大学物理刚体力学总结

合集下载

刚体知识点总结

刚体知识点总结

刚体知识点总结刚体是物理学中一个重要的概念,它是指在力的作用下形状和大小不会发生明显变化的物体。

在本文中,我们将从基本概念、刚体运动以及刚体的应用等几个方面来总结刚体的相关知识点。

1.刚体的基本概念刚体是指在外力作用下,保持形状和大小不变的物体。

它具有以下特点:–刚体的分子结构比较紧密,分子之间的相互作用力较大;–刚体的形状和大小不会随外力作用而发生变化;–刚体具有固定的质心,质心是刚体内各个质点的平均位置。

2.刚体的运动刚体可以进行平动和转动两种运动。

–平动指的是刚体的每一个质点都沿着相同的方向进行平行移动,它的质心也会做相应的平行运动。

–转动指的是刚体围绕某一轴线进行旋转,它的每一个质点都围绕轴线做圆周运动。

3.刚体的平衡刚体的平衡可以分为静平衡和动平衡两种情况。

–静平衡指的是刚体处于平衡状态,不受外力作用导致的平动和转动。

–动平衡指的是刚体处于平衡状态,但可能存在外力作用导致的平动或转动,但整体来说仍然保持平衡。

4.刚体的应用刚体的概念和原理被广泛应用于物理学和工程学中的各个领域。

–在物理学中,刚体的概念是研究物体运动和力学原理的基础,例如在力学中用刚体模型研究物体的平衡和运动规律。

–在工程学中,刚体的原理被应用于结构力学和材料力学等领域,用于分析和设计各种结构和机械系统的受力和变形情况。

总结:刚体是物理学中一个重要的概念,它指的是在外力作用下形状和大小不会发生明显变化的物体。

刚体可以进行平动和转动两种运动,并且可以处于静平衡和动平衡的状态。

刚体的概念和原理在物理学和工程学中有广泛的应用,用于研究物体的运动和力学原理,以及分析和设计各种结构和机械系统的受力和变形情况。

文章长度:182字。

物理刚体知识点总结

物理刚体知识点总结

物理刚体知识点总结一、刚体的概念和性质刚体是指物体的形状和大小在外力作用下不发生变化的物体。

刚体的性质包括:刚体的各部分之间的相对位置关系在运动时不发生变化;刚体的各点在一个时间内不发生相对位移;刚体是不可压缩的;刚体的形状和大小在外力作用下不发生变化。

在学习刚体的物理知识时,需要掌握刚体的这些概念和性质。

二、刚体的平动和转动运动刚体的运动包括平动和转动两种。

平动是指刚体的各点在任一时刻都有同样的速度和同样的加速度,而转动是指刚体的各点在任一时刻都有不同的速度和不同的加速度。

在学习刚体的物理知识时,需要了解平动和转动的特点,以及刚体在这两种运动中的表现和规律。

三、刚体的运动方程和刚体的运动规律刚体的运动方程描述了刚体在平动和转动中的运动规律。

对于平动,刚体的平动方程是牛顿第二定律的推广和应用,即F=ma;对于转动,刚体的转动方程涉及力矩和角加速度的关系,即τ=Iα。

刚体的运动规律包括牛顿定律、动量定理和角动量定理。

在学习刚体的物理知识时,需要掌握刚体的运动方程和运动规律,并能够应用它们解决实际问题。

四、刚体的静力学刚体的静力学研究了刚体在平衡状态下的性质和规律。

刚体在平衡状态下,外力矩的和为零,即Στ=0;刚体的平衡方程是ΣF=0。

刚体的静力学还包括平衡条件和平衡的稳定性条件。

在学习刚体的物理知识时,需要了解刚体的静力学和平衡状态的相关概念和定律,并能够应用这些知识解决实际问题。

五、刚体的运动学刚体的运动学研究了刚体的位移、速度和加速度等运动参数的关系。

刚体的平动和转动运动都涉及位置、速度和加速度的关系。

刚体的平动运动参数包括位移、速度和加速度;刚体的转动运动参数包括角位移、角速度和角加速度。

在学习刚体的物理知识时,需要了解刚体的运动学,并能够应用它们描述和分析刚体的运动。

六、刚体的动力学刚体的动力学研究了刚体的运动与外力之间的关系。

刚体在运动中受到的外力包括平动受力和转动受力。

平动受力包括牛顿定律描述的作用在质点上的力,而转动受力则是力矩的概念。

大学物理刚体部分知识点总结

大学物理刚体部分知识点总结

大学物理刚体部分知识点总结大学物理刚体部分知识点总结一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

角速度ω表示刚体转动快慢程度和转向,是代数量,。

,当α与ω。

角速度也可以用矢量表示,角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示,。

绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

传动比。

二.转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定轴的转动惯量J等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。

定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。

它与刚体的形状、质量分布以及转轴的位置有关。

计算转动惯量的三个要素:(1)总质量;(2)质量分布;(3)转轴的位置(1)J与刚体的总质量有关几种典型的匀质刚体的转动惯量刚体细棒(质量为m,长为l)细棒(质量为m,长为l)转轴位置过中心与棒垂直过一点与棒垂直转动惯量Jml212ml23细环(质量为m,半径为R)过中心对称轴与环面垂直细环(质量为m,半径为R)圆盘(质量为m,半径为R)圆盘(质量为m,半径为R)球体(质量为m,半径为R)薄球壳(质量为m,半径为R)平行轴定理和转动惯量的可加性1)平行轴定理直径过中心与盘面垂直直径过球心过球心mR2mR22mR22mR242mR252mR23设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I与Ic之间有下列关系IIcmd22)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和等于整个物体的转动惯量。

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

刚体力学小结

刚体力学小结
2对定滑轮轴的角动量重物人质量均为量不计人向上爬行两半径不同圆轮1轮转动2轮静止今将两轮子靠拢轮被带动而转动1圆锥摆对小球质量为轴oo?m定滑轮质m3对轴或的角动量1o2oo?ov?m1o2o?4判断角动量是否守恒x7
刚体力学小结(定轴转动)
一. 与质点力学比较
(1) 类比之处: 知识结构 规律形式 思路与方法 (2) 不同处: 特殊质点系 只以角量为研究工具处理问题
1 2
恒力矩
W M
2. 动能定理
W
ex
1 1 2 2 Jω2 Jω1 2 2
3. 机械能守恒(条件同质点力学) 1 1 1 2 2 2 一般 ( J mghc ) ( mv mgh) kx C 2 2 2
转动部分 平动部分
3.
讨论题
1.两个均质圆盘 A 和 B 的密度分别为 A和 B,若 A> B ,但两圆盘的质量与厚度相 同,如两盘对通过盘心垂直于盘面轴的转 动惯量各为 JA和 JB,则
12 .
2. 斜面倾角为θ ,质量分别为 m1 J ,r 和m2 物体经细绳联接,绕过 一定 m 1 滑轮。定滑轮转动惯量为 J,半径 m2 为r 。求 m2 下落的加速度.(设 m1与斜面的摩擦因数为 μ) FR T1 解:分析受力:(图示) T2 FN T P+ m1 : 1 质点
m1 ,l
m2
3lm12 解得 s 2 m1 3m2
16 .
5. 一棒长为L ,质量为m ,一端可绕固定的水 平光滑轴在竖直平面内转动。在o点还系一长 为l 的轻绳,绳的一端悬一质量也为m的小球. 当小球悬线偏离竖直方向θ =30º时,静止释放 (如图),小球与静止的棒发生完全弹性碰 撞,问当绳的长度为多少时,小球与棒碰撞 后小球刚好停止?(略去空气阻 o 力 )棒获得的角速度又是 多少 ? l L 解得 l 3 L , 3g L m 3

大物刚体力学公式总结

大物刚体力学公式总结

大物刚体力学公式总结一、基本概念刚体力学是研究刚体运动和静力学平衡条件的一个分支学科。

所谓刚体是指形状不变的物体,其内部各点间的距离在运动或受力作用下保持不变。

刚体的运动可以分为平动和转动两种类型。

二、刚体运动的描述刚体的平动运动可以用质点的运动来描述,质点的位置可以用位矢来表示。

刚体的转动运动可以用刚体固定在某一轴上的角度来描述。

刚体的运动状态可以用位移、速度和加速度来表示,其中位移是位置的变化量,速度是位移的变化率,加速度是速度的变化率。

三、刚体力学的基本公式1.平动运动的基本公式:•位移公式:位移等于初速度乘以时间加上加速度乘以时间的平方的一半。

即 S = V0t + (1/2)at2;•速度公式:速度等于初速度加上加速度乘以时间。

即 V = V0 + at;•加速度公式:加速度等于速度差除以时间。

即 a = (V - V0) / t。

2.转动运动的基本公式:•角位移公式:角位移等于角速度乘以时间。

即θ = ωt;•角速度公式:角速度等于角位移除以时间。

即ω = θ / t;•角加速度公式:角加速度等于角速度差除以时间。

即α = (ω - ω0) / t。

3.平衡条件公式:•平衡条件一:物体受力的合力等于零。

即ΣF = 0;•平衡条件二:物体受力的合力矩等于零。

即ΣM = 0。

四、刚体的平衡问题刚体在平衡时,其受力和受力矩必须满足平衡条件。

通过平衡条件可以解决刚体的平衡问题,例如平衡杆的支点位置计算、悬挂物体的平衡问题等。

刚体的平衡问题还涉及到力的作用点的选取、力的方向的确定等。

通过恰当选择作用点和确定力的方向,可以简化刚体的平衡问题的求解。

五、刚体力学问题的求解步骤1.定义问题:明确刚体的运动类型和求解目标。

2.给定条件:根据实际情况给出题目的已知条件。

3.分析问题:根据题目所给条件,分析问题的物理本质和特点。

4.建立模型:根据问题的要求,建立适当的物理模型。

5.进行计算:根据已知条件和所建模型,进行计算求解。

大学物理刚体归纳总结

大学物理刚体归纳总结

大学物理刚体归纳总结在大学物理学习中,刚体是一个重要的概念,广泛应用于力学、动力学和静力学等领域。

本文将对刚体的定义、特点以及相关定理进行归纳总结,旨在帮助读者更好地理解和掌握刚体的基本知识。

一、刚体的定义和特点刚体是指可以看作一个整体、无论受到什么力都能保持形状不变的物体。

在实际应用中,我们常常将刚体简化为点、线或面,以便进行研究和计算。

刚体具有以下特点:1. 形状不变性:无论刚体受到外力的作用,其形状都不会发生改变。

2. 外力作用点的变化不引起内部构件间相对位置的改变:即刚体内各个质点之间的相对位置保持不变。

3. 刚体内各个质点之间的相对位置保持不变:即刚体内构件间的距离和角度不会发生变化。

二、刚体的运动学性质1. 刚体的平动:刚体作平动时,刚体上每个点的速度都相同,且方向相同。

2. 刚体的转动:刚体作转动时,刚体上的各点绕着同一条轴旋转。

这个轴称为刚体的转轴,刚体绕转轴的转动速度相同。

刚体平衡的条件是力矩的和等于零。

力矩是由力对刚体产生的转动效果,其大小与力的大小、作用点到转轴的距离和力的夹角相关。

四、刚体静力学定理与公式1. 雅可比定理:在刚体有多个力作用时,可以将这些力简化为只有一个力等效,该力的大小、方向和作用点都与原有多个力相同,这个力称为合力。

2. 力的合成定理:当刚体上有多个力作用时,可以将这些力合成为一个结果力,该力等效于原有多个力的合力。

3. 力矩的平衡条件:对于处于平衡状态的刚体,刚体上力矩的和必须等于零。

4. 平衡条件的应用:根据刚体平衡条件,可以解决各种与刚体平衡有关的问题,如悬挂物体的平衡、天平的平衡等。

五、刚体动力学定理与公式1. Euler定理:刚体绕固定轴的转动,转动惯量与角加速度和转矩之间存在关系,即转动惯量等于转矩与角加速度的比值。

2. 动量定理:外力矩与刚体的角动量之间存在关系,外力矩等于刚体的角动量关于时间的变化率。

3. 动能定理:刚体的动能与角速度和转动惯量之间存在关系,动能等于转动惯量与角速度平方的乘积的一半。

大学物理刚体力学总结

大学物理刚体力学总结

大学物理刚体力学总结大学物理刚体力学总结大学物理刚体力学总结篇一:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr|?Δr2. v= a= dt dx d??d?? d2??dt3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at2 ????4. 匀加速直线运动:v= v0+at x= v02 v2-v02=2ax 215. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?tgt2 216. 圆周运动:角速度= dt Rdθ v 角加速度dt dω 加速度 a=an+at 法相加速度an==Rω2 ,指向圆心 Rv2 切向加速度at=Rα ,沿切线方向dt d??7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F=, p=mv dtd?? 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p= ??????=常矢量3. 质心的概念:质心的位矢 rc= ???????? 离散分布) m 或 rc = ??dmm (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。

6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= dtd?? 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理刚体力学总结大学物理刚体力学总结大学物理刚体力学总结篇一:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr|?Δr2. v= a= dt dx d??d?? d2??dt3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at2 ????4. 匀加速直线运动:v= v0+at x= v02 v2-v02=2ax 215. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?tgt2 216. 圆周运动:角速度= dt Rdθ v 角加速度dt dω 加速度 a=an+at 法相加速度an==Rω2 ,指向圆心 Rv2 切向加速度at=Rα ,沿切线方向dt d??7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F=, p=mv dtd?? 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p= ??????=常矢量3. 质心的概念:质心的位矢 rc= ???????? 离散分布) m 或 rc = ??dmm (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。

6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= dtd?? 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。

(质点系的角动量定理具有同一形式。

)8. 角动量守恒定律:对某定点,质点(或质点系)受到的合外力矩为零时,则对于同一定点的L= 常矢量 ? 第四章(功和能)1. 功:dA=F?dr , AAB=L ??????? A2. 动能定理:对于一个质点:Amvb- a2 2 2 1 2 B 1 对于一个质点系:Aext+Aint = EkB – EkA3. 一对力的功:两个质点间一对内力的功之和为 AAB= ??????????? ??它只决定于两质点的相对路径4. 保守力:做功与相对路径形状无关的一对力,或者说,沿相对的闭合路径移动一周做功为零的一对力。

5. 势能:对保守内力可引进势能的概念。

一个系统的势能Ep决定于系统的位形,定义为–ΔEp=EpA – EpB = AAB 取B点为势能零点,即EpB=0,则 EpA = AAB 引力势能:EpGm1m2 r ?? 重力势能:Ep=mgh,以物体在地面为势能零点。

弹簧的弹性势能:Ep2,以弹簧的自然伸长为势能零点。

(来自:.smhaida.Cm 海达范文网:大学物理刚体力学总结)216. 由势能函数求保守力:Ft=- dEpdl7. 机械能守恒定律:在只有保守内力做功的情况下,系统的机械能保持不变。

它是普遍的能量守恒定律的特例。

8. 守恒定律的意义:不究过程的细节而对系统的初、末状态下结论;相应于自然界的每一种对称性,都存在着一个守恒定律。

9. 碰撞:完全非弹性碰撞:碰后合在一起; 弹性碰撞:碰撞时无动能损失。

? 第五章(刚体的定轴转动)1. 刚体的定轴转动:匀加速转动:ω=ω0+at ,θ=ω0t+at2 , ω2-ω02 =2αθ 212. 刚体定轴转动定律:MzdLzdt 以转动轴为z轴,为外力对转轴的力矩之和;Lz=Jω,J为刚体对转轴的转动惯量,则M=Jα3. 刚体的转动惯量:J= ????????2 (离散分布) , J= r2 dm(连续分布) 平行轴定理:J=Jc+md24. 刚体转动的功和能:力矩的功:A= Mdθ θ1转动动能:Ek=Jω2 21θ2 刚体的重力势能:Ep=mghc 机械能守恒定律:只有保守力做功时, Ek+ Ep =常量5. 对定轴的角动量守恒:系统(包括刚体)所受的对某一固定轴的合外力距为零时,系统对此轴的总角动量保持不变。

※一些均匀刚体的转动惯量篇二:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr |?Δr2. v= a==3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at24. 匀加速直线运动:v= v0+at x= v0t+at2 v2-v02=2ax5. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?t-gt26. 圆周运动:角速度ω== 角加速度α= 加速度 a=an+at 法相加速度 an==R ,指向圆心切向加速度at==Rα ,沿切线方向7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F= , p=mv 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p=常矢量3. 质心的概念:质心的位矢 rc=(离散分布) 或 rc = (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。

6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。

(质点系的角动量定理具有同一形式。

)8. 角动量守恒定律:对某定点,质点(或质点系)受到的合外力矩为零时,则对于同一定点的L= 常矢量 ? 第四章(功和能)1. 功:dA=F?dr , AAB=L2. 动能定理:对于一个质点:AAB =mvb2 -mva2 对于一个质点系:Aext+Aint = EkB – EkA3. 一对力的功:两个质点间一对内力的功之和为 AAB= 它只决定于两质点的相对路径4. 保守力:做功与相对路径形状无关的一对力,或者说,沿相对的闭合路径移动一周做功为零的一对力。

5. 势能:对保守内力可引进势能的概念。

一个系统的势能Ep决定于系统的位形,定义为–ΔEp=EpA – EpB = AAB 取B点为势能零点,即EpB=0,则 EpA = AAB 引力势能:Ep=-,以两质点无穷远分离时为势能零点。

重力势能:Ep=mgh,以物体在地面为势能零点。

弹簧的弹性势能:Ep=kx2,以弹簧的自然伸长为势能零点。

6. 由势能函数求保守力:Ft=-7. 机械能守恒定律:在只有保守内力做功的情况下,系统的机械能保持不变。

它是普遍的能量守恒定律的特例。

8. 守恒定律的意义:不究过程的细节而对系统的初、末状态下结论;相应于自然界的每一种对称性,都存在着一个守恒定律。

9. 碰撞:完全非弹性碰撞:碰后合在一起; 弹性碰撞:碰撞时无动能损失。

? 第五章(刚体的定轴转动)1. 刚体的定轴转动:匀加速转动:ω=ω0+at ,θ=ω0t+at2 , ω2-ω02 =2αθ2. 刚体定轴转动定律:Mz= 以转动轴为z轴,为外力对转轴的力矩之和;Lz=Jω,J为刚体对转轴的转动惯量,则M=Jα3. 刚体的转动惯量:J=2 (离散分布) , J=dm(连续分布) 平行轴定理:J=Jc+md24. 刚体转动的功和能:力矩的功:A= 转动动能:Ek=Jω2 刚体的重力势能:Ep=mghc 机械能守恒定律:只有保守力做功时, Ek+ Ep =常量5. 对定轴的角动量守恒:系统(包括刚体)所受的对某一固定轴的合外力距为零时,系统对此轴的总角动量保持不变。

※一些均匀刚体的转动惯量篇三:大学物理刚体力学基础习题思考题及答案习题5 5-1(如图,一轻绳跨过两个质量为m、半径为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为2m和m的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为mr2/2,将由两个定滑轮以及质量为2m和m的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。

解:受力分析如图,可建立方程:2mg?T2?2ma?? T1?mg?ma?? (T2?T)r?J??? (T?T1)r?J??? 2 T a?r? ,J?mr/2?? 联立,解得:a? 14 g,T? 118 mg 。

5-2(如图所示,一均匀细杆长为l,质量为m,平放在摩擦系数为?的水平桌面上,设开始时杆以角速度?0绕过中心且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

解:(1)设杆的线密度为:?? ml ,在杆上取一小质元dm??dx,有微元摩擦力:df??dmg???gdx,微元摩擦力矩:dM???gxdx,考虑对称性,有摩擦力矩:l M?2???gxdx? 20 14 mgl; td? ,有:??Mdt? 0dt(2)根据转动定律M?J??J ?14 ?? Jd?, ?mglt?? 112 ml?0,?t? 2 ?0l3?g 。

112 ml, 2 或利用:?Mt?J??J?0,考虑到??0,J? 有:t? ?0l 3?g 。

5-3(如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。

假设定滑轮质量为M、半径为 R ,其转动惯量为MR 2 /2,试求该物体由静止开始下落的过程中,下落速度与时间的关系。

解: 受力分析如图,可建立方程:mg?T?ma?? TR?J??? a?R? ,J? 12 mR?? 2mgM?2m v0 2 联立,解得:a?考虑到a? dvdt ,T? t0 Mmg ,??dv?? M?2m2mg2mgt ,有:v?。

相关文档
最新文档