立体几何线面垂直
立体几何常考定理的总结(八大定理)
lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
高中数学必修2立体几何专题-线面、面面垂直专题总结
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.
专题20立体几何中的平行与垂直问题(解析版)
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
线面垂直的判定定理符号表示
线面垂直的判定定理符号表示线面垂直的判定定理在几何学中,线面垂直的判定定理是一个重要的定理。
该定理指出,当一条直线与一个平面相交时,如果该直线与平面上的任意一条垂线相交于同一个点,则该直线与该平面垂直。
符号表示在符号表示中,我们通常用“⊥”来表示两个物体之间的垂直关系。
因此,在本文中,“a ⊥ P”表示直线a与平面P垂直。
证明过程下面我们将详细介绍如何证明线面垂直的判定定理。
第一步:引入前置条件首先,我们需要引入一些前置条件。
假设有一条直线l和一个平面P。
我们需要证明当且仅当l与P上任意一条垂线相交于同一个点时,l ⊥ P。
第二步:构造图形为了方便证明,我们可以构造一个图形。
首先,在平面P上选择任意一点A,并通过A作一条与P不重合的直线m。
然后,在m上选择任意一点B,并作AB的垂线CD。
第三步:分析角度关系接下来,我们需要分析角度关系。
由于CD是AB的垂线,因此∠ACD = 90°。
同时,由于l与P垂直,因此l与P上的任意一条线段都是垂直的。
因此,我们可以在P上选择一条线段EF,使得EF ⊥ l。
第四步:应用垂直关系现在,我们需要应用垂直关系来证明定理。
根据前置条件,我们知道l 与P上任意一条垂线相交于同一个点。
因此,我们可以在EF上选择一个点G,并作CG的垂线GH。
由于GH ⊥ CG且CG ⊥ P,因此GH ⊥ P。
接下来,我们需要证明GH也是l的一条垂线。
为了证明这一点,我们需要分别考虑GH与l的两种情况。
情况1:GH与l相交假设GH与l相交于点I。
由于CG ⊥ GH且EF ⊥ l,在三角形CGH和EFI中,∠CGH = ∠EFI = 90°。
因此,这两个三角形是相似的。
根据相似三角形的性质可知:CG/GH = EF/FI由于EF ⊥ l且FI ⊥ l,在三角形EFI和GHI中,∠EFI = ∠GHI = 90°。
因此,这两个三角形也是相似的。
根据相似三角形的性质可知:EF/FI = GH/HI将以上两个等式联立可得:CG/GH = GH/HI因此,CG = HI。
高中数学立体几何之线线垂直、线面垂直、面面垂直(公开课)(共16张PPT)
∵ OM是Rt△AOC斜边AC上的中线,∴ OM=
2 ∴ 由余弦定理可得:cos∠OEM= 4
1 AC=1, 2
【例2】四面体ABCD中,点O,E分别是BD,BC的中
A
点,CA=CB=CD=BD=2,AB=AD= 2 .
(3)求点E到平面ACD的距离.
(3)设点E到平面ACD的距离为h.∵ VE-ACD=VA-CDE
D1
A1
1 1
B1
C1
D
2
C
E B
A
例题讲解
实战演练
作业布置
【例1】如图,长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,
点E是AB的中点. (1)求三棱锥D1-DCE的体积. 1 解:V= 3 · h·S△ECD
D1
A1
1
B1 D
2
C1
1 1 = 3· D1D · 2 S△ECD
∴ AE⊥A1D,
又∵ AD1∩AE=A,
D1 A1 D A
B1
C1
∴ A1D⊥平面AD1E,
D1E⊂平面AD1E,
C
E
B
∴ D1E⊥A1D.
例题讲解
实战演练
作业布置
【例2】如图,四面体ABCD中,点O,E分别
是BD,BC的中点,CA=CB=CD=BD=2,
AB=AD= 2 (1)求证:AO⊥平面BCD. (2)求异面直线AB与CD所成角的余弦值. (3)求点E到平面ACD的距离.
A M O
(2)求异面直线AB与CD所成角的余弦值. 解: (2)取AC的中点M,连接OM,ME,OE,
∵点O,E分别是BD,BC的中点
∴ OE
D E
2017年__高二年级立体几何垂直证明题常见模型和方法
立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
立体几何中线面平行垂直性质判定
必须掌握空间中线面平行、垂直的有关性质与判定定理 判定定理1.如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行. 即若ααα//,//,,a b a b a 则⊂⊄.2.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行, 即若βαββα//,//,//,,,则b a p b a b a =⊂ .3.如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 即若ααα⊥⊥⊥=⊂⊂l n l m l B n m n m 则,,,,, .4.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直, 即若βααβ⊥⊂⊥则,,l l . 性质定理1.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若b a b a a //,,,//则=⊂βαβα .2.两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ=a ,β∩γ=b ,则b a //3.垂直于同一平面的两直线平行,即若b a b a //,,则αα⊥⊥4.如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面, 即若αββαβα⊥⊥⊂=⊥l a l l a 则,,,, . 必须掌握常见几何体的表面积及体积公式:),(为柱体高为底面积柱体h S Sh V =),(31为柱体高为底面积锥体h S Sh V = ),,,()(31'''为台体高下底面积分别为上台体h S S h S S S S V ++= )(343为球体半径球体R R V π= 证明线线平行的常用思想:①内错角、同位角、同旁内角;②平行的传递性(平行四边形);③三角形、梯形的中位线定理。
证明线线垂直的常用思想:①定义︒90;②勾股定理;③菱形对角线互相垂直。
④等腰三角形中线即为高。
1.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.若M是线段AD的中点,求证:GM∥平面ABFE;【解析】连结AF,因为EF ∥AB,FG∥BC,E PB CDA EF∩FG=F,所以平面EFG ∥平面ABCD,又易证EFG ∆∽ABC ∆,所以12FG EF BC AB ==,即12FG BC =,即12FG AD =,又M 为AD 的中点,所以12AM AD =,又因为FG∥BC∥AD ,所以FG∥AM,所以四边形AMGF 是平行四边形,故GM ∥FA,又因为GM⊄平面ABFE,FA ⊂平面ABFE,所以GM∥平面ABFE.2.如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .求证:PB 1∥平面BDA 1;本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力. 解:连结AB 1与BA 1交于点O ,连结OD , ∵C 1D ∥平面AA 1,A 1C 1∥AP ,∴AD =PD ,又AO =B 1O , ∴OD ∥PB 1,又OD ⊂面BDA 1,PB 1⊄面BDA 1, ∴PB 1∥平面BDA 1.3.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,CE ∥AB 。
高中数学必修2立体几何专题线面垂直典型例题的判定与性质
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
第九章 立体几何9-5线面、面面垂直的判定及性质
∴DE⊥AE,这与∠AED=60°矛盾. ∴DE与平面ABC不垂直. 点评:①“折叠”问题一定要弄清折迭前后, 图形的哪些位置与数量关系发生了变化,哪 些没有发生变化. ②探索某种位置关系是否具备,通常是先假 定具备这种位置关系,然后结合条件进行推 理,如果产生矛盾,则不具备这种位置关系, 否则具备这种位置关系.
2.不要将“经过一点有且仅有一条直线与
平面垂直”;“经过一点有且仅有一个平面
与已知直线垂直”;“经过平面外一点有无
数条直线与已知平面平行,这无数条直线在
同一个平面内,即经过平面外一点有且仅有 一个平面与已知平面平行”;“经过直线外 一点有且仅有一条直线l与已知直线平行,
4.两平面垂直时,从一个平面内一点向另一个平面 有无数个平面与已知直线平行,这无数个平 .. 作垂线,则垂足必落在交线上. 面的交线为l”弄混错用.
(3)解:∵EF⊥BF,BF⊥FC且EF∩FC=F, ∴BF⊥平面CDEF, 即BF⊥平面DEF. ∴BF为四面体B—DEF的高.
又∵BC=AB=2,∴BF=FC= 2. 四边形CDEF为直角梯形,且EF=1,CD=2. 1 1 2 ∴S△DEF= (1+2)× 2- ×2× 2= 2 2 2 1 2 1 ∴VB—DEF=3× 2 × 2=3.
(文)在空间中,用x、y、z表示不同的直线或 平面,若命题“x⊥y,x⊥z,则y∥z”成立, 则x、y、z分别表示的元素是( ) A.x、y、z都是直线 B.x、y、z 都是平面 C.x、y是平面,z是直线 D.x是直线,y、 z是平面 解析:垂直于同一条直线的两直线不一定平 行故A错;垂直于同一个平面的两个平面不 一定平行,故B错;一条直线与一个平面都 和同一个平面垂直时,直线可能在平面内, 故C错.由线面垂直的性质知,D正确.
67.立体几何讲义2:垂直问题 课件-广东省惠来县第一中学2021届高三数学一轮复习
第四方面:基于代数运算下的垂直关系 ★基于代数运算下的垂直关系,经常涉及勾股 定理和余弦定理的运用。
第四方面:基于代数运算下的垂直关系
题目问题111:1:如图,在直三棱柱
ABC
A1B1C1
中,ACB
90
,AC
BC
1 2
AA1
1
,D
,
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
题目3:(选自2013年全国高考文科Ⅰ卷) 如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1, ∠BAA1=60°, 证明:AB⊥A1C。
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
7.全等三角形(相似三角形) 8.余弦定理
题目探讨:
第一方面:等腰三角形折叠模型+基于筝形的垂直关系
五、问题探讨:
第一方面:等腰三角形折叠模型+基于筝形的垂直关系 1.有着共底边的两个等腰三角形构成的立体图形,两个顶点的连线一定垂直于底边; 2.筝形是指有一条对角线所在直线为对称轴的四边形,也可以说是两组邻边相等的四边形,它的形状就像一个风 筝,基于筝形可以设计许多垂直问题。
题目1:
D
C
E
B A
第一方面:等腰三角形折叠模型+基于筝形的垂直关系
题目2:
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
【素材】第一章第五节_证明线面垂直的四种方法
证明线面垂直的四种方法直线与平面垂直是空间元素中最重要的关系之一,是建立空间概念的主要支柱,而直线与平面垂直的证明也常有以下四种方法,下面分类举例解析,供参考。
一、运用直线与平面垂直的判定定理若一条直线与平面内的两条相交直线都垂直,则这条直线垂直于这个平面。
例1 如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1的中点,求证AB1⊥平面A1BD。
证明:由题意知,四边行ABB1A1是正方形,则AB1⊥A1B;取BC中点E,连AE,EB ,则AE⊥BC,在正三棱柱中,侧面BB1C1C⊥底面ABC,故AE⊥面BB1C1C,又BD⊂面BB1C1C,所以AE⊥BD,在正方形BB1C1C中又D为CC1中点,易证△BC D≌△BB1E,得∠EB1B=∠DBC,而∠DBC+∠DBB1=90°,则∠EB1B+∠DBB1=90°,故EB⊥BD,又AE∩EB=E,∴BD⊥平面AEB1,∴BD⊥AB1,又A1B∩BD=B,故AB1⊥平面A1BD。
点评:在本题的证明中,多次证明了直线与平面垂直,其中直线与平面垂直的判定定理是常用判定方法,必须深刻理解这个定理的内涵与实质。
二、运用直线与平面垂直的第二判定定理若两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。
例2 已知α⊥γ,β⊥γ,α∩β=l,求证:l⊥γ。
证明:如图,要证l⊥γ,则由线面垂直第二判定定理知,只需证l平行于γ的一条垂线即可。
设α∩γ=c,β∩γ=d,在α内任取一点A,作AQ⊥c于Q,则AQ⊥γ。
同理,在β内任取一点B,作BR⊥d于R,则BR⊥γ,且AQ∥BR。
又AQ⊄β,BR⊂β,故AQ∥β,由α∩β=l,得AQ∥l,而AQ⊥γ,故l⊥γ。
点评:此证法可能不是此题的最简证法,但说明了一个道理,每一条路都可能是成功之路,只是对问题的理解角度不同罢了。
三、运用课本中的已证命题:如果一条直线垂直于两个平行平面的一个平面,那么它也垂直于另一个平面。
高考立体几何-三垂线定理
例题4、直角三角形 90° 30° 例题 、直角三角形ABC中,∠B= 90°, ∠C= 30°, 中 BC的中点 AC=2,DE⊥平面ABC且DE=1, 的中点, 平面ABC D是BC的中点,AC=2,DE⊥平面ABC且DE=1,求E到斜线 AC的距离 的距离? AC的距离?
解: 过点D作DF ⊥AC于F,连结EF, ∵DE⊥ 平面ABC,由三垂线定理知EF⊥AC,即E 到斜线AC的距离为EF,在Rt ∆ABC中, ∠B= 90°,∠C= 30°,AC=2, ∴BC= 3,∴ D= C ,∵DF⊥AC, 在Rt ∆EDF中 为所求
α
三、巩固性练习: 1、若一条直线与平面的一条斜线在此平面上的射影垂直,则 这条直线 与斜线的位置关系是( D ) (A)垂直 (B)异面 (C)相交 (D)不能确定
2、在一个四面体中,如果它有一个面是直角三角形,那么它 的另外三个面( C ) (A)至多只能有一个直角三角形 (B)至多只能有两个直角三角形 (C)可能都是直角三角形 (D)一定都不是直角三角形
小结:运用三垂线定理及逆定理, 小结:运用三垂线定理及逆定理,必然 要涉及平面的斜线, 要涉及平面的斜线,此题的讨论是必要 的。
例题3、如图示,已知 、 都垂直于正三角 都垂直于正三角ABC所 例题 、如图示,已知DB、EC都垂直于正三角 所 在的平面, 与平面ABC所 在的平面,且BC=EC=2DB,求平面 ,求平面ADE与平面 与平面 所 成二面角的平面角。 成二面角的平面角。
立体几何线面垂直题型归纳
线线垂直➩线面垂 直➩线线垂直➩线
面垂直
• 规律方法:
• (1)先利用题干给出的线与面垂直,得到线与 线垂直;
• (2)若题干没有线与面垂直,则先证明一次线 与面垂直,得到线与线垂直;
• (3)再根据线与线垂直证明题目要求证的线面 垂直。
变式训练
• 正方体ABCD-A1B1C1D1中,O是AC的中点,在平面 B1BDD1中,过B1作B1H⊥D1O,垂足为H,
线,面面垂直问题也就迎刃而解。
线线垂直
判定定理 定义
线面垂直
判定定理 性Leabharlann 定理面面垂直2.空间垂直问题主要考查学生直观想象,数学运算,转化与化 归等数学核心素养。高考一般都是中档题型。对于学生要求较 高,故必须要求学生平时勤思考,常见模型烂熟于胸,多练习
方能牢靠的掌握!
附:自我检测
选题意图:利用菱形的特征,结合已知AC=AD,自己寻找等腰三角形 使用“三线合一”。
题型二利用余弦定理和勾股定理逆定理
• 例题2、如图,在三棱锥P﹣ABC中,△PAB为正三角形, O为△PAB的重心,PB⊥AC,∠ABC=60°,BC=2AB. 求证:AC⊥平面PAB。
在△ABC中,设AB=1,则BC=2,
重点:明确研究线线垂直的四种常见模型; 难点:利用余弦定理和面面垂直性质定理证线线垂直.
讲高考 明方向
(2021 全国卷)12. 正三棱柱 ABC A1B1C1 中, AB AA1 1 ,点 P 满足
BP BC BB1 ,其中 0,1 , 0,1 ,则( )
A. 当 1时, △AB1P 的周长为定值
平面 DAE 平面 ABCE,
平面 DAE 平面 ABCE=AE,
易证BE AE,
立体几何线面垂直的证明
立体几何证明【知识梳理】1.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)2..直线与平面垂直判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。
(线面垂直⇒线线垂直)性质2:如果两条直线同垂直于一个平面,那么这两条直线平行.三。
平面与平面空间两个平面的位置关系:相交、平行.1.平面与平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)2. 两个平面垂直判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直⇒线面垂直)知识点一 【例题精讲】1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。
(1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.2.如图所示, 四棱锥P -ABCD 底面是直角梯形,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V .3、如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,证明:(1)AE⊥CD(2)PD⊥平面ABE.4、.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;练习1、如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.(Ⅰ)证明:AD⊥PB;(Ⅱ)求三棱锥C﹣PAB的高.2.如图14所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.求证:EF⊥平面BCG;3.如图11所示,三棱柱ABCA1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;4、如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.5、三棱锥P﹣ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,(1)求证:面PBC⊥面ABC6.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求证:PA∥平面EDB;(2)求证:平面EDB⊥平面PBC;7、如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;2.求证BE 垂直平面PAC8、将如图一的矩形ABMD沿CD翻折后构成一四棱锥M﹣ABCD(如图二),若在四棱锥M﹣ABCD中有MA=.(1)求证:AC⊥MD;(2)求四棱锥M﹣ABCD的体积.作业1、如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M,N分别是棱BC,AD 的中点,且DM=6.(Ⅰ)求证:OD⊥平面ABC;2、如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;3、如图所示,四棱锥P﹣ABCD的侧面PAD是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M为PC的中点,PC=.(Ⅰ)求证:PC⊥AD;AD,E,4、如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.5、如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=1,SD=.(1)证明:CD⊥SD;6.如图,四棱锥S ﹣ABCD 中,△ABD 是正三角形,CB=CD ,SC ⊥BD .(Ⅰ)求证:SB=SD ;(Ⅱ)若∠BCD=120°,M 为棱SA 的中点,求证:DM ∥平面SBC .7、如图,在矩形ABCD 中,点E 为边AD 上的点,点F 为边CD 的中点,234A E D B A A ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .(1)求证:平面PBE ⊥平面PEF ;8、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1) 证明:AD ⊥平面DEF;AB CDEBCDEFP9、在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF10.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;11.棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是。
高三数学 立体几何中的垂直问题 知识精讲 苏教版
高三数学 立体几何中的垂直问题 知识精讲 苏教版【本讲教育信息】一. 教学内容:立体几何中的垂直问题二. 高考要求:1. 理解直线和平面垂直的概念掌握直线和平面垂直的判定定理;2. 掌握直线和平面垂直的判定定理和性质定理。
3. 通过例题的讲解给学生总结归纳证明线面垂直的常见方法:(1)证直线与平面内的两条相交直线都垂直;(2)证与该线平行的直线与已知平面垂直;(3)借用面面垂直的性质定理;(4)同一法;(5)向量法。
三. 知识点归纳:1. 线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直。
其中直线叫做平面的垂线,平面叫做直线的垂面足。
直线与平面垂直简称线面垂直,记作:a ⊥α。
2. 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
3. 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
4. 三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;(2)推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。
5. 三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 。
其实质是:斜线和平面内一条直线垂直的判定和性质定理。
⑵要考虑a 的位置,并注意两定理交替使用。
6. 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面。
7. 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 0
A 0
A 0
(B 0
)A
A
(A 0)A 0B 0B 0B 0B 0B B
B B B A
A A A
A A A
αO A B
C α
O A B 1直线和平面的位置关系(1)直线在平面内a α⊂(无数个公共点);(2)直线和平面相交a A
α=I
(有且只有一个公共点);(3)直线和平面平行//a α(没有公共点) 线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,
那么这条直线和这个平面平行,,////l m l m l ααα⊄⊂⇒
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这
条直线和交线平行推理模式://,,//l l m l m αβαβ⊂=⇒I
4 线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足 直线与平面垂直简称线面垂直,记作:a ⊥α
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面
6 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行 7.平面几何中,点、线段在直线上射影的概念及性质: 8 斜线,垂线,射影 ⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.
⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段 ⑶射影 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影 直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点斜线任一点在平面内的射影一定在斜线的射影上
9.射影长相等定理:从平面外一点向这个平面所引的垂线段和斜线中⑴射影相交两条斜线相交;射影较长的斜线段也较长⑵相等的斜线段射影相等,较长的斜线段射影较长;⑶垂
线段比任何一条斜线段都短
10.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐
角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角。
直线和平面所成角范围: [0,
2
π
] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角
11 三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;
(2)推理模式:,,,,PO O PA A a a OA a PA αααα⊥∈=⊂⊥⇒⊥I
12.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直 推理模式: ,,,,PO O PA A a a AP a AO αααα⊥∈=⊂⊥⇒⊥I
.
a
P
α
O
A
β
α
m
l
A
B
C
D
S
E
E
D
B
A
注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 ⑵要考虑a 的位置,并注意两定理交替使用 基本题型: 1.(1)“直线l 垂直于平面α内的无数条直线”是“l ⊥α”的 ( ) (A )充分条件(B )必要条件(C )充要条件(D )既不充分也不必要条件
(2)如果一条直线l 与平面α的一条垂线垂直,那么直线l 与平面α的位置关系是( ) (A )l ⊂α (B )l ⊥α (C )l ∥α (D )l ⊂α或l ∥α 答案:(1)B (2)D 2.(1)过直线外一点作直线的垂线有 条;垂面有 个;平行线有 条;平行平面有 个.(2)过平面外一点作该平面的垂线有 条;垂面有 个;平行线有 条;平行平面有 个. 答案:(1)无数,一,一,无数;(2)一,无数,无数,一 3.能否作一条直线同时垂直于两条相交直线?能否作一条直线同时垂直于两个相交平面?为什么? 答案:(能,而且有无数条) (不能)
4拿一张矩形的纸对折后略为展开,竖立在桌面上,说明折痕为什么和桌面垂直 答案:因为折痕垂直于桌面内的两条相交直线.
5一条直线垂直于一个平面内的两条平行直线,这条直线垂直于这个平面吗?为什么? 答案:不一定.因为这条直线可能与这个平面斜交或在其内. 6过一点和一条直线垂直的平面是否只有一个?为什么?
答案:是.假若有两个平面,αβ过点A 都于l 垂直,过这条公共垂线l 作一个不经过两平面,αβ的交线的平面γ,γ与,αβ分别相交于直线,,a b a b l A =I I 且,l a l b ⊥⊥,,,l a b α⊂,从而有a b P ,此与a b A =I 矛盾.
7如果三条直线共点,且两两垂直,问其中一条直线是否垂直于另两条直线所确定的平面 答案:是
8.点A 为BCD ∆所在平面外的一点,点O 为点A 在平面BCD 内的射影, 若,AC BD AD BC ⊥⊥,求证:AB CD ⊥.
证明:连结,,OB OC OD ,∵AO BCD ⊥平面,且AC BD ⊥ ∴BD OC ⊥(三垂线定理逆定理)
同理OD BC ⊥,∴O 为ABC ∆的垂心,∴OB CD ⊥, 又∵AO BCD ⊥平面,∴AB CD ⊥(三垂线定理)
9.如图,已知ABCD 是矩形,SA ⊥平面ABCD ,E 是SC 上一点. 求证:BE 不可能垂直于平面SCD .
证明:用到反证法,假设BE ⊥平面SCD ,
∵ AB ∥CD ;∴AB ⊥BE .
∴ AB ⊥SB ,这与Rt △SAB 中∠SBA 为锐角矛盾. ∴ BE 不可能垂直于平面SCD O D
C
B
A
10. 已知:空间四边形ABCD ,AB AC =,DB DC =,求证:BC AD ⊥
证明:取BC 中点E ,连结,AE DE ,∵,AB AC DB DC ==,∴,AE BC DE BC ⊥⊥, ∴BC ⊥平面AED ,又∵AD ⊂平面AED ,∴BC AD ⊥.。