三次函数的极值问题

三次函数的极值问题
三次函数的极值问题

■■■■

■■■

■——●次函数的极值问题

■河南万金舒

利用导数求函数的极大(小)值,求函数在连续区间[n,6]上的最值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单,因而已逐渐成为新高考的又一热点.本文以三次函数的极值问题为例来阐述这种方法的应用.

一.确定函数极值的知识点归纳

1.,(z)在某个区间内可导,若f7(z)>o,则,(z)是增函数;若厂7(z)<O,则f(z)是减函数.

2.求函数的极值点应先求导,然后由y7—0得出所有导数为0的点,但导数为0的点不一定都是极值点,导数为0的点是否是极值点取决于这个点左、右两边的增减性,即两边的Y7的符号,若改变符号,则该点为极值点,若不改变符号,则该点为非极值点.一个函数的极值点不一定在导数为0的点处取得,但函数的极值点一定导数为0.

3.可导函数的最值可通过(n,6)内的极值和端点的函数值比较求得,但不可导函数的极值有时可能在函数不可导的点处取得.如Y—lzI在z一0处不可导,但z一0却是其最小值点.

=.三次函数极值问题的示范讲解

三次函数的极值问题主要有以下两类常见题型,即求三次函数的极值和利用三次函数的极值讨论函数性质.

1.求三次函数的极值

倒,已知厂(z)一n。。+6zz4-cz(n≠o)在z一土1时取得极值,且,(1)一一1.

(1)试求常数n、b、c的值.

(2)试判断z一--4-1是函数的极小值点还是极大值点,并说明理由.

命题意图:通过对函数极值的判定,可使同学们加深对函数单调性与其导数关系的理解.

知识依托:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设条件进行逆向联想,合理地实现问题的转化,使抽象问题具体化,这是解答本题的关键.

技巧与方法:函数f(z)是实数域上的可导函数,可先通过求导确定可能的极值,再通过极值点与导数的关系,建立由极值点z一±1所确定的相等关系式,然后运用待定系数法求值.

解:(1)/(z)一3aa:2+2bx+a

‘.’z一±1是函数f(z)的极值点,

万方数据

?。?z一±1是方程f’(z)一3a=2-i-26z+c一0的两根.

f—F2b一0,①由根与系数的关系,得I妇

【壶一~1?②由,(1)一一I,得a+6+c一一1.③联立①②③,解得口一虿1,6一o,c一一号.

(2)由(1)得,(z)一虿1z3一虿3z,,7(z)一i3(z一1)(z+1).

当z<一1或z>l时,f7(z)>O;当一l<z<1时,f7(z)-(0.

.‘.函数厂(z)在(~一,一1)和(1,+一)上是增函数,在(一1,1)上是减函数。

.’.当z一一1时,函数取得极大值,(一1)一1,当z一1时,函数取得极,J、值厂(1)一一1.

2.利用三次函数的极值-p-f论函数问题

倒2设函数y—za+nzz+6z+c的图象如图所示,且与y一0在原点相切,已知函数的极小值为一4.(1)求Ⅱ、6、C的值.

(2)求函数的递减区间.

命题意图:利用极值点确定函数解析式是学习导数部分必须掌握的一种基本题型.

巧k

|。|L。}/一4…一V

注意事项:注意极值与最值的区别,极值仅是极值点附近的局部范围内的相对大小,而最值是在给定的区间上的全部函数值中最大或最小的值.解:(1)函数的图象经过点(o,o),则c一0.又函数图象与z轴相切于点(O,O),y’一322-F2a.z+6,

.。.3×02-I--2a×0+6一O辛6=0.

...y—z3+a.TC2,Y’一3224-2ax.

当o<z<一专口时,y7<o;当z>一÷n时,Y7>o.

.‘.当z一一÷口时,函数取得极小值一4.

.?.(一号口)3-F。(一号n)2一一4净口一一3.

(2)由,一3a:z一6.z-(O,解得o<z<2.

.‘.所求函数的递减区间为(o,2).

(责任编辑袁伟剐)

29

万方数据

三次函数的极值问题

作者:万金舒

作者单位:

刊名:

中学生数理化(高三版)

英文刊名:MATHS PHYSICS & CHEMISTRY FOR MIDDLE SCHOOL STUDENTS(SENIOR HIGH SCHOOL EDITION)年,卷(期):2007,""(7)

被引用次数:0次

本文链接:https://www.360docs.net/doc/201650011.html,/Periodical_zxsslh-gzb200707023.aspx

授权使用:中共汕尾市委党校(zgsw),授权号:94b3b2bb-deb0-494b-a35a-9dc80165cbf2

下载时间:2010年8月4日

高中数学-三次函数的性质:单调区间和极值测试

高中数学-三次函数的性质:单调区间和极值测试 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是 ( ) A .f (2),f (3) B .f (3),f (5) C .f (2),f (5) D .f (5),f (3) 答案 B 解析 ∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减, 故f (x )的最大值和最小值分别是f (3),f (5). 2.函数f (x )=x 3-3x (|x |<1) ( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值 答案 D 解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x ) 在(-1,1)上是单调递减函数,无最大值和最小值,故选D. 3.函数y =x -sin x ,x ∈??????π2,π的最大值是 ( ) A .π-1 B.π2 -1 C .π D .π+1 答案 C 解析 因为y ′=1-cos x ,当x ∈??????π2,π,时,y ′>0,则函数在区间???? ??π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C. 4.(2012·安徽改编)函数f (x )=e x sin x 在区间? ?????0,π2上的值域为 ( ) A. B. C. D. 答案 A 解析 f ′(x )=e x (sin x +cos x ).

∵x ∈? ?????0,π2,f ′(x )>0. ∴f (x )在? ?????0,π2上是单调增函数, ∴f (x )min =f (0)=0,f (x )max =f ? ?? ??π2=. 5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________. 答案 -71 解析 f ′(x )=3x 2 -6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71. 1.求函数y =f (x )在[a ,b ]上的最值 (1)极值是部分区间内的函数的最值,而最值是相对整个区间内的最大或最小值. (2)求最值的步骤: ①求出函数y =f (x )在(a ,b )内的极值; ②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 2.极值与最值的区别和联系 (1)函数的极值表示函数在某一点附近的局部性质,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较. (2)函数的极值不一定是最值,需要将极值和区间端点的函数值进行比较,或者考查函数在区间内的单调性. (3)如果连续函数在区间(a ,b )内只有一个极值,那么极大值就是最大值,极小值就是最小值. (4)可导函数在极值点的导数为零,但是导数为零的点不一定是极值点.例如,函数y =x 3 在x =0处导数为零,但x =0不是极值点.

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者李善兰给出的定义是:“凡式中含天,为天之函数”。显然,在李善兰的这个定义中的函数就是:凡是公式中含有变量x,则该式子叫做x的函数。这样,在中国“函数”是指公式里含有变量的意思。从1775年欧拉对函数定义之后,又有法国数学家柯西、俄国数学

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

多元函数的极值与最值例题极其解析

多元函数的极值与最值 1.求函数z=x3+y3?3xy的极值。 步骤: 1)先求驻点(另偏导数等于0,联立) 2)再求ABC A=f xx(x0, y0) B=f xy(x0, y0) C=f yy(x0, y0) 3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值, 且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o); (2)当B2-AC>0时,f(x o, y o )不是极值; (3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论. =3x2?3y=0 解:?z ?x ?z =3y2?3x=0 ?y 联立得驻点为(0,0),(1,1) A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导) B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导) C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导) 在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处

无极值。 在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为 A>0,故在此处为极小值点,极小值为 F (1, 1) =x3+y3?3xy=?1 2.求函数f(x, y)=x2+(y?1)2的极值。 解:f x’=2x=0 F y’=2y-2=0 联立得驻点为(0,1) A=f xx(x0, y0) =2 B=f xy(x0, y0) =0 C=f yy(x0, y0) =2 在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为 F (0, 1) = 0 3.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少? 解:另长宽高分别为x, y, z 故xyz=a, z=a xy S=xy+2(x a xy +y a xy )=xy+2(a y +a x ) S x’=y+2(?a x2 )=0 S y ’= x+2(?a y )=0

三次函数极值的导数求解法

摘要: 本文从函数极值概念出发,利用函数极值的导数求解方法,给出了三次函数极值的导数求解,并举例应用。 关键词: 函数极值三次函数极值导数求解 1.函数极值的概念 已知函数y=f(x),其定义域是d。设x∈d,如果存在一个小区间(u,v),使得x∈(u,v)?奂d,并且在此小区间内,当x≠x时,恒有f(x)f(x)),则称函数f(x)在x处有极大值(或极小值),并称x是函数f(x)的一个极值点。 2.函数极值导数求解方法[2] (1)求导数f′(x)。 (2)令f′(x)=0,求出f′(x)=0的所有实数解。 (3)检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。 3.三次函数极值导数求解的具体过程 已知f(x)=ax+bx+cx+d(a≠0),求其导数f′(x)=3ax+2bx+c(a≠0),由于f′(x)是一个二次函数,δ=(2b)-4×(3a)×c=4b-12ac,要求f′(x)=0的实数根,需判断δ与0的大小关系。以下就对δ进行讨论。 (1)当a>0时。 ⅰ若δ>0时,则此时f′(x)=0有两个不同的实数根,设为x、x(x0,① xx时,f′(x)0, x>x时,f′(x)>0, 由此可得f(x)无极值点。 ⅲ若δ时,则此时f′(x)=0有两个不同的实数根,设为x、x(x0,⑤ x>x时,f′(x)x时,f′(x)0时,函数f(x)有两个极值点,要求出具体的极值点,只需求出f′(x)=0的两个不同的实数根,当a>0时,较小的实数根为f(x)的极大值点,较大的实数根为f(x)的极小值点;当a0, 则f′(x)=0的两实数根为x=1、x=3, 由于a=1>0,则x=1为f(x)的极大值点,极大值为f(1)=-6;x=3为f(x)极小值点,极小值为f(3)=-10。 例2:求f(x)=x-3x+3x+5的极值。 解:f′(x)=3x-6x+3,δ=(-6)-4×3×3=0, 则f(x)无极值点。 例3:求f(x)=x-4x+6x+5的极值。

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

三次函数的极值问题

■■■■ ■■■ ■——●次函数的极值问题 ■河南万金舒 利用导数求函数的极大(小)值,求函数在连续区间[n,6]上的最值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单,因而已逐渐成为新高考的又一热点.本文以三次函数的极值问题为例来阐述这种方法的应用. 一.确定函数极值的知识点归纳 1.,(z)在某个区间内可导,若f7(z)>o,则,(z)是增函数;若厂7(z)<O,则f(z)是减函数. 2.求函数的极值点应先求导,然后由y7—0得出所有导数为0的点,但导数为0的点不一定都是极值点,导数为0的点是否是极值点取决于这个点左、右两边的增减性,即两边的Y7的符号,若改变符号,则该点为极值点,若不改变符号,则该点为非极值点.一个函数的极值点不一定在导数为0的点处取得,但函数的极值点一定导数为0. 3.可导函数的最值可通过(n,6)内的极值和端点的函数值比较求得,但不可导函数的极值有时可能在函数不可导的点处取得.如Y—lzI在z一0处不可导,但z一0却是其最小值点. =.三次函数极值问题的示范讲解 三次函数的极值问题主要有以下两类常见题型,即求三次函数的极值和利用三次函数的极值讨论函数性质. 1.求三次函数的极值 倒,已知厂(z)一n。。+6zz4-cz(n≠o)在z一土1时取得极值,且,(1)一一1. (1)试求常数n、b、c的值. (2)试判断z一--4-1是函数的极小值点还是极大值点,并说明理由. 命题意图:通过对函数极值的判定,可使同学们加深对函数单调性与其导数关系的理解. 知识依托:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设条件进行逆向联想,合理地实现问题的转化,使抽象问题具体化,这是解答本题的关键. 技巧与方法:函数f(z)是实数域上的可导函数,可先通过求导确定可能的极值,再通过极值点与导数的关系,建立由极值点z一±1所确定的相等关系式,然后运用待定系数法求值. 解:(1)/(z)一3aa:2+2bx+a ‘.’z一±1是函数f(z)的极值点, 万方数据

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

(三次)函数的极值问题

(三次)函数的极值问题 【例题】 求函数在上的极大极小值。 1.【就题讲题】 ●分析题干 求函数的极值问题。 ●思路 Q:什么是极值,极值的定义。(极值与f’(x)=0、f’(x)无意义点的关系。) A: 如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),则函数在该点处的值就是一个极大(小)值。 Q:怎么根据定义求极值点? A:简单说,求极值点就是找出那些满足f’(x)=0的点,检查f'(x)在方程的左右的值的符号,符号不同则为极值点,相同则不是。(如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。)值得一提是,f'(x)无意义的点也要讨论。

过程讲解 解: 由可求得。由于不存在点使得无意义,不用讨论。 求解,解得。 易得f’(x)的图像(或简单判断也行): 列图表: 可知在取得原函数的极大值,在处取得原函数的极小值。 将带入原函数即可求出极大极小值。

2.【内容拓展】 将题目变为求函数在例如区间内的最大最小值。 解题步骤 1.按照之前讲过的方法,求出原函数的极大极小值点。 2.根据导数性质与原函数性质大致判断函数图象。(例如此题f(0)=0) 3.判断极值点横坐标是否落在所求区间之内。(一般都会落在所求之内。) 4.求出落在所求区间内的极值与区间两端点值,结合图象判断最大最小值。

3.【拔高】 要注意函数的不可导点或导函数无意义点有的是极值点,有的不是极值点,要结合图象或者列表进行判断,不能随意说其不是极值点。例如: 在处不可导,其极小值点也是在处取得。 在处不可导又时,;时 处不是极值点,即函数不存在极值点

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

二元函数极值问题

二元函数极值问题

2

3

4

5 0x >时, 1,z x ?=? 0x <时,1z x ?=-?. 因此在0x =时偏导数不存在. 由此可见,函数的极值点必为 f x ??及f y ??同时为零或至少有一个偏导数不存在的点. 3.2极值的充分条件 设函数),(y x f z =在点的某个邻域内连续且有二阶连续偏导数,又 0),(00'=y x f x 且0),(00'=y x fy ,记二阶连续偏导数为 A y x f xx =),(00', B y x f xy =),(00', C y x f yy =),(00', AC B -=?2,则函数),(y x f z =在),(00y x 点处是否取得极值的条件如下: (1) 当0A 时,函数),(y x f z =在点),(00y x 处取得极小值; (3) 当0>?时,函数),(y x f z =在点),(00y x 处不取得极值; (4) 当0=?时,函数),(y x f z =在点),(00y x 处可能取得极值,也可能不取得极值. 4. 求二元函数的极值的步骤 要求函数的极值,首先要求出所有使函数的偏导数等于零或偏导数不存在的点,然后讨论该点周围函数的变化情形,以进一步判断是否有极值,为此我们讨论f ?,若(,)f x y 的一切二阶导数连续,则由泰勒公式并注意到在极值点必须0x y f f ==,就有 222 000000200001(,)(,)((,)22(,)(,)) x xy y f f x x y y f x y f x x y y x f x x y y x y f x x y y y θθθθθθ?=+?+?-=+?+??++?+???++?+??. 由于(,)f x y 的一切二阶偏导数在00(,)x y 连续,记200(,)x A f x y =,00(,)xy B f x y =,200(,)y C f x y =,那就有

二次函数的最值问题(中考题)(含答案)

典型中考题(有关二次函数的最值) 屠园实验 周前猛 一、选择题 1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( ) A. ab D 不能确定 答案:C 2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( ) A 、- 74 B 、 C 、 2或 D 2或或- 74 答案:C ∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m. 当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2 765 y x 416??=-++ ??? 此时,它在- 2≤x≤l 的最大值是 65 16 ,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符. 当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在- 2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m 的值为2或. 故选C . 3. 已知0≤x≤ 1 2 ,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

多元函数条件极值的求解方法

多元函数条件极值求解方法 摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式 Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution. Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality 时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法 对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+ 将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y) 解方程组 2 2 '2y 20 220 x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12 22 P P =33 (0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C === 22=0240AC B ?-=-=-<,所以1P 不是极值点 从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

07:三次函数的极值与最值

高考总复习07:三次函数的极值与最值 1.求函数321()313f x x x x = --+的极值. 2.求函数321()2413f x x x x = -++的极值. 3.求函数321()313f x x x x = --+在区间[0,4]上的最值. 4.求函数321()313 f x x x x =--+在区间[2,4]-上的最值. 5.已知函数321()33 f x x x x m =--+在[5,5]-上的最大值为8,求()f x 在[5,5]-上的最小值. 6.已知函数32()391f x x x x =+-+在区间[,2]k 上的最大值为28,求k 的取值范围. 7.已知函数321()313 f x x x x =--+,且()f x m ≤对[2,4]x ∈-恒成立,求m 的取值范围. 8.设1x =是函数3213()(1)532f x ax x a x = -+++的极值点,求函数()f x 在区间[2,4]-上的最值. 9.求函数321()23 f x x x =+-在区间(1,)a a -内的极值. 10.设函数233)(x ax x f -=. (1)若2=x 是函数)(x f y =的极值点,求a 的值; (2)若函数()()()g x f x f x '=+,[02]x ∈,,且()g x 在0=x 处取得最大值,求a 的取值范围. 11.设函数322()31f x ax bx a x =+-+在1x x =,2x x =处取得极值,且122x x -=. (1)若1a =,求b 的值,及函数()f x 的单调区间; (2)若0a >,求实数b 的取值范围. 12.设函数32 ()f x ax bx cx d =+++的图象∏上有两个极值点,P Q ,其中P 为坐标原点, (1)当点Q 的坐标为(1,2)时,求()f x 的解析式; (2)当点Q 在线段50x y +-=(13)x ≤≤上时,求曲线∏的切线斜率的最大值.

二元函数极值存在的判别方法

大庆师范学院 本科生毕业论文 二元函数极值存在的判别方法 院(系)数学科学学院 专业数学与应用数学 研究方向数学教育 学生姓名韩明 学号200801052602 指导教师姓名夏晶 指导教师职称副教授 2012年6月1日

摘要 在生活、生产、经济管理和各种资金核算中,常常要解决在一定的条件下怎么使投入最小、产量最大、效益最高等等问题.因此解决这些问题具有现实意义.这些经济和生活的问题常常都可以转化为数学中的函数问题来探讨,将问题数字化,简单、精确,进而转化为求函数中最大(小)问题,即函数的极值问题.因此,对函数极值问题的探讨具有十分重要的意义.本文主要探讨了二元函数极值存在的充分条件、必要条件的判定方法,以及如何求解,并对结果进行了简要的证明. 关键词:二元函数;极值;驻点;条件极值

Abstract In industrial and agricultural production,management of the economy and the economic accounting,we often solve the problems such as how to make input smallest,output most efficient in given conditions.In the life we often encounter how to achieve maximum profit,use the minimum materials and get maximum efficiency,to deal with the similar problems that have its realistic significance.Above problems can be transformed with function and its function of maximum and minimum value.The concept of extreme value originate from function of maximum and minimum value of mathematics,therefore approaching the extreme value have significance meanning. Keywords:function;extreme value;stagnation;conditional extremum

相关文档
最新文档