南京育英二外外国语学校七年级数学上册第一单元《有理数》检测(含答案解析)

合集下载

南京外国语中学七年级数学上册第一单元《有理数》测试题(培优练)

南京外国语中学七年级数学上册第一单元《有理数》测试题(培优练)

一、选择题1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0 2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= 3.2--的相反数是( )A .12-B .2-C .12D .2 4.定义一种新运算2x y x y x+*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2 C .0 D .-25.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样6.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( )A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯ 7.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .08.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样9.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个D .4个 10.若a ,b 互为相反数,则下面四个等式中一定成立的是( ) A .a+b=0 B .a+b=1C .|a|+|b|=0D .|a|+b=0 11.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b| 12.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数 13.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米 14.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数 15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题16.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________. 17.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______. 18.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.19.若有理数a ,b 满足()26150a b -+-=,则ab =__________.20.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出21.气温由﹣20℃下降50℃后是__℃.22.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.23.已知4a a =>,6b =,则+a b 的值是________.24.在数轴上,距离原点有2个单位的点所对应的数是________.25.已知2x =,3y =,且x y <,则34x y -的值为_______.26.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.三、解答题27.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 28.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷⎪⎝⎭. 29.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦30.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算)。

南京市七年级数学上册第一单元《有理数》检测卷(含答案解析)

南京市七年级数学上册第一单元《有理数》检测卷(含答案解析)

一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分B .85分C .98分D .96分2.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=03.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=4.下列各式中,不相等的是( ) A .(﹣5)2和52 B .(﹣5)2和﹣52 C .(﹣5)3和﹣53D .|﹣5|3和|﹣53| 5.计算4(8)(4)(1)+-÷---的结果是( ) A .2B .3C .7D .436.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( ) A .54B .27C .272D .07.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( ) A .提高20元B .减少20元C .提高10元D .售价一样8.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2D .4,39.一个数的绝对值是3,则这个数可以是( ) A .3B .3-C .3或者3-D .1310.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米 B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米 11.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m12.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.3-的平方的相反数的倒数是___________. 14.绝对值小于2018的所有整数之和为________. 15.若230x y ++-= ,则x y -的值为________.16.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数17.在括号中填写题中每步的计算依据,并将空白处补充完整: (-4)×8×(-2.5)×(-125) =-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______=____×____=____.18.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.19.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.20.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.三、解答题21.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.22.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?23.计算:|﹣2|﹣32+(﹣4)×(12 -)324.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷425.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为;(2)试计算这10袋大米的总质量是多少千克?26.计算:(1)5721()()129336--÷-(2)22115()(3)(12)23-+÷-⨯---⨯【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断. 【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+-- 即五名学生的实际成绩分别为:94;81;96;78;85, 则这五名同学的实际成绩最高的应是96分. 故选D . 【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.C解析:C 【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可. 【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ; 当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ; 当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确; 当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ; 故选C . 【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.3.C解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.4.B解析:B 【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解. 【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=- ∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=- ∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=- 故选B . 【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.5.C解析:C 【分析】先计算除法、将减法转化为加法,再计算加法可得答案. 【详解】解:原式421=++7=,故选:C . 【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.6.C解析:C 【分析】根据有理数的加减混合运算先算括号内的,进而即可求解. 【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12=272. 故选:C . 【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.7.B解析:B 【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解. 【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元), 所以现在的售价与原售价相比减少20元, 故选:B . 【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.8.A解析:A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42, 故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.C解析:C 【解析】 试题∵一个数的绝对值是3,可设这个数位a , ∴|a|=3, ∴a=±3 故选C .10.C解析:C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.11.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.14.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.15.【分析】先利用绝对值的非负性求出xy的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x、y的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =, ∴235-=--=-x y , 故答案为: 5.- 【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.16.90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5. 【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解. 【详解】∵第9行的最后一个数的绝对值为92=81, ∴第10行从左边数第9个数的绝对值是81+9=90, ∵90是偶数,∴第10行从左边数第9个数是正数,为90, ∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数. 故答案为90,15,5. 【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.17.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000 【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可. 【详解】 (-4)×8×(-2.5)×(-125) =-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.18.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010 =-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.19.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.三、解答题21.数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.22.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.1 62 -【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12 -)3=2﹣9+(﹣4)×(﹣18)=2+(﹣9)+1 2=162 -.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.26.(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)15282437 1293--⨯-=-++=.(2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

(人教版)南京市七年级数学上册第一单元《有理数》测试(包含答案解析)

(人教版)南京市七年级数学上册第一单元《有理数》测试(包含答案解析)

一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个 2.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( ) A .-13 B .+13 C .-3或+13 D .+3或-13.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( ) A .提高20元B .减少20元C .提高10元D .售价一样4.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个5.下列有理数的大小比较正确的是( ) A .1123< B .1123->- C .1123->- D .1123-->-+ 6.下列运算正确的是( ) A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-7.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .48.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米 B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米 9.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数. A .4个B .5个C .6个D .7个10.若1<x <2,则|2||1|||21x x x x x x---+--的值是( )A .﹣3B .﹣1C .2D .111.下面说法中正确的是 ( ) A .两数之和为正,则两数均为正 B .两数之和为负,则两数均为负 C .两数之和为0,则这两数互为相反数 D .两数之和一定大于每一个加数12.计算 -2的结果是( )A .0B .-2C .-4D .4二、填空题13.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.14.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.15.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数16.已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____.17.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm 就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm ,但又会被拉回3cm .如此下去,该班在第________次喊过“拉”声后就可获得胜利. 18.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0. 19.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出20.在数轴上,距离原点有2个单位的点所对应的数是________.三、解答题21.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 22.计算: (1)31113+(0.25)(4)3444---+-- (2)31(2)93--÷(3)1125100466()46311-⨯-⨯-⨯ 23.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-24.计算 (1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.25.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克?26.321032(2)(3)5-÷---⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可. 【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确; ②|-a|一定是非负数,故说法不正确; ③倒数等于它本身的数为±1,说法正确; ④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确. 说法正确的有③、⑥, 故选A . 【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.C解析:C 【分析】由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案. 【详解】∵4x =,5y =, ∴x=±4,y=±5, ∵x >y , ∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13, 当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3, ∴2x-y 的值为-3或13, 故选:C . 【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.3.B解析:B 【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解. 【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元), 所以现在的售价与原售价相比减少20元, 故选:B . 【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.4.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a-不一定是负数,故该说法错误;②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.5.B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.6.D解析:D【分析】根据有理数的乘方运算可判断A、B,根据有理数的乘除运算可判断C,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.7.C解析:C 【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .8.C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米. 【详解】 ∵1-12=12, ∴第2次后剩下的绳子的长度为(12)2米; 依此类推第六次后剩下的绳子的长度为(12)6米. 故选C . 【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.9.C解析:C 【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断. 【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则ab=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数, ∴a 的倒数小于b 的倒数不正确, ∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确; ⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确; ⑦负数的相反数是正数,大于负数,故本小题错误; ⑧负数的偶次方是正数,故本小题错误, 所以④⑥正确,其余6个均错误. 故选C. 【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.D解析:D 【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号. 【详解】 解:12x <<,20x ∴-<,10x ->,0x >, ∴原式1111=-++=,故选:D . 【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.11.C解析:C 【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1, 故选C. 【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.12.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法二、填空题13.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.14.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.15.90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.16.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a和b,再根据有理数的减法法则即可求得结果.【详解】由题意,得a=-7,b=7+3=10.∴b-a=10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.17.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7 【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm . 当喊到第6次时,一共拉过了6(73)24(cm)⨯-=. 离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利. 故答案为:7. 【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.18.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < > 【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可. 【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<-> 故答案为:<,<,<,> 【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.19.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 20.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.三、解答题21.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.22.(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)31113+(0.25)(4)3444---+-- =311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷ =893--⨯=827--=35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.24.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.25.(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.26.﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.。

南京外国语中学人教版初中七年级数学上册第一章《有理数》模拟检测(答案解析)

南京外国语中学人教版初中七年级数学上册第一章《有理数》模拟检测(答案解析)

一、选择题1.(0分)[ID :67658]数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分B .85分C .98分D .96分2.(0分)[ID :67647]下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=3.(0分)[ID :67623]计算4(8)(4)(1)+-÷---的结果是( ) A .2B .3C .7D .434.(0分)[ID :67618]计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( ) A .54B .27C .272D .05.(0分)[ID :67613]正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B6.(0分)[ID :67603]下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32 B .(﹣3)2和32 C .(﹣2)3和﹣23 D .|﹣2|3和|﹣23| 7.(0分)[ID :67598]绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .48.(0分)[ID :67595]若a ,b 互为相反数,则下面四个等式中一定成立的是( ) A .a+b=0 B .a+b=1C .|a|+|b|=0D .|a|+b=0 9.(0分)[ID :67592]某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( ) A .8个B .16个C .32个D .64个10.(0分)[ID :67586]一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米 B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米 11.(0分)[ID :67579]若1<x <2,则|2||1|||21x x x x x x---+--的值是( ) A .﹣3 B .﹣1C .2D .112.(0分)[ID :67561]一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18 B .1- C .18-D .213.(0分)[ID :67574]已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >014.(0分)[ID :67570]下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 15.(0分)[ID :67569]已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题16.(0分)[ID :67758]把67.758精确到0.01位得到的近似数是__.17.(0分)[ID :67756]对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.18.(0分)[ID :67755]在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.19.(0分)[ID :67741]已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________.20.(0分)[ID :67716]若230x y ++-= ,则x y -的值为________.21.(0分)[ID :67675]校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm 就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm ,但又会被拉回3cm .如此下去,该班在第________次喊过“拉”声后就可获得胜利.22.(0分)[ID :67753]若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3ab,a 的形式,则4a b -的值________. 23.(0分)[ID :67751]在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.24.(0分)[ID :67732]给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________. 25.(0分)[ID :67720]一个数的25是165-,则这个数是______.26.(0分)[ID :67702]某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则: (1)一月份比三月份多获利润____万元; (2)第一季度该工厂共获利润____万元.27.(0分)[ID :67701]绝对值小于4.5的所有负整数的积为______.三、解答题28.(0分)[ID :67890]计算 (1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-.29.(0分)[ID :67859]计算: (1)157(36)2612⎛⎫--⨯-⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭30.(0分)[ID :67904]计算: (1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.C3.C4.C5.B6.A7.C8.A9.D10.C11.D12.C13.A14.D15.C二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数17.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键18.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键19.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±420.【分析】先利用绝对值的非负性求出xy的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性21.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取22.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==23.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个24.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加25.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位126.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=27.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断. 【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+-- 即五名学生的实际成绩分别为:94;81;96;78;85, 则这五名同学的实际成绩最高的应是96分. 故选D . 【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.C解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.C解析:C 【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++7=,故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.4.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.5.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.6.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.8.A解析:A【解析】a,b互为相反数0a b⇔+=,易选B.9.D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.10.C解析:C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.11.D解析:D 【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号. 【详解】解:12x <<,20x ∴-<,10x ->,0x >, ∴原式1111=-++=, 故选:D . 【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.12.C解析:C 【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解. 【详解】∵一个数比10的相反数大2, ∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意; 故选:C . 【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.A解析:A 【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可. 【详解】解:从图上可以看出,b <﹣1<0,0<a <1, ∴a+b <0,故选项A 符合题意,选项B 不合题意; a ﹣b >0,故选项C 不合题意; ab <0,故选项D 不合题意. 故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.14.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.15.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可.【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.18.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.19.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.20.【分析】先利用绝对值的非负性求出xy的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.21.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取 解析:7【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm .当喊到第6次时,一共拉过了6(73)24(cm)⨯-=.离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.22.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.23.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.24.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.25.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”26.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.27.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题28.(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.29.(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1.【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.30.(1)6;(2)58. 【分析】(1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。

(人教版)南京七年级数学上册第一单元《有理数》经典练习(答案解析)

(人教版)南京七年级数学上册第一单元《有理数》经典练习(答案解析)

一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b3.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .244.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样5.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .46.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( )A .28B .34C .45D .75 7.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 8.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .4 9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( )A .8个B .16个C .32个D .64个10.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12 11.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3 B .﹣1 C .2 D .112.6-的相反数是( )A .6B .-6C .16D .16- 13.某市11月4日至7日天气预报的最高气温与最低气温如表: 日期 11月4日 11月5日 11月6日 11月7日最高气温(℃) 19 12 20 9最低气温(℃) 4 3-4 5其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日 14.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 15.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题16.把67.758精确到0.01位得到的近似数是__.17.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.18.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____. 19.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.20.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数21.某电视塔高468 m ,某段地铁高-15 m ,则电视塔比此段地铁高_____m .22.计算3253.1410.31431.40.284⨯+⨯-⨯=__.23.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.24.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.25.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.26.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题27.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?28.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58)29.计算:|﹣2|﹣32+(﹣4)×(12 -)330.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|3|-,5-,12,0, 2.5-,22-,(1)--.。

南京外国语中学七年级数学上册第一单元《有理数》检测(答案解析)

南京外国语中学七年级数学上册第一单元《有理数》检测(答案解析)

一、选择题1.下列说法中,①a-一定是负数;② a-一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个2.在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.243.下列计算正确的是()A.|﹣3|=﹣3 B.﹣2﹣2=0C.﹣14=1 D.0.1252×(﹣8)2=14.用计算器求243,第三个键应按()A.4 B.3 C.y x D.=5.计算2136⎛⎫---⎪⎝⎭的结果为()A.-12B.12C.56D.566.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多107.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×1078.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个9.6-的相反数是()A.6 B.-6 C.16D.16-10.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日 11.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018 12.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.数轴上表示 1 的点和表示﹣2 的点的距离是_____.14.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 15.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数. 16.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm 就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm ,但又会被拉回3cm .如此下去,该班在第________次喊过“拉”声后就可获得胜利.17.点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.18.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b,a 的形式,则4a b -的值________. 19.化简﹣|+(﹣12)|=_____.20.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.三、解答题21.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 22.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 23.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.24.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).25.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦ 26.计算①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.3.D解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确.故选:D .【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.4.C解析:C【解析】用计算器求243,按键顺序为2、4、y x 、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.5.A解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.6.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.7.B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.9.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.10.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】-=(℃);11月4日的温差为19415--=(℃);11月5日的温差为12(3)15-=(℃);11月6日的温差为20416-=(℃).11月7日的温差为19514所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.11.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键. 12.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题13.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.14.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫⎪⎝⎭=8×14=2.故答案为:3或-3;-8;0;2.本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键.15.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.16.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】⨯-=,离胜利还差根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.30246(cm)【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.⨯-=.当喊到第6次时,一共拉过了6(73)24(cm)-=,离胜利还差30246(cm)所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.17.2【分析】设点A表示的数为x然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 18.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.19.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】﹣|+(﹣12)|=|12|12--=-故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.20.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.三、解答题21.(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.22.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.23.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.24.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.25.(1)4;(2)13;(3)14-;(4)26. 【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13|38|44⎛⎫--+- ⎪⎝⎭ =13544-- =5-1=4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.26.①-2;②458-;③-10;④-9;⑤-13.【分析】①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可.⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171 236 =+--38617 6666 =+--2=-.②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++- 9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯ 1(6)2=-+-⨯ 112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

南京育英二外外国语学校数学有理数达标检测(Word版 含解析)

南京育英二外外国语学校数学有理数达标检测(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=________;另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=________;你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离. ________(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q 所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣=________;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ________;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-1.5)与D(-3.5)之间的距离.________【答案】(1)解:8;2;有道理;点M与点N之间的距离为点C与点D之间的距离为(2)解:8;2;有道理;点M与点N之间的距离为点C与点的之间的距离为【解析】【分析】(1)数轴上的点,原点两侧两点之间的距离即点到原点绝对值的相加之和。

南京育英二外外国语学校七年级数学上册第一章《有理数》阶段测试(培优专题)

南京育英二外外国语学校七年级数学上册第一章《有理数》阶段测试(培优专题)

1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】 根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b =当12a=,3b=-时,15322+-=-a b=当12a=-,3b=时,15322+-+=a b=故选D.【点睛】本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据ab判断出a和b异号.3.在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.4.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为()A.109.01510⨯B.39.01510⨯C.29.01510⨯D.109.0210⨯ C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.0C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.6.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是0A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.7.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.8.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.9.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.10.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.,,且,那么x-y的值是()11.若|x|=7|y|=5x+y>0A.2或12 B.2或-12 C.-2或12 D.-2或-12A解析:A由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.12.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误; ②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】 本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.13.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃, 根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.14.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数C 解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.15.下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212D 解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.3.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键 解析:136. 【分析】 根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】 此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.4.23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.5.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.5或﹣5【分析】先根据绝对值的定义求出ab 的值然后根据ab <0确定ab 的值最后代入a ﹣b 中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.6.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.7.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.8.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.10.若m ﹣1的相反数是3,那么﹣m =__.2【分析】根据只有符号不同的两个数互为相反数可得关于m 的方程根据解方程可得m 的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2 【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案. 【详解】解:由m-1的相反数是3,得 m-1=-3, 解得m=-2. -m=+2. 故选:A . 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.11.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90 【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得. 【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米, 则20(70)207090--=+=(米), 即最高点比最低点高90米, 故答案为:90. 【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.1.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键. 2.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2 【分析】(1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:(1)45(30)(13)+--- =4530+13- =15+13 =28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11-- =-2. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 3.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-, 20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-,116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 4.计算:(1)113623⎛⎫-⨯-⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21. 【分析】(1)根据有理数的混合运算法则即可求解; (2)根据有理数的混合运算法则即可求解. 【详解】 解:(1)113623⎛⎫-⨯- ⎪⎝⎭=1136623-⨯+⨯ =332-+ =2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+ =1244--+ =-21. 【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.。

南京市七年级数学上册第一单元《有理数》检测卷(有答案解析)

南京市七年级数学上册第一单元《有理数》检测卷(有答案解析)

一、选择题1.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=2.已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .23.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)4.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a5.若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .16.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >07.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( ) A .54B .27C .272D .08.下列各组数中,不相等的一组是( ) A .-(+7),-|-7| B .-(+7),-|+7| C .+(-7),-(+7)D .+(+7),-|-7|9.-1+2-3+4-5+6+…-2011+2012的值等于 A .1B .-1C .2012D .100610.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5 B .少10 C .多5 D .多10 11.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( )A .18B .1-C .18-D .212.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.14.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 15.在括号中填写题中每步的计算依据,并将空白处补充完整: (-4)×8×(-2.5)×(-125) =-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______ =____×____ =____.16.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.17.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数. 18.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3ab,a 的形式,则4a b -的值________. 19.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.20.若2(1)20a b -+-=,则2015()a b -= _______________.三、解答题21.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭.22.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭23.计算:()22216232⎫⎛-⨯-- ⎪⎝⎭24.计算: (1)113623⎛⎫-⨯-⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-25.(1)在图所示的数轴上标出以下各数:52- ,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.26.计算: (1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.2.C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.3.D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键.4.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.C解析:C【分析】根据非负数的性质可得a-1=0,b+3=0,求出a、b后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.8.D解析:D 【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意, 故选D.9.D解析:D 【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.10.D解析:D 【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10. 故选D .11.C解析:C 【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解. 【详解】∵一个数比10的相反数大2, ∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意; 故选:C . 【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.12.C解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.14.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.15.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.16.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.17.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.18.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.19.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米), 即最高点比最低点高90米, 故答案为:90. 【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.20.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1 【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案. 【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1. 【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.三、解答题21.(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯ =892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.23.2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.24.(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+- =993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.25.(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.26.(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)15282437 1293--⨯-=-++=.(2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

南京外国语学校七年级数学上册第一单元《有理数》-解答题专项知识点(含答案)

南京外国语学校七年级数学上册第一单元《有理数》-解答题专项知识点(含答案)

一、解答题1.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】 本题考查了数轴,熟练掌握数轴的定义是解题关键.2.计算①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.3.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来; (3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】 解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.4.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.5.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.6.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.7.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 8.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯=332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.9.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.10.计算:()22216232⎫⎛-⨯--⎪⎝⎭解析:2【分析】 原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.11.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.12.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.13.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.14.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 15.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.计算(1)21145()5-÷⨯-(2)21(2)8(2)()2--÷-⨯-. 解析:(1)4125;(2)2. 【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯- 11116()55=-⨯⨯- 16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯- 1148()()22=-⨯-⨯- 42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.17.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.18.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.19.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.20.计算:(1)[]2(2)18(3)24-+--⨯÷(2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 21.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.22.计算:(﹣1)2014+15×(﹣5)+8 解析:8【分析】 先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.23.计算: (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 24.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】 (1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.26.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯解析:(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=11 4324()33 -++⨯-⨯=8 433 -+-=11 3 -(2)71113 ()24 61224-+-⨯=71113242424 61224-⨯+⨯-⨯=-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.27.计算:(1)311 13+(0.25)(4)3 444 ---+--(2)31(2)93 --÷(3)1125 100466() 46311 -⨯-⨯-⨯解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)311 13+(0.25)(4)3 444 ---+--=311113+434444-+ =3111(13+4)(3)4444+- =183+=21(2)31(2)93--÷ =893--⨯=827--=35- (3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 28.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.29.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.30.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<.【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.。

南京市七年级数学上册第一单元《有理数》经典练习卷(含答案解析)

南京市七年级数学上册第一单元《有理数》经典练习卷(含答案解析)

一、选择题1.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=2.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高D .无法确定3.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( ) A .4个B .3个C .2个D .1个4.定义一种新运算2x y x y x+*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1B .2C .0D .-25.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( ) A .7.26×1010B .7.26×1011C .72.6x109D .726×1086.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105 B .15×103C .1.5×104D .1.5×1057.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( ) A .54B .27C .272D .08.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28 B .34 C .45 D .75 9.绝对值大于1小于4的整数的和是( ) A .0 B .5 C .﹣5 D .10 10.用计算器求243,第三个键应按( ) A .4B .3C .y xD .=11.下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|12.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( ) A .8个 B .16个C .32个D .64个13.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45= 14.下列分数不能化成有限小数的是( ) A .625B .324C .412D .11615.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3B .﹣13C .0D .﹣3二、填空题16.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.17.数轴上表示有理数-3.5与4.5两点的距离是___________. 18.数轴上表示 1 的点和表示﹣2 的点的距离是_____.19.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.20.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.21.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数22.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃23.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____; (2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____; (3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.24.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.25.化简﹣|+(﹣12)|=_____.26.绝对值小于4.5的所有负整数的积为______.三、解答题27.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯ 28.计算题:(1)3×(﹣4)﹣28÷(﹣7); (2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 29.计算 (1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+. 30.计算:(1)()()30122021π--+---; (2)()41151123618⎛⎫---+÷⎪⎝⎭.。

南京市七年级数学上册第一单元《有理数》检测(答案解析)

南京市七年级数学上册第一单元《有理数》检测(答案解析)

一、选择题1.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度2.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-1123.定义一种新运算2x y x y x +*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2 C .0 D .-24.已知n 为正整数,则()()2200111n -+-=( ) A .-2 B .-1C .0D .25.下列说法正确的是( ) A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样6.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .47.用计算器求243,第三个键应按( ) A .4B .3C .y xD .= 8.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .569.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A .+0.02克B .-0.02克C .0克D .+0.04克 10.把实数36.1210-⨯用小数表示为() A .0.0612 B .6120 C .0.00612 D .612000 11.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .2201812.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题13.绝对值小于2的整数有_______个,它们是______________.14.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.15.填空:16.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____. 17.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a﹣b ,互为相反数的有__.18.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .19.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位. 三、解答题21.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 22.计算:(1)()()()923126--⨯-+÷- (2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 23.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.24.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].25.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;26.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.2.A解析:A【分析】逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 4.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.7.C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.8.A解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.9.B解析:B【解析】-0.02克,选A.10.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.12.C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.二、填空题13.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.14.5或﹣5【分析】先根据绝对值的定义求出ab 的值然后根据ab <0确定ab 的值最后代入a ﹣b 中求值即可【详解】解:∵|a|=3|b|=2∴a =±3b =±2;∵ab <0∴当a =3时b =﹣2;当a =﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a 、b 的值,然后根据ab <0确定a 、b 的值,最后代入a ﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a =±3,b =±2;∵ab <0,∴当a =3时b =﹣2;当a =﹣3时b =2,∴a ﹣b =3﹣(﹣2)=5或a ﹣b =﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.15.166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.16.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两 解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010=-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.17.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a 不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.18.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.19.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位. 故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.(1)19-;(2) 3.-【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.22.(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.数轴表示见解析;-3<112-<0<112<3. 【分析】 先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.24.(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.25.()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.26.见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示, ,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.。

江苏省南京市南京民办育英第二外国语学校2022年数学七年级第一学期期末学业质量监测模拟试题含解析

江苏省南京市南京民办育英第二外国语学校2022年数学七年级第一学期期末学业质量监测模拟试题含解析

2022-2023学年七上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个数中最小的数是A .B .C .0D .52.已知∠α=35°,那么∠α的余角等于( )A .35°B .55°C .65°D .145°3.某学校为了了解七年级500名学生的数学基础,随机抽取了其中200名学生的入学考试数学成绩进行统计分析,下列叙述正确的是( )A .500名学生是总体B .200名学生的入学考试数学成绩是一个样本C .每名学生是总体的一个个体D .这种调查方式是全面调查4.化简﹣2(m ﹣n )的结果为( )A .﹣2m ﹣nB .﹣2m+nC .2m ﹣2nD .﹣2m+2n5.以下调查适合全面调查的是( )(1)了解全国食用盐加碘的情况(2)对一个城市空气质量指标的检测(3)对构成神舟飞船零部件的检查(4)对七年级(1)班学生睡眠时间的调查A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(3)6.下列图形:①角②两相交直线③圆④正方形,其中轴对称图形有( )A .4个B .3个C .2个D .1个7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,用代数式表示新的两位数是( )A .10a b +B .10b a +C .11b a +D .1011a b +8.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A.甲B.乙C.相同D.和商品的价格有关9.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为4510.鼓是中国传统民族乐器.作为一种打击乐器,在我国民间被广泛流传,它发音脆亮,独具魅力.除了作为乐器外,鼓在古代还用来传播信息.如图1是我国某少数民族的一种鼓的轮廓图,如果从上面看是图形()A.B.C.D.11.下列图案中,是中心对称图形,但不是轴对称图形的是()A.B.C .D .12.-2的相反数是( )A .-2B .12-C .2D .12二、填空题(每题4分,满分20分,将答案填在答题纸上)13.下面的框图表示了解这个方程的流程:在上述五个步骤中,依据等式的性质2的步骤有_____.(只填序号)14.已知∠α=25°30′,∠B =10°40′,则∠α+∠β=_____.15.用代数式表示“比a 的平方小1的数”是______.16.如果关于x 的方程35778m x -+=与方程19110x +=的解相同,则m =_____________.17.如图①是一个三角形,分别连接这个三角形三边中点得到图②;再分别连接图②中小三角形三边的中点,得到图③. 按上面的方法继续下去,第_________个图形中有25个三角形.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)已知代数式3(x 2-2xy + y 2) -2(x 2-4xy + y 2),先化简,后求值,其中x =-1,y =72. 19.(5分)如下表,在33⨯的幻方的九个空格中,填入9个数字,使得处于同一横行、同一竖行、同一斜对角线上的三个数的和都相等,按以上规则填成的幻方中,求出x 的值并把表格填完整.421x - 3 x1 1x +20.(8分)已知一副三角板按如图1方式拼接在一起,其中边OA 、OC 与直线EF 重合,AOB 45∠=,COD 60∠= ()1图1中BOD ∠=______.()2如图2,三角板COD 固定不动,将三角板AOB 绕着点O 按顺时针方向旋转一个角度α,在转动过程中两块三角板都在直线EF 的上方:①当OB 平分OA 、OC 、OD 其中的两边组成的角时,求满足要求的所有旋转角度α的值;②是否存在BOC 2AOD ∠∠=?若存在,求此时的α的值;若不存在,请说明理由.21.(10分)(1)已知3x y +=,1xy =-,求代数式(523)(35)x xy xy y -+--.(2)先化简,再求值:222211()(1)24a b ab ab a b ----,其中3a =-,2b =-. 22.(10分)如图,1l 反映了某公司产品的销售收入1y (元)与销售量x (吨)的关系, 2l 反映了该公司产品的销售成本2y (元)与销售量x (吨)之间的关系,根据图象解答:(1)求1l ,2l 对应的函数表达式;(2)求利润w (元)(销售收入一销售成本)与销售量x (吨)之间的函数关系式.23.(12分)(1)计算:212|4|823⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭(2)先化简,再求值:3(2x y -)-2(22x y -)+(2x -1),其中x =-3,y =1参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、A【解析】负数<0<正数;负数的绝对值越大,该数越小.【详解】解:<-3<0<5,故选择A.【点睛】本题考查了有理数的比较大小.2、B【分析】根据余角的定义:如果两个角的和等于90°(直角),就说这两个角互为余角计算.【详解】解:∵∠α=35°,∴它的余角等于90°﹣35°=55°.故选B .【点睛】本题考查余角的概念,掌握概念正确计算是本题的解题关键.3、B【分析】由题意直接根据总体,样本,个体的定义,依次对选项进行判断.【详解】解:A.500名学生的数学成绩是总体,此选项叙述错误;B.200名学生的入学考试数学成绩是一个样本,此选项叙述正确;C.每名学生的数学成绩是总体的一个个体,此选项叙述错误;D.这种调查方式是抽样调查,此选项叙述错误;故选:B.【点睛】本题考查统计知识的总体,样本,个体等相关知识点,要明确其定义以及在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.4、D【分析】利用分配律把括号外的2乘到括号内,然后利用去括号法则求解.【详解】-2(m-n)=-(2m-2n)=-2m+2n.故选D.【分析】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.5、C【分析】根据全面调查和抽样调查的特点对选项逐一分析即可.【详解】解:(1)了解全国食用盐加碘的情况,适合抽样调查;(2)对一个城市空气质量指标的检测,适合抽样调查;(3)对构成神舟飞船零部件的检查,事关重大,适合全面调查;(4)对七年级(1)班学生睡眠时间的调查,范围较小,适合全面调查;故答案为:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、A【解析】本题主要考查轴对称图形的定义,利用定义来判定图形是否为轴对称图形,根据定义来看,沿一条直线对折,折线两旁的部分都能完全重合,说明都是轴对称图形.7、C【分析】首先求出两位数的十位数和个位数,然后即可得出新两位数的十位数和个位数,即可表示出新两位数.【详解】由题意,得该两位数的十位数字是+a b ,个位数字是b ,新两位数的十位数字是b ,个位数字是+a b ,∴用代数式表示新的两位数是1011b a b b a ++=+,故选:C .【点睛】此题主要考查整式的加减,熟练掌握,即可解题.8、B【分析】此题可设原价为x 元,分别计算出两超市降价后的价钱,再比较即可.【详解】设原价为x 元,则甲超市价格为x×(1-10%)×(1-10%)=0.81x 乙超市为x×(1-20%)=0.8x , 0.81x >0.8x ,所以在乙超市购买合算.故选B .【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想. 9、D【分析】结合条形图和扇形图,求出样本人数,进行解答即可.【详解】根据直方图可知第二小组人数为10人,根据扇形图知第二小组占样本容量数的20%,则抽取样本人数为1020%50÷=人,故B 选项正确;所以,第四小组人数为50410166410-----=人,故A 选项正确; 第五小组对应的圆心角度数为636043.250︒⨯=︒,故D 选项错误; 用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1064120048050++⨯=人,故C 选项正确; 故选:D .【点睛】本题综合考查总体、个体、样本、样本容量,以及扇形统计图和频数(率)分布直方图.准确理解总体、个体、样本、样本容量、扇形统计图和频数(率)分布直方图等的相关概念是关键.10、A【解析】从上面观察几何体即可得出答案.【详解】解:从上面看是一个同心圆,故选:A.【点睛】本题考查了三视图,注意所有的看到的棱都应表现出来.11、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,不是轴对称图形,符合题意;C、不是中心对称图形,也不是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.12、C【分析】根据相反数定义即可求解.【详解】解:-2的相反数为2故选C【点睛】本题考查相反数定义,属于基础题.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、①⑤【分析】根据等式的性质2直接可以找出.【详解】等式的性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等若a=b那么有a·c=b·c或a÷c=b÷c所以依据等式的性质2的步骤是①⑤故答案为①⑤【点睛】此题重点考察学生对等式性质2的理解,熟练掌握等式的性质是解题的关键.14、36°10′【分析】利用度分秒的换算进行计算,即可得出结论.【详解】∵∠α=25°30′,∠B=10°40′,∴∠α+∠β=25°30′+10°40′=35°70′=36°10′,故答案为:36°10′.【点睛】本题考查度分秒的换算,解题的关键是度分秒的换算的方法.15、21a【分析】先表示出a的平方,再表示出与1的差即可.【详解】∵a的平方表示为a2,∴“比a的平方小1的数”是a2-1,故答案为:a2-1【点睛】此题考查了列代数式,解此类题的关键是弄懂题意,列出正确的代数式.16、-1【分析】先求出方程19x+11=0的解,把x的值代入方程-3m+57x=78,得出关于m的方程,求出方程的解即可.【详解】解:解方程19x+11=0得:x=-11 19,∵关于x的方程-3m+57x=78与方程19x+11=0的解相同,∴方程-3m+57x=78的解也是x=-11 19,代入得:-3m+57×(- 1119)=78,解得:m=-1,故答案为:-1.【点睛】本题考查了解一元一次方程和方程的解,能得出关于m的一元一次方程是解此题的关键.17、7【分析】分别数出第①、②、③个图形中三角形的个数为1,5,9个,然后发现依次在前一个图形的基础上增加4个,据此规律即可求解.【详解】解:观察图形可知,第一个图中共有三角形个数为1个,第二个图中共有三角形5个,第三个图中共有三角形9个,……发现后一个图形依次在前一个图形的基础上增加4个,故第n 个图形共有三角形个数为:1+4×(n-1)=4n-3个 当4n-3=25时,求得n=7.故第7个图形中有25个三角形.故答案为:7.【点睛】本题考查了图形的变化类问题,在找规律的时候,要联系前后图形中的个数,找出对应的关系是解决此类题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、x 2+2xy + y 2,254. 【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】原式= 3x 2-6xy +3 y 2 -2x 2+8xy -2 y 2=(3-2) x 2+(-6+8)xy +(3-2) y 2= x 2+2xy + y 2当x =-1,y =72时, 原式= (-1)2+2×(-1)×72 +(7)22=1-7+494 =254【点睛】此题考查整式的加减-化简求值,利用了整体代入的思想,熟练掌握去括号法则与合并同类项法则是解题的关键.19、x=5,填表见解析.【分析】先依据同一横行,同一竖行,同一斜对角线上的三个数的和都相等列出方程,然后可求得x 的值.【详解】解:由题意得41211x x x x +++=-++,解得5x =.∴同一横行,同一竖行,同一斜对角线上的三个数的和为:4+x+x+1=1.表格补充如下:【点睛】主要考查了有理数的加法,一元一次方程的应用,解题关键是理解题意找出等量关系列出方程.20、(1)75(2)①30,90,105②当α105=或125时,存在BOC 2AOD ∠∠=【分析】(1)根据平平角的定义即可得到结论;(2)①根据已知条件和角平分线的定义即可得到结论;②当OA 在OD 的左侧时,当OA 在OD 的右侧时,列方程即可得到结论.【详解】解:(1)∵∠AOB =45°,∠COD =60°,∴∠BOD =180°−∠AOB−∠COD =75°,故答案为75;(2)①当OB 平分∠AOD 时,∵∠AOE =α,∠COD =60°,∴∠AOD =180°−∠AOE−∠COD =120°−α,∴∠AOB =12∠AOD =60°−12α=45°, ∴α=30°,当OB 平分∠AOC 时,∵∠AOC =180°−α,∴∠AOB ═90°−12α=45°, ∴α=90°;当OB 平分∠DOC 时,∵∠DOC =60°,∴∠BOC =30°,∴α=180°−45°−30°=105°,综上所述,旋转角度α的值为30°,90°,105°;②当OA 在OD 的左侧时,则∠AOD =120°−α,∠BOC =135°−α,∵∠BOC =2∠AOD ,∴135°−α=2(120°−α),∴α=105°;当OA 在OD 的右侧时,则∠AOD =α−120°,∠BOC =135°−α,∵∠BOC =2∠AOD ,∴135°−α=2(α−120),∴α=125°,综上所述,当α=105°或125°时,存在∠BOC =2∠AOD .【点睛】本题考查了角的计算,角平分线的定义,正确的理解题意是解题的关键.21、(1)23;(2)2233124a b ab --,19-. 【分析】(1)先去括号、合并同类项,再把已知式子的值整体代入化简后的式子计算即可;(2)先去括号、合并同类项,再把a 、b 的值代入化简后的式子计算即可【详解】解:(1)()()523355553x xy xy y x y xy -+--=+-+,∵3x y +=,1xy =-,∴5515x y +=,55xy =-,∴原式15(5)323=--+=.(2)原式222211124a b ab ab a b =--++2233124a b ab =--, 当3,2a b =-=-时, 原式()()()()22333232124=⨯-⨯--⨯-⨯--279119=-+-=-. 【点睛】本题考查的是整式的加减运算以及代数式求值,属于基础题型,熟练掌握整式的加减运算法则是解题的关键.22、(1)11000y x =,25002000y x =+;(2)5002000w x =-【分析】(1)通过待定系数法即可求得1l ,2l 的函数解析式;(2)根据销售收入-销售成本=利润,进行列式即可得解.【详解】(1)设1l 的表达式是1y kx =∵它过点(4,4000)40004k ∴=1000k ∴=11000y x ∴=;设2l 的表达式是2y kx b =+∵2l 过点(0,2000)2000b ∴=又2l 过点(4,4000)400042000k ∴=+,解得: 500k =所以25002000y x =+,故1l 的表达式是11000y x =,2l 的表达式是25002000y x =+;(2)121000(5002000)w y y x x =-=-+5002000w x ∴=-.【点睛】本题主要考查了一次函数及正比例函数的应用,熟练掌握待定系数法求一次函数解析式是解决本题的关键.23、(1)11-;(2)22-1x y +,1.【分析】(1)根据实数的混合运算顺序和法则计算即可;(2)原式先去括号,再合并同类项化为最简式,然后将x 、y 的值代入计算即可.【详解】解:(1)原式413842=⨯-⨯ 112=-11=-;(2)23x y -())-2(22x y -)+(2x -1) =22233241x y x x y ++---=22-1x y +;当x =-3,y =1时,代入得:()2231-1⨯-+=1.【点睛】本题考查了实数的混合运算和整式的化简求值,掌握实数和整式运算顺序、法则是解答本题的关键.。

南京育英外国语学校七年级数学上册第一单元《有理数》经典练习(培优专题)

南京育英外国语学校七年级数学上册第一单元《有理数》经典练习(培优专题)

一、选择题1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=02.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍3.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( ) A .4个 B .3个 C .2个 D .1个 4.若1<a <2,则化简|a -2|+|1-a |的结果是( ) A .a -1B .1C .a +1D .a -35.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)6.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(). A .+0.02克B .-0.02克C .0克D .+0.04克7.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数. A .4个B .5个C .6个D .7个8.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数9.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米 B .海拔﹣23米C .海拔175米D .海拔129米10.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45= 11.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 12.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .61200013.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 14.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < 15.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018二、填空题16.计算(﹣1)÷6×(﹣16)=_____. 17.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.18.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 19.填空:(1)____的平方等于9; (2)(-2)3=____; (3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 20.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___; (2)117+(-44)+(-17)+14=____=____.21.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.22.点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.23.等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.24.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()aa b cd b++-=___________.25.若2(1)20a b -+-=,则2015()a b -= _______________. 26.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____; (2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____; (3)用四舍五入法,把36.547精确到百分位的近似数是____.三、解答题27.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间? 28.(1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 29.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 30.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算)。

南京育英外国语学校数学有理数单元测试卷(解析版)

南京育英外国语学校数学有理数单元测试卷(解析版)
3.同学们都知道,|3-(-1)∣ 表示 3 与-1 的差的绝对值,其结果为 4,实际上也可以理解 为 3 与-1 两数在数轴上所对应的两点之间的距离,其距离同样是 4;同理,∣ x-5|也可以理 解为 x 与 5 两数在数轴上所应的两点之间的距离,试利用数轴探索: (1)试用“| |”符号表示:4 与-2 在数轴上对应的两点之间的距离,并求出其结果; (2)若|x-2|=4,求 x 的值; (3)同理,|x-3|+|x+2|表示数轴上有理数 x 所对应的点到 3 和-2 所对应的两点距离之和, 请你直接写出所有符合条件的整数 x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小 值. 【答案】 (1)解:|4-(-2)|=6
BC= AB=12,易得点 C 在数轴上表示的数为 6;②若点 C 在线段 AB 的延长线上,则点 B 为线段 AC 的中点,此时 BC=AB=36,易得点 C 在数轴上表示的数为-42. (3)先求出 t 秒后点 P、Q 所对应的数分别是 t、3(t-3),然后分三种情况分别列出方程 解出 t 的值即可:①当点 Q 未出发(0<t≤6)时,P、Q 之间的距离即为点 P 移动的距 离;②点 p 用了 6 秒移动到 O 点(t>6)时,点 Q 才开始从 B 点出发。当点 Q 在点 P 的 后面时,点 Q 表示的数比点 P 表示的数小 4;③点 P 用了 6 秒移动到 O 点(t>6)时,点 Q 才开始从 B 点出发。当点 Q 在点 P 的前面时,点 Q 表示的数比点 P 表示的数大 4。
2.如图,在数轴上点 A 表示的数 a、点 B 表示数 ห้องสมุดไป่ตู้,a、b 满足|a-30|+(b+6)2=0.点 O 是数轴 原点。

南京市人教版初中七年级数学上册第一章《有理数》模拟检测卷(有答案解析)

南京市人教版初中七年级数学上册第一章《有理数》模拟检测卷(有答案解析)

一、选择题1.(0分)[ID :67633]定义一种新运算2x y x y x+*=,如:2212122+⨯*==.则()(42)1**-=( )A .1B .2C .0D .-22.(0分)[ID :67625]若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .13.(0分)[ID :67623]计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .434.(0分)[ID :67611]下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个5.(0分)[ID :67606]在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2D .4,36.(0分)[ID :67601]下列结论错误的是( ) A .若a ,b 异号,则a ·b <0,ab <0 B .若a ,b 同号,则a ·b >0,a b>0 C .a b -=a b-=-a bD .a b--=-ab7.(0分)[ID :67590]一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5B .少10C .多5D .多108.(0分)[ID :67584]下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③9.(0分)[ID:67580]据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m10.(0分)[ID:67579]若1<x<2,则|2||1|||21x x xx x x---+--的值是()A.﹣3 B.﹣1 C.2 D.1 11.(0分)[ID:67566]按键顺序是的算式是()A.(0.8+3.2)÷45=B.0.8+3.2÷45=C.(0.8+3.2)÷45=D.0.8+3.2÷45=12.(0分)[ID:67565]6-的相反数是()A.6 B.-6 C.16D.16-13.(0分)[ID:67564]已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A.m>0 B.n<0 C.mn<0 D.m-n>0 14.(0分)[ID:67559]某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日11月6日11月7日最高气温(℃)1912209最低气温(℃)43-45其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日15.(0分)[ID:67576]计算-2的结果是()A.0 B.-2 C.-4 D.4二、填空题16.(0分)[ID:67741]已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.17.(0分)[ID:67729]全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.18.(0分)[ID :67711]若有理数a ,b 满足()26150a b -+-=,则ab =__________. 19.(0分)[ID :67700]计算1-2×(32+12)的结果是 _____. 20.(0分)[ID :67692]计算3253.1410.31431.40.284⨯+⨯-⨯=__. 21.(0分)[ID :67676]定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.22.(0分)[ID :67672]计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 23.(0分)[ID :67748]A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.24.(0分)[ID :67734]在数轴上,距离原点有2个单位的点所对应的数是________. 25.(0分)[ID :67733]在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .26.(0分)[ID :67705]用计算器计算: (1)-5.6+20-3.6=____; (2)-6.25÷25=____; (3)-7.2×0.5×(-1.8)=____; (4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位). 27.(0分)[ID :67702]某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则: (1)一月份比三月份多获利润____万元; (2)第一季度该工厂共获利润____万元.三、解答题28.(0分)[ID :67890]计算 (1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-.29.(0分)[ID :67885]计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 30.(0分)[ID :67950]计算: (1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C 3.C 4.A 5.A 6.D 7.D 8.D 9.B 10.D 11.B 12.B 13.C 14.C 15.A二、填空题16.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±417.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对18.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=19.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算20.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便21.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶22.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键23.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【24.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型25.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的26.【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理27.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 2.C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a、b后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.3.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.4.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.5.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.7.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.8.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确; ④∵111523623⎛⎫--== ⎪⎝⎭,217533346+==,333466<, ∴125523⎛⎫-->+ ⎪⎝⎭,故④错误. 综上,正确的有:②③. 故选:D . 【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.9.B解析:B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】28nm =28×10﹣9m = 2.8×10﹣8m , 所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.D解析:D 【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号. 【详解】解:12x <<,20x ∴-<,10x ->,0x >, ∴原式1111=-++=, 故选:D . 【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.11.B解析:B 【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.12.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.13.C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.14.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法二、填空题16.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.17.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:7⨯1.610【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =7⨯.1.61018.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.19.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.20.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,=.故答案为:0.【点睛】本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.21.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】解:第1次:280.50.57⨯⨯=;第2次:371334⨯+=;第3次:340.517⨯=;第4次:3171364⨯+=;第5次:640.50.50.50.50.50.51⨯⨯⨯⨯⨯⨯=;第6次:311316⨯+=;第7次:160.50.50.50.51⨯⨯⨯⨯=,等于第5次.所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.22.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.23.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】>->-,因为205070-米,所以最高点的海拔高度为20米,最低点的海拔高度70--=+=(米),则20(70)207090即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.24.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.25.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.26.【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.27.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070=解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.三、解答题28.(1)4125;(2)2. 【分析】 第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯- 11116()55=-⨯⨯- 16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯- 1148()()22=-⨯-⨯- 42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.29.(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷=1 893216-+-⨯=892-+-=-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.30.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.。

南京外国语学校七年级数学上册第一单元《有理数》-填空题专项知识点(含答案)

南京外国语学校七年级数学上册第一单元《有理数》-填空题专项知识点(含答案)

一、填空题1.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.73xy3=-2【分析】首先确定使用的是xy 键先按底数再按yx 键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y ,3,= -2【分析】首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y 、3、=; (2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法. 2.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.3.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.比较大小:364--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】 ∵3276 6.7544--=-=-,()6.25 6.25--=, 由于 6.75 6.25-<, ∴36( 6.25)4--<--, 故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.5.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.6.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.7.已知4a a =>,6b =,则+a b 的值是________.2或-10【分析】利用绝对值的代数意义确定出a 与b 的值即可求出所求【详解】解:∵|a|=4>a|b|=6∴a=-4b=6或-6当a=-4b=6时a+b=-4+6=2;当a=-4b=-6时a+b=-4 解析:2或-10【分析】利用绝对值的代数意义确定出a 与b 的值,即可求出所求.【详解】解:∵|a|=4>a ,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 8.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】﹣|+(﹣12)|=|12|12--=-故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.9.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.10.若m ﹣1的相反数是3,那么﹣m =__.2【分析】根据只有符号不同的两个数互为相反数可得关于m 的方程根据解方程可得m 的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.11.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.12.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减.13.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.14.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.15.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.16.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.17.计算:3122--=__________;︱-9︱-5=______.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 18.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.19.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a 然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a 所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a (a ≠0),它的相反数为-a ,然后作商即可.【详解】解:设其中一个数为a (a ≠0),则它的相反数为-a ,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.20.33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.21.计算3253.1410.31431.40.284⨯+⨯-⨯=__.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】 解:3253.1410.31431.40.284⨯+⨯-⨯, 353.141 3.14 3.14288=⨯+⨯-⨯, 353.14(12)88=⨯+-, 3.140=⨯,.故答案为:0.【点睛】本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.22.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.23.绝对值不大于2.1的所有整数是____,其和是____.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.24.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x 是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x 的值而得出结论. 解:由题意,得 当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=5时,∴5=12x 或5=12(x+1). ∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.25.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 26.数轴上A 、B 两点所表示的有理数的和是 ________.-1【解析】由数轴得点A 表示的数是﹣3点B 表示的数是2∴AB 两点所表示的有理数的和是﹣3+2=﹣1故答案为-1 解析:-1【解析】由数轴得,点A 表示的数是﹣3,点B 表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.27.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.28.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.29.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.30.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元).故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.。

南京育英外国语学校七年级数学上册第一单元《有理数》测试(答案解析)

南京育英外国语学校七年级数学上册第一单元《有理数》测试(答案解析)

一、选择题1.按如图所示的运算程序,能使输出的结果为12的是()A.x=-4,y=-2 B.x=3, y=3 C.x=2,y=4 D.x=4,y=02.数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度3.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④4.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是05.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比()A .提高20元B .减少20元C .提高10元D .售价一样6.下列正确的是( ) A .5465-<- B .()()2121--<+- C .1210823--> D .227733⎛⎫--=-- ⎪⎝⎭7.下列运算正确的是( ) A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-8.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米 B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米 9.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米 B .海拔﹣23米 C .海拔175米 D .海拔129米 10.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .211.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 12.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________. 14.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.15.数轴上A 、B 两点所表示的有理数的和是 ________.16.33278.5 4.5 1.67--=____(精确到千分位) 17.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____. 18.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 19.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 20.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____; (2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____; (3)用四舍五入法,把36.547精确到百分位的近似数是____.三、解答题21.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =; ③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数. 应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-. 22.计算:(1)()()674-+--;(2)()3232--⨯.23.321032(2)(3)5-÷---⨯24.计算题:(1)()()121876---+-+; (2)()231513221428⎫⎛---⨯-+⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 25.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式.(可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________; 26.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可. 【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ; 当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ; 当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确; 当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ; 故选C . 【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.C解析:C 【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.4.A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解. 【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元), 所以现在的售价与原售价相比减少20元, 故选:B . 【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.6.A解析:A 【分析】根据不等式的性质对各选项进行判断即可. 【详解】 解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A . 【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键.7.D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误;C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确;【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米. 【详解】 ∵1-12=12, ∴第2次后剩下的绳子的长度为(12)2米; 依此类推第六次后剩下的绳子的长度为(12)6米. 故选C . 【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.9.B解析:B 【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”, 故选B.10.C解析:C 【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解. 【详解】∵一个数比10的相反数大2, ∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D选项:2(8)10--=,因为10大于6,故符合题意;故选:C.【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.11.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.14.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.15.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.16.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则 解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位. 【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-. 【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.17.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两 解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可. 【详解】原式(12)(34)(20192020)11111010=-+-++-=-----=-.故答案为:1010-. 【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.18.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0 【分析】将同分母的分数分别相加,再计算加法即可. 【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. 故答案为:0. 【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.19.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.20.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.三、解答题21.(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-.【分析】(1)根据a n表示“a的下n次方”的意义进行计算即可;(2)根据a n表示“a的下n次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 22.(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.24.(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 25.()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.26.(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】 解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦=95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。

南京育英二外外国语学校七年级数学上册第一单元《有理数》阶段测试(培优专题)

南京育英二外外国语学校七年级数学上册第一单元《有理数》阶段测试(培优专题)

一、选择题1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=02.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍3.2--的相反数是( ) A .12-B .2-C .12D .24.下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位D .2.708×104精确到千分位5.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2) 6.下列有理数大小关系判断正确的是( ) A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-7.下列说法中,正确的是( ) A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数8.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28B .34C .45D .759.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B10.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比()A.提高20元B.减少20元C.提高10元D.售价一样11.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,312.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.413.计算-3-1的结果是()A.2 B.-2 C.4 D.-414.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m15.把实数3⨯用小数表示为()6.1210-A.0.0612 B.6120 C.0.00612 D.612000二、填空题16.数轴上表示 1 的点和表示﹣2 的点的距离是_____.17.数轴上A、B两点所表示的有理数的和是 ________.18.已知a是7的相反数,b比a的相反数大3,则b比a大____.++-+++-++++-=_____.19.计算:(1)(2)(3)(4)(2019)(2020)20.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所-,若ABC绕着顶点顺时针方向在数轴上翻转1次示,点A,B对应的数分别为0和1后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.21.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__. 22.气温由﹣20℃下降50℃后是__℃.23.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.24.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 25.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 26.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.三、解答题27.计算:(﹣1)2014+15×(﹣5)+8 28.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额.29.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元? 30.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦。

南京市人教版初中七年级数学上册第一章《有理数》模拟检测卷(含答案解析)

南京市人教版初中七年级数学上册第一章《有理数》模拟检测卷(含答案解析)

一、选择题1.(0分)[ID :67658]数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分B .85分C .98分D .96分2.(0分)[ID :67656]若12a = ,3b =,且0ab <,则+a b 的值为( )A .52B .52-C .25±D .52±3.(0分)[ID :67646]一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍4.(0分)[ID :67645]某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高D .无法确定5.(0分)[ID :67644]计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3 B .3 C .﹣12D .126.(0分)[ID :67642]有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <07.(0分)[ID :67629]下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3 A .1 B .2 C .3 D .48.(0分)[ID :67622]下列算式中,计算结果是负数的是( ) A .3(2)⨯- B .|1|-C .(2)7-+D .2(1)-9.(0分)[ID :67619]实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 10.(0分)[ID :67608]绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .1011.(0分)[ID :67597]如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(). A .+0.02克 B .-0.02克 C .0克 D .+0.04克 12.(0分)[ID :67587]计算-3-1的结果是( )A .2B .-2C .4D .-413.(0分)[ID :67581]当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米14.(0分)[ID :67560]下列分数不能化成有限小数的是( ) A .625B .324C .412D .11615.(0分)[ID :67559]某市11月4日至7日天气预报的最高气温与最低气温如表: 日期11月4日11月5日 11月6日 11月7日 最高气温(℃) 19 1220 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日B .11月5日C .11月6日D .11月7日二、填空题16.(0分)[ID :67725]数轴上表示 1 的点和表示﹣2 的点的距离是_____. 17.(0分)[ID :67716]若230x y ++-= ,则x y -的值为________.18.(0分)[ID :67682]计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.19.(0分)[ID :67679]一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数.20.(0分)[ID :67672]计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 21.(0分)[ID :67667]数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______. 22.(0分)[ID :67666]阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目: (1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.23.(0分)[ID :67663]我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃24.(0分)[ID :67659]下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____; (2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____; (3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.25.(0分)[ID :67735]已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.26.(0分)[ID :67722]已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.27.(0分)[ID :67707]根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.三、解答题28.(0分)[ID :67887](1)()()()()413597--++---+; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 29.(0分)[ID :67952]点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.30.(0分)[ID :67911]某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表: 与标准质量的偏差(单位:克)10-5- 0 5+10+15+袋数15 5531(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.D3.A4.B5.C6.C7.C8.A9.B10.A11.B12.D13.B14.C15.C二、填空题16.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键17.【分析】先利用绝对值的非负性求出xy的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性18.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后19.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度20.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键21.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线22.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即23.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:24.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(25.b<-a<a<-b【分析】先在数轴上标出ab-a-b的位置再比较即可【详解】解:∵a>0b <0|b|>|a|∴b<-a<a<-b故答案为:b<-a<a<-b【点睛】本题考查了数轴相反数和有理数的大小26.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数27.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D.【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.D解析:D【分析】根据ab判断出a和b异号,然后化简绝对值,分两种情况求解即可.【详解】∵0ab< ∴a 和b 异号 又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b =故选D . 【点睛】本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据ab判断出a 和b 异号. 3.A解析:A 【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab 根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.4.B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0 ∴A B h h 故选B . 【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.5.C解析:C 【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案. 【详解】原式﹣3×(﹣2)×(﹣2) =﹣3×2×2 =﹣12, 故选:C . 【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.6.C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小.7.C解析:C 【解析】 【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可. 【详解】解:(1)有理数中,绝对值最小的数是0,符合题意; (2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.8.A解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A符合题意,-=,故选项B不符合题意,|1|1-+=,故选项C不符合题意,(2)752-=,故选项D不符合题意,(1)1故选:A.【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.9.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.10.A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.11.B解析:B【解析】-0.02克,选A.12.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.13.B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.14.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.15.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C .【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.二、填空题16.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.17.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.18.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.19.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.20.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.21.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.22.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.23.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 24.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1; (2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1; (3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.25.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b【分析】先在数轴上标出a、b、-a、-b的位置,再比较即可.【详解】解:∵a>0,b<0,|b|>|a|,∴b<-a<a<-b,故答案为:b<-a<a<-b.【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a、b、-a、-b在数轴上的位置是解此题的关键.26.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.27.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.三、解答题28.(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.29.(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 30.(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.下列各组运算中,其值最小的是( ) A .2(32)--- B .(3)(2)-⨯- C .22(3)(2)-+- D .2(3)(2)-⨯-2.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个3.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2) 4.下列有理数大小关系判断正确的是( ) A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-5.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( ) A .54B .27C .272D .06.下列说法中,正确的是( ) A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数 7.如果|a |=-a ,下列成立的是( ) A .-a 一定是非负数 B .-a 一定是负数 C .|a |一定是正数D .|a |不能是08.-1+2-3+4-5+6+…-2011+2012的值等于 A .1B .-1C .2012D .10069.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( ) A .(-3.4)3<(-3.4)4<(-3.4)5 B .(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)410.已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A.m>0 B.n<0 C.mn<0 D.m-n>0 11.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是()A.18 B.1-C.18-D.212.下面说法中正确的是()A.两数之和为正,则两数均为正B.两数之和为负,则两数均为负C.两数之和为0,则这两数互为相反数D.两数之和一定大于每一个加数二、填空题13.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.14.数轴上A、B两点所表示的有理数的和是 ________.15.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.16.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出17.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃18.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.19.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.20.用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____;(5)4.6÷113-6×3=____;(6)42.74.23.5-≈____(精确到个位). 三、解答题21.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 22.计算: (1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 23.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯ 24.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=; 在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______; 数轴上表示数x 和3的两点之间的距离表示为_______; 数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.25.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________; 26.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+ ④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可. 【详解】A ,()23225---=-; B ,()()326-⨯-=; C ,223(3)(2)941=++=-- D ,2(3)(2)9(2)18-⨯-=⨯-=- 最小的数是-25 故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键.2.A解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A . 【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.3.D解析:D 【解析】 【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可. 【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数, 故选D. 【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键.4.A解析:A 【分析】先化简各式,然后根据有理数大小比较的方法判断即可. 【详解】∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->--⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=,∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>, ∴10.01-<-,故选项D 不正确. 故选:A . 【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.C解析:C 【分析】根据有理数的加减混合运算先算括号内的,进而即可求解. 【详解】 解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12=272. 故选:C . 【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.6.D解析:D 【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可. 【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.7.A解析:A【分析】根据绝对值的性质确定出a的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a,∴a≤0,A、正确,∵|a|=-a,∴-a≥0;B、错误,-a是非负数;C、错误,a=0时不成立;D、错误,a=0时|a|是0.故选A.【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.8.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.9.C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.10.C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.11.C解析:C 【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解. 【详解】∵一个数比10的相反数大2, ∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意; 故选:C . 【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.12.C解析:C 【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1, 故选C. 【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.二、填空题13.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4 【解析】负分数为:﹣12 ,﹣313,共2个;正整数为: 3, 6005共2个, 则x+y=2+2=4, 故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.14.-1【解析】由数轴得点A 表示的数是﹣3点B 表示的数是2∴AB 两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1 【解析】由数轴得,点A 表示的数是﹣3,点B 表示的数是2, ∴ A ,B 两点所表示的有理数的和是﹣3+2=﹣1, 故答案为-1.15.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7 【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm . 当喊到第6次时,一共拉过了6(73)24(cm)⨯-=. 离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利. 故答案为:7. 【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.16.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0 【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键.17.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可. 【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯ 168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃. 故答案为:7.42. 【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键.18.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15 【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b -进行计算即可. 【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3ab、a 的形式 ∴0b ≠, ∴a b +=0,∴3a3b=-, ∴b =3-,a =3,∴4a b -=123+=15. 故答案为15. 【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.19.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.20.【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理 解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.三、解答题21.(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A站人数为:16+15-3=28(人)B站人数为:28+12-4=36(人)C站人数为:36+7-10=33(人)D站人数为:33+8-11=30(人)易知B和C之间人数最多.故答案为:B;C;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.22.(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.(1)47;(2)49 25【分析】(1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯ ⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.25.()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.26.①-2;②458-;③-10;④-9;⑤-13. 【分析】①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-.③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++- 9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯ 1(6)2=-+-⨯ 112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

相关文档
最新文档