二次函数利润面积最值经典例题与练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识要点:

二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式

a

b a

c a b x a y 44)2(2

2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).

即当0>a 时,函数有最小值,并且当a

b x 2-=,a b a

c y 442-=最小值; 当0

b x 2-=,a b a

c y 442-=最大值. 如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围

21x x x ≤≤内,则当a

b x 2-=,a b a

c y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,

c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;

如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,

当2x x =时,c bx ax y ++=222

最小. 解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中, “某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程

[例1]:求下列二次函数的最值:

(1)求函数322-+=x x y 的最值.

(2)求函数322-+=x x y 的最值.)30(≤≤x

[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?

[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?

2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?

[例3]: 某产品每件成本10元,试销阶段每件产品

的销售价x (元)与产品的日销售量y (件)之间的关系如下表:

若日销售量y 是销售价x 的一次函数.

⑴求出日销售量y (件)与销售价x (元)的函数关系式;

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销

售利润是多少元?

x (元) 15 20 30 … y (件) 25 20 10 …

练习:市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售

量y(千克)•与销售单价x(元)

(30

x)存在如下图所示的一次函数关系式.

⑴试求出y与x的函数关系式;

⑵设“健益”超市销售该绿色食品每天获得利润

P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?

⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(•直接写出答案).

[例4]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).

(1)求y与x之间的函数关系,并写出自变量的取值范围;

(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大,最大面积是多少?

练习:如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔开的养鸡场,设它的长度为x米.

(1)求y与x之间的函数关系,并写出自变量的取值范围;

(2)要使鸡场面积最大,鸡场的长度应为多少m?

[例5]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B 以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动.(1)运动第t秒时,△PBQ的面积y(cm²)是多少?

(2)此时五边形APQCD的面积是S(cm²),写出S与t的函数关系式,并指出自变量的取值范围.

(3)t为何值时s最小,最小值时多少?

相关文档
最新文档