高中数学知识点最全的思维导图

合集下载

人教版高中数学必修一章节思维导图全套

人教版高中数学必修一章节思维导图全套
质》思维导图
《3.3 幂函数》思维导图
《4.1 指数的运算》思维导图
《4.2指数函数》思维导图
《4.3 对数的运算》思维导图
《4.4 对数函数》思维导图
《4.5 函数的应用(二)》思维导图
《5.1 任意角和弧度制》思维导图
《5.2 三角函数的概念》思维导图
《5.3 诱导公式》思维导图
《5.4 三角函数的图象与性质》思维导图
《5.5 三角恒等变换》思维导图
《5.6 函数 》思维导图
《5.7 三角函数的应用》思维导图
人教版高中数学必修一章节思维导图全套11集合的概念及特征思维导图12集合间的关系思维导图13集合的基本运算思维导图14充分必要条件思维导图15全称量词与存在量词思维导图21等式与不等式的性质思维导图22基本不等式思维导图23二次函数与一元二次方程不等式思维导图31函数的概念思维导图32函数的性质思维导图33幂函数思维导图41指数的运算思维导图42指数函数思维导图43对数的运算思维导图44对数函数思维导图45函数的应用二思维导图51任意角和弧度制思维导图52三角函数的概念思维导图53诱导公式思维导图54三角函数的图象与性质思维导图55三角恒等变换思维导图56函数思维导图57三角函数的应用思维导图
人教版高中数学必修一章节思维导图全套
《1.1集合的概念及特征》思维导图
《1.2 集合间的关系》思维导图
《1.3 集合的基本运算》思维导图
《1.4 充分、必要条件》思维导图
《1.5 全称量词与存在量词》思维导图
《2.1 等式与不等式的性质》思维导图
《2.2 基本不等式》思维导图
《2.3 二次函数与一元二次方程、不等式》思维导图

高中数学知识框架思维导图

高中数学知识框架思维导图

i.
①(1 ± i)2 = ±2i;
②1+i = i;1−i = −i;
1−i
1+i
③������ + ������i = i(������ − ������i),
如3+4i = i(4−3i) = i;
4−3i 4−� = ������ + ������i、复平面内点 Z(������, ������)、向量���⃗⃗���⃗⃗���⃗��� = (������, ������)的一一对应关系; 复数模的几何意义:|������| = |������ + ������i| = √������2 + ������2 = |���⃗⃗���⃗⃗���⃗���|
2.对数的运算性质(������>0,且������ ≠1,������>0,������>0):①log������(������ ∙ ������) = log������������ + log������������;
简易逻辑
命题
关系
原命题:若 p 则 q
互否
否命题:若p 则q
互逆
互为逆否 等价关系
互逆
逆命题:若 q 则 p
互否
逆命题:若q 则p
充分条件、必要条件、充要条件 若������ ⇒ ������,则������是������的充分条件,������是������的必要条件
复合命题 量词
或:p q 且:p q 非: p 全称量词 存在量词
2
映射
函数
函数图象 及其变换
第二部分 函数、导数及微积分
������: ������ → ������:一对一,或多对一

高中函数知识点总结思维导图

高中函数知识点总结思维导图

高中函数知识点总结思维导图1. 函数及其性质1.1 函数的定义函数是一种特殊的关系,它将一个集合的元素对应到另一个集合的元素。

函数可以用数学符号或图形表示。

1.2 函数的性质•定义域:函数的输入值可能取的所有实数的集合•值域:函数的输出值可能取的所有实数的集合•单调性:函数的增减特性•奇偶性:函数在自身关于原点对称时,称为奇函数;否则称为偶函数2. 数学符号的应用2.1 函数的表示法•映射法:使用箭头表示函数的对应关系•例子:f(x) = x^2,表示函数f的定义域为实数集,值域为非负实数集。

2.2 函数的性质表示法•表格法:将函数的定义域和值域以表格的形式表示•例子:x -2 -1 0 1 2f(x) 4 1 0 1 43. 函数的图像与图象3.1 函数的图像函数的图像是函数在坐标系中的几何表现形式,可以通过作图得到。

作图时,横轴表示自变量,纵轴表示因变量。

3.2 函数的图象函数的图象是函数在平面直角坐标系中的全体点的集合。

图象的特点有: - 函数左右对称:奇函数的图象关于y轴对称,偶函数的图象关于原点对称 - 函数上下对称:在平面直角坐标系中,函数的图象上的每一点M关于x轴都有对称点N(x,-y)4. 特殊函数4.1 常数函数常数函数是定义域为全体实数的函数,且对应的函数值都相等。

4.2 一次函数一次函数表示为f(x) = ax + b,其中a和b为常数,a不等于0。

一次函数的图象是一条直线。

4.3 二次函数二次函数表示为f(x) = ax^2 + bx + c,其中a、b和c为常数,a不等于0。

二次函数的图象是一条抛物线。

4.4 幂函数幂函数表示为f(x) = ax^n,其中a和n为常数,a不等于0。

幂函数的图象随着指数n的增大而变成越来越陡峭或平缓的曲线。

4.5 指数函数指数函数表示为f(x) = a^x,其中a为常数,a大于0且不等于1。

指数函数的图象呈现指数增长或指数衰减的趋势。

4.6 对数函数对数函数表示为f(x) = log(a, x),其中a为常数,a大于0且不等于1。

高中数学思维导图知识图谱(全高清版)

高中数学思维导图知识图谱(全高清版)

高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图

高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图
高中学科思维导图

高中数学最全的思维导图

高中数学最全的思维导图

高中数学最全的思维导图
中国教育在线· 2015-11-09 06:43温馨提示商务合作QQ:1927876294小编推荐两个优秀的微信公众号:美丽的旅游(ID:mldly520)中国养生在线(ID:zg-yszx)很多同学又到一轮复习了,不知道该怎么总结,教育君给大家提个建议,要想总结,主要还是首先梳理出脉络来,提到某个知识点,那么关于这个知识点相关的所有知识你都要弄明白,这样你就成功了一半!下面是8张思维导图,先研究下看看吧!请点击标题下面:“中国教育在线”关注规则(关注后输
入数字或者汉字)我们会把相关的内容发送给您!主要不要有空格或者错误【1.正能量教育】【2.德行教育】【4.教育思维】【6.名家教育】【7.故事育人】【8.名校教育】【9.贵族教育】【14.学习行为】【15.健康心理】【16.行为教育】【17.亲情教育】【19.教育技巧】【20.教育误区】【21.名师经验】【22.明
星分享】【23.母爱】【25.教育技巧2】【28.文化教育】【29.
教育思考】【31.智慧分享】【32.开心一刻】【33.古代教育】【34.感动瞬间】【38.英语指导】【39.名家教育2】【41.生活点滴】【50.课外读物】【51.学习思维】【52.孩子叛逆】【53.名家教育3】【54.感动美文】【55.性教育】【61.单亲家庭】......更多专题,请点击菜单栏,“教育导航”微信原文微信文章为作者
独立观点,不代表微头条立场。

全套高中数学思维导图(清晰打印版)

全套高中数学思维导图(清晰打印版)
高中数学选修 1-1 目录 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 第二章 圆锥曲线与方程 2.1 椭圆 2.2 双曲线 2.3 抛物线 第三章 导数及其应用 3.1 变化率与导数 3.2 导数的计算 3.3 导数在研究函数中的应用 3.4 生活中的优化问题举例
高中数学选修 2-1 目录 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 第二章 圆锥曲线与方程 2.1 曲线与方程 2.2 椭圆 2.3 双曲线 2.4 抛物线 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.2 立体几何中的向量方法
两角和与差的正弦、余弦和正切公 式
简单的三角恒等变换
高中数学选修 1-2 目录 第一章 统计案例 1.1 回归分析的基本思想及其初 步应用 1.2 独立性检验的基本思想及其 初步应用 第二章 推理与证明 2.1 合情推理与演绎推理 2.2 直接证明与间接证明 第三章 数系的扩充与复数的引 入 3.1 数系的扩充和复数的概念 3.2 复数代数形式的四则运算 第四章 目录 第一章 解三角形 正弦定理和余弦定理 应用举例 实习作业 第二章 数列 数列的概念与简单表示法 等差数列 等差数列的前 n 项和 等比数列 等比数列的前 n 项和 第三章 不等式 不等关系与不等式 一元二次不等式及其解法 二元一次不等式(组)与简单的线 性规划问题 基本不等式
圆的方程 直线、圆的位置关系 空间直角坐标系
高中数学
思维导图
“我爱学习,学习使我妈快乐 我妈快乐,全家快乐!”
全套高中数学思维导图(清晰打印版)
高中数学必修一目录 第一章 集合与函数概念 集合 函数及其表示 函数的基本性质 第二章 基本初等函数(Ⅰ) 指数函数 对数函数 幂函数 第三章 函数的应用 函数与方程 函数模型及其应用

高中数学必修全思维导图

高中数学必修全思维导图

高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档