圆周运动中的临界问题(全)
圆周运动中的临界问题
向心力最小时,角速度最小
向心力最大时,角速度最大
m
四、实例分析
例4:如图,长为L的绳子,下端连着质量为m的小球,上端接于天花 板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。此时小球静止于光
三、解决圆周运动中临界问题的一般方法
1、对物体进行受力分析 2、找到其中可以变化的力以及它的临界值 3、求出向心力(合力或沿半径方向的合力)的临界值
4、用向心力公式求出运动学量(线速度、角速度、周期、 半径等)的临界值
四、实例分析
例1:如图,在质量为M的电动机的飞轮上,固定着一个 质量为m的重物(m的体积和大小可忽略),重物m到飞 轮中心距离为R,飞轮匀速转动时,为了使电动机的底 座不离开地面,转动的角速度ω最大为多少?
B A
O’
四、实例分析
例3:在以角速度ω匀速转动的转台上放着一质量为M的物体,通过一 条光滑的细绳,由转台中央小孔穿下,连接着一m的物体,如图所示。 设M与转台平面间的最大静摩擦力为压力的k倍,且转台不转时M不能 相对转台静止。求:
(1)如果物体M离转台中心的距离保持R不变,其他条件相同,则转台转动
A A
30°
30°
B
45°Biblioteka B 45°CCO
A
O’
水平转盘上放有质量为m的物快,当物块到转 轴的距离为r时,若物块始终相对转盘静止,物 块和转盘间最大静摩擦力是正压力的μ倍,求 转盘转动的最大角速度是多大?
物体与圆筒壁的动摩擦因数为μ ,圆筒的半 径为R,若要物体不滑下,圆筒的角速度至少 为多少?
高中物理圆周运动的临界问题(含答案)
1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。
【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。
它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。
圆周运动中的临界问题
圆周运动的临界问题【例1】如图所示,半径为0.5 m 的光滑细圆管轨道固定在底座上,底座放在水平地面上两地桩之间,不能左右移动,圆管轨道和底座的总质量为5 kg 。
在圆管最低点静置一个质量为1 kg 的小球(直径略小于圆管内径),给小球一个水平方向的初速度v 0,小球能在圆管内做完整的圆周运动,整个过程中底座不会脱离地面,重力加速度g 取10 m/s 2。
(1)若小球运动到圆管最高点时,对圆管恰好无作用力,则初速度v 0多大?(2)若小球运动到圆管最高点时,底座对地面的压力不超过55 N ,求初速度v 0应满足的条件。
【例2】一个质量为m 的小物块(可视为质点)放在一水平圆盘上,圆盘可绕过圆 心O 的竖直轴转动,物块到转轴的距离为r ,物块与圆盘间的动摩擦因数为μ, 设最大静摩擦力等于滑动摩擦力。
当圆盘以角速度ω0匀速转动时,物块与圆盘保持相对静止,则此时物块受到的摩擦力大小为_____________;要使物块与圆 盘始终保持相对静止,圆盘转动的角速度应满足的条件是_____________。
【例3】用一根长为L 的不可伸长的轻绳一端固定在悬点O ,另一端拴住一个质量为m 的小球(可视为质点),开始时用外力使小球静止在最低点,然后释放小球,同时给小球一个水平方向的初速度v 0,使小球在竖直平面内运动,空气阻力不计,重力加速度为g 。
(1)若小球能做完整的圆周运动,则初速度v 0至少为多少?(2)若在空间加上场强大小为E 、方向向下的匀强电场,同时让小球带上q (q >0)的电荷,轻绳绝缘,则(1)的结果又为多少?O练习1:A 、B 、C 三个质量分别为m 、3m 、m 的小物块(均可视为质点)放在一水平圆盘上,圆盘可绕过圆心O 的竖直轴转动。
已知物块A 和B 到转轴的距离均为r ,物块C 到转轴的距离为2r ,如图所示。
三物块与圆盘间的动摩擦因数均相同,设最大静摩擦力等于滑动摩擦力。
当圆盘以角速度ω0匀速转动时,三物块与圆盘均保持相对静止,则物块________受到的静摩擦力最大;若逐渐增大圆盘转动的角速度,则物块________最先开始相对圆盘滑动。
圆周运动的临界问题
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题
(完整版)圆周运动中的临界问题(最新整理)
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。
()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。
gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
圆周运动中的临界问题专题(最新整理)
课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界= (可理解为恰好转过Rg 或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg ②能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.Rg Rg ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高gR 310度(距离底部)的说法中正确的是( )A 、一定可以表示为B 、可能为 g v 2203R C 、可能为R D 、可能为R 35【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥gr v 面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况:特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.①当v =0时,F N =mg (N 为支持力)②当 0<v <时, F N 随v 增大而减小,且mg >F N >0,Rg F N 为支持力.③当v =时,F N =0Rg ④当v >时,F N 为拉力,F N随v 的增大而增大(此时F N 为拉力,方向指向圆心)Rg典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。
专题:圆周运动中的临界问题
专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。
如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。
2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。
(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。
a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。
例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。
当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。
解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。
(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。
竖直平面内的圆周运动临界问题(超级经典全面)
B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
b
a
例:长度为L=0.5m的轻质细杆OA,A端有一质量
为m=3.0kg的小球,如图5所示,小球以O点为圆心 在竖直平面内做圆周运动,通过最高点时小球的速 率是2.0m/s,g取10m/s2,则此时细杆OA受到 ( B)
A、6.0N的拉力 C、24N的拉力
练习习题
7.质量为m的小球在竖直平面内的圆形轨道的 内侧运动如图5-8-9所示,经过最高点而不 脱离轨道的速度临界值是v,当小球以2v的速 度经过最高点时,对轨道的压力值是( )
A.0
B.mg
C.3mg
D.5mg
2、用长为l的细绳,拴着质量为m的小球,在竖直平面 内做圆周运动,则下列说法中正确的是( ) A.小球在最高点所受的向心力一定是重力 B.小球在最高点绳的拉力可能为零 C.小球在最低点绳子的拉力一定大于重力 D.若小球恰好能在竖直平面内做圆周运动,则它在最 高点的速率为
A .O
C B
2、轻杆和圆管模型 :
N
能过最高点的临界条件:
mg
v临界=0
O
杆(管的下壁)对球的支持力FN=mg
N
mg O
小结二:有支撑的物体
小球与杆相连,球在光滑封闭管中运动
1、临界条件: 由于支撑作用,小球恰能到达最高点的临界速度V临界=0,此时弹力
等于重力
FN mg
2、小球过最高点时,轻杆对小球的弹力情况:
由牛顿第二定律有
FN+mg= mv^2/L
2.6 N(1分)
(3分) ∴mvF^N2=/L
-mg=
根据牛顿第三定律可知,水对桶底的压力大小为2.6 N,方向
圆周运动临界问题汇总
圆周运动临界问题汇总作者:李文强来源:《文理导航·教育研究与实践》2016年第03期圆周运动的临界问题是曲线运动中的一个重要知识,也是高考中的高频考点,现在我把它归纳为以下几种情况供大家参考。
一、水平面内的临界问题在水平面内圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动(半径有变化)的趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时的方向如何(特别是一些接触力如静摩擦力,绳的拉力等)例1:如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴的距离为2L。
木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。
若圆盘从静止开始绕轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为kmg解析:小木块都随水平转盘做匀速圆周运动时,在发生相对滑动之前,角速度相等,静摩擦力提供向心力即f静=mrω2,由于木块b的半径大,所以发生相对滑动前木块b的静摩擦力大,选项B错。
随着角速度的增大,当静摩擦力等于滑动摩擦力时木块开始滑动,则有f静=mrω2=kmg,代入两个木块的半径,小木块a开始滑动时的角速度ωa=,木块b开始滑动时的角速度ωb=,选项C对。
根据ωa>ωb,所以木块b先开始滑动,选项A对。
当角速度ω=,木块b已经滑动,但是ω=二、竖直面内的临界问题(1)线球模型(高中阶段只要求分析特殊位置最高点、最低点)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:注意:绳对小球只能产生沿绳收缩方向的拉力。
①临界条件:绳子或轨道对小球没有力的作用:mg=mv2/R→v临界=(可理解为恰好转过或恰好转不过的速度)②能过最高点的条件:v≥,当V>时,绳对球产生拉力,轨道对球产生压力。
圆周运动中的临界问题
圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。
圆周运动_临界问题
速度v0,使小球在竖直平面内做圆周运动,并且刚好
过最高点,则下列说法中正确的是:( D )
A.小球过最高点时速度为零
B.小球开始运动时绳对小球的拉力为m
v
2 0
C.小球过最高点时绳对小的拉力mg L
D.小球过最高点时速度大小为 gL
变型题2:在倾角为α=30°的光滑斜面上用细绳 拴住一小球,另一端固定,其细线长为0.8m, 现为了使一质量为0.2kg的小球做圆周运动,则 小球在最高点的速度至少为多少?
【答案】 2.9 rad/s≤ω≤6.5 rad/s
如图所示,匀速转动的水平圆盘上,沿半径方向 两个用细线相连的小物体A、B的质量均为m,它们到 转轴的距离分别为rA=20cm,rB=30cm。A、B与圆盘间 的最大静摩擦力均为重力的0.4倍,(g=10m/s2)求:
(1)当细线上开始出现张力,圆盘的角速度;
例1:如图所示,半径为R的圆盘绕垂直于
盘面的中心轴匀速转动,其正上方h处沿OB
方向水平抛出一个小球,要使球与盘只碰
一次,且落点为B,则小球的初速度v=
_________,圆盘转动的角速度ω=
_________。
图3-6
例2:如图所示,小球Q在竖直平面内做匀 速圆周运动,当Q球转到图示位置时,有 另一小球P在距圆周最高点为h处开始自由 下落.要使两球在圆周最高点相碰,则Q球 的角速度ω应满足什么条件?
当v=v0,对轨道刚好无压力,小球刚好能够通过最高点;
当v>v0,对轨道有压力,小球能够通过最高点; 当v<v0,小球偏离原运动轨道,不能通过最高点。
要保证过山车在最高点不掉下来,此时的速度必须满足:v gr
规律总结:无支持物
物体在圆周运动过最高点时,轻绳对物体只能产生沿绳收 缩方向向下的拉力,或轨道对物体只能产生向下的弹力; 若速度太小物体会脱离圆轨道——无支持物模型
圆周运动的临界问题
解:在最高点F向=G+T, 即G+T=mv2/r
T=mv2/r-mg≥0
小球经过最高点的速度:v gr
线或绳
讨论:
①、当 v gr 时,细绳对小球没有拉力作用。向心
力只由小球所受重力提供。
②、如果 v> gr ,轻绳对小球存在拉力。
③、如果 v< gr ,小球无法到达圆周的最高点
练习:如图,在“水流星”表演中,绳长为 1m,水桶的质量为2kg,若水桶通过最高点的 速度为4m/s,求此时绳受到的拉力大小。
变式训练2:如图所示,一个光滑的圆锥体固定在水平桌面上,其
轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端 拴着一个质量为m的小物体(物体可看质点),物体以速率v绕圆 锥体的轴线做水平匀速圆周运动。
⑴当v= gl 6
时,求绳对物体的拉力;
练习:长L=0.5m,质量可以忽略的的杆,其下端 固定于O点,上端连接着一个质量m=2kg的小球A,A 绕O点做圆周运动,在A通过最高点时,试讨论在下列 两种情况下杆的受力:
①当A的速率v1=1m/s时 ②当A的速率v2=4m/s时
A
L
O
小结:
一.水平面内的圆周运动的临界问题
处理这类问题的关键是分析出静摩擦力的变化,从 而结合其他力分析出指向圆心的合外力的变化,以 确定圆周运动的其他物理量的变化范围。
mgt0 am n ω 1 2L 3s0 i3n00
B
30 0
45 0
C
将已知代入解得ω1=2.4 rad/s
②当角速度ω继续增大时TAC减小,TBC
增大。设角速度达到ω2时,TAC=0,则③ω=3 rad/s,此时两绳拉
高中物理圆周运动的临界问题(含答案)
1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。
【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。
它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。
专题 圆周运动临界问题
专题 圆周运动的临界问题一.水平转台上与静摩擦力有关的临界问题在转台上做圆周运动的物体,若有静摩擦力参与,当转台的转速变化时,静摩擦力也会随之变化。
关键:(1)找出与最大静摩擦力对应的临界条件 (2)牢记“静摩擦力大小有个范围,方向可以改变1.单个物体做圆周运动【例1】如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其下压力的μ倍。
求:⑴当转盘角速度ω1=μg 2r 时,细绳的拉力T 1 ⑵当转盘角速度ω2=3μg 2r时,细绳的拉力T 22.绳子连接两个物体在圆心的一侧做圆周运动【例2】一圆盘可以绕其竖直轴在图所示水平面内转动,A 、B 物体质量均为m ,它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L 的轻绳连在一起。
若将A 放在距轴心为L 的位置,A 、B 之间连线刚好沿半径方向被拉直,随着圆盘角速度ω的增加,摩擦力或绳子拉力会出现不同的状态,(两物体均看作质点)求:(1)ω1=Lg 3μ时,细绳的拉力T 1和A 所受的摩擦力f 1(2)ω1=Lg 53μ时,细绳的拉力T 2和A 所受的摩擦力f 23.绳子连接两个物体分别在圆心的两侧做圆周运动【例3】(多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时A 所受摩擦力方向沿半径指向圆内C .此时圆盘的角速度为2μg rD .此时烧断绳子,A 仍相对盘静止,B 将做离心运动【针对训练1】如图所示,水平转台上的小物体A 、B 通过轻绳连接,转台静止时绳中无拉力,A 、B 的质量分别为m 、2m ,A 、B 与转台间的动摩擦因数均为μ, A 、B 离转台中心的距离分别为1.5r 、r ,当两物体随转台一起匀速转动时,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .绳中无拉力时,A 、B 物体受到的摩擦力大小相等B .当绳中有拉力时,转台转动的角速度应大于√μg rC .若转台转动的角速度为√6μg r ,则A 、B 一起相对转台向B 离心的方向滑动D .物体A 所受的摩擦力方向一定指向圆心【针对训练2】(多选)如图所示,圆盘可以绕其竖直轴在水平面内转动。
圆周运动中的临界问题
(1)不滑动
质量为m的物体在水平面上做圆周运动或随圆盘一起转动(如图甲、乙所
示)时,静摩擦力提供向心力,当静摩擦力达到最大值Ffm时,物体运动的速
度也达到最大,即Ffm=m
vm2 r
,解得vm=m
Ffm r m
。
• 这就是物体以半径r做圆周运动的临界速度。
圆周运动中的临界问题
创新微课
(2)绳子被拉断
创新微课 现在开始
圆周运动中的临界问题
圆周运动中的临界问题
圆周运动中的临界问题
当物体从某种特性变化为另一 种特性时,发生质的飞跃的转折状 态,通常叫做临界状态,出现临界 状态时,即可理解为“恰好出 现”,也可理解为“恰好不出现”
创新微课
圆周运动中的临界问题
创新微课
1.水平面内圆周运动的临界问题
圆周运动中的临界问题
• 解析:设物体M和水平面保持相对静止,当ω具有最 小值时,M有向圆心运动的趋势。所以M受到的静摩 擦力方向沿半径向外,且等于最大静摩擦力,隔离 M分析受力有
• T-fm=Mω2r,又T=mg • 0.3×10-2=0.6ω×0.2,ω1=2.9rad/s • 当ω具有最大值,M有离开圆心趋势。M受的最大静
的来源。
圆周运动中的临界问题
用长L=0.6m的绳系着装有m=0.5kg水的小桶,在竖直平面内做 圆周运动,成为“水流星”。g=10m/s2。求:
(1)最高点水不流出的最小速度为多少? (2)若过最高点时速度为3m/s,此时水对桶底的压力多大?
创新微课
圆周运动中的临界问题
小
结
处理临界问题的解题步骤
摩擦力2N、指向圆心,隔离M受力分析有
• T+fm=Mω2r • 又T=mg,0.3×10+2=0.6ω×0.2,ω2=6.5rad/s • 所以ω的范围是2.9rad/s≤ω≤6.5rad/s。
圆周运动中的临界问题(最新整理)
C、24N 的拉力
D、24N 的压力
m
A L O
例 3 长 L=0.5m,质量可以忽略的的杆,其下端固定于 O 点, 上端连接着一个质量 m=2kg 的小球 A,A 绕 O 点做圆周运动(同 图 5),在 A 通过最高点,试讨论在下列两种情况下杆的受力:
①当 A 的速率 v1=1m/s 时 ②当 A 的速率 v2=4m/s 时
离圆心,大小等于最大静摩擦力 2N。 此时,对 M 运用牛顿第二定律。
M
ro
有
T-fm=Mω12r
且 T=mg
解得 ω1=2.9 rad/s
m
第5页
图 7
当ω为所求范围最大值时,M 有背离圆心运动的趋势,水平面对 M 的静摩擦力的方向向着圆
心,大小还等于最大静摩擦力 2N。
再对 M 运用牛顿第二定律。
有
T+fm=Mω22r
解得 ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s
第6页
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad/s 时,TBC=0,AC 与轴的夹角小于 30°。 如果ω>3.16rad/s 时,TAC=0,BC 与轴的夹角大于 45
例 5 解析:要使 m 静止,M 也应与平面相对静止。而 M 与平面静止时有两个临界状态:
当ω为所求范围最小值时,M 有向着圆心运动的趋势,水平面对 M 的静摩擦力的方向背
①当 v1=1m/s< 5m/s 时,小球受向下的重力 mg 和向上的支持力 N v2
由牛顿第二定律 mg-N=m L v2
N=mg-m =16N L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动中的“临界问题”总结
一、“绳”模型——“最高点处有临界,最低点时无选择”
一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高
点的条件是:此时,只有小球的 提供向心力,即 =m r
v 2
,这时的速度是做圆周运动的最小速度,v
min = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道
巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的
总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半
径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的
速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:
(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.
巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时
A .车的加速度为零,受力平衡
B .车对桥的压力比汽车的重力大
C .车处于超重状态
D .车的速度越大,车对桥面的压力越小
二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=
gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;
②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;
③当v =gr 时,杆对小球的支持力 于零;
④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.
巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )
A.小球到达最高点的速度必须大于gL
B .小球到达最高点的速度要大于0
C.小球到达最高点受杆的作用力一定为拉力
D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”
小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最
高点时,若小球与球面间弹力为零,则有 = ,v= 。
当v> 时,小球将脱离轨道做平抛运动。
例1:如图所示,小物体质量为m ,距离圆心为r ,与圆盘间
的动摩擦因数为μ,圆盘从静止开始转动,要使小物体不相对圆
盘滑动,圆盘的角速度ω应满足什么条件?
例2:小物体质量为m ,距离圆心为r ,与圆盘间的动摩擦因数为μ,
小物体用细线连接,细线沿圆盘半径方向,圆盘从静止开始转动,试
分析圆盘从静止开始转动的过程中小物体的受力情况。
例3:如图,A 、B 质量均为m ,与圆盘间的动摩擦因数均为μ,
用细线连接,沿
圆盘半径
方
向
放置
,它们距圆心的距离为
B A r r 2=,r r B =.圆盘从静止开始转动,试讨论A 、B 在相对圆盘滑动之前的受力情况。
跟踪:如图所示,匀速转动的水平圆盘上放有质量均为m 的小物体A 、B ,AB 间用细线沿半径方向相连.它们到转轴的距离分别为R A =0.2 m 、R B =0.3m.A 、B 与盘面间的最大静摩擦力均为重力的0.4倍.g 取10m/s 2,试求:
(1)当细线上开始出现张力时圆盘的角速度ω0
(2)当A 开始滑动时圆盘的角速度ω
(3)在A 即将滑动时,烧断细线,A 、B 将分别做什么运动?
例4:如图,A 、B 质量均为m ,与圆盘间的动摩擦因数均为μ,A 、B 分居圆心两侧,用细线连接,沿圆盘半径方向放置,它们距圆心的距离为
B A r r 2=,r r B =.圆盘从静止开始转动,试讨论A 、B 在相对
圆盘滑动之前的受力情况。
例5:原长为L 的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO ′上,弹簧的劲度系数为k ,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L /4,现将弹簧长
度拉长到6L /5后,把小铁块放在圆盘上,在这种情况下,
圆盘绕其中心轴OO ′以一定角速度匀速转动,如图所示,
已知小铁块的质量为m ,为使小铁块不在圆盘上滑动,
圆盘转动的角速度ω最大不得超过多少?
例6:
如图所示,水平转盘的中心有一个光滑的竖直小圆筒,质量为
m
的物体A 放在转盘上,A 到圆心的距离为r ,物体A 通过轻
绳与物体B 相连,B 与A 质量相同.若物体A 与转盘间的动摩擦因
数为μ,则转盘转动的角速度ω在什么范围内,物体A 才能随盘
转动?
例7:一半径足够大的圆台可绕其竖直轴在水平面内转动,质量 相同的两木块A 、B 与圆台间的摩擦因数相同为μ、用一根长为 L 的细线将他们连接,将A 放在轴心处,B 在距轴心L 处,要 使他们与圆台不发生相对运动圆台转动的角速度最大为多少?
例8:如图所示,半径为r 的圆筒绕竖直中心轴OO ′转动,小物块A 靠在圆筒的内壁上,它与圆筒的静摩擦因数为μ,现要使A 不下落,则圆筒转动的角速度ω至少应为______.
五:锥形临界
例1:如图所示,在光滑的圆锥顶用长为L 的细线悬挂一
质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角
速度ω匀速转动时,球压紧锥面,则此时绳的拉力是多
少?若要小球离开锥面,则小球的角速度至少多大?
例2:如图所示,两绳系一个质量为m=0.1 kg 的小球,两
绳的另一端分别固定于轴的A 、B 两处,上面绳长L=2 m ,两
绳都拉直时与轴夹角分别为30°和45°.问球的角速度在什么范
围内,
两绳始终张紧?。