4斜截面承载力计算

合集下载

混凝土习题集—4—钢筋混凝土受弯构件斜截面承载力计算

混凝土习题集—4—钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算一、填空题:1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生 超过了混凝土的极限抗拉强度而开裂的。

2、斜裂缝破坏的主要形态有: 、 、 ,其中属于材料充分利用的是 。

3、梁的斜截面承载力随着剪跨比的增大而 。

4、梁的斜截面破坏形态主要有三种,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。

5、随着混凝土强度的提高,其斜截面承载力 。

6、随着纵向配筋率的提高,其斜截面承载力 。

7、对于 情况下作用的简支梁,可以不考虑剪跨比的影响。

对于 情况的简支梁,应考虑剪跨比的影响。

8、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。

9、 对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。

10、设置弯起筋的目的是 、 。

11、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。

12、梁内设置鸭筋的目的是 ,它不能承担弯矩。

二、判断题:1、某简支梁上作用集中荷载或作用均布荷载时,该梁的抗剪承载力数值是相同的。

( )2、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。

( )3、梁内设置箍筋的主要作用是保证形成良好的钢筋骨架,保证钢筋的正确位置。

( )4、当梁承受的剪力较大时,优先采用仅配置箍筋的方案,主要的原因是设置弯起筋抗剪不经济。

( )5、当梁上作用有均布荷载和集中荷载时,应考虑剪跨比λ的影响,取0Vh M =λ( ) 6、当剪跨比大于3时或箍筋间距过大时,会发生剪压破坏,其承载力明显大于斜裂缝出现时的承载力。

( )7、当梁支座处允许弯起的受力纵筋不满足斜截面抗剪承载力的要求时,应加大纵筋配筋率。

( )8、当梁支座处设置弯起筋充当支座负筋时,当不满足斜截面抗弯承载力要求时,应加密箍筋。

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算
则按构造要求配置箍筋,否则,按计算配置腹筋
计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆

是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1

第四章 第四节 斜截面受剪承载力计算公式及适用范围

第四章 第四节  斜截面受剪承载力计算公式及适用范围
一般受弯构件
V ≤ Vu = Vcs = 0.7 f t bh0 + 1.25 f yv Asv h0 s
集中荷载作用下的独立梁
Vcs = 1.75 f t bh0 A + f yv sv h0 λ + 1.0 s
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 2、同时配有箍筋和弯起钢筋
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 《规范》采用抗剪承载力试验下限值保证安全 无腹筋梁
V ≤ Vc = 0.7 β h f t bh0
β h = (800 / h0 )1 / 4
有腹筋梁
斜拉破坏 斜压破坏 剪压破坏
构造措施
计算控制
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 1、仅配有箍筋
下限值
最小配箍率
ρ sv =
Asv ≥ ρ sv,min bs
ρ sv,min = 0.24 f t / f yv
V ≤ Vu = Vcs + Vsb
Vsb = 0.8 f y Asb sin α s
第四节 斜截面受剪承载力计算公式及适用范围 二、适用范围 上限值
最小截面尺寸
hw / b ≤ 4
V ≤ 0.25β c f c bh0
V ≤ 0.2β c f c bh0
Hale Waihona Puke hw / b ≥ 6hw 4 < hw / b < 6 V ≤ 0.025(14 − )β c f c bh0 b

受弯构件斜截面承载力计算

受弯构件斜截面承载力计算
ρsv=nAsv1/bs=0.15%>ρsv,min=0.13% Vcs=0.7ftbh0+1.25fyvAsv/sh0=150.15kN 取弯起角αs=45°。
第一排弯起钢筋截面面积Asb
Asb≥(V1-Vcs)/(0.8fysinαs)= 472.91mm2 将纵向钢筋中间部位一根弯起(1 25), Asb=490.9mm2>472.91mm2,故满足要求。
【例4.10】钢筋混凝土矩形截面简支梁,两端支承在砖墙 上,净跨度ln=4660mm(图4.41);截面尺寸b×h=250mm ×550mm。该梁承受均布荷载,其中恒荷载标准值 gk=25kN/m(包括自重),荷载分项系数γG=1.2,活荷 载标准值qk=42kN/m,荷载分项系数γQ=1.4;混凝土强 度等级为C20(fc=9.6N/mm2, ft=1.1N/mm2),箍筋采用 HPB235级钢筋(fyv=210N/mm2),按正截面承载力已 配HRB335级钢筋4 25为纵向受力钢筋(fy=300N/mm2)。 试求腹筋数量。 【解】(1) 计算剪力设计值。支座边缘处剪力设计值为 V1=1/2(γGgk+γQqk)ln=206.9kN
对于承受以集中荷载为主的矩形截面独立梁,应改用
V Vcs 0.8 f y Asb Sin s Asv 1.75 ft bh0 1.25 f yv h0 0.8 f y Asb Sin s 1 s
图4.38
抗剪计算模式
(a) 仅配有箍筋;(b) 同时配置箍筋和弯起筋
4.4.3.2 公式适用条件
应按公式(4.38)复核,得 0.25βcfcbh0=223200N>V=200000N 截面尺寸满足要求。 (3) 确定是否需要按计算配置腹筋。 由公式(4.41) 0.7ftbh0=71610N<V=200000N 需进行斜截面受剪承载力计算,按计算配置腹筋。 (4) 箍筋计算。由公式(4.34)得 Asv/s≥(V-0.7ftbh0)/(1.25fyvh0) =1.05mm2/mm

斜截面受剪承载力的计算

斜截面受剪承载力的计算
A SV bs
≥ ρsv ,min
ρsv ,min = 0.24
ft f yv
1
例 4-1.有一钢筋混凝土矩形截面简支梁,截面尺寸及纵筋数量见图。该梁承受均布荷载设 计值 70kN/m(包括自重) ,混凝土强度等级为 C30(������������ = 1.43 ������/������������2 、������������ = 1.43 ������/������������2 ) ,
������ 1.43 270
������������
= 250×200 =0.2%> ������������������ ,������������������ = 0.24 ������ ������ = 0.24 ×
2×50.3
= 0.127%,可以。
2
ቤተ መጻሕፍቲ ባይዱ
ℎ ������ ������ 1 1
= 250 = 2.24 < 4
560
属厚腹板
混凝土强度等级为 C30,不超过 C50,故取βc = 1, 则 0.25������������ ������ ������ ������ℎ0 = 0.25 × 1 × 14.3 × 250 × 560 = 500.5 ������������ > ������ = 124.6������������ ,截面符合要 求。 ③ 验算是否需要按计算配置箍筋 0.7������������ ������ℎ0 = 0.7 × 1.43 × 250 × 560 = 140.14 ������������ < ������ = 201.6������������,故选计算配置箍筋。 ④配箍筋 令V = VU ,有 ������������������������1 ������ − 0.7������������ ������ℎ0 201.6 × 103 − 0.7 × 14.3 × 250 × 560 = = = 0.406 ������������2 ������������ ������ ������ ℎ 270 × 560 ������������ 0 采用双肢箍筋Φ 8@200,实有 箍筋配筋率������������������ =

第四章受弯构件斜截面承载力计算

第四章受弯构件斜截面承载力计算
P 剪压破坏 shear compression failure
f
Teacher Chen Hong
⒊斜压破坏(<1)
主压应力的方向沿支座与 荷载作用点的连线。承载 力取决于混凝土的抗压强 度。
P
2019年10月14日星期一
斜压破坏 diagonal compression failure
f
Teacher Chen Hong
Teacher Chen Hong
2019年10月14日星期一
按每根(或每组)钢筋的的面积比例划分出各根(或各组) 钢筋的所提供的受弯承载力Mui,Mui可近似取
M ui

Asi As
Mu
Teacher Chen Hong
2019年10月14日星期一
根据M图的变化将钢筋弯起时需绘制Mu图,使得Mu图
Teacher Chen Hong
2019年10月14日星期一
板的斜截面承载力是满足要求的,所以斜截面承载力主要 是针对于梁和厚板而言的。 斜截面的受弯承载力是通过对纵筋和箍筋的构造要求来保 证的。而斜截面的受剪承载力是在梁具有一个合理截面的 基础上,通过配置腹筋(箍筋+弯起筋)来满足的。
Teacher Chen Hong
Teacher Chen Hong
3>、计算配置腹筋:
A、只配箍筋:
2019年10月14日星期一
确定n ? ? Asv1 ? Asv nAsv1
由 nAsv1 V 0.7 ftbh0 s 1.25 f yvh0nAsv1
s
1.25 f yvh0
V 0.07 ftbh0
2019年10月14日星期一
4-3 保证斜截面受弯承载力 的构造措施

分别写出建筑工程与桥梁工程中的斜截面承载力计算公式。

分别写出建筑工程与桥梁工程中的斜截面承载力计算公式。

分别写出建筑工程与桥梁工程中的斜截面承载力计算公式。

在建筑工程和桥梁工程中,斜截面承载力的计算可是相当重要的哟!这就好比我们做饭时掌握食材和调料的比例,要是弄错了,这“菜”可就不好吃啦。

先来说说建筑工程中的斜截面承载力计算公式。

对于受弯构件,斜截面受剪承载力由混凝土和箍筋共同承担。

其计算公式为:$V\leqV_{cs}+V_{sb}$ ,其中 $V_{cs}$ 是混凝土和箍筋共同抗剪承载力,$V_{sb}$ 是弯起钢筋抗剪承载力。

$V_{cs}=0.7f_{t}bh_{0}+1.25f_{yv}\frac{A_{sv}}{s}h_{0}$ ,这里面,$f_{t}$ 是混凝土轴心抗拉强度设计值,$b$ 是截面宽度,$h_{0}$ 是截面有效高度,$f_{yv}$ 是箍筋抗拉强度设计值,$A_{sv}$ 是配置在同一截面内箍筋各肢的全部截面面积,$s$ 是沿构件长度方向的箍筋间距。

就拿我曾经参与的一个住宅项目来说吧。

那是一个多层的住宅楼,在计算某一梁的斜截面承载力时,我们就得严格按照这个公式来。

当时,我和同事们拿着尺子在现场仔细测量截面的宽度和高度,一丝一毫都不敢马虎。

回到办公室,对着一堆数据,反复核算。

就怕一个不小心,算错了,那可会影响整个建筑的安全性呐!再看看桥梁工程中的斜截面承载力计算公式。

对于矩形、T 形和工字形截面的受弯构件,其斜截面抗剪承载力的计算公式为:$V_{d}\leq V_{c}+V_{s}$ ,其中 $V_{d}$ 是考虑承载能力极限状态下的剪力组合设计值,$V_{c}$ 是混凝土提供的抗剪能力,$V_{s}$ 是箍筋和弯起钢筋提供的抗剪能力。

$V_{c}=0.45\times 10^{-3}\beta_{c}f_{cu,k}b_{h_{0}}$ ,这里的$\beta_{c}$ 是有关混凝土强度影响的系数,$f_{cu,k}$ 是混凝土立方体抗压强度标准值。

记得有一次在参与一座小型桥梁的建设时,为了算出准确的斜截面承载力,我们在施工现场顶着烈日,对桥梁的各个关键部位进行测量和记录。

第四章斜截面受剪承载力计算

第四章斜截面受剪承载力计算

纵筋配筋率对梁受剪承载力的影响
第4章 受弯构件斜截面承载力计算
郑州大学
五、弯起钢筋及其强度 bent reinforcement and strength
3
试验表明,在相 同纵向钢筋配筋率下, 弯筋梁的受剪承载力
Vu 钢 /( f t筋 bh0配 ) 筋率 与弯起
A sb 筋 sb 强 bh0
规范规定:
矩形、T形和Ⅰ形截面的受弯构件,其斜截面受剪承载 力应符合下列规定:
ft
仅配箍筋简支梁Vcs实测值与计算值的比较
KV Vu Vcs Vc Vsv
4. 4 受弯构件斜截面受剪承载力计算
第4章 受弯构件斜截面承载力计算
郑州大学
KV Vu Vcs 0.7 f t bh0 1.25 f yv
4.1 概述
第4章 受弯构件斜截面承:
tp cp



2

2
4
2
1 2 arctan( ) 2
4.1 概述
第4章 受弯构件斜截面承载力计算
郑州大学
4.1 概述
第4章 受弯构件斜截面承载力计算
郑州大学
4.2 受弯构件斜截面上的应力状态与破坏形态
混凝土强度对梁受剪承载力的影响
影响则居于上述两者之间。
4. 3 影响受弯构件斜截面受剪承载力的主要因素
第4章 受弯构件斜截面承载力计算
郑州大学
三、箍筋配筋率及其强度 Stirrup Ratio sv and the Strength of Stirrup
Asv n Asv1 sv bs bs
郑州大学
2.有腹筋梁斜截面的破坏形态与发生条件 破坏形态 斜拉破坏

斜截面受剪承载力验算计算要点

斜截面受剪承载力验算计算要点

●斜截面受剪承载力计算●截面复核已知:截面设计剪力V、混凝土强度等级( f c)、钢筋级别(F y、f yv)、b*h、a s(h0)、配箍量A sv(n\A svl)、s、弯起钢筋截面积A sb、弯起角度a s等。

求Vu。

第一步:检查截面限制条件,如不满足,应修改原设计。

当h w/b≤4时,属一般梁,应有V≤0.25 f c bh0当h w/b≥6时,属薄腹梁,应有V≤0.2 f c bh0当4<h w/b<6时,V按直线内插。

第二步:当V>0.07f c bh0时,检查是否满足条件ρsv=A sv/bs≥ρsv,min=0.02f c/f yv,如不满足,应修改原设计。

第三步,以上检查都通过后,把各已知量代入Vu=0.07f c bh0+1.5h0A sv f yv/s+0.8f y a s bsinαs或Vu=0.2f c bh0/(λ+1.5)+1.25h0A sv f y v/s+0.8f y a s bsinαs求出Vu.。

当有V≤Vu时,该计算位置受剪承载力满足;否则应修改原设计。

●截面设计已知:截面设计剪力V、混凝土强度等级( f c)、钢筋级别(F y、f yv)、b*h、a s(h0)等。

求配箍量A sv(n\A svl)、s、弯起钢筋截面积A sb、弯起角度a s等。

第一步:检查截面限制条件,如不满足,应修改原设计。

第二步:计算并构造条件V≤0.07f c bh0(或V≤0.2f c bh0/(λ+1.5),如满足,说明不需按计算配置箍筋,只需按构造要求配置箍筋;如不满足,则需按以下步骤经计算配置腹筋。

第三步:根据(不低于)构造要求配置箍筋(确定箍筋直径,肢数和间距),然后按Vcs=0.07 f c bh0+1.5h0A sv f yv/s或Vcs=0.2f c bh0/(λ+1.5)+1.25h0A sv f y v/s计算混凝土和箍筋共同的受剪承载力Vcs。

第四章 受弯构件斜截面受剪承载力计算

第四章 受弯构件斜截面受剪承载力计算

2主拉应力:tp第4章受弯构件的斜截面承载力教学要求:深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。

熟练掌握梁的斜截面受剪承载力计算。

理解梁内纵向钢筋弯起和截断的构造要求。

知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。

概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜 截面受弯承载力两方面。

工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力 则是通过对纵向钢筋和箍筋的构造要求来保证的。

图4-1箍筋和弯起钢筋图4-2钢筋弯起处劈裂裂缝工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。

由于弯起钢筋承受的拉力比较大,且集 中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。

因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。

弯起钢筋的弯起角宜取45°或60°4.2斜裂缝、剪跨比及斜截面受剪破坏形态4.2.1腹剪斜裂缝与弯剪斜裂缝钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。

1 2 3 44.1架立钢筋箍筋 弯起钢筋劈裂裂縫图4-3主应力轨迹线这种由竖向裂缝发展而成的斜裂缝,称为弯 剪斜裂缝,这种裂缝下宽上细,是最常见的,如图 4-4(b)所示。

4.2.2剪跨比在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离 a 称为剪跨,剪跨 a与梁截面有效高度 h o 的比值,称为计算截面的剪跨比,简称剪跨比,用入表示,入=a/hoMb=—r主压应力cp主应力的作用方向与构件纵向轴线的夹角 2a 可按下式确定:tg2________ 丿 厂| _亠 ____ 一 ” ”ft图4-4 ⑻腹剪斜裂缝; 斜裂缝(b)弯剪斜裂缝V匸二4———•——二亠久 乂 勺叫 5'矶在剪跨比小的图4-6(a)中,在集中力到支座之间有虚线所示的主压应力迹线, 式传递的。

4受弯构件斜截面承载力计算(精)

4受弯构件斜截面承载力计算(精)

4 受弯构件斜截面承载力计算1 当仅配有箍筋时,对矩形、T 形和I 形截面的一般受弯构件斜截面受剪承载力计算采用下列公式:0025.17.0h s A f bh f V V sv yv t cs +=≤ (4-1)式中 V ——构件斜截面上的最大剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;A sv ——配置在同一截面内箍筋各肢的全部截面面积,A sv =nA sv1;n ——在同一截面内箍筋肢数;A sv1——单肢箍筋的截面面积;s ——沿构件长度方向的箍筋间距;f t ——混凝土轴心抗拉强度设计值;f yv ——箍筋抗拉强度设计值。

b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。

2 对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的 75%以上的情况)的矩形、T 形和I 形截面的独立梁,斜截面受剪承载力计算按下列公式计算:00175.1h s A f bh f V V sv yv t cs ++=≤λ (4-2)式中λ——计算截面的计算剪跨比,可取λ= a /h 0, a 为集中荷载作用点至支座截面或节点边缘的距离;当λ<l.5时,取入= 1.5;当λ>3时,取λ=3,此时,在集中荷载作用点与支座之间的箍筋应均匀配置。

3 对于配有箍筋和弯起钢筋的矩形、T 形和I 形截面的受弯构件,其受剪承载力按下列公式计算:V ≤sb cs u V V V +==V cs +0.8f y A sb sina s (4-3)式中 V ——在配置弯起钢筋处的剪力设计值;V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值;f y ——弯起钢筋的抗拉强度设计值;A sb ——同一弯起平面内弯起钢筋的截面面积;αs ——弯起钢筋与构件纵轴线之间的夹角一般情况αs =45o ,梁截面高度较大时,()mm h 800≥取αs =60o 。

受弯构件斜截面抗剪承载力计算公式、适用条件

受弯构件斜截面抗剪承载力计算公式、适用条件
(1)截面(正)最小尺寸要求(防止发生斜压破坏):上 限
0Vd 0.51103 fcu,k bh0 (kN )
Vd——验算截面处由荷载产生的剪力组合设计值 b ——剪力组合设计值处的截面宽度

2 适用条件
(2)最小配箍率要求:下限
HPB300钢筋时 ( ) sv min 0.18% HRB335钢筋时 ( ) sv min 0.12%
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
1
异号弯矩影响系数,计算简支梁和连续梁近边支点梁段 的抗剪承载力时,取为1.0;计算连续梁和悬臂梁近中间
支点梁段的抗剪承载力时,取为0.9;
2 预应力提高系数,对普通钢筋混凝土受弯构件,取为1.0;
集中荷载作用点附近,箍筋间距≤100mm; 4 有受压纵筋时为封闭箍筋;
箍筋可用双肢箍、4肢箍(剪力大、一排纵筋多于5 根、梁宽较大时用), 5 近梁端第一道箍筋在距端面一个C。
THE END
适用于矩形、T形、工形、箱形截面的等高度钢筋混凝 土简支梁及连续梁(包括悬臂梁)的斜截面抗剪承载 力计算(注:没考虑剪跨比、荷载类型)
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
+(0.75103)fsd Asb sins
如不配弯起筋或斜筋:
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv
3 受压翼缘的影响系数,对具有受压翼缘的T形、工形截面, 取为1.1。
1 计算公式
Vu 123 (0.45103 )bh0 (2 0.6 p) fcu,k sv fsv

第四章 钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算

配箍率sv
Asv nAsv1 sv bs bs
A Asv——设置在同一截面内的箍筋截面面积; sv nAsv1 Asv1——单肢箍筋截面面积; n——箍筋肢数; s——箍筋沿梁轴向的间距; b——梁宽。
1、仅配箍筋时梁的受剪承载力计算公式:
(1)规范对承受一般荷载的矩形、T形和工形截面的受 弯构件(包括连续梁和约束梁)给出计算公式:
规范对集中荷载作用下(包括作用有多种荷载,且 集中荷载对支座截面或节点边缘所产生的剪力值占 总剪力值的75%以上的情况)的矩形截面独立梁(包 括连续梁和约束梁)给出了计算的公式:
Asv 0.2 Vcs f c bh0 1.25 f yv h0 1.5 s
——计算剪跨比, a / h0 a——集中荷载作用点至支座截面或节点边缘的距离。
<1.4时,取
=1.4;当 >3时,取 =3。
T形和工形截面梁按式(4-4)计算 。
1、仅配箍筋时梁的受剪承载力计算公式:
V
1
d
Vcs 所配的箍筋不能满足抗剪要求。
解决办法:
箍筋加密或加粗; 增大构件截面尺寸; 提高砼强度等级。 纵筋弯起成为斜筋或加焊斜筋;
纵筋可能弯起时,用弯起的纵筋抗剪可收到 较好的经济效果。
Vcs 0.07 f c bh0 1.25 f yv
Asv h0 s
fc—— 砼轴心抗压强度设计值; b —— 矩形截面的宽度 或T形、工形截面的腹板宽 度; h0 ——截面有效高度; fyv——箍筋抗拉强度设计值, 不大于310N/mm2。
试验表明,承受集中荷载为主的矩形截面梁,按式 (4-7) 计算不够安全。
(0.3 f c bh0 ) (0.2 f c bh0 )

斜截面承载力 计算

斜截面承载力 计算
V ≤ Vu M ≤ Mu
V、 M——构件斜截面最大剪力与最大弯矩设计值
Vu 、Mu ——构件斜截面受剪承载力与受弯承载力设计值 在实际工程中一般通过配置腹筋来满足抗剪条件
通过构造措施来满足抗弯
图3-25为一配置箍筋及弯起钢筋的简支梁发生斜截 面剪压破坏时,取出的斜裂缝到支座间的一段隔离 体。斜截面的内力如图所示,其斜截面的受剪承载 力由混凝土、箍筋和弯起钢筋三部分组成,即:
按下列公式计算:
Vc
1.75
1.0
ftbh0
a, 当λ<l.5时,取λ = 1.5,当λ>3
h0
时,取λ=3 。α为集中荷载作用点到支座或节点边缘 的距离。
独立梁是指不与楼板整体浇筑的梁。
4.3 有腹筋梁的受剪性能
◆ 梁中配置箍筋,出现斜裂缝 后,梁的剪力传递机构由原 来无腹筋梁的拉杆拱传递机 构转变为桁架与拱的复合传 递机构
当 hw 4 时, b
V 0.25 c fcbh0 c为高强混凝土的强度折减
系数
当 hw 6 时, b
V 0.20 c fcbh0 fcu,k ≤50N/mm2时,c =1.0 fcu,k =80N/mm2时,c =0.8
当 4 < hw < 6 时,按直线内插法取用。 其间线性插值。
b
三、最小配箍率及配箍构造
◆箍筋参与斜截面的受弯,使斜裂缝出现后纵筋应力ss 的增量
减小;
◆ 配置箍筋对斜裂缝开裂荷载没有影响,也不能提高斜压破坏 的承载力,即对小剪跨比情况,箍筋的上述作用很小;对大 剪跨比情况,箍筋配置如果超过某一限值,则产生斜压杆压 坏,继续增加箍筋没有作用。
二、破坏形态
影响有腹筋梁破坏形态的主要因素有剪跨比 和配箍率rsv

钢筋混凝土受弯构件斜截面承载力计算公式

钢筋混凝土受弯构件斜截面承载力计算公式

钢筋混凝土受弯构件斜截面承载力计算公式好的,以下是为您生成的文章:在建筑领域中,钢筋混凝土受弯构件斜截面承载力计算公式那可是相当重要的!就像我们日常生活中的各种规则一样,这个公式就是保障建筑结构安全稳定的“铁律”。

咱先来说说什么是钢筋混凝土受弯构件斜截面。

想象一下,一根长长的大梁,承受着各种力量的作用。

当它弯曲的时候,侧面就会受到斜向的拉力和压力,这个侧面的部分就是斜截面啦。

那为啥要研究它的承载力计算公式呢?这就好比你要知道自己能背多重的书包才不会累垮一样,建筑结构也得清楚自己能承受多大的力才不会出问题呀!这个计算公式里面涉及到好多因素呢,比如混凝土的强度、箍筋的配置、截面的尺寸等等。

可别小看这些因素,它们每一个都像是一场游戏里的关键角色,缺了谁都玩不转。

我记得有一次去一个建筑工地考察,看到工人们正在浇筑大梁。

我就凑过去和一位老师傅聊天,问他知不知道这个斜截面承载力的事儿。

老师傅一脸认真地说:“这可含糊不得!要是算错了,房子出了问题,那可就是大事儿!”他指着那些钢筋和模板,详细地给我解释着每个部分的作用。

混凝土的强度就像是人的身体素质,越强健就能承受更大的压力;箍筋呢,就像是给大梁穿上了一层“防护服”,让它更有抵抗力;截面的尺寸大小也有讲究,太大了浪费材料,太小了又扛不住。

在实际运用这个公式的时候,可不能马虎。

得精确测量各种数据,一点点的误差都可能导致结果的偏差。

比如说,测量混凝土的强度,如果测不准,那计算出来的承载力就可能不靠谱。

而且,这个公式还在不断地完善和改进呢。

随着建筑技术的发展,新的材料、新的工艺不断出现,公式也得跟着“与时俱进”。

总的来说,钢筋混凝土受弯构件斜截面承载力计算公式虽然看起来复杂,但它可是建筑安全的重要保障。

我们得认真对待,严格按照公式计算,才能让我们的建筑稳稳当当,为大家遮风挡雨!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

tp
2
2 2
4
cp
2
2 2
4
2、斜截面破坏原因:
由于弯矩和剪力共同作用下,M和V在截面上分别产 生正应力和剪应力,引起主拉应力和主压应力,当主拉应 力tp > ft时,即产生斜裂缝,其破坏面与梁轴斜交。
––– 称斜截面破坏。
a) D
B'
A
A'
C B
b) D
B&缝后的斜Dc 向裂缝图
1、剪跨比和跨高比: 对于承受集中荷载的梁,随着剪跨比的增大,受剪承载
力下降。对于承受均布荷载荷载作用的梁,构件跨度与截 面高度之比(简称跨高比)l0/h是影响受剪承载力的主要 因素。随着跨高比的增大,受剪承载力降低。
2、箍筋的数量: 箍筋的数量增多时,斜截面的承载力增大。
3、混凝土强度等级 在剪跨比和其他条件相同时,斜截面受剪承载力随混凝
当m=3时接近斜拉破坏,梁的抗剪能力取决于混凝土 的抗拉强度,混凝土的抗拉强度并不随混凝土强度的 提高而成比例增长,故混凝土强度影响较小;
1<m<3时,其影响介于上述两者之间。
) fcu (MPa
混凝土强度对梁抗剪能力的影响
V (KN)
3.纵向钢筋配筋率
随配筋率的提高,斜截面抗剪强度不断提高,剪跨比越小, 影响程度越大。
3、破坏形态(与无腹筋梁类似) 斜压破坏:
产生条件:m<1,但腹筋配置过多,以及腹板宽度较窄 的T形或I字形梁。
避免措施:采用截面限制条件加以避免。
剪压破坏: 产生条件:1≤m≤3或适量配置腹筋。 避免措施:通过设计计算加以避免。
斜拉破坏: 产生条件:m>3且腹筋配置过少。 避免措施:采用一定的构造加以避免。
§4.2 影响受弯构件斜截面抗剪能力的主要因素
一、影响有腹筋梁斜截面破坏强度的主要因素是: 剪跨比 混凝土强度 纵向受拉钢筋配筋率 箍筋数量及强度等级
1. 剪跨比: 试验表明,其它条件不变时,随着剪跨比m加大,
破坏形态按斜压、剪压和斜拉顺序演变,而抗剪强度逐 步降低。当m > 3后,斜截面抗剪承载力趋于稳定,剪跨 比的影响不明显。
第四章 受弯构件斜截面承载力计算 Shear strength of RC beams
本章的主要内容:
受弯构件斜截面的受力特点和破坏形态。 影响受弯构件斜截面抗剪能力的主要因素。 受弯构件的斜截面抗剪承载力的计算公式、适用条
件。 等高度简支梁腹筋的初步设计步骤。 抵抗弯矩图的绘制。 全梁承载能力校核与构造要求。 建筑工程斜截面抗剪承载力的计算。
以及骨料凹凸不平相互间的骨料咬合力Sa;
由于斜裂缝两边有相对的上下错动,从而使受拉钢筋受 到一定的剪力,即纵筋的销栓力Vd。
A'
C B
4、在斜裂缝出现后,梁内的应力状态有如下变化:
b)
B'
A Vc
斜裂缝出现前,剪力由 D
Dc
全截面抵抗。斜裂缝出现
A' Sa
后,剪力由部分截面抵抗, C
剪压面积减小,剪应力和
1、斜裂缝出现前,腹筋的应力很小,腹筋对阻止和
推迟斜裂缝出现的作用也很小。但在斜裂缝出现后,腹筋 将大大提高梁斜截面的承载力,特别是箍筋的作用,主要 表现在:
与斜裂缝相交的箍筋直接参加抗剪,承受部分剪 力。
箍筋抑制斜裂缝开展宽度,从而增大斜裂缝顶端混 凝土的剪压面,提高了混凝土的抗剪能力。
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
土强度fcu的提高而增大,二者大致呈线性关系。 4、纵筋配筋率
其他条件相同时,纵向钢筋配筋率越大,斜截面承载力 也越大,二者也大致呈线性关系。
5、其他因素: 截面形状:受压区翼缘的存在对提高斜截面承载力有一定
的作用,一般T形截面比矩形截面提高10%~20%。 预应力:预应力能提高混凝土所承担的抗剪承载力和斜
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。故 《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是提 高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般首 先配置一定数量的箍筋,当箍筋用量较大时,则可同时配置 弯起钢筋。
Asb sins
公式的适用条件: 上限值——限制截面最小尺寸(避免产生斜压破坏)
0Vd 0.51103 fcu,k bh0 (KN )
(kN)
下限值——按构造要求配置箍筋(避免产生斜拉破坏)
0Vd 0.50 10 3 ftd bh0 (KN )
二、等高度简支梁腹筋的初步设计
复核截面尺寸是否满足要求
压应力增大。
VA
vd B
a
Ts
c
MB MA
z
斜裂缝出现前,任意截面纵筋的图拉4-2应斜力裂缝 由出该现后 截的面应力处状的态 弯矩 决定。斜裂缝出现后,截面纵筋的拉应力由斜裂缝顶端截面 处的弯矩决定。
二、无腹筋梁破坏的拱机理(见下图): 梁的受力状态为一个设拉杆拱的拱结构:块体I相当
于受压的拱,纵筋相当于拉杆。
截面内箍筋的抗剪承载力。 梁的连续性:连续梁的受剪承载力与相同条件下的简支
梁相比,仅在受集中荷载时在中间支座低于简支梁,而在 受均布荷载时则是相当的。
三、计算过程:
开始
拟定尺寸
内力计算
截面配筋验算

是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
0Vd 0.51103 fcu,k bh0 (KN )
确定是否需按计算配腹筋:
如满足 0Vd 0.50 10 3 ftd bh0 (KN )
则按构造要求配置箍筋,否则,按计算配置腹筋
计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
2)弯起钢筋的构造要求:
抗剪能力: 主要与混凝土强度有关, 其受剪承载力比斜拉破坏高。
破坏性质:
属脆性破坏,但其破坏过程比斜拉破坏缓慢,脆性程 度有所缓和。
3.斜压破坏 产生条件:
当剪跨比较小(m<1)
F c) 斜压破坏
破坏特征:
在加载点和支座之间出现一条斜裂缝,然后出 现若干条大体相平行的斜裂缝.梁腹被分割成若干个倾 斜的小柱体。随着荷载增大,梁腹发生类似混凝土棱柱 体被压坏的情况,即破坏时斜裂缝多而密,但没有主裂 缝,故称为斜压破坏。
ξ——用于抗剪配筋设计的最大剪力设计值分配于混凝土 和箍筋共同承担的分配系数,取ξ ≥0.6;
弯起钢筋设计
Asbi
V0 sbi
0.75103 fsb
sin s
(mm2 )
1)设计剪力值的取值:《公桥规》 JTG-D62规定: 计算第一排弯起钢筋时,取用距支点中心h/2处由弯起钢筋 承担的那部分剪力值;计算以后各排弯起钢筋时,取用前一 排弯起钢筋下弯点处由弯起钢筋承担的那部分剪力值,这样 处理显然是偏于安全的。
抗剪能力: 斜拉破坏主要是由于主拉应力超过混凝土的抗
拉强度,因此梁的受剪承载力很低,破坏荷载等于 或略高于主要斜缝出现的荷载。
破坏性质:脆性破坏。
2.剪压破坏(是斜截面剪切破坏中最常见的一种破坏形态)
产生条件: 一般发生在剪跨比适中即 1≤m≤3的无腹筋梁
F b) 剪压破坏
破坏特征:
梁在剪弯区段内出现斜裂缝,随着荷载的增大,陆续 出现几条斜裂缝,其中一条发展成为临界斜裂缝。临界斜 裂缝出现后,梁还能继续增加荷载,斜裂缝延伸至荷载垫 板下,直到斜裂缝顶端的混凝土在正应力和剪应力共同作 用下被压碎而破坏,这种破坏称为剪压破坏。
b)
B
σ
τ B'
图4-1-1 斜裂缝出现前的应力状态
图为一无腹筋简支梁,作用有两个对称的集中荷载 (CD段称为纯弯段;AC段和DB段剪弯段)
1、应力分析:在弯剪区段,由于M和V的存在产生 正应力和剪应力。
My0
I0
Vs0
bI0
将弯剪区段的典型微元进行应力分析,可以由、求得主拉 应力和主压应力。
ρ
纵筋配筋率对梁抗剪能力的 影响
V fcbh0
4.配箍率和箍筋强度
配箍率 sv
sv
Asv bSv
当其他条件相同时,
配箍率和箍筋强度的乘
积对梁的抗剪承载力大
致成线性关系。
Asv sv
sv
b
V
fcu=34MPa ρsvfsv 配箍率对梁抗剪能力的影响
二、《混凝土结构设计规范》规定影响有腹筋梁斜截面破坏 强度的主要因素是:
P c) 斜压破坏
图4-2-1 斜截面破坏形态
1.斜拉破坏 ( m > 3 )
产生条件: 一般发生在剪跨比较 大(m >3)的无腹筋 梁
F
a) 斜拉破坏
破坏特征:
当斜裂缝一出现,很快形成一条主要斜裂缝(临界斜 裂缝),并迅速延伸至荷载作用点,使梁斜向被拉断成两 部分。破坏面较整齐,无压碎痕迹,同时,沿纵向钢筋往 往伴随产生水平撕裂裂缝。这种破坏即为斜拉破坏。
§4.0 概 述 弯矩M作用下:正截面强度计算
弯矩M和剪力Q共同作用下:
斜截面强度计算——腹筋 Asb , Asv
正截面强度计算——主钢筋 As , As
§4.1 受弯构件斜截面的受力特点和破坏形态
一、无腹筋简支梁斜裂缝出现前后的受力状态
相关文档
最新文档