Kalman滤波及其应用(含仿真代码)
卡尔曼滤波python代码
卡尔曼滤波(Kalman Filter)简介与Python代码实现1. 引言卡尔曼滤波是一种用于估计系统状态的递归滤波算法,广泛应用于信号处理、机器人导航、控制系统等领域。
它通过对测量值和状态变量之间的关系进行建模,并结合过去的测量值和预测值来优化状态估计。
本文将介绍卡尔曼滤波的原理及其在Python中的实现。
首先,我们将详细解释卡尔曼滤波的数学模型,包括状态方程和观测方程。
然后,我们将给出一个简单的例子来演示如何使用Python编写卡尔曼滤波代码。
最后,我们会讨论一些常见的应用场景和改进方法。
2. 卡尔曼滤波原理2.1 系统模型卡尔曼滤波通过建立系统模型来描述状态变量和观测值之间的关系。
假设我们有一个线性动态系统,可以用以下状态方程表示:x(k) = F * x(k-1) + B * u(k-1) + w(k-1)其中,x(k)是在时间步k时刻的状态向量,F是状态转移矩阵,B是控制输入矩阵,u(k-1)是在时间步k-1时刻的控制向量,w(k-1)是过程噪声。
观测方程可以表示为:z(k) = H * x(k) + v(k)其中,z(k)是在时间步k时刻的观测向量,H是观测矩阵,v(k)是观测噪声。
2.2 状态估计卡尔曼滤波的目标是根据过去的测量值和预测值对系统状态进行估计。
它通过最小化预测误差的协方差来实现。
卡尔曼滤波包括两个主要步骤:预测和更新。
2.2.1 预测在预测步骤中,我们使用状态方程来预测下一个时间步的状态:x_hat(k|k-1) = F * x_hat(k-1|k-1) + B * u(k-1)P(k|k-1) = F * P(k-1|k-1) * F^T + Q其中,x_hat(k|k-1)是在时间步k时刻的状态预测值,P(k|k-1)是状态协方差矩阵(描述状态估计误差的不确定性),Q是过程噪声的协方差矩阵。
2.2.2 更新在更新步骤中,我们使用观测方程来校正预测值:K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1)x_hat(k|k) = x_hat(k|k-1) + K(k) * (z(k) - H * x_hat(k|k-1))P(k|k) = (I - K(k) * H) * P(k|k-1)其中,K(k)是卡尔曼增益(用于校正预测值),R是观测噪声的协方差矩阵,I是单位矩阵。
kalman滤波 r语言代码
kalman滤波 r语言代码k a l m a n滤波是一种用于估计和预测系统状态的优秀算法。
它是由R u d o l f E.K a l m a n在1960年提出的,适用于线性系统和高斯噪声。
本文将详细介绍k a l m a n滤波的原理,并提供R语言代码示例,让我们一步一步深入了解。
首先,让我们了解k a l m a n滤波的原理。
ka l m a n 滤波是一种递归的滤波算法,它通过系统的动态模型和测量数据的统计特性,对系统的状态进行估计和预测。
k a l m a n滤波有两个基本步骤:预测(p r e d i c t)和更新(u p d a t e)。
在预测步骤中,k a l m a n滤波使用系统的状态转移矩阵来预测系统的下一个状态。
这个预测值被称为先验估计,用符号x_k^-表示,其中k表示时间步长。
x_k^-是由系统的状态转移矩阵A 和上一步的状态估计值x_{k-1}得到的。
预测的系统状态不包含测量数据。
在更新步骤中,k a l m a n滤波使用测量数据来纠正预测的系统状态。
这个纠正值被称为后验估计,用符号x_k表示。
后验估计是由预测的状态估计值和测量数据之间的协方差来计算的。
这个协方差包含了预测状态和测量数据之间的不确定性。
接下来,我们将通过一个实际的R语言代码示例来演示k a l m a n滤波的应用。
假设我们有一组测量数据m e a s u r e m e n t s,我们希望通过k a l m a n 滤波来估计系统的状态。
首先,我们需要定义系统的动态模型和测量矩阵。
在这个示例中,假设我们的系统是一个运动的目标,我们只能通过距离传感器来测量目标的位置。
我们的状态变量是目标的位置和速度,用一个2维的向量来表示。
我们的测量值是目标的位置,用一个1维的向量来表示。
在R语言中,我们可以定义系统的状态转移矩阵A和测量矩阵H如下:A <- m a t r i x(c(1, 1, 0, 1), n r o w = 2, n c o l =2)状态转移矩阵H <- m a t r i x(c(1, 0), n r o w = 1, n c o l = 2)测量矩阵接下来,我们需要定义系统的初始状态和初始协方差。
Kalman滤波原理及程序(指导手册)
Kalman 滤波原理及程序(手册)KF/EKF/UKF 原理+应用实例+MATLAB 程序本手册的研究内容主要有Kalman 滤波,扩展Kalman 滤波,无迹Kalman 滤波等,包括理论介绍和MATLAB 源程序两部分。
本手册所介绍的线性滤波器,主要是Kalman 滤波和α-β滤波,交互多模型Kalman 滤波,这些算法的应用领域主要有温度测量、自由落体,GPS 导航、石油地震勘探、视频图像中的目标检测和跟踪。
EKF 和UKF 主要在非线性领域有着重要的应用,目标跟踪是最主要的非线性领域应用之一,除了讲解目标跟踪外,还介绍了通用非线性系统的EKF 和UKF 滤波处理问题,相信读者可以通过学习本文通用的非线性系统,能快速掌握EKF 和UKF 滤波算法。
本文所涉及到的每一个应用实例,都包含原理介绍和程序代码(含详细的中文注释)。
一、四维目标跟踪Kalman 线性滤波例子在不考虑机动目标自身的动力因素,将匀速直线运动的船舶系统推广到四维,即状态[]T k yk y k xk x k X )()()()()( =包含水平方向的位置和速度和纵向的位置和速度。
则目标跟踪的系统方程可以用式(3.1)和(3.2)表示,)()()1(k u k X k X Γ+Φ=+(2-4-9))()()(k v k HX k Z +=(2-4-10)其中,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Φ10001000010001T T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=ΓT T TT 05.00005.022,TH ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00100001,Tyy x x X ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= ,⎥⎦⎤⎢⎣⎡=y x Z ,u ,v 为零均值的过程噪声和观测噪声。
T 为采样周期。
为了便于理解,将状态方程和观测方程具体化:)(05.00005.0)1()1()1()1(10001000010001)()()()(1222k w T TT T k y k y k x k x T Tk yk y k x k x ⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ )()()()()(01000001)()(12k v k y k y k x k x k y k x Z ⨯+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡= 假定船舶在二维水平面上运动,初始位置为(-100m,200m ),水平运动速度为2m/s ,垂直方向的运动速度为20 m/s ,GPS 接收机的扫描周期为T=1s ,观测噪声的均值为0,方差为100。
卡尔曼滤波原理及应用matlab仿真
卡尔曼滤波原理及应用matlab仿真卡尔曼滤波(Kalman Filter)是一种最优估计算法,由美国工程师卡尔曼发明并命名。
它是一种递归算法,适用于线性以及线性化的系统。
卡尔曼滤波可以通过已知的状态方程和观测方程来计算未知的状态量,同时考虑到测量误差和系统噪声。
卡尔曼滤波的核心思想是通过已知的状态方程和观测方程来递归地更新估计值和协方差矩阵。
估计值是对状态量的估计,协方差矩阵是表示估计值的不确定性的指标,它受到测量误差和系统噪声的影响。
通过不断迭代的过程,最终得到最优的状态估计值。
卡尔曼滤波主要应用于控制系统、导航、信号处理、图像处理等领域,它可以用于预测未来的状态量和优化估计结果,提高系统的稳定性和精度。
在自主导航系统中,卡尔曼滤波可以通过传感器捕捉环境信息,实现机器人的定位、控制和路径规划。
Matlab是一种强大的数学计算软件,它提供了丰富的工具箱和函数库,可以实现卡尔曼滤波算法的仿真。
Matlab中的Kalman滤波工具箱可以用于模拟线性系统的状态估计。
通过Matlab软件,可以输入系统的状态方程和观测方程,生成真实值和观测值序列,并使用卡尔曼滤波算法估计状态量,同时展示状态量的收敛过程和误差分析。
在实际应用中,卡尔曼滤波需要针对具体的问题进行调整和优化,例如选择不同的观测量和噪声模型,选择恰当的卡尔曼增益等。
因此,在使用卡尔曼滤波进行估计时需要注意以下几点:1.确定系统的状态方程和观测方程,建立合理的模型。
2.合理估计系统噪声和观测噪声,减小误差对估计结果的影响。
3.选择合适的卡尔曼增益,平衡观测值和实际值对估计的贡献。
4.对估计结果进行误差分析,评估卡尔曼滤波的优势和局限性。
总之,卡尔曼滤波是一种重要的最优估计算法,广泛应用于控制、导航、信号处理等领域。
通过Matlab软件,可以进行卡尔曼滤波算法的仿真,并优化估计结果。
在实际应用中,需要针对具体问题进行调整和优化,以提高估计精度和稳定性。
卡尔曼(kalman)滤波算法特点及其应用
Kalman滤波算法的特点:(1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。
(2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。
系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。
(3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。
(4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。
在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。
另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。
Kalman滤波的应用领域一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。
Kalman滤波主要应用领域有以下几个方面。
(1)导航制导、目标定位和跟踪领域。
(2)通信与信号处理、数字图像处理、语音信号处理。
(3)天气预报、地震预报。
(4)地质勘探、矿物开采。
(5)故障诊断、检测。
(6)证券股票市场预测。
具体事例:(1)Kalman滤波在温度测量中的应用;(2)Kalman滤波在自由落体运动目标跟踪中的应用;(3)Kalman滤波在船舶GPS导航定位系统中的应用;(4)Kalman滤波在石油地震勘探中的应用;(5)Kalman滤波在视频图像目标跟踪中的应用;。
卡尔曼滤波的仿真实现
卡尔曼滤波的仿真实现以下是一个卡尔曼滤波的仿真实现过程。
1.定义系统模型:首先,需要定义系统的状态转移方程和观测方程。
系统状态转移方程描述了状态在时间上的演变关系,观测方程描述了测量值与系统状态之间的关系。
例如,考虑一个简单的一维恒定速度系统,状态转移方程可以定义为:x(k+1) = x(k) + v(k) * dt观测方程可以定义为:z(k)=x(k)+w(k)2.初始化滤波器参数:卡尔曼滤波器需要初始化一些参数,包括状态的初始估计值和协方差矩阵。
初始估计值可以根据先验知识提供一个初始猜测,协方差矩阵则定义了该估计的方差。
在这个例子中,可以假设初始位置和速度均为0,并且初始协方差矩阵为一个较大的值。
3.实现卡尔曼滤波算法:在每个时间步骤中,进行以下步骤:-预测步骤:根据状态转移方程预测下一个状态的估计值和协方差矩阵:x_hat(k+1,k) = A * x_hat(k,k) + B * u(k)P(k+1,k)=A*P(k,k)*A^T+Q-更新步骤:根据观测方程更新状态的估计值和协方差矩阵:K(k+1)=P(k+1,k)*H^T*(H*P(k+1,k)*H^T+R)^(-1)x_hat(k+1,k+1) = x_hat(k+1,k) + K(k+1) * (z(k+1) - H *x_hat(k+1,k))P(k+1,k+1)=(I-K(k+1)*H)*P(k+1,k)其中,A和B是状态转移方程的系数矩阵,u(k)是系统的外部输入,Q是过程噪声的协方差矩阵,H是观测方程的系数矩阵,R是观测噪声的协方差矩阵。
4.生成噪声:为了模拟真实的情况,在每个时间步骤中,生成过程噪声和观测噪声。
过程噪声可以使用正态分布随机数生成,观测噪声可以根据具体应用生成。
5.执行仿真:在每个时间步骤中,首先根据当前状态和输入生成观测值。
然后,根据观测值和卡尔曼滤波算法更新状态的估计值和协方差矩阵。
最后,记录每个时间步骤下的估计状态和真实状态,并计算估计状态与真实状态之间的误差。
MATLAB中的Kalman滤波器设计
MATLAB中的Kalman滤波器设计引言Kalman滤波器是一种常用于估计随时间演变的系统状态的算法。
它通过观测值和系统模型之间的协方差来融合测量和预测,从而提供对系统状态的最优估计。
在MATLAB中,实现Kalman滤波器设计相对简单,本文将介绍MATLAB中Kalman滤波器的基本原理和常见的应用案例。
一、 Kalman滤波器基本原理Kalman滤波器的基本原理可以概括为两个步骤:预测和更新。
预测步骤根据系统的动力学模型和先前的状态估计,使用预测方程计算下一个时间步的状态预测和协方差预测。
更新步骤则是在测量信息的基础上,使用更新方程将预测的状态和协方差修正为更准确的估计。
预测步骤:1. 根据系统的动力学模型,使用预测方程计算状态预测值x_prior和协方差预测值P_prior:x_prior = F * x_est + B * uP_prior = F * P_est * F' + Q其中,F是状态转移矩阵,x_est和P_est是先前时间步的状态估计和协方差估计,B是控制输入矩阵,u是控制输入向量,Q是系统过程噪声的协方差矩阵。
更新步骤:1. 根据观测模型,使用更新方程计算观测预测值z_prior和观测协方差S:z_prior = H * x_priorS = H * P_prior * H' + R其中,H是观测矩阵,R是观测噪声的协方差矩阵。
2. 计算卡尔曼增益K:K = P_prior * H' * inv(S)3. 根据观测值z和观测预测值z_prior,计算状态更新值x_update和协方差更新值P_update:x_update = x_prior + K * (z - z_prior)P_update = (eye(size(x_est, 1)) - K * H) * P_prior二、案例研究:目标跟踪Kalman滤波器在目标跟踪领域有广泛的应用。
卡尔曼滤波简介及其算法实现代码
卡尔曼滤波简介及其算法实现代码卡尔曼滤波算法实现代码(C,C++分别实现)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。
所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。
现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。
因为这里不能写复杂的数学公式,所以也只能形象的描述。
希望如果哪位是这方面的专家,欢迎讨论更正。
卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。
简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
卡尔曼滤波原理及应用(含MATLAB程序)
《卡尔曼滤波原理及应用-MATLAB仿真》原理+实例+程序+中文注释基本信息书名:卡尔曼滤波原理及应用:MATLAB仿真原价:39.80元作者:黄小平,王岩出版社:电子工业出版社出版日期:2015-06-01ISBN:9787121263101字数:页码:188版次:1装帧:平装开本:16开商品重量:0.4kg内容简介本书主要介绍数字信号处理中的Kalman滤波算法及在相关领域应用的相关内容。
全书共7章组成。
第1章为绪论。
第2章介绍MATLAB 算法仿真的编程基础,只有掌握一定的编程能力,才能快捷高效地仿真算法。
第3章介绍线性Kalman滤波,它是经典的Kalman滤波算法,也是其他线性或非线性Kalman滤波算法的源头,如信息卡尔曼滤波、扩展卡尔曼滤波等,都是以经典的线性Kaman滤波为蓝本的。
第4章讨论扩展卡尔曼滤波,并介绍其在目标跟踪和制导领域的应用和算法仿真。
第5章介绍UKF滤波算法,同时也给出其应用领域内的算法仿真实例。
第6章介绍了交互多模型卡尔曼滤波算法。
第7章介绍Simulink环境下,如何通过模块库和S函数构建Kalman滤波器,并给出了系统是线性和非线性两种情况的滤波器设计方法。
本书可以作为电子信息类各专业高年级本科生和硕士、博士研究生数字信号处理课程或者Kalman滤波原理的教材,也可以作为从事雷达、语音、图像等传感器数字信号处理的教师和科研人员的参考书。
目录第1章绪论t11.1 滤波的基础知识t11.2 Kalman滤波的背景t11.3 Kalman滤波的发展过程t2 1.4 Kalman滤波的应用领域t4第2章MATLAB仿真基础t62.1 MATLAB简介t62.1.1 MATLAB发展历史t6 2.1.2 MATLAB 7.1的系统简介t7 2.1.3 M文件编辑器的使用t10 2.2 数据类型和数组t122.2.1 数据类型概述t12 2.2.2 数组的创建t132.2.3 数组的属性t152.2.4 数组的操作t162.2.5 结构体和元胞数组t19 2.3 程序设计t212.3.1 条件语句t212.3.2 循环语句t232.3.3 函数t252.3.4 画图t272.4 小结t29第3章线性Kalman滤波t303.1 Kalman滤波原理t303.1.1 射影定理t303.1.2 Kalman滤波器t333.1.3 Kalman滤波的参数处理t373.2 Kalman滤波在温度测量中的应用t393.2.1 原理介绍t393.2.2 MATLAB仿真程序t423.3 Kalman滤波在自由落体运动目标跟踪中的应用t44 3.3.1 状态方程的建立t443.3.2 MATLAB仿真程序t473.4 Kalman滤波在船舶GPS导航定位系统中的应用t50 3.4.1 原理介绍t503.4.2 MATLAB仿真程序t533.5 Kalman滤波在石油地震勘探中的应用t55 3.5.1 石油地震勘探白噪声反卷积滤波原理t55 3.5.2 石油地震勘探白噪声反卷积滤波仿真实现t57 3.5.3 MATLAB仿真程序t583.6 Kalman滤波在视频图像目标跟踪中的应用t60 3.6.1 视频图像处理的基本方法t613.6.2 Kalman滤波对自由下落的皮球跟踪应用t683.6.3 目标检测MATLAB程序t703.6.4 Kalman滤波视频跟踪MATLAB程序t72第4章扩展Kalman滤波t774.1 扩展Kalman滤波原理t774.1.1 局部线性化t774.1.2 线性Kalman滤波t794.2 简单非线性系统的扩展Kalman滤波器设计t80 4.2.1 原理介绍t804.2.2 标量非线性系统EKF的MATLAB程序t83 4.3 EKF在目标跟踪中的应用t844.3.1 目标跟踪数学建模t844.3.2 基于观测距离的EKF目标跟踪算法t85 4.3.3 基于距离的目标跟踪算法MATLAB程序t87 4.3.4 基于EKF的纯方位目标跟踪算法t89 4.3.5 纯方位目标跟踪算法MATLAB程序t91 4.4 EKF在纯方位寻的导弹制导中的应用t94 4.4.1 三维寻的制导系统t944.4.2 EKF在寻的制导问题中的算法分析t96 4.4.3 仿真结果t974.4.4 寻的制导MATLAB程序t99第5章无迹Kalman滤波t1035.1 无迹Kalman滤波原理t1035.1.1 无迹变换t1035.1.2 无迹Kalman滤波算法实现t1055.2 无迹Kalman滤波在单观测站目标跟踪中的应用t107 5.2.1 原理介绍t1075.2.2 仿真程序t1085.3 UKF在匀加速度直线运动目标跟踪中的应用t111 5.3.1 原理介绍t1115.3.2 仿真程序t1135.4 UKF与EKF算法的应用比较t116第6章交互多模型Kalman滤波t1196.1 交互多模型Kalman滤波原理t1196.2 交互多模型Kalman滤波在目标跟踪中的应用t122 6.2.1 问题描述t1226.2.2 IMM滤波器设计t1236.2.3 仿真分析t1246.2.4 IMM Kalman滤波算法MATLAB仿真程序t126第7章Kalman滤波的Simulink仿真t1327.1 Simulink概述t1327.1.1 Simulink启动t1327.1.2 Simulink仿真设置t1347.1.3 Simulink模块库简介t1397.2 S函数t1437.2.1 S函数原理t1437.2.2 S函数的控制流程t1477.3 线性Kalman的Simulink仿真t1487.3.1 一维数据的Kalman滤波处理t148 7.3.2 状态方程和观测方程的Simulink建模t154 7.3.3 基于S函数的Kalman滤波器设计t160 7.4 非线性Kalman滤波t1677.4.1 基于Simulink的EKF滤波器设计t167 7.4.2 基于Simulink的UKF滤波器设计t174 7.5 小结t179书中部分内容截图完整版程序请看书中,此为部分截图(下同)。
(完整word版)卡尔曼滤波算法(C--C++两种实现代码)
卡尔曼滤波算法实现代码C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000#include <math.h> #include "cv.h"class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h" #include <stdio.h>/* tester de printer toutes les valeurs des vecteurs */ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) {cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;/* create matrix data */ const float A[] = { 1, T, 0, 0, 0, 1, 0, 0, 0, 0, 1, T, 0, 0, 0, 1 };const float H[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };const float P[] = { pow(320,2), pow(320,2)/T, 0, 0, pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T, 0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] = { pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T, 0, 0, 0, 0, pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T };const float R[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }; cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 ); rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P)); memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y;state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise ); }CvPoint2D32f kalman::get_predict(float x, float y) {/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;/* predict point position */ /* x'k=A 鈥 k+B 鈥 kP'k=A 鈥 k-1*AT + Q */ cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 ); cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */ cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement ); float measured_value_x = measurement->data.fl[0]; float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 ); float predict_value_x = prediction->data.fl[0]; float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y)); }void kalman::init_kalman(int x,int xv,int y,int yv) { state->data.fl[0]=x;state->data.fl[1]=xv; state->data.fl[2]=y; state->data.fl[3]=yv; cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }c 语言实现代码如下:#include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m; if (l<n) l=n; a=malloc(l*l*sizeof(double)); b=malloc(l*l*sizeof(double)); for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*l+j; a[ii]=0.0; for (kk=0; kk<=n-1; kk++) a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { ii=i*n+j; p[ii]=q[ii]; for (kk=0; kk<=n-1; kk++) p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j]; } for (ii=2; ii<=k; ii++) { for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++) { jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];} for (i=0; i<=m-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj]; for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j]; } js=rinv(e,m); if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0; for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk]; } for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0; for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j]; } for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i]; for (j=0; j<=n-1; j++) b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j]; } for (i=0; i<=n-1; i++) { jj=(ii-1)*n+i;for (j=0; j<=m-1; j++) x[jj]=x[jj]+g[i*m+j]*b[j*l];} if (ii<k){ for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j]; if (i==j) a[jj]=1.0+a[jj]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; b[jj]=0.0; for (kk=0; kk<=n-1; kk++) b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*l+j; a[jj]=0.0; for (kk=0; kk<=n-1; kk++) a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk]; } for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { jj=i*n+j; p[jj]=q[jj]; for (kk=0; kk<=n-1; kk++) p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk]; } }} free(e); free(a); free(b); return(js);}。
卡尔曼滤波原理及应用-matlab仿真代码
一、概述在信号处理和控制系统中,滤波是一种重要的技术手段。
卡尔曼滤波作为一种优秀的滤波算法,在众多领域中得到了广泛的应用。
其原理简单而高效,能够很好地处理系统的状态估计和信号滤波问题。
本文将对卡尔曼滤波的原理及其在matlab中的仿真代码进行介绍,以期为相关领域的研究者和工程师提供一些参考和帮助。
二、卡尔曼滤波原理1.卡尔曼滤波的基本思想卡尔曼滤波是一种递归自适应的滤波算法,其基本思想是利用系统的动态模型和实际测量值来进行状态估计。
在每次测量值到来时,根据当前的状态估计值和测量值,通过递推的方式得到下一时刻的状态估计值,从而实现动态的状态估计和信号滤波。
2.卡尔曼滤波的数学模型假设系统的状态方程和观测方程分别为:状态方程:x(k+1) = Ax(k) + Bu(k) + w(k)观测方程:y(k) = Cx(k) + v(k)其中,x(k)为系统的状态向量,u(k)为系统的输入向量,w(k)和v(k)分别为状态方程和观测方程的噪声向量。
A、B、C为系统的参数矩阵。
3.卡尔曼滤波的步骤卡尔曼滤波的具体步骤如下:(1)初始化首先对系统的状态向量和协方差矩阵进行初始化,即给定初始的状态估计值和误差协方差矩阵。
(2)预测根据系统的状态方程,利用上一时刻的状态估计值和协方差矩阵进行状态的预测,得到状态的先验估计值和先验协方差矩阵。
(3)更新利用当前时刻的观测值和预测得到的先验估计值,通过卡尔曼增益计算出状态的后验估计值和后验协方差矩阵,从而完成状态的更新。
三、卡尔曼滤波在matlab中的仿真代码下面是卡尔曼滤波在matlab中的仿真代码,以一维线性动态系统为例进行演示。
定义系统参数A = 1; 状态转移矩阵C = 1; 观测矩阵Q = 0.1; 状态方程噪声方差R = 1; 观测噪声方差x0 = 0; 初始状态估计值P0 = 1; 初始状态估计误差协方差生成系统数据T = 100; 时间步数x_true = zeros(T, 1); 真实状态值y = zeros(T, 1); 观测值x_est = zeros(T, 1); 状态估计值P = zeros(T, 1); 状态估计误差协方差初始化x_est(1) = x0;P(1) = P0;模拟系统动态for k = 2:Tx_true(k) = A * x_true(k-1) + sqrt(Q) * randn(); 生成真实状态值y(k) = C * x_true(k) + sqrt(R) * randn(); 生成观测值预测x_pred = A * x_est(k-1);P_pred = A * P(k-1) * A' + Q;更新K = P_pred * C' / (C * P_pred * C' + R);x_est(k) = x_pred + K * (y(k) - C * x_pred);P(k) = (1 - K * C) * P_pred;end绘制结果figure;plot(1:T, x_true, 'b', 1:T, y, 'r', 1:T, x_est, 'g');legend('真实状态值', '观测值', '状态估计值');通过上面的matlab代码可以实现一维线性动态系统的状态估计和滤波,并且绘制出真实状态值、观测值和状态估计值随时间变化的曲线。
Kalman滤波和MATLAB实现
Kalman滤波和MATLAB实现卡尔曼滤波器(Kalman Filter)是一个最优化自回归数据处理算法(optimal recursive data processing algorithm)。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
为了可以更加容易的理解卡尔曼滤波器,这里应用形象的描述方法讲解,不像参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声,也就是这些偏差跟前后时间是没有关系的而且符合高斯分配。
另外,我们在房间里放一个温度计,但是这个温度计也是不准确的,测量值会比实际值有偏差。
我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的实际温度值。
卡尔曼滤波原理及应用matlab仿真第二版
《卡尔曼滤波原理及应用matlab仿真第二版》是一本深入探讨卡尔曼滤波原理和其在matlab中应用的专业书籍。
本书通过对卡尔曼滤波原理的详细剖析,加之丰富的matlab仿真实例,为读者提供了深入理解和应用卡尔曼滤波的宝贵资料。
本书的主要内容如下:一、卡尔曼滤波原理1. 基本概念卡尔曼滤波是一种线性最优滤波器,通过融合系统模型和实际观测值,可以对系统状态进行估计。
本书对卡尔曼滤波的基本概念进行了详细阐述,包括状态空间模型、观测模型、预测和更新等基本原理。
2. 数学推导为了帮助读者深入理解卡尔曼滤波原理,本书对卡尔曼滤波的数学推导进行了全面而系统的讲解,包括卡尔曼滤波的求解方程、卡尔曼增益的计算等内容。
3. 算法实现除了理论推导,本书还详细介绍了卡尔曼滤波算法的实现步骤,并结合matlab示例进行了实际演示,帮助读者具体了解卡尔曼滤波在实际应用中的具体操作。
二、matlab仿真应用1. matlab基础本书首先对matlab的基础知识进行了简要介绍,包括matlab的基本语法、矩阵运算、绘图函数等内容,为后续的卡尔曼滤波仿真应用做了铺垫。
2. 卡尔曼滤波仿真通过具体的matlab仿真实例,本书展示了卡尔曼滤波在不同应用场景下的具体应用,包括目标跟踪、航空航天领域、自动驾驶等领域,帮助读者从实际案例中更好地理解卡尔曼滤波的应用方法。
3. 仿真案例分析针对具体的仿真案例,本书进行了详细的分析和讨论,包括数据处理方法、滤波效果评估等内容,帮助读者深入理解卡尔曼滤波在实际应用中的具体操作步骤和注意事项。
三、实战案例与实践1. 行业案例分析本书结合实际行业案例,对卡尔曼滤波在航空航天、汽车驾驶辅助系统、无人机等领域的应用进行了案例分析,帮助读者更好地理解卡尔曼滤波在实际工程中的应用价值。
2. 实战技巧除了理论知识和仿真应用,本书还总结了在实际工程中使用卡尔曼滤波的一些实战技巧,包括滤波参数调整、模型选择、实时数据处理等方面的经验共享,为读者实际应用卡尔曼滤波提供了有益的参考。
卡尔曼(Kalman)滤波
第4章 卡尔曼(Kalman )滤波卡尔曼滤波的思想是把动态系统表示成状态空间形式,是一种连续修正系统的线性投影算法。
功能 1) 连续修正系统的线性投影算法。
2)用于计算高斯ARMA 过程的精确有限样本预测和精确的似然函数。
3) 分解矩阵自协方差生成函数或谱密度。
4)估计系数随时间变化的向量自回归。
第一节 动态系统的状态空间表示一.假设条件令t y 表示时期t 观察到变量的一个()1n ×向量。
则t y 的动态可以用不可观测的()1r ×向量t ξ来表示,t ξ为状态向量。
t y 的动态系统可以表示为如下的状态空间模型:11t t t F v ξξ++=+ (1)t t t t y A x H w ξ′′=++ (2)其中′′F,A ,H 分别为()r r ×,()n k ×和()n r ×矩阵,t x 是外生变量或前定变量的()1k ×向量。
方程(1)称为状态方程,方程(2)称为观察方程。
其中()1r ×向量t v 和()1n ×向量t w 为向量白噪声:()()00t t Qt E v v t R t E w w t ττττττ=⎧′=⎨≠⎩=⎧′=⎨≠⎩ (3)其中,Q R 为()(),r r n n ××矩阵。
假定扰动项t v 和t w 在所有阶滞后都不相关:()0t t E v w ′= 对所有的t 和τ (4)t x 为前定或外生变量,意味着对0,1,2,....,s =除包含在121,,...,t t y y y −−之内的信息外,t x 不再能提供关于t s ξ+以及t s w +的任何信息。
即t x 可能包含y 的滞后值或所有与τ、τξ和w τ不相关变量。
状态空间系统描述有限观察值序列{}1,...,T y y ,需要知道状态向量的初始值1ξ,根据状态方程(1),t ξ可写作()123,,,...,t v v v ξ的线性函数: 2211221....t t t t t t v Fv F v F v F ξξ−−−−=+++++ 2,3,...,t T = (5)这里假定1ξ与t v 和t w 的任何实现都不相关:()()1101,2,...,01,2,...,t t E v TE w Tξτξτ′==′== (6)根据(3)和(6),得t v 和ξ的滞后值不相关:()0t E v τξ′= 1,2,...,1t t τ=−− (7) ()0t E w τξ′= 1,2,...,T τ= (8) ()()()0t t E w y E w A x H w ττττξ′′′=++= 1,2,...,1t t τ=−− (9) ()0t E v y τ′= 1,2,...,1t t τ=−− (10)二.状态空间系统的例子例1 ()AR p 过程,()()()112111...t t t p t p t y y y y µφµφµφµε+−−++−=−+−++−+ (11)()2t t E t τστεετ⎧==⎨≠⎩ (12) 可以写作状态空间形式。
卡尔曼滤波python代码
卡尔曼滤波(Kalman Filter)的原理与应用1. 什么是卡尔曼滤波?卡尔曼滤波是一种用于估计系统状态的数学算法,常用于信号处理、控制系统和机器人等领域。
它是一种递归滤波器,能够根据观测数据和系统动态模型,对系统状态进行最优估计。
卡尔曼滤波器以数学统计的方法来处理不完全和有噪声的观测数据,通过结合先验信息和测量信息,得到对系统状态的最优估计。
它的主要思想是将系统状态表示为高斯分布,并通过线性动态模型和线性观测模型来更新状态的估计。
2. 卡尔曼滤波的基本原理卡尔曼滤波的基本原理可以分为两个步骤:预测和更新。
2.1 预测(Prediction)在预测步骤中,卡尔曼滤波器使用系统的动态模型来预测系统的状态。
假设系统的状态由向量x表示,状态转移矩阵为F,控制输入为向量u,过程噪声为向量w,则预测步骤可以表示为:x' = F * x + uP' = F * P * F^T + Q其中,x’为预测的状态估计,P’为预测的状态协方差,Q为过程噪声的协方差矩阵。
2.2 更新(Update)在更新步骤中,卡尔曼滤波器使用观测数据来修正预测的状态估计。
假设观测数据由向量z表示,观测模型为H,测量噪声为向量v,则更新步骤可以表示为:y = z - H * x'S = H * P' * H^T + RK = P' * H^T * S^(-1)x = x' + K * yP = (I - K * H) * P'其中,y为残差(观测数据与预测值之间的差异),S为残差的协方差矩阵,K为卡尔曼增益,x为更新后的状态估计,P为更新后的状态协方差,R为测量噪声的协方差矩阵。
3. 卡尔曼滤波的应用卡尔曼滤波在众多领域中都有广泛的应用,以下是几个常见的应用场景:3.1 航空航天卡尔曼滤波在航空航天领域中被广泛应用于飞行器的导航和自主飞行控制。
通过融合惯性测量单元(IMU)和全球定位系统(GPS)的数据,卡尔曼滤波器能够提供高精度的飞行器位置和姿态估计。
卡尔曼滤波算法(C--C++两种实现代码)
卡尔曼滤波算法实现代码C++实现代码如下:============================kalman.h================= ===============// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_#if _MSC_VER > 1000#pragma once#endif// _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_)============================kalman.cpp=============== =================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post ??? */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥鈥P'k=A鈥-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl [0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman-> state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, meas urement, measurement );cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;}c语言实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);}for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b);return(js);}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新息过程
考虑一步预测问题:给定观测值 y(1),..., y(n 1) ,求观测向量最小 def ˆ ˆ (n | y(1),..., y(n 1)) ,利用新息方法,很容易求解。 二乘估计 y1 (n) y
y (n) 的新息过程(innovation process)定义为:
ˆ 1 (n), n 1, 2,... (n) y(n) y
R(n)是新息过程的相关矩阵。
Riccati方程
为了最后完成Kalman自适应滤波,还需要推导 K (n, n 1) 的递推公式。
考查状态向量的预测误差
ˆ 1 (n 1) e (n 1, n) x (n 1) x ˆ 1 ( n) G ( n) ( n)} {F (n 1, n) x (n) v1 (n)} {F ( n 1, n) x [ F (n 1, n) G (n)C (n)]e(n, n 1) G (n)v2 (n) v1 ( n)
n 1
ˆ 1 ( n) F (n 1, n) E{ x (n) H (k )}R-1 (k ) (k ) F (n 1, n) x
k 1
n 1
定义:G(n) E{x(n 1) H (n)}R-1 (n) ,那么状态误差向量的一步预测为:
ˆ 1 (n 1) F (n 1, n) x ˆ 1 (n) G(n) (n) x
{ y(1),..., y(n)} { (1),..., (n)}
新息过程(cont.)
ˆ 1 ( n) , 在Kalman滤波中,并不直接估计观测数据向量的一步预测 y 而是先计算状态向量的一步预测 ˆ 1 (n) x(n | y(1),..., y(n 1)) x
然后
def
ˆ 1 (n) C (n) x ˆ 1 (n) y
(1)观测方程:
y(n) C (n) x(n) v2 (n)
M×M维观测矩阵
(已知)
M×1维观测向量
M×1维观测噪声
向量,v2 (n) ~ N (0, Q2 (n))
Kalman滤波问题:利用观测数据向量 y(1),..., y(n 1),对 n 1 求状态向量 x (i ) 各个分量的最小二乘估计。
根据正交性原理
ˆ 1 (n 1)] H (k )} E{e (n 1, n) H (k )} E{[ x(n 1) x 0 , k 1,..., n
ˆ 1 (n 1) 代人上式,并利用新息过程的正 将构造的状态向量的一步预测 x 交性有:
E{x(n 1) H (k )} W1 (k )E{ (k ) H (k )} W1 (k ) R(k )
状态向量一步预测误差向量的相关矩阵
K (n 1, n) E{e(n 1, n)e H (n 1, n)} F (n 1, n) P (n) F H (n 1, n) Q1 (n)
(请证明) (代入新息过程计算式)
上式成为Riccati差分方程,其中
P (n) K (n, n 1) F -1 (n 1, n)G(n)C (n) K (n, n 1)
G (n) ----Kalman增益矩阵
非自适应部分 自适应部分
Kalman增益的计算
Kalman增益的定义:G(n) E{x(n 1) H (n)}R-1 (n)
E{ x (n 1) H (n)} F (n 1, n)E{ x (n) H ( n)} F (n 1, n)E{ x (n)e H (n, n 1)}C H (n) F (n 1, n)E{e (n, n 1)e H (n, n 1)}C H (n) F (n 1, n) K (n, n 1)C H (n)
卫星角速度估计
状态方程可以写成:
x(n) Fx(n 1) u(n) w(n)
其中:
1 T 0 状态转移矩阵 F 0 1 T 0 0 0
系统噪声 系统输入向量
u(n) 0, 0, u(n)
T
w (n) 0, 0, w(n)
T
系统噪声 相关矩阵
ˆ 1 (n 1) x ˆ (n 1| y (1),..., y (n)) x W1 (k ) (k )
k 1 n
def
W1 (k ) 表示与一步预测相对应的权矩阵。现在的问题是如何确定 其中, 这个权矩阵?
状态向量的一步预测
正交性原理:线性滤波器工作在最优条件的充分必要条件是估计误差 eopt (n) 与输入 u(0),..., u(n) 正交。 正交性原理引理:当滤波器工作在最优条件时,由滤波器输出定义的期 望响应的估计 yopt (n) 与相应的估计误差 eopt (n)正交。
Kalman滤波及其应用
目
• Kalman滤波原理简介
1 Kalman滤波器的由来 2 新息过程 3 Kalman滤波算法
录
• Kalman滤波的应用
1 卫星角速度估计 2 无人机地面目标跟踪
3 基于Kalman滤波的时变信道估计
目
• Kalman滤波原理简介
1 Kalman滤波器的由来 2 新息过程 3 Kalman滤波算法
Kalman滤波器的由来
已知待估计信号二阶统计特性 待估计信号二阶统计特性未知 Wiener滤波器 ?
Kalman滤波理论是Wiener滤波理论的发展,最早用于随机过程的参 数估计,后来很快在各种最优滤波和最优控制问题中得到了极其广泛的应 用。 Kalman滤波器具有以下特点: 1. 其数学公式用状态空间描述; 2. 它的解是递推计算的,即与Wiener滤波器不同,Kalman滤波器是 一种自适应滤波器。
(利用 (n) C (n)e(n, n 1) v2 (n) ) (利用正交性原理引理)
ˆ 1 (n) e ( n, n 1)]e H (n, n 1)}C H (n) F (n 1, n)E{[ x
Kalman增益的计算表达式:
G(n) F (n 1, n) K (n, n 1)C H (n) R-1 (n)
Kalman. R. E.1960. “A New Approach to Linear Filtering and Problems” .
动态系统模型
考虑一离散时间的动态系统:
(1)过程方程:
x(n 1) F (n 1, n) x(n) v1 (n)
M×1维状态向量 M×M维状态转移 矩阵(已知) M×1维过程噪声 向量,v1 (n) ~ N (0, Q1 (n))
G (n) F (n 1, n) K (n, n 1)C H (n)[C (n) K (n, n 1)C H ( n) Q2 ( n)]1 ˆ 1 ( n) ( n) y ( n) C ( n) x ˆ 1 (n 1) F (n 1, n) x ˆ 1 (n) G (n) (n) x P (n) K (n, n 1) F -1 (n 1, n)G (n)C (n) K (n, n 1) K (n 1, n) F (n 1, n) P (n) F H (n 1, n) Q1 (n)
ˆ 1 (n) C ( n)[ x( n) x ˆ 1 ( n)] v2 ( n) (n) y(n) C (n) x
新息过程重新写为:
C (n)e (n, n 1) v2 (n) def ˆ 1 (n) 表示状态向量的一步预测误差。 其中 e(n, n 1) x(n) x
ˆ(t ) g (t ) [s(t ) n(t )] g ( )[s(t ) n(t )]d s
根据已知的输入信号和噪声的二阶统计特性(比如频谱)获取的 滤波器系数。属于非自适应滤波。
Wiener, Norbert (1949). “Extrapolation, Interpolation, and Smoothing of Stationary Time Series”.
(一步预测)
目
• Kalman滤波原理简介
1 Kalman滤波器的由来 2 新息过程 3 Kalman滤波算法
录
• Kalman滤波的应用
1 卫星角速度估计 2 无人机地面目标跟踪
3 基于Kalman滤波的时变信道估计
卫星角速度估计
卫星滚动姿态角度方程:
H (n) H (n 1) TH (n 1)
N时刻的滚动 姿态角度 更新时间间隔, T较小
卫星滚动姿态角速度方程:
H (n) H (n 1) TH (n 1)
卫星滚动姿态角加速度方程: 定义状态向量:
H (n) u(n) w(n)
系统喷气产生
的加速度
干ቤተ መጻሕፍቲ ባይዱ,零均值
白噪声
x1 (n) H (n) (n) x ( n) x ( n ) 2 H H (n) x3 (n)
故权矩阵可以表示为: W1 (k ) E{x(n 1) H (k )}R-1 (k )
状态向量的一步预测(cont.)
状态向量的一步预测的最小均方误差估计可表示为:
ˆ 1 (n 1) E{ x (n 1) H ( k )}R -1 ( k ) ( k ) x
k 1 n
性质1:新息 (n) 与过去观测数据 y(1),..., y(n 1)正交,即
E{ (n) y H (k )} 0,1 k n 1
性质2:新息过程由彼此正交的随机向量序列 { (n)} 组成,即
E{ (n) H (k )} 0,1 k n 1
性质3:表示观测数据的随机向量序列{ y(1),..., y(n)} 与表示新息过程的 随机向量序列 { (1),..., (n)} 一一对应,即