比第一时段多 420 元,则第二时段返现金额为____元.
重庆市北碚区2020年中考数学春招模拟试卷(含解析)
重庆市北碚区2020年中考数学春招模拟试卷一、选择题(共12小题).1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0 B.b<1 C.a<b D.a>﹣22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1 B.x=2,y=0 C.x=1,y=2 D.x=3,y=2 6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5 B.2 C.D.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4 B.8 C.12 D.1611.若数a使关于x 的分式方程+=1有非负整数解,且使关于y 的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5 B.﹣3 C.0 D.212.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣1 0 1 2 3 …y=…p t n t0 …ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:(3﹣π)0﹣=.14.代数式有意义,则x的取值范围是.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是.(结果保留π)16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组.(2)计算:(x+)÷.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0 1 4 5 a 分析数据:平均数中位数众数开学初抽取学生成绩16 b17学期末抽取学生成绩18 18.5 19根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框浍黑.1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0 B.b<1 C.a<b D.a>﹣2【分析】直接利用a,b在数轴上位置进而分别分析得出答案.解:由数轴可得:a<﹣2,故选项A错误;b>1,故选项B错误;a<b,故选项C正确;a<﹣2,故选项D错误;故选:C.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;负整数指数幂a﹣p=(a≠0),对各选项分析判断后利用排除法求解.解:A、(x3)4=x12,故本选项错误;B、x3•x2=x5,故本选项正确;C、x+2x=3x,故本选项错误;D、x﹣2=,故本选项错误;故选:B.4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等【分析】根据线段垂直平分线的性质判断即可.解:A、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;B、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;C、线段垂直平分线上任意一点到线段两端的距离相等,是真命题;D、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;故选:C.5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1 B.x=2,y=0 C.x=1,y=2 D.x=3,y=2 【分析】根据题意一一计算即可判断.解:A、当x=1,y=1时,m=x﹣y=1﹣1=0,不符合题意;B、当x=2,y=0时,m=x﹣y=2﹣0=2,不符合题意;C、当x=1,y=2时,m=﹣2x+y=﹣2+2=0,不符合题意;D、当x=3,y=2时,m=x﹣y=3﹣2=1,符合题意.故选:D.6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【分析】直接利用二次根式的性质化简,进而利用估算无理数的大小的方法得出答案.解:×+÷=+=4+,∵3<<4,∴7<4+<8,∴×+÷的值应在7和8之间;故选:A.7.如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB 交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5 B.2 C.D.【分析】连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODP=90°,根据勾股定理求出PD,再根据勾股定理求出BC即可.解:连接OD,∵PC切⊙O于D,∴∠ODP=90°,∵⊙O的半径为1,PA=AO,AB是⊙O的直径,∴PO=1+1=2,PB=1+1+1=3,OD=1,∴由勾股定理得:PD===,∵BC⊥AB,AB过O,∴BC切⊙O于B,∵PC切⊙O于D,∴CD=BC,设CD=CB=x,在Rt△PBC中,由勾股定理得:PC2=PB2+BC2,即(+x)2=32+x2,解得:x=,即BC=,故选:D.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)【分析】根据位似变换的定义得到△ACB∽△CED,根据相似三角形的性质求出DE,根据等腰直角三角形的性质求出CE,根据△OCB∽△OED,列出比例式,代入计算得到答案.解:∵等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,∴△ACB∽△CED,∵相似比为1:3,∴=,即=,解得,DE=6,∵△CED为等腰直角三角形,∴CE=DE=6,∵BC∥DE,∴△OCB∽△OED,∴=,即=,解得,OC=3,∴OE=OC+CE=3+6=9,∴点D的坐标为(9,6),故选:A.9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米【分析】过点F作FH⊥DC于点H,延长DC交EA于点G,可得四边形EFHG是矩形,根据AB的坡度i=1:2.4,AC=13,可得CG=5,AG=12,CH=GH﹣CG=10﹣5=5,再根据锐角三角函数即可求出信号塔CD的高度.解:如图,过点F作FH⊥DC于点H,延长DC交EA于点G,则四边形EFHG是矩形,∴FH=GE,CG=EF,∵AB的坡度i=1:2.4,AC=13,∴CG=5,AG=12,∴CH=GH﹣CG=10﹣5=5,∴GE=AG+AE=12+18=30,∴在Rt△DCF中,∠DFC=37°,FH=GE=30,∴DH=FH•tan37°≈30×0.75≈22.5,∴CD=DH+CH≈22.5+5≈27.5(米).所以信号塔CD的高度约是27.5米.故选:B.10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4 B.8 C.12 D.16【分析】根据菱形的性质得到AC⊥BD,根据勾股定理得到OA=,OD==2,求得直线AC的解析式为y=﹣2x,求得BD的解析式为y=2x,设D(a,2a),根据勾股定理即可得到结论.解:∵四边形ABCD是菱形,∴AC⊥BD,∵点A(﹣1,2),∴OA=,∵菱形的边长为5,∴AD=5,∴OD==2,∵对角线AC与BD相交于坐标原点O,∴直线AC的解析式为y=﹣2x,∴BD的解析式为y=2x,设D(a,2a),∴a2+(2a)2=20,∴a=2(负值舍去),∴D(2,4),∵D在反比例函数y═(k>0)的图象上,∴k=2×4=8,故选:B.11.若数a使关于x的分式方程+=1有非负整数解,且使关于y的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5 B.﹣3 C.0 D.2【分析】解出分式方程,根据题意确定a的范围,解不等式组,根据题意确定a的范围,根据分式不为0的条件得到a≠﹣2,根据题意计算即可.解:由①得y>﹣8,由②得y≤a,∴不等式组的解集为:﹣8<y≤a,∵关于y的不等式组至少有3个整数解,∴a≥﹣5,解分式方程+=1,得x=,∵关于x的分式方程+=1有非负整数解,且≠3,∴a≤4且a≠﹣2且a为偶数;∴﹣5≤a≤4且a≠﹣2且a为偶数,∴满足条件的整数a为﹣4,0,2,4,∴所有整数a的和=﹣4+0+2+4=2,故选:D.12.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣1 0 1 2 3 …y=…p t n t0 …ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由抛物线的对称性可求对称轴为:x =,可得p=0,即x=﹣1,x=3是方程ax2+bx+c=0的两个根,可判断②;当x=0,y=c=t>0,可得p+2t=0+2t>0,可判断③;由抛物线中在对称轴的右边,y随x的增大而减小,可得的a<0,由对称轴x =1可得b=﹣2a>0,可判断①;由x=3,y=0,可得c=﹣3a,由顶点坐标为(1,n),a<0,可得am2+bm+c≤a+b+c,可得am2+bm≤﹣4a﹣c,可判断④,即可求解.解:∵当x=0和x=2时,y=t,∴对称轴为:x =,∴当x=3和x=﹣1时,y的值相等,∴p=0,∴x=﹣1,x=3是方程ax2+bx+c=0的两个根,故②正确;∵当x=0时,y=t,且c>0,∴t=c>0,∴p+2t=0+2t>0,故③错误;∵x=2,y=t>0,x=3,y=0,∴在对称轴的右边,y随x的增大而减小,∴a<0,∵x =﹣,∴b=﹣2a>0,故①正确;∵当x=3时,y=0,∴9a+3b+c=0,∴3a+c=0,∴c=﹣3a,∴﹣4a﹣c=﹣4a+3a=﹣a,∵顶点坐标为(1,n),a<0,∴am2+bm+c≤a+b+c,∴am2+bm≤a+b,∴am2+bm≤﹣a,∴am2+bm≤﹣4a﹣c,故④正确,故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.计算:(3﹣π)0﹣=﹣1 .【分析】本题涉及零指数幂、三次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.解:(3﹣π)0﹣=1﹣2=﹣1.故答案为:﹣1.14.代数式有意义,则x的取值范围是x>4 .【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是π.(结果保留π)【分析】利用斜边上的中线性质得到DA=DC=DB=AB=5,再计算出∠B得到∠DCB=40°,然后利用扇形的面积公式计算.解:∵∠ACB=90°,D是AB的中点,∴DA=DC=DB=AB=5,∵∠B=90°﹣∠A=90°﹣50°=40°,∴∠DCB=∠B=40°,∴图中阴影部分的面积==π.故答案为π.16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.【分析】先解方程组得直线y=﹣x+5与直线y=x的交点坐标,画出图象,再画树状图展示所有6种等可能的结果数,找出其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点的个数,然后根据概率公式求解.解:解方程组得,∴直线y=﹣x+5与直线y=x的交点坐标为(3,2),如图,画树状图为:共有6种等可能的结果数,其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点为(1,2),(1,3),(2,3),(3,2),所以点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率==.故答案为.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.【分析】过点D作DH⊥AC于H,由等腰三角形的性质和直角三角形的性质可求∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,由折叠的性质可得DN=DC,DB=DM,∠CDF=∠NDF,可证△DMN是等边三角形,可得∠MDN=60°,由折叠的性质可求∠HDF=∠HFD=45°,由直角三角形的性质可求解.解:如图,过点D作DH⊥AC于H,∵AB=AC=2,∠ABC=30°,AD为BC边上的高,∴∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,∵MN∥AC,∴∠DAC=∠DMN=60°,∵DH⊥AF,∴∠ADH=30°,∴AH=AD=,DH=AH=,∵将△ABC分别沿DE、DF折叠,∴DN=DC,DB=DM,∠CDF=∠NDF,∴DM=DN,∴△DMN是等边三角形,∴∠MDN=60°,∴∠CDN=30°,∴∠CDF=15°,∴∠DFH=∠C+∠CDF=45°,∵DH⊥AF,∴∠HDF=∠HFD=45°,∴DH=HF=,∴AF=AH+HF=,故答案为:.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.【分析】如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.证明△ABF≌△KBE(SAS),推出AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,解直角三角形求出EK即可解决问题.解:如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠ABC=45°,∴∠BAD=180°﹣∠ABC=135°,∵∠BAK=60°,∴∠EAK=75°,∵∠AEK=90°,∴∠AKE=15°,∵TA=TK,∴∠TAK=∠AKT=15°,∴∠ATE=∠TAK+∠AKT=30°,设AE=a,则AT=TK=2a,ET=a,在Rt△AEK中,∵AK2=AE2+EK2,∴a2+(2a+a)2=2,∴a=,∴EK=2a+a=,∴AF的最小值为.故答案为.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组.(2)计算:(x+)÷.【分析】(1)根据加减消元法可以解答此方程组;(2)根据分式的加法和除法可以解答本题.解:(1),①+②,得4x=12,解得,x=3,将x=3代入①,得y=﹣1,故原方程组的解为;(2)(x+)÷====.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.【分析】(1)由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.【解答】证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0 1 4 5 a分析数据:平均数中位数众数开学初抽取学生成绩16 b17学期末抽取学生成绩18 18.5 19根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.【分析】(1)由A的两个统计图上的数据得抽取的学生人数,再用求得的总数减去学期末抽取学生成绩统计表中A、B、C、D的人数便可得E组的人数a的值,求出开学初抽取人数中成绩由小到大位于最中间的数据或中间两个数据的平均数便为中位数b的值;(2)用总人数300乘以学期末优秀学生数的百分比与开学初优秀学生数的百分比之差,便可得该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加的人数;(3)可比较再次测试成绩的中位数或平均数,进而得出小莉成绩上升情况的总结.解:(1)开学初抽取的学生总数为:2=20,∴a=20﹣0﹣1﹣4﹣5=10,开学初抽取学生中B组人数为:20﹣2﹣3﹣4﹣7=4,由此可知开学初所抽取学生的成绩A、B、C组共有2+3+4=9人,则将所抽取的20人的成绩由小到大排列,位于第10位和第11位的成绩都位于D组,∵D组中的数据是:17,17,17,17,17,18,18.∴中位数b==17,补全统计图如下:(2)根据题意得,300×=90,答:该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了90人;(3)从平均数看,小莉开学初测试成绩等于开学初抽取学生成绩的平均数16分,学期末测试成绩19分高于学期末所抽取学生成绩的平均数18分,因此小莉一分钟跳绳练习达到郎的效果;从中位数来看,小莉开学初测试成绩16分低于开学初抽取学生成绩的中位数17分,学期末测试成绩19分高于学期末抽取学生成绩的中位数18,5分,因此小莉一分钟跳绳练习达到郎的效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.【分析】(1)思想利用待定系数法确定b的值,再求出x=5时,y1的值即可.(2)画出x<2时,y=﹣x+2的图形即可.(3)利用图象法写出y1的图象在y2的上方时x的值即可.解:(1)由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.(2)函数图象如图所示:性质:x<3时,y随x的增大而减小,x>3时,y随x的增大而增大.(3)观察图形可知:不等式y1≥y2的解集为:x<﹣2或x>0.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?【分析】(1)设4月份售出B型小家电x台,根据“销售这两种小家电共获利不少于800元”列出不等式并解答;(2)设两种型号的小家电都降价y元,根据“销售利润=(售价﹣进价)×销售数量”列出方程并解答.解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x ≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.【分析】(1)把25写成两个正整数的平方和,再根据A(m)=ab求出A(25)便可;(2)设k=a2+b2,则A(k)=ab,根据(k)=,得a、b的方程,求得a与b的关系式,进而由a、b、k满足的条件求得k的值便可.解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.【分析】(1)根据题意设这个二次函数的表达式为y=a(x﹣1)2+3,解方程即可得到结论;(2)根据已知条件得到直线AC的解析式为y=﹣x+1,解方程组得到C(,﹣),得到PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,根据三角形的面积公式和二次函数的性质即可得到结论.解:(1)∵抛物线的顶点为B(1,3),∴设这个二次函数的表达式为y=a(x﹣1)2+3,∵二次函数的图象经过点A(0,1),∴a(0﹣3)2+3=1,解得:a=﹣2,∴这个二次函数的表达式为y=﹣2(x﹣1)2+3,即y=﹣2x2+4x+1;(2)∵AC⊥AB,A(0,1),∴直线AC的解析式为y=﹣x+1,由,解得:或,∴C(,﹣),过P作PQ∥y轴交AC于Q,设P(t,﹣2t2+4t+1),则Q(t,﹣t+1),∴PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,∴S△APC=PQ|x C﹣x A|=(﹣2t2+t)(﹣0)=﹣(t﹣)2+,∴当t=时,S△APC有最大值,此时,P(,).四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.【分析】(1)如图1中,利用勾股定理计算CE的长,由旋转可知△CEF是等腰直角三角形,可得结论;(2)如图2,过E作EN⊥AB于N,作EP⊥BC于P,证明△CPE≌△CMF(AAS),得EP=FM,由角平分线的性质得EP=EN=FM,证明△NHE≌△MGF(AAS),得NH=MG,由△BEN 是等腰直角三角形,得BN=BE,最后由线段的和可得结论;(3)如图3,构建辅助线,构建全等三角形,证明△CPE≌△FMC(AAS),得EP=CM,PC=FM,由△DPE是等腰直角三角形,得PE=PD,证明△HNE≌△GMF(AAS),由△BEN 是等腰直角三角形,得BN=BE,同理可得结论.【解答】(1)解:在正方形ABCD中,AB=4,∴AO=CO=OB=2,∵BE=,∴OE=,∵AC⊥BD,∴∠COE=90°,∴CE===,由旋转得:CE=CF,∠ECF=90°,∴△CEF的面积===5;(2)证明:如图2,过E作EN⊥AB于N,作EP⊥BC于P,∵EP⊥BC,FM⊥CD,∴∠EPC=∠FMC=90°,∵∠BCD=∠ECF=90°,∴∠PCE=∠MCF,∵CE=CF,∴△CPE≌△CMF(AAS),∴EP=FM,∵EP⊥BC,EN⊥AB,BE平分∠ABC,∴EP=EN,∴EN=FM,∵FM⊥CD,∴∠FMG=∠ENH=90°,∵AB∥CD,∴∠NHE=∠MGF,∴△NHE≌△MGF(AAS),∴NH=MG,∴BH+MG=BH+NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH+MG=BE;(3)解:BH﹣MG=BE,理由是:如图3,过E作EN⊥AB于N,交CG于P,∵EP⊥BC,FM⊥CD,AB∥CD,∴EP⊥CD,∴∠EPC=∠FMC=90°,∵∠M=∠ECF=90°,∴∠ECP+∠FCM=∠FCM+∠CFM=90°,∴∠ECP=∠CFM,∵CE=CF,∴△CPE≌△FMC(AAS),∴PC=FM,∵△DPE是等腰直角三角形,∴PE=PD,∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,∵AB∥CD,∴∠H=∠FGM,∵∠ENH=∠M=90°,∴△HNE≌△GMF(AAS),∴NH=MG,∴BH﹣MG=BH﹣NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH﹣MG=BE.。
2020年重庆市北碚区春招数学试卷
2020年重庆市北碚区春招数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框浍黑.1.(4分)实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0B.b<1C.a<b D.a>﹣22.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣4.(4分)下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等5.(4分)按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1B.x=2,y=0C.x=1,y=2D.x=3,y=26.(4分)估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.(4分)如图,AB是⊙O的直径,点P在BA的延长线上,P A=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5B.2C.D.8.(4分)如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)9.(4分)如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米10.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A .4B .8C .12D .1611.(4分)若数a 使关于x 的分式方程+=1有非负整数解,且使关于y 的不等式组至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5B .﹣3C .0D .212.(4分)二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0,c >0)的自变量x 与函数值y 的部分对应值如表:x … ﹣1 0 1 2 3 … y =ax 2+bx +c…ptnt…有下列结论:①b >0;②关于x 的方程ax 2+bx +c =0的两个根是0和3;③p +2t <0;④m (am +b )≤﹣4a ﹣c (m 为任意实数).其中正确结论的个数是( ) A .1B .2C .3D .4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上. 13.(4分)计算:(3﹣π)0﹣=.14.(4分)代数式有意义,则x 的取值范围是 .15.(4分)如图,在Rt △ABC 中,∠ACB =90°,∠A =50°,AB =10,D 是AB 的中点,以点C 为圆心,CD 长为半径画弧,交BC 于点E ,则图中阴影部分的面积是 .(结果保留π)16.(4分)点A 的坐标是A (x ,y ),从1、2、3这三个数中任取一个数作为x 的值,再从余下的两个数中任取一个数作为y 的值.则点A 落在直线y =﹣x +5与直线y =x 及y 轴所围成的封闭区域内(含边界)的概率是 .17.(4分)如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.18.(4分)如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)(1)解方程组.(2)计算:(x+)÷.20.(10分)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.21.(10分)某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0145a 分析数据:平均数中位数众数开学初抽取学生成绩16b17学期末抽取学生成绩1818.519根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.22.(10分)某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.23.(10分)某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?24.(10分)对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m =a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.25.(10分)如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC面积最大时,求点P 的坐标和△APC的面积最大值.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM 垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.2020年重庆市北碚区春招数学试卷试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框浍黑.1.解:由数轴可得:a<﹣2,故选项A错误;b>1,故选项B错误;a<b,故选项C正确;a<﹣2,故选项D错误;故选:C.2.解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.3.解:A、(x3)4=x12,故本选项错误;B、x3•x2=x5,故本选项正确;C、x+2x=3x,故本选项错误;D、x﹣2=,故本选项错误;故选:B.4.解:A、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;B、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;C、线段垂直平分线上任意一点到线段两端的距离相等,是真命题;D、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;故选:C.5.解:A、当x=1,y=1时,m=x﹣y=1﹣1=0,不符合题意;B、当x=2,y=0时,m=x﹣y=2﹣0=2,不符合题意;C、当x=1,y=2时,m=﹣2x+y=﹣2+2=0,不符合题意;D、当x=3,y=2时,m=x﹣y=3﹣2=1,符合题意.故选:D.6.解:×+÷=+=4+,∵3<<4,∴7<4+<8,∴×+÷的值应在7和8之间;故选:A.7.解:连接OD,∵PC切⊙O于D,∴∠ODP=90°,∵⊙O的半径为1,P A=AO,AB是⊙O的直径,∴PO=1+1=2,PB=1+1+1=3,OD=1,∴由勾股定理得:PD===,∵BC⊥AB,AB过O,∴BC切⊙O于B,∵PC切⊙O于D,∴CD=BC,设CD=CB=x,在Rt△PBC中,由勾股定理得:PC2=PB2+BC2,即(+x)2=32+x2,解得:x=,即BC=,故选:D.8.解:∵等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,∴△ACB∽△CED,∵相似比为1:3,∴=,即=,解得,DE=6,∵△CED为等腰直角三角形,∴CE=DE=6,∵BC∥DE,∴△OCB∽△OED,∴=,即=,解得,OC=3,∴OE=OC+CE=3+6=9,∴点D的坐标为(9,6),故选:A.9.解:如图,过点F作FH⊥DC于点H,延长DC交EA于点G,则四边形EFHG是矩形,∴FH=GE,CG=EF,∵AB的坡度i=1:2.4,AC=13,∴CG=5,AG=12,∴CH=GH﹣CG=10﹣5=5,∴GE=AG+AE=12+18=30,∴在Rt△DCF中,∠DFC=37°,FH=GE=30,∴DH=FH•tan37°≈30×0.75≈22.5,∴CD=DH+CH≈22.5+5≈27.5(米).所以信号塔CD的高度约是27.5米.故选:B.10.解:∵四边形ABCD是菱形,∴AC⊥BD,∵点A(﹣1,2),∴OA=,∵菱形的边长为5,∴AD=5,∴OD==2,∵对角线AC与BD相交于坐标原点O,∴直线AC的解析式为y=﹣2x,∴BD的解析式为y=x,设D(a,a),∴a2+(a)2=20,∴a=4(负值舍去),∴D(4,2),∵D在反比例函数y═(k>0)的图象上,∴k=2×4=8,故选:B.11.解:由①得y>﹣8,由②得y≤a,∴不等式组的解集为:﹣8<y≤a,∵关于y的不等式组至少有3个整数解,∴a≥﹣5,解分式方程+=1,得x=,∵关于x的分式方程+=1有非负整数解,且≠3,∴a≤4且a≠﹣2且a为偶数;∴﹣5≤a≤4且a≠﹣2且a为偶数,∴满足条件的整数a为﹣4,0,2,4,∴所有整数a的和=﹣4+0+2+4=2,故选:D.12.解:∵当x=0和x=2时,y=t,∴对称轴为:x=,∴当x=3和x=﹣1时,y的值相等,∴p=0,∴x=﹣1,x=3是方程ax2+bx+c=0的两个根,故②正确;∵当x=0时,y=t,且c>0,∴t=c>0,∴p+2t=0+2t>0,故③错误;∵x=2,y=t>0,x=3,y=0,∴在对称轴的右边,y随x的增大而减小,∴a<0,∵x=﹣,∴b=﹣2a>0,故①正确;∵当x=3时,y=0,∴9a+3b+c=0,∴3a+c=0,∴c=﹣3a,∴﹣4a﹣c=﹣4a+3a=﹣a,∵顶点坐标为(1,n),a<0,∴am2+bm+c≤a+b+c,∴am2+bm≤a+b,∴am2+bm≤﹣a,∴am2+bm≤﹣4a﹣c,故④正确,故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.解:(3﹣π)0﹣=1﹣2=﹣1.故答案为:﹣1.14.解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.15.解:∵∠ACB=90°,D是AB的中点,∴DA=DC=DB=AB=5,∵∠B=90°﹣∠A=90°﹣50°=40°,∴∠DCB=∠B=40°,∴图中阴影部分的面积==π.故答案为π.16.解:解方程组得,∴直线y=﹣x+5与直线y=x的交点坐标为(3,2),如图,画树状图为:共有6种等可能的结果数,其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点为(1,2),(1,3),(2,3),(3,2),所以点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率==.故答案为.17.解:如图,过点D作DH⊥AC于H,∵AB=AC=2,∠ABC=30°,AD为BC边上的高,∴∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,∵MN∥AC,∴∠DAC=∠DMN=60°,∵DH⊥AF,∴∠ADH=30°,∴AH=AD=,DH=AH=,∵将△ABC分别沿DE、DF折叠,∴DN=DC,DB=DM,∠CDF=∠NDF,∴DM=DN,∴△DMN是等边三角形,∴∠MDN=60°,∴∠CDN=30°,∴∠CDF=15°,∵DH⊥AF,∴∠HDF=∠HFD=45°,∴DH=HF=,∴AF=AH+HF=,故答案为:.18.解:如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠ABC=45°,∴∠BAD=180°﹣∠ABC=135°,∵∠BAK=60°,∴∠EAK=75°,∵∠AEK=90°,∴∠AKE=15°,∵TA=TK,∴∠TAK=∠AKT=15°,设AE=a,则AT=TK=2a,ET=a,在Rt△AEK中,∵AK2=AE2+EK2,∴a2+(2a+a)2=2,∴a=,∴EK=2a+a=,∴AF的最小值为.故答案为.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.解:(1),①+②,得4x=12,解得,x=3,将x=3代入①,得y=﹣1,故原方程组的解为;(2)(x+)÷====.20.证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形.21.解:(1)开学初抽取的学生总数为:2=20,∴a=20﹣0﹣1﹣4﹣5=10,开学初抽取学生中B组人数为:20﹣2﹣3﹣4﹣7=4,由此可知开学初所抽取学生的成绩A、B、C组共有2+3+4=9人,则将所抽取的20人的成绩由小到大排列,位于第10位和第11位的成绩都位于D组,∵D组中的数据是:17,17,17,17,17,18,18.∴中位数b==17,补全统计图如下:(2)根据题意得,300×=90,答:该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了90人;(3)从平均数看,小莉开学初测试成绩等于开学初抽取学生成绩的平均数16分,学期末测试成绩19分高于学期末所抽取学生成绩的平均数18分,因此小莉一分钟跳绳练习达到郎的效果;从中位数来看,小莉开学初测试成绩16分低于开学初抽取学生成绩的中位数17分,学期末测试成绩19分高于学期末抽取学生成绩的中位数18,5分,因此小莉一分钟跳绳练习达到郎的效果.22.解:(1)由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.(2)函数图象如图所示:性质:x<3时,y随x的增大而减小,x>3时,y随x的增大而增大.(3)观察图形可知:不等式y1≥y2的解集为:x≤﹣2或x>0.23.解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.24.解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.25.解:(1)∵抛物线的顶点为B(1,3),∴设这个二次函数的表达式为y=a(x﹣1)2+3,∵二次函数的图象经过点A(0,1),∴a(0﹣3)2+3=1,解得:a=﹣2,∴这个二次函数的表达式为y=﹣2(x﹣1)2+3,即y=﹣2x2+4x+1;(2)∵AC⊥AB,A(0,1),∴直线AC的解析式为y=﹣x+1,由,解得:或,∴C(,﹣),过P作PQ∥y轴交AC于Q,设P(t,﹣2t2+4t+1),则Q(t,﹣t+1),∴PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,∴S△APC=PQ|x C﹣x A|=(﹣2t2+t)(﹣0)=﹣(t﹣)2+,∴当t=时,S△APC有最大值,此时,P(,).四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.(1)解:在正方形ABCD中,AB=4,∴AO=CO=OB=2,∵BE=,∴OE=,∵AC⊥BD,∴∠COE=90°,∴CE===,由旋转得:CE=CF,∠ECF=90°,∴△CEF的面积===5;(2)证明:如图2,过E作EN⊥AB于N,作EP⊥BC于P,∵EP⊥BC,FM⊥CD,∴∠EPC=∠FMC=90°,∵∠BCD=∠ECF=90°,∴∠PCE=∠MCF,∵CE=CF,∴△CPE≌△CMF(AAS),∴EP=FM,∵EP⊥BC,EN⊥AB,BE平分∠ABC,∴EP=EN,∴EN=FM,∵FM⊥CD,∴∠FMG=∠ENH=90°,∵AB∥CD,∴∠NHE=∠MGF,∴△NHE≌△MGF(AAS),∴NH=MG,∴BH+MG=BH+NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH+MG=BE;(3)解:BH﹣MG=BE,理由是:如图3,过E作EN⊥AB于N,交CG于P,∵EP⊥BC,FM⊥CD,AB∥CD,∴EP⊥CD,∴∠EPC=∠FMC=90°,∵∠M=∠ECF=90°,∴∠ECP+∠FCM=∠FCM+∠CFM=90°,∴∠ECP=∠CFM,∵CE=CF,∴△CPE≌△FMC(AAS),∴PC=FM,∵△DPE是等腰直角三角形,∴PE=PD,∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,∵AB∥CD,∴∠H=∠FGM,∵∠ENH=∠M=90°,∴△HNE≌△GMF(AAS),∴NH=MG,∴BH﹣MG=BH﹣NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH﹣MG=BE.。
2024年重庆市渝北区春招数学试卷
2024年重庆市渝北区春招数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个选项,其中只有一个选项是正确的,请在答题卡上把你认为是正确的选项对应的方框涂黑.1.的绝对值是()A.B.C.3D.﹣32.如图,一块直角三角板的直角顶点放在直尺的一边上.如果∠1=32°,那么∠2的度数是()A.68°B.58°C.45°D.32°3.设,则实数m所在的范围是()A.4<m<5B.3<m<4C.m<3D.m>54.如图1,将边长为m的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2m﹣4n B.2m﹣3n C.4m﹣8n D.4m﹣6n5.如图,点P在反比例函数y=(x<0)图象上,P A⊥x轴于点A,点B是OA的中点,连接PO,PB,若△POB的面积为3,则k的值为()A.﹣3B.﹣6C.﹣9D.﹣126.我国习惯上对开本的命名是以几何级数来命名的,全张纸对折后的大小为对开,再对折为4开纸,再对折为8开纸,再对折为16开纸,以此类推,如图,全张矩形纸ABCD沿EF对开后,再把矩形纸EBCF沿GH对开,依此类推.若各种开本的矩形都相似,那么等于()A.0.618B.C.D.27.如图,用围棋子按下面的规律摆图形,则摆第6个图形需要围棋子的枚数为()A.30B.31C.32D.358.如图,四边形ABCD是正方形,点E,F分别在边BC,CD上,连接EF,AE,AF,若∠DAF=α,∠AEB=45°+α,则∠CEF的度数为()A.2αB.90°﹣2αC.45°+2αD.90°﹣α9.如图,AB是⊙O的直径,弦CD⊥AB,DE∥AC,若AB=26,AC=24,点F是弦DE的中点,则OF 的值为()A.B.C.D.10.有一组非负整数:a1,a2,…,a19.从a3开始,满足a3=|a1﹣2a2|,a4=|a2﹣2a3|,a5=|a3﹣2a4|…,a19=|a17﹣2a18|,某一数学团队对前述数组进行了深入的探讨与研究,得出以下结论:①当a1=1,a2=5时,a4=9;②当a1=5,a2=2时,a1+a2+a3+⋯+a16=86;③当a1=3x﹣4,a2=2x,a3=1时,x=﹣3或x=﹣5;④当a1=2m(m≥2,m为整数)时,a2=1,a19=34m﹣50.其中正确的结论个数有()A.1个B.2个C.3个D.4个二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填写在答题卡中对应题号的横线上.11.计算:=.12.根据国家统计局数据,我国2021年的全年粮食产量为68285万吨,2023年的全年粮食产量为69541万吨.设这两年我国全年粮食产量的年平均增长率为x,根据题意,可列方程为.13.如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B′,折痕为AF,则∠AFC的度数为.14.《九章算术》《周髀算经》《孙子算经》《海岛算经》是中国古代的数学名著.若从这四部著作中随机抽取两本(先随机抽取一本,不放回再随机抽取另一本),则抽取的两本恰好是《九章算术》和《孙子算经》的概率是.15.如图,以矩形ABCD的顶点A为圆心,线段AB长为半径画弧,交边AD于点E,再以顶点C为圆心,线段CB长为半径画弧,交边AD于点F,若AB=4,AD=8,则,和EF围成的阴影部分的面积是.16.若关于x的不等式组组有解且至多有4个整数解,且关于y的分式方程的解为整数,则所有满足条件的整数m的值之和为.17.如图,在△ABC中,∠ACB=90°,若CA=6,CB=8,CD为△ABC的中线,点E在边AC上(不与端点重合),BE与CD交于点F,若EC=EF,则DF=.18.若一个四位数的首尾两位数字顺次组成的两位数与中间两位数字顺次组成的两位数之和为160,则称这个四位数为“吉祥数”,若一个四位数(其中1≤a,b,c,d≤9,且a,b,c,d均为整数)为“吉样数”,则a+b=,定义F(M)=2la+b﹣24c+2d+16,若F(M)能被17整除,且存在整数k,使得F(M)=k2﹣26,则满足条件的M的值为.三、解答题:(本大题8个小题,第19题8分,第20至26题每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应位置上.19.计算:(1)2x(x+2y)+(x﹣2y)2;(2).20.学习了平行四边形后,小明同学进行了拓展性研究.他发现,平行四边形相对的两个顶点到另外两个顶点所连对角线的距离相等.他的解决思路是通过证明两条垂线段所在的两个三角形全等得出结论.请根据他的思路完成以下作图与填空:用直尺和圆规,过点C作BD的垂线,垂足为F.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,BD是对角线,AE⊥BD与点E.求证:AE=CF.证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∴∠ABE=①,∵AE⊥BD,CF⊥BD,∴②.∴△ABE≌③,∴AE=CF.21.随着全球气候变暖,极端天气事件的频繁发生,环境保护牵动着全世界人们的心.为进一步加强学生对“环保”的重视程度,某校在初一、初二年级组织了“环保”知识比赛,现从初一、初二年级各随机抽取10名同学的成绩进行统计分析(成绩得分用x表示,x均不低于60,共分成四组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100),绘制了如下的图表,请根据图中的信息解答下列问题.初一年级10名学生的成绩是:69,78,97,77,68,95,86,100,84,86.初二年级10名学生的成绩在C组中的数据是:86,87,87.两个年级抽取学生比赛成绩统计表年级平均数中位数众数初一年级8485b初二年级84c92(1)直接写出上述图表中a,b,c的值:a=,b=,c=;(2)根据以上数据,你认为该校初一、初二年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(一条理由即可).(3)若两个年级各有400人参加了此次比赛,估计参加此次比赛成绩优秀(90≤x≤100)的学生共有多少人?22.某工厂有40名工人,生产甲、乙两种摩托车配套零件,每个工人每天能加工甲种零件30个,或乙种零件20个.(1)若1个甲零件和2个乙零件配套成一个完整的部件,应怎样安排工人才能使一天生产的零件正好配套?(2)该工厂将这种完整的部件销售给摩配公司,一月份的销售总额为30万元,受市场影响,二月份该工厂将一个完整部件的销售单价在一月份的基础上提高了20%,销量比一月份少了500个,结果二月份的销售总额比一月份多了3万元,求一月份每个完整部件的销售单价为多少元.23.如图,△ABC中,AB=AC=3,BC=12,AD⊥BC于点D,动点P以每秒个单位长度的速度从点B出发沿折线B→A→C方向运动,到点C运动停止,过点P作PQ⊥BC于点Q,设运动时间为t秒,点Q,D之间的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,当正比例函数y=kt(k≠0)的图象与该函数图象有两个交点时,请直接写出k的取值范围.24.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75°方向,在点A的东南方向.(参考数据:≈1.414,≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60°方向,景区管理部门决定重新翻修CD之间的步道,翻修费用为每米200元,请计算此次翻修工程的总费用.25.如图,直线y=﹣x+3与x,y轴分别交于点A,B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C,点P是直线AB上方抛物线上的一动点,过点P作y轴的平行线交直线AB于点D.(1)求抛物线的表达式;(2)求PD+BD的最大值及此时点P的坐标;(3)在点P运动过程中,连接PC,当PC的中点恰好落在y轴上时,连接AP,在抛物线y=﹣x2+bx+c 上是否存在点Q,使得∠P AB=∠QP A,如果存在,请写出所有符合条件的点Q的坐标;如果不存在,请说明理由.26.如图,在△ABC中,∠BAC=45°,CD⊥AB于点D,E为AD上一点,连接CE.(1)如图1,若CE平分∠ACD,CD=3,求线段AE的长;(2)如图2,过点E作FE⊥CE交CB的延长线于点F,连接AF,G为AF的中点,连接GE,若EF=EC,猜想线段GE,AE,AC之间的数量关系,并证明你的猜想;(3)如图3,过点D作AC的垂线交AC于点H,点P是直线DH上一动点,连接AP,将AP绕A点顺时针旋转60°得AP′,连接DP′,CP′,CP′与直线AP交于点Q,当AQ最小时,请直接写出的值.。
重庆市北碚区2020年中考数学春招模拟试卷(含解析)
重庆市北碚区2020年中考数学春招模拟试卷一、选择题(共12小题).1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.2.(4分)如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.3.(4分)二次根式中x的取值范围是()A.x>2 B.x<2且x≠0 C.x≤2 D.x≤2且x≠0 4.(4分)下列说法正确的是()A.方差越大,数据波动越小B.了解重庆市中学生的视力和用眼卫生情况适合采用全面调查C.抛掷一枚硬币,正面向上是必然事件D.用长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件5.(4分)如图,在△ABC中,DE∥BC,=,记△ADE的面积为S1,四边形DBCE的面积为S2,则的值是()A.B.C.D.6.(4分)下列各命题都成立,而它们的逆命题不能成立的是()A.两直线平行,同位角相等B.全等三角形的对应角相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和7.(4分)如图,⊙O为△ABC的外接圆,BD为⊙O的直径,过点D作⊙O的切线交BC延长线于点E.若∠DAC=20°,则∠E的度数是()A.20°B.70°C.40°D.50°8.(4分)从1、2、3、4四个数中随机选取两个不同的数,分别记为a,c,则二次函数y =ax2+4x+c与x轴有两个不同交点的概率为()A.B.C.D.9.(4分)如图,在某山坡前有一电视塔.小明在山坡坡脚P处测得电视塔顶端M的仰角为60°,在点P处小明沿山坡向上走39m到达D处,测得电视塔顶端M的仰角为30°.已知山坡坡度i=1:2.4,请你计算电视塔的高度ME约为()m.(结果精确到0.1m,参考数据:≈1.732)A.59.8 B.58.8 C.53.7 D.57.910.(4分)如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y =(k>0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8 B.4 C.D.11.(4分)若关于x的分式方程﹣=有正数解,且关于y的不等式组无解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.212.(4分)如图,在矩形ABCD中,已知AB=3,点E是BC边的中点,连接AE,△AB1E和△ABE关于AE所在直线对称,B1在对角线BD上.若∠CB1D=90°,则B1D的长为()A.6B.3C.D.二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:(3﹣π)0﹣=.14.代数式有意义,则x的取值范围是.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是.(结果保留π)16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组.(2)计算:(x+)÷.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0 1 4 5 a 分析数据:平均数中位数众数开学初抽取学生成绩16 b17学期末抽取学生成绩18 18.5 19根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框浍黑.1.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:A.2.【解答】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.3.【解答】解:依题意得:2﹣x≥0且x≠0.解得x≤2且x≠0.故选:D.4.【解答】解:A、方差越大,数据波动越大,本选项说法错误;B、了解重庆市中学生的视力和用眼卫生情况适合采用抽样调查,本选项说法错误;C、抛掷一枚硬币,正面向上是随机事件,本选项说法错误;D、用长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件,本选项说法正确;故选:D.5.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵=,∴=,∴=,∴9S1=4S1+4S2,∴5S1=4S2,∴=.故选:A.6.【解答】解:A、逆命题是同位角相等,两直线平行,成立;B、逆命题是对应角相等的三角形是全等三角形,不成立;C、逆命题是菱形是四边相等的四边形,成立;D、逆命题是一条边的平方等于另外两条边的平方和的三角形是直角三角形,成立.故选:B.7.【解答】解:∵DE是⊙O的切线,∴∠BDE=90°,由圆周角定理得,∠DBE=∠DAC=20°,∴∠E=90°﹣20°=70°,故选:B.8.【解答】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使判别式△=16﹣4ac>0,即ac<4的有4种结果,∴二次函数y=ax2+4x+c与x轴有两个不同交点的概率为=;故选:B.9.【解答】解:如图,作DC⊥EP延长线于点C,作DF⊥ME于点F,作PH⊥DF于点H,则DC=PH=FE,DH=CP,HF=PE,∵山坡坡度i=DC:CP=1:2.4,PD=39,设DC=5x,则CP=12x,根据勾股定理,得(5x)2+(12x)2=392,解得x=3,则DC=15,CP=36,∴DH=CP=36,FE=DC=15,设MF=y,则ME=MF+FE=y+15,在Rt△DMF中,∠MDF=30°,∴DF=y,在Rt△MPE中,∠MPE=60°,∴PE=(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=36,解得y=7.5+18,∴ME=MF+EF=7.5+18+15≈53.7(m).答:电视塔的高度ME约为53.7米.故选:C.10.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.11.【解答】解:解方程﹣=,得:x=,∵分式方程的解为正数,∴2a﹣1>0,即a>,又x≠1,∴≠1,即a≠3,则a>且a≠3,∵关于y的不等式组无解,∴2﹣a>﹣2,解得:a<4,综上,a的取值范围是<a<4,且a≠3,则符合题意的整数a的值有1,2,2个,故选:D.12.【解答】解:∵△AB1E和△ABE关于AE所在直线对称,∴AB=AB1,EB=EB1,∴AE垂直平分BB1,∴BF=B1F,∵∠AFB=∠DB1C=90°,∴∠BAF+∠ABF=∠ABF+∠EBF=90°,∴∠BAF=∠EBF,同理∠EBF=∠DCB1,∴∠BAF=∠DCB1,∵AB=CD,∴△ABF≌△CDB1(AAS),∴BF=B1D,∴F,B1是对角线BD的三等分点,∵∠DCB1=∠BCD,∠DB1C=∠DCB=90°.∴△DB1C∽△DCB,∴,∴DC2=DB1•DB,设DB1=x,则DB=3x,∴32=x•3x,∴x=,x=﹣(舍去),∴B1D=.故选:D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.计算:(3﹣π)0﹣=﹣1 .【分析】本题涉及零指数幂、三次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.解:(3﹣π)0﹣=1﹣2=﹣1.故答案为:﹣1.14.代数式有意义,则x的取值范围是x>4 .【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是π.(结果保留π)【分析】利用斜边上的中线性质得到DA=DC=DB=AB=5,再计算出∠B得到∠DCB=40°,然后利用扇形的面积公式计算.解:∵∠ACB=90°,D是AB的中点,∴DA=DC=DB=AB=5,∵∠B=90°﹣∠A=90°﹣50°=40°,∴∠DCB=∠B=40°,∴图中阴影部分的面积==π.故答案为π.16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.【分析】先解方程组得直线y=﹣x+5与直线y=x的交点坐标,画出图象,再画树状图展示所有6种等可能的结果数,找出其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点的个数,然后根据概率公式求解.解:解方程组得,∴直线y=﹣x+5与直线y=x的交点坐标为(3,2),如图,画树状图为:共有6种等可能的结果数,其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点为(1,2),(1,3),(2,3),(3,2),所以点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率==.故答案为.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.【分析】过点D作DH⊥AC于H,由等腰三角形的性质和直角三角形的性质可求∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,由折叠的性质可得DN=DC,DB=DM,∠CDF=∠NDF,可证△DMN是等边三角形,可得∠MDN=60°,由折叠的性质可求∠HDF=∠HFD=45°,由直角三角形的性质可求解.解:如图,过点D作DH⊥AC于H,∵AB=AC=2,∠ABC=30°,AD为BC边上的高,∴∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,∵MN∥AC,∴∠DAC=∠DMN=60°,∵DH⊥AF,∴∠ADH=30°,∴AH=AD=,DH=AH=,∵将△ABC分别沿DE、DF折叠,∴DN=DC,DB=DM,∠CDF=∠NDF,∴DM=DN,∴△DMN是等边三角形,∴∠MDN=60°,∴∠CDN=30°,∴∠CDF=15°,∴∠DFH=∠C+∠CDF=45°,∵DH⊥AF,∴∠HDF=∠HFD=45°,∴DH=HF=,∴AF=AH+HF=,故答案为:.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.【分析】如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.证明△ABF≌△KBE(SAS),推出AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,解直角三角形求出EK即可解决问题.解:如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠ABC=45°,∴∠BAD=180°﹣∠ABC=135°,∵∠BAK=60°,∴∠EAK=75°,∵∠AEK=90°,∴∠AKE=15°,∵TA=TK,∴∠TAK=∠AKT=15°,∴∠ATE=∠TAK+∠AKT=30°,设AE=a,则AT=TK=2a,ET=a,在Rt△AEK中,∵AK2=AE2+EK2,∴a2+(2a+a)2=2,∴a=,∴EK=2a+a=,∴AF的最小值为.故答案为.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组.(2)计算:(x+)÷.【分析】(1)根据加减消元法可以解答此方程组;(2)根据分式的加法和除法可以解答本题.解:(1),①+②,得4x=12,解得,x=3,将x=3代入①,得y=﹣1,故原方程组的解为;(2)(x+)÷====.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.【分析】(1)由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.【解答】证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0 1 4 5 a 分析数据:平均数中位数众数开学初抽取学生成绩16 b17学期末抽取学生成绩18 18.5 19根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.【分析】(1)由A的两个统计图上的数据得抽取的学生人数,再用求得的总数减去学期末抽取学生成绩统计表中A、B、C、D的人数便可得E组的人数a的值,求出开学初抽取人数中成绩由小到大位于最中间的数据或中间两个数据的平均数便为中位数b的值;(2)用总人数300乘以学期末优秀学生数的百分比与开学初优秀学生数的百分比之差,便可得该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加的人数;(3)可比较再次测试成绩的中位数或平均数,进而得出小莉成绩上升情况的总结.解:(1)开学初抽取的学生总数为:2=20,∴a=20﹣0﹣1﹣4﹣5=10,开学初抽取学生中B组人数为:20﹣2﹣3﹣4﹣7=4,由此可知开学初所抽取学生的成绩A、B、C组共有2+3+4=9人,则将所抽取的20人的成绩由小到大排列,位于第10位和第11位的成绩都位于D组,∵D组中的数据是:17,17,17,17,17,18,18.∴中位数b==17,补全统计图如下:(2)根据题意得,300×=90,答:该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了90人;(3)从平均数看,小莉开学初测试成绩等于开学初抽取学生成绩的平均数16分,学期末测试成绩19分高于学期末所抽取学生成绩的平均数18分,因此小莉一分钟跳绳练习达到郎的效果;从中位数来看,小莉开学初测试成绩16分低于开学初抽取学生成绩的中位数17分,学期末测试成绩19分高于学期末抽取学生成绩的中位数18,5分,因此小莉一分钟跳绳练习达到郎的效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.【分析】(1)思想利用待定系数法确定b的值,再求出x=5时,y1的值即可.(2)画出x<2时,y=﹣x+2的图形即可.(3)利用图象法写出y1的图象在y2的上方时x的值即可.解:(1)由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.(2)函数图象如图所示:性质:x<3时,y随x的增大而减小,x>3时,y随x的增大而增大.(3)观察图形可知:不等式y1≥y2的解集为:x<﹣2或x>0.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?【分析】(1)设4月份售出B型小家电x台,根据“销售这两种小家电共获利不少于800元”列出不等式并解答;(2)设两种型号的小家电都降价y元,根据“销售利润=(售价﹣进价)×销售数量”列出方程并解答.解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x ≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.【分析】(1)把25写成两个正整数的平方和,再根据A(m)=ab求出A(25)便可;(2)设k=a2+b2,则A(k)=ab,根据(k)=,得a、b的方程,求得a与b的关系式,进而由a、b、k满足的条件求得k的值便可.解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.【分析】(1)根据题意设这个二次函数的表达式为y=a(x﹣1)2+3,解方程即可得到结论;(2)根据已知条件得到直线AC的解析式为y=﹣x+1,解方程组得到C(,﹣),得到PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,根据三角形的面积公式和二次函数的性质即可得到结论.解:(1)∵抛物线的顶点为B(1,3),∴设这个二次函数的表达式为y=a(x﹣1)2+3,∵二次函数的图象经过点A(0,1),∴a(0﹣3)2+3=1,解得:a=﹣2,∴这个二次函数的表达式为y=﹣2(x﹣1)2+3,即y=﹣2x2+4x+1;(2)∵AC⊥AB,A(0,1),∴直线AC的解析式为y=﹣x+1,由,解得:或,∴C(,﹣),过P作PQ∥y轴交AC于Q,设P(t,﹣2t2+4t+1),则Q(t,﹣t+1),∴PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,∴S△APC=PQ|x C﹣x A|=(﹣2t2+t)(﹣0)=﹣(t﹣)2+,∴当t=时,S△APC有最大值,此时,P(,).四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.【分析】(1)如图1中,利用勾股定理计算CE的长,由旋转可知△CEF是等腰直角三角形,可得结论;(2)如图2,过E作EN⊥AB于N,作EP⊥BC于P,证明△CPE≌△CMF(AAS),得EP=FM,由角平分线的性质得EP=EN=FM,证明△NHE≌△MGF(AAS),得NH=MG,由△BEN 是等腰直角三角形,得BN=BE,最后由线段的和可得结论;(3)如图3,构建辅助线,构建全等三角形,证明△CPE≌△FMC(AAS),得EP=CM,PC=FM,由△DPE是等腰直角三角形,得PE=PD,证明△HNE≌△GMF(AAS),由△BEN 是等腰直角三角形,得BN=BE,同理可得结论.【解答】(1)解:在正方形ABCD中,AB=4,∴AO=CO=OB=2,∵BE=,∴OE=,∵AC⊥BD,∴∠COE=90°,∴CE===,由旋转得:CE=CF,∠ECF=90°,∴△CEF的面积===5;(2)证明:如图2,过E作EN⊥AB于N,作EP⊥BC于P,∵EP⊥BC,FM⊥CD,∴∠EPC=∠FMC=90°,∵∠BCD=∠ECF=90°,∴∠PCE=∠MCF,∵CE=CF,∴△CPE≌△CMF(AAS),∴EP=FM,∵EP⊥BC,EN⊥AB,BE平分∠ABC,∴EP=EN,∴EN=FM,∵FM⊥CD,∴∠FMG=∠ENH=90°,∵AB∥CD,∴∠NHE=∠MGF,∴△NHE≌△MGF(AAS),∴NH=MG,∴BH+MG=BH+NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH+MG=BE;(3)解:BH﹣MG=BE,理由是:如图3,过E作EN⊥AB于N,交CG于P,∵EP⊥BC,FM⊥CD,AB∥CD,∴EP⊥CD,∴∠EPC=∠FMC=90°,∵∠M=∠ECF=90°,∴∠ECP+∠FCM=∠FCM+∠CFM=90°,∴∠ECP=∠CFM,∵CE=CF,∴△CPE≌△FMC(AAS),∴PC=FM,∵△DPE是等腰直角三角形,∴PE=PD,∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,∵AB∥CD,∴∠H=∠FGM,∵∠ENH=∠M=90°,∴△HNE≌△GMF(AAS),∴NH=MG,∴BH﹣MG=BH﹣NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH﹣MG=BE.。
2020-2021重庆北碚区数学水平测试试卷(含答案)下载
2020-2021重庆北碚区数学水平测试试卷(含答案)下载第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.-2的相反数是()A.2 B.1/2 C.-1/2 D.-22.解方程5x-3=2x+2,移项正确的是()A.5x-2x=3+2 B.5x+2x=3+2C.5x-2x=2-3 D.5x+2x=2-33.解方程移项正确的是()A. B. C. D.4、在数轴上,与表示数-1的点的距离是2的点表示的数是()A.1 B. 3 C. ±2 D. 1或-35.① x-2=y;② 0.3x =1;③x2-4x=3;④ 5x= 5x -1;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.56.一个两位数的两个数字之和为7,则符合条件的两位数的个数是……………( ) A.8 B.7 C.6 D.57.已知2是关于x的方程3x+a=0的解.那么a的值是( )A.-6 B.-3 C.-4 D.-58.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算时,左手伸出根手指,右手伸出根手指,两只手伸出手指数的和为,未伸出手指数的积为,则.那么在计算时,左、右手伸出的手指数应该分别为( )A .2 、3B . 2 、 1C . 3 、2D . 1 、29、一个数的绝对值是1/9,则这个数可以是( ) A.1/3 B.1/9 C.1/9或者-1/9 D.-1/910、小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ,展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,,再展开后,在纸上形成的两条折痕之间的距离是( )A 、0.5cmB 、1cm C第Ⅱ卷 非选择题(共90分) 二、填空题(本大题共5个小题,每小题3分,共15分)11. -1/7的相反数是_______;-8/9的倒数是 .12、如果a 与1互为相反数,则︱a+2︱= .13.甲乙丙三地的海拔高度分别为20米, -15米, -10米,那么最高的地方比最低的地方高 ( )A .5米B .10米C .25米D .35米14.在下表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j =1时,a i ,j =a 2,1=1.则a 1,1•a i ,1+a 1,2•a i ,2+a 1,3•a i ,3+a 1,4•a i ,4+a 1,5•a i ,5= .15.汽车开始行驶时,油箱内有油 50 升,如果每小时耗油 6 升,则油箱内剩余油量 Q (升)与行驶 时间 t (小时)的函数关系为,其中常量为 ,变量为 .第一次折叠 第一次折叠 图 1 图 2( 第 1题图 )三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)13+5×(-2)-(-4)÷(-8)(2)75.0431218522-52+⎪⎭⎫⎝⎛-⨯-⎪⎭⎫⎝⎛÷(3)()()3216183437513-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛-+-(4)332475521212211324.032⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛⨯⎪⎭⎫⎝⎛-÷+--17.化简①x2+5y-4x2-3y-1 ②-(2a-3b)-(4a-5b)18.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足..为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小..关系为AG AH.(填写下列符号>,<,之一)19.小强买了张50元的乘车IC卡,如果他乘车的次数用m表示,则记录他每次乘车后的余额n(元)如下表:次数m 余额n(元)1 50﹣0.82 50﹣1.63 50﹣2.44 50﹣3.2……(1)写出乘车的次数m表示余额n的关系式.(2)利用上述关系式计算小强乘了13次车还剩下多少元?(3)小强最多能乘几次车?20.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?21.学校会议室采用大小相同的长方形木块镶嵌地面,第一次铺2块,如图1,第二次把第一次铺的部分完全围起来,如图2,第三次把第二次铺的部分完全围起来,如图3……依次类推.如果把从开始到第n次铺完后总共用的木块数记作a n,把第n次镶嵌时用来围铺前一次木块所用的木块(即周围一圈的木块)数记作b n.则(1) a3 = ___________;b3 =____________;(2) b n = ________________________(用含n的代数式表示)(3) a99 + b100 = _______________.图1 图2 图322、(12分)水是生命之源泉,是人体需要的第一营养素,具有极为重要的生理功能。
2023年重庆市北碚区春招数学试卷(含解析)
2023年重庆市北碚区春招数学试卷一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 3的相反数是( )A. −3B. −13C. 3 D. 132.如图所示的圆柱体的俯视图为( )A.B.C.D.3.一杆称在称物时的状态如图所示,已知∠1=80°,则∠2的度数是( )A. 20°B. 80°C. 100°D. 120°4. 估计(23+5)×6的值应在( )A. 7和8之间B. 6和7之间C. 5和6之间D. 4和5之间5. 用同样大小的黑色棋子按如图所示的规律拼图案,其中第①个图案中有1枚棋子,第②个图案中有3枚棋子,第③个图案中有6枚棋子,第④个图案中有10枚棋子,…,按此规律排列下去,则第⑥个图案中棋子枚数是( )A. 10B. 15C. 21D. 286. 小明从家里出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.根据图中提供的信息,给出下列说法,其中正确的是( )A. 小明散步共走了900米B. 返回时,小明的速度逐渐减小C. 小明在公共阅报栏前看报用了16分钟D. 前20分钟小明的平均散步速度为45米/分7. 水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折的折扣相同,设每次打x折,根据题意,下面所列方程正确的是( )A. (1500×50%)(x)2=50010B. (1500×50%)(1−x)2=50010C. 1500(1+50%)(x)2=1500+50010D. 1500(1+50%)(1−x)2=1500+500108.如图,线段AC 经过圆心O ,交⊙O 于点A 、B ,CD 是⊙O 的切线,点D 为切点.若∠ACD =30°,CD =2 3,则线段BC 的长度是( )A. 1B. 2C. 3D. 39.如图,△ABC 中,∠ACB =90°,点D 为边AB 的中点,△ADC 沿直线CD 翻折至△ABC 所在平面内得△A′DC ,AA′与CD 交于点E .若AC = 5,BC =2 5,则点A′到AB 的距离是( )A. 245 B. 125 C. 2425 D. 122510. 按顺序排列的一列数:x 1,x 2,x 3,…,x n (n 是正整数),从第二个数x 2开始,每一个数都等于 2与它前一个数的倒数之差,即:x 2= 2−1x 1,x 3= 2−1x 2,…,则下列说法:①当x 1≠0且x 1≠22且x 1≠ 2时,x 1⋅x 2⋅x 3⋅x 4=−1;②若x 1=3 22,则x 1+x 2+…+x 47=18 2;③代数式x 1x 10⋅x 11⋅x 12+2x 1−1的值恒为负;④若(x 1− 2)(x 2− 2)x 7x 8=−1,则x 1=±1.其中正确的个数是( )A. 4B. 3C. 2D. 1二、填空题(本大题共8小题,共32.0分)11. 计算:( 2−1)0+(12)−1= ______ .12.如图,△DEF 与△ABC 位似,点O 为位似中心,相似比为1:2.若△ABC 的面积为8,则△DEF 的面积为______ .13. 在一个布袋里装着标号分别为1,2,3,4的4个小球,它们除标号外无其他区别,从布袋中随机摸出一个小球后不放回,摇匀再随机摸出一个小球,两次摸出的小球标号的和是偶数的概率为______ .14. 如图,在平面直角坐标系中,△ABC 是等腰直角三角形,AB =BC ,点C 在反比例函数y =k x(k ≠0)的图象上,若A (0,2),B (1,0),则k 的值为______ .15. 如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,AB =1,BD =2,以点C 为圆心,CD 的长为半径画弧,交BC 于点E ,则图中阴影部分的面积为______ .(结果保留π)16.如图,正方形ABCD 中,AB =4,点E 、F 分别在边CD 、AD 上,BE 、CF 相交于点G ,BE =CF = 17,点O 是BF 中点,则OG 的长为______ .17. 若关于x 的一元一次不等式组{x−12−2x−13>−1x −m <0的解集是x <m ,且关于y 的分式方程m y−3+y 3−y =1的解是非负整数,则所有满足条件的整数m 的值之和为______ .18. 对于一个四位数n ,其各个数位上的数字都不为0,若n 的千位数字与十位数字之和等于百位数字与个位数字之和,则称n 为“等和数”.将“等和数”n 的千位数字与十位数字交换,百位数字与个位数字交换后得到一个新的“等和数”n′,记F (n )=n +n′101,G (n )=n−n′99.例如n=1342,n′=4213,F(1342)=1342+4213101=55,G(1342)=1342−421399=−29.计算F(5236)−G(5236)=______ ;当F(n)13,G(n)7均是整数时,n的最大值为______ .三、解答题(本大题共8小题,共78.0分。
重庆市2020年初中学业水平暨高中招生考试数学试题(B卷)(含解答提示)
,在点 E 处测得 5G 信号塔顶端 A 的仰角
为 43°,悬崖 BC 的高为 144.5 米,斜坡 DE 的坡度(或坡比)i=1∶2.4,则信号塔 AB 的高度
约为(
)
(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)
把数 94000000 用科学记数法表示为
.
7
提示:根据科学记数法的意义.答案 9.4×10 .
15.盒子里有 3 张形状、大小、质地完全相同的卡片,上面分别标着数字 1,2,3,从中随机
抽出 1 张后不放回,再随机抽出 1 张,则两次抽出的卡片上的数字之和为奇数的概率
是
.
2
提示:由树状图知总共有 6 种,符合条件的有 4 种.答案:3.
晚_____分钟到达 B 地.
y/米
2500
1500
O
5
25
86
x/分钟
提示:由图及题意易乙的速度为 300 米/分,甲原速度为 250 米/分,当 x=25 后,甲提速为
400 米/分,当 x=86 时,甲到达 B 地,此时乙距 B 地为 250(25-5)+400(86-25)-300×86=3600.
∴∠ABE=∠CDF.
∵AE,CF 分别平分∠BAD 和∠DCB,
1
A
D
F
E
B
C
1
∴∠BAE=2∠BAD,∠CDF=2∠DCB
∴∠BAE=∠CDF,
∴△ABE≌△CDF,
∴BE=DF
21. 每年的 4 月 15 日是我国全民国家安全教育日.某中学在全校七、八年级共 800 名学生中
重庆市北碚区2020年中考数学春招模拟试卷(含解析)
重庆市北碚区2020年中考数学春招模拟试卷一、选择题(共12小题).1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0 B.b<1 C.a<b D.a>﹣22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1 B.x=2,y=0 C.x=1,y=2 D.x=3,y=2 6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5 B.2 C.D.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4 B.8 C.12 D.1611.若数a使关于x 的分式方程+=1有非负整数解,且使关于y 的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5 B.﹣3 C.0 D.212.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣1 0 1 2 3 …y=…p t n t0 …ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:(3﹣π)0﹣=.14.代数式有意义,则x的取值范围是.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是.(结果保留π)16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组.(2)计算:(x+)÷.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0 1 4 5 a 分析数据:平均数中位数众数开学初抽取学生成绩16 b17学期末抽取学生成绩18 18.5 19根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.参考答案1.C.2.A.3.B.4.C.5.D.6.A.7.D.8.A.9.B.10.B.11.D.12.C.13.﹣1.14.x>4.15.π.16..17..18..19.解:(1),①+②,得4x=12,解得,x=3,将x=3代入①,得y=﹣1,故原方程组的解为;(2)(x+)÷====.20.【解答】证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形.21.解:(1)开学初抽取的学生总数为:2=20,∴a=20﹣0﹣1﹣4﹣5=10,开学初抽取学生中B组人数为:20﹣2﹣3﹣4﹣7=4,由此可知开学初所抽取学生的成绩A、B、C组共有2+3+4=9人,则将所抽取的20人的成绩由小到大排列,位于第10位和第11位的成绩都位于D组,∵D组中的数据是:17,17,17,17,17,18,18.∴中位数b==17,补全统计图如下:(2)根据题意得,300×=90,答:该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了90人;(3)从平均数看,小莉开学初测试成绩等于开学初抽取学生成绩的平均数16分,学期末测试成绩19分高于学期末所抽取学生成绩的平均数18分,因此小莉一分钟跳绳练习达到郎的效果;从中位数来看,小莉开学初测试成绩16分低于开学初抽取学生成绩的中位数17分,学期末测试成绩19分高于学期末抽取学生成绩的中位数18,5分,因此小莉一分钟跳绳练习达到郎的效果.22.解:(1)由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.(2)函数图象如图所示:性质:x<3时,y随x的增大而减小,x>3时,y随x的增大而增大.(3)观察图形可知:不等式y1≥y2的解集为:x<﹣2或x>0.23.解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x ≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.24.解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.25.解:(1)∵抛物线的顶点为B(1,3),∴设这个二次函数的表达式为y=a(x﹣1)2+3,∵二次函数的图象经过点A(0,1),∴a(0﹣3)2+3=1,解得:a=﹣2,∴这个二次函数的表达式为y=﹣2(x﹣1)2+3,即y=﹣2x2+4x+1;(2)∵AC⊥AB,A(0,1),∴直线AC的解析式为y=﹣x+1,由,解得:或,∴C(,﹣),过P作PQ∥y轴交AC于Q,设P(t,﹣2t2+4t+1),则Q(t,﹣t+1),∴PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,∴S△APC=PQ|x C﹣x A|=(﹣2t2+t)(﹣0)=﹣(t﹣)2+,∴当t=时,S△APC有最大值,此时,P(,).26.【解答】(1)解:在正方形ABCD中,AB=4,∴AO=CO=OB=2,∵BE=,∴OE=,∵AC⊥BD,∴∠COE=90°,∴CE===,由旋转得:CE=CF,∠ECF=90°,∴△CEF的面积===5;(2)证明:如图2,过E作EN⊥AB于N,作EP⊥BC于P,∵EP⊥BC,FM⊥CD,∴∠EPC=∠FMC=90°,∵∠BCD=∠ECF=90°,∴∠PCE=∠MCF,∵CE=CF,∴△CPE≌△CMF(AAS),∴EP=FM,∵EP⊥BC,EN⊥AB,BE平分∠ABC,∴EP=EN,∴EN=FM,∵FM⊥CD,∴∠FMG=∠ENH=90°,∵AB∥CD,∴∠NHE=∠MGF,∴△NHE≌△MGF(AAS),∴NH=MG,∴BH+MG=BH+NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH+MG=BE;(3)解:BH﹣MG=BE,理由是:如图3,过E作EN⊥AB于N,交CG于P,∵EP⊥BC,FM⊥CD,AB∥CD,∴EP⊥CD,∴∠EPC=∠FMC=90°,∵∠M=∠ECF=90°,∴∠ECP+∠FCM=∠FCM+∠CFM=90°,∴∠ECP=∠CFM,∵CE=CF,∴△CPE≌△FMC(AAS),∴PC=FM,∵△DPE是等腰直角三角形,∴PE=PD,∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,∵AB∥CD,∴∠H=∠FGM,∵∠ENH=∠M=90°,∴△HNE≌△GMF(AAS),∴NH=MG,∴BH﹣MG=BH﹣NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH﹣MG=BE.。
重庆市北碚区2019-2020学年高一上学期11月联考数学试题(教师版)
2019-2020学年度上期北碚区高中11月联合性测试高一数学 试题一、选择题(本大题共12小题,每小题5分,共60分)1.sin300︒=" " ( )A. B. 12-C.12【答案】A 【解析】 略2.下列关于向量a ,b 的叙述中,错误的是( ) A. 若220a b +=,则0a b ==B. 若k ∈R ,0ka =,所以0k =或0a =C. 若0a b ⋅=,则0a =或0b =D. 若a ,b 都是单位向量,则1a b ⋅≤恒成立 【答案】C 【解析】 【分析】根据向量的数量积,及向量的线性运算逐一判断。
【详解】解:∵220a b +=,220a a =≥,220b b =≥,∴0a b ==r r,∴0a b ==,故A 正确;∵0ka =,∴220k a =,∴0k =或0a =,故0k =或0a =,∵cos 0a b a b θ⋅==,∴0a =或0b =或cos 0θ=,故0a =或0b =或a b ⊥,故C 错误;∵a ,b 是单位向量,∴cos 1a b θ⋅=≤,故D 正确;故选C . 故选:C【点睛】本题考查向量的运算性质,用到向量中的一些结论,数量积为0,单位向量,零向量,属于基础题。
3.函数()2tan 1tan xf x x=+的最小正周期为A.4π B.2π C. πD. 2π【答案】C 【解析】【详解】分析:将函数()2f 1tanxtan xx =+进行化简即可 详解:由已知得()221f sin2121()sinxtanx cosx sinxcosx x sin x x tan x cosx====++ ()f x 的最小正周期2T π2π==故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题 4.若向量(1,2),(3,4)a b =-=,则a 在b 方向上的投影是 A. 1 B. -1D.【答案】B 【解析】由题意,得a 在b 方向上的投影是1324cos 15a b a bθ⋅⨯-⨯===-;故选B.5.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解析式是( ) A. sin 2y x = B. cos 2y x =C. 2sin(2)3y x π=+D. sin(2)6y x π=- 【答案】D 【解析】试题分析:由已知得平移后的图像所对应的函数解析式是sin 2sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选.D 考点:三角函数图像变换. 6.函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭相邻两个对称中心间的距离为2π,以下哪个区间是函数()f x 的递减区间( )A. 03π⎡⎤-⎢⎥⎣⎦, B. 03π⎡⎤⎢⎥⎣⎦,C. 122ππ⎡⎤⎢⎥⎣⎦, D. 526ππ⎡⎤⎢⎥⎣⎦,【答案】C 【解析】试题分析:由题意可知函数()f x 的最小正周期为2T ππω==,所以=2ω,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,令3222232k x k k Z πππππ+≤+≤+∈,得,71212k x k k Z ππππ+≤≤+∈,,通过给k 取值验证可知,当k=0时,C 选项是其单调递减区间的真子集,故选C. 考点:正弦型函数的图象与性质.7.已知向量(4,2)a =-,向量,)5(b x =,且//a b ,那么x 等于( ) A. 10 B. 5C. 52-D. 10-【答案】D 【解析】 【分析】由两向量平行,其向量坐标交叉相乘相等,得到452x ⨯=-. 【详解】因为//a b ,所以452x ⨯=-,解得:10x =-.【点睛】本题考查向量平行的坐标运算,考查基本运算,注意符号的正负. 8.已知D 是△ABC 边AB 上中点,则向量CD =( )A. 1-2BC BA + B. 12BC BA -C. 1-2BC BA -D. 12BC BA +【答案】A 【解析】 【分析】利用向量的线性运算,用基底{},BC BA 表示向量CD .【详解】因为D 是△ABC 边AB 上的中点,所以1122CD CB BD CB BA BC BA =+=+=-+.故选A. 【点睛】本题主要考查平面向量的线性运算,利用基向量表示向量时,注意把目标向量向基向量靠拢.9.设1cos 6sin 622a ︒︒=-,22tan131tan 13b ︒︒=+,c =则有 ( ) A. a b c >> B. a b c <<C. b c a <<D. a c b <<【答案】D 【解析】【详解】sin(306)sin 24,sin 26,sin 25a b c =-===,所以a c b <<.10.若O 是ABC △所在平面内一点,D 为BC 边的中点,且40OA OB OC ++=,那么( ) A. OD AO =- B. 2OD AO =- C. 2OD AO = D. OD AO =【答案】C 【解析】 【分析】由D 为BC 边的中点知道2,OB OC OD ∴+=化简即可得出答案。
重庆市北碚区2019-2020学年高一上学期11月联考数学试题(学生版)
2019-2020学年度上期北碚区高中11月联合性测试高一数学 试题一、选择题(本大题共12小题,每小题5分,共60分)1.sin300︒=" " ( ) A. B. 12-C.122.下列关于向量a ,b 的叙述中,错误的是( ) A. 若220a b +=,则0a b ==B. 若k ∈R ,0ka =,所以0k =或0a =C. 若0a b ⋅=,则0a =或0b =D. 若a ,b 都是单位向量,则1a b ⋅≤恒成立 3.函数()2tan 1tan xf x x=+的最小正周期为A .4π B.2π C. πD. 2π4.若向量(1,2),(3,4)a b =-=,则a 在b 方向上的投影是 A. 1B. -1D.5.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解析式是( ) A. sin 2y x =B. cos 2y x =C. 2sin(2)3y x π=+D. sin(2)6y x π=- 6.函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭相邻两个对称中心间的距离为2π,以下哪个区间是函数()f x 的递减区间( ) A. 03π⎡⎤-⎢⎥⎣⎦, B. 03π⎡⎤⎢⎥⎣⎦,C. 122ππ⎡⎤⎢⎥⎣⎦, D. 526ππ⎡⎤⎢⎥⎣⎦,7.已知向量(4,2)a =-,向量,)5(b x =,且//a b ,那么x 等于( ) A. 10B. 5C. 52-D. 10-8.已知D 是△ABC 边AB 上的中点,则向量CD =( )A. 1-2BC BA +B. 12BC BA -C. 1-2BC BA -D. 12BC BA +9.设1cos 6sin 622a ︒︒=-,22tan131tan 13b ︒︒=+,c =则有 ( ) A. a b c >>B. a b c <<C. b c a <<D. a c b <<10.若O 是ABC △所在平面内一点,D 为BC 边的中点,且40OA OB OC ++=,那么( ) A. OD AO =- B. 2OD AO =- C. 2OD AO =D. OD AO =11.角α顶点在坐标原点O ,始边x 轴的非负半轴重合,点P 在α的终边上,点()3,4Q --,且tan 2OP OQ α=-,则与夹角的余弦值为( )A. -12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭部分图象如图所示,下列说法正确的是( )A. ()f x 的图象关于直线23x π=-对称 B. ()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C.将函数2cos 2y x x =-的图象向左平移2π个单位得到函数()f x 的图象 D. 若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,-二、填空题(本大题共4小题,每小题5分,共20分)13.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ=________. 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.在平面直角坐标系中,O 为坐标原点,且满足OC =2OA 3+1OB 3,则AC AB=________.16.已知P 1(x 1,y 1),P 2(x 2,y 2)是以原点O 为圆心的单位圆上的两点,∠P 1OP 2=θ(θ为钝角).若3sin 45πθ⎛⎫+= ⎪⎝⎭,则x 1x 2+y 1y 2的值为_____.三、解答题(本大题共6小题,共70分)17.已知向量a 与b 的夹角120θ︒=,且4,2a b ==,求: (1)a b ⋅;(2)()(2)a b a b +⋅-; (3)||a b +.18.已知1tan 42πα⎛⎫+=⎪⎝⎭. (Ⅰ)求tan α的值;(Ⅱ)求()()22sin 22sin 21cos 2sin παπαπαα⎛⎫+-- ⎪⎝⎭--+的值.19.设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到. 20.已知25(cos ,sin ),(cos ,sin ),||a b a b ααββ==-=.(1)求cos()αβ-的值; (2)若120,0,cos 2213ππαββ<<-<<=,求sin α.21.已知向量()sin cos ,sin a x x x ωωω=+,向量()sin cos b x x x ωωω=-,设函数()()1f x a b x R =⋅+∈的图象关于直线3x π=对称,其中常数()0,2ω∈.(1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的值域; (2)将函数()f x 的图象向左平移12π个单位,再向下平移1个单位,得到函数()g x 的图象,用五点法作出函数()g x 在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象. 22.函数()()sin 0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的部分图象如图,M 是图象的一个最低点,图象与x 轴的一个交点坐标为,02π⎛⎫⎪⎝⎭,与y 轴的交点坐标为(0,.(1)求A ,ω,ϕ的值;(2)关于x 的方程()0f x m -=在[]0,2π上有两个不同的解,求实数m 的取值范围.。
2022年重庆市北碚区春招数学试卷及答案解析
2022年重庆市北碚区春招数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)﹣3的倒数为()A.﹣B.C.3D.﹣32.(4分)计算2x5÷x3的结果是()A.x2B.2x2C.x8D.2x83.(4分)已知x﹣y=1,则代数式3x﹣3y+1的值是()A.2B.﹣2C.4D.﹣44.(4分)如图,已知△ABC和△AED是以点A为位似中心的位似图形,且S△ABC:S△AED =1:4,则△ABC与△AED的相似比是()A.1:4B.4:1C.1:2D.2:15.(4分)如图,AB是⊙O的切线,A为切点,OB交⊙O于点C,若⊙O的半径长为1,AB=,则线段BC的长是()A.1B.C.2D.6.(4分)估计×﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(4分)下列命题一定正确的是()A.一组对边平行的四边形是平行四边形B.对角线相等的四边形是平行四边形C.平行四边形的对边平行D.平行四边形的邻角相等8.(4分)小玲从山脚沿某上山步道“踏青”,匀速行走一段时间后到达山腰平台停下来休息一会儿,休息结束后她加快了速度,匀速直至到达山顶.设从她出发开始所经过的时间为t,她行走的路程为s,下面能反映s与t的函数关系的大致图象是()A.B.C.D.9.(4分)如图,在△ABC中,D是AB的中点,E是BC延长线上一点,且BC=2CE,连接DE交AC于点F.若DF=2,则EF的长是()A.2B.C.2D.310.(4分)如图,在正方形ABCD中,P是AC上一点,且CP=,点E,F分别在AB,BC上,∠EPF=90°,PE=3PF,则线段AP的长是()A.2B.2C.3D.311.(4分)若关于x的不等式组的解集为x<a,且关于y的分式方程的解为非负数,则符合条件的所有整数a的值之和是()A.21B.17C.15D.1112.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的自变量x与函数值y 的部分对应值如表:x…﹣1012…y…m﹣2﹣2n…当x=﹣时,与其对应的函数值y>0,给出下列四个结论:①b<0;②关于x的方程ax2+bx+c=n的两个根是﹣1和2;③m+2n<10;④t(at+b)≥﹣(t为任意实数).其中正确结论的个数是()A.1B.2C.3D.4二、填空题:(体大题共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)2022年2月4日至2022年2月20日,我国成功举办了第24届冬季奥林匹克运动会,随着冬奥会的举办,中国冰雪运动的参与人数有了突飞猛进的提升.从2015年北京申办冬奥成功到2021年10月间,全国冰雪运动参与人数达到346000000人,将数据346000000用科学记数法表示为.14.(4分)现有3张除数字外完全相同的卡片,卡片上分别标有数字﹣1,2,3,混合后随机抽取一张卡片,将卡片上的数字记为a,不放回,再从剩下的卡片中随机抽取一张,将卡片上的数字记为b,则点(a,b)在平面直角坐标系第四象限内的概率是.15.(4分)如图,在△ABC中,∠ACB=90°,∠B=60°,BC=2,以AC为直径作半圆,交AB边于点D,点O为圆心,连接OD,则图中阴影部分的面积是.16.(4分)某公司用汽车将货物发往甲地,用火车将货物发往乙地.第一次发货时,发往甲、乙两地货物的吨数之比为1:2,且每吨运费之比为4:3,第二次发货时,由于受汽油价格上涨的影响,汽车每吨运费上调了20%(火车每吨运费不变),因此发往甲地货物吨数只有第一次发往甲地货物的,且第二次发货的汽车总运费与第二次发货的火车总运费之比为2:3,则这两次总共发往甲、乙两地的货物吨数之比是.三、解答题(共2小题,满分16分)17.(8分)计算:(1)(a﹣b)2+a(2b﹣a);(2).18.(8分)如图,某水库大坝的横断面为梯形ABCD,已知坝顶BC为8米,坝高BE为6米,斜坡AB的坡角∠BAD=37°,斜坡CD的坡度i=1:1.(1)求AB的长;(精确到1米)(2)求AD的长.(精确到1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)四、解答题:(本大题共7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年重庆市北碚区春招数学试卷
一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框浍黑.
1.(4分)实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()
A.a>0B.b<1C.a<b D.a>﹣2
2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()
A.B.C.D.
3.(4分)下列计算正确的是()
A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣
4.(4分)下列命题正确的是()
A.过线段中点的直线上任意一点到线段两端的距离相等
B.垂直于线段的直线上任意一点到线段两端的距离相等
C.线段垂直平分线上任意一点到线段两端的距离相等
D.线段垂直平分线上的点到线段上任意两点的距离相等
5.(4分)按如图所示的运算程序,能使输出m的值为1的是()
A.x=1,y=1B.x=2,y=0C.x=1,y=2D.x=3,y=2 6.(4分)估计×+÷的值应在()
A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.(4分)如图,AB是⊙O的直径,点P在BA的延长线上,P A=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()
A.1.5B.2C.D.
8.(4分)如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D 是第一象限的点,BC=2,则点D的坐标是()
A.(9,6)B.(8,6)C.(6,9)D.(6,8)
9.(4分)如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.22.5米B.27.5米C.32.5米D.45.0米
10.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k
>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()
A.4B.8C.12D.16
11.(4分)若数a使关于x 的分式方程+=1有非负整数解,且使关于y的不等式组至少有3个整数解,则符合条件的所有整数a的和是()
A.﹣5B.﹣3C.0D.2
12.(4分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y 的部分对应值如表:
x…﹣10123…
…p t n t0…
y=
ax2+bx+c
有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()
A.1B.2C.3D.4
二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.
13.(4分)计算:(3﹣π)0﹣=.
14.(4分)代数式有意义,则x的取值范围是.
15.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是.(结果保留π)
16.(4分)点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y 轴所围成的封闭区域内(含边界)的概率是.
17.(4分)如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.
18.(4分)如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.
三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.
19.(10分)(1)解方程组.
(2)计算:(x+)÷.
20.(10分)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE =∠CDF.
求证:(1)△ABE≌△CDF;
(2)四边形EBFD是平行四边形.
21.(10分)某校为提高学生体考成绩,对全校300名九年级学生进行一分钟跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分钟跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x <13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)
开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.
学期末抽取学生成绩统计表
学生成绩A组B组C组D组E组
人数0145a 分析数据:
平均数中位数众数开学初抽取学生成绩16b17
学期末抽取学生成绩1818.519
根据以上信息,解答下列问题:
(1)直接写出图表中a、b的值,并补全条形统计图;
(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?
(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.
22.(10分)某数学小组对函数y1=图象和性质进行探究.当x=4时,
y1=0.
(1)当x=5时,求y1的值;
(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;
(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1
的图象,直接写出不等式y1≥y2的解集.
23.(10分)某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.
(1)求4月份售出B型小家电至少多少台?
(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?
24.(10分)对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m 为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.
(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;
(2)若k是一个“平方和数”,且A(k)=,求k的值.
25.(10分)如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;
(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC
面积最大时,求点P的坐标和△APC的面积最大值.
四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.
26.(8分)如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.
(1)若AB=4,BE=,求△CEF的面积.
(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG =BE;
(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB 于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.。