江苏省2014年高考数学二轮专题复习素材:训练9
(江苏专版)2014届高考数学大二轮专题复习 审题 解题 回扣(要点回扣+易错警示+查缺补漏)中档大
中档大题保分练 中档大题保分练(一)(推荐时间:50分钟)1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(cos(x -B ),cos B ),n =⎝⎛⎭⎪⎫cos x ,-12,f (x )=m ·n ,f ⎝ ⎛⎭⎪⎫π3=14.(1)求角B 的值;(2)若b =14,BA →·BC →=6,求a 和c 的值. 解 (1)f (x )=m ·n =cos x ·cos(x -B )-12cos B=cos 2x cos B +cos x sin x sin B -12cos B=12(cos 2x ·cos B +sin 2x ·sin B )=12cos(2x -B ), ∵f ⎝ ⎛⎭⎪⎫π3=14,∴cos ⎝ ⎛⎭⎪⎫2π3-B =12, 又∵B 为△ABC 的内角,∴2π3-B =π3即B =π3.(2)由BA →·BC →=6,及B =π3,得ac ·cos π3=6,即ac =12,在△ABC 中,由余弦定理:b 2=a 2+c 2-2ac cos B 得 14=a 2+c 2-2ac cos π3,a 2+c 2=26,从而(a +c )2-2ac =26,(a +c )2=50,∴a +c =5 2.解方程组⎩⎨⎧ac =12a +c =52,得⎩⎨⎧a =22c =32,或⎩⎨⎧a =32c =22.2.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,S n n(n ∈N *)均在函数y =2x -1的图象上.(1)求数列{a n }的通项公式;(2)设b n =4a n a n +1,T n 是数列{b n }的前n 项和,求证:T n <1.(1)解 由条件S n n=2n -1,即S n =2n 2-n . 当n ≥2时,a n =S n -S n -1=()2n 2-n -[2(n -1)2-(n -1)]=4n -3.又n =1时,a 1=S 1=1适合上式, 所以a n =4n -3(n ∈N *). (2)证明 b n =4a n a n +1=44n -34n +1=14n -3-14n +1. ∴T n =b 1+b 2+b 3+…+b n=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫15-19+⎝ ⎛⎭⎪⎫19-113+…+⎝ ⎛⎭⎪⎫14n -3-14n +1 =1-14n +1.∵n ∈N *,∴-14n +1<0,∴1-14n +1<1,即T n <1.3.M 公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生.这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(1)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(2)若从所有“甲部门”人选中随机选3人,用X 表示所选人员中能担任“助理工作”的人数,写出X 的分布列,并求出X 的数学期望.解 (1)用分层抽样的方法, 每个人被抽中的概率是820=25.根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人, 所以选中的“甲部门”人选有10×25=4人,“乙部门”人选有10×25=4人.用事件A 表示“至少有一名甲部门人选被选中”, 则它的对立事件A 表示“没有一名甲部门人选被选中”, 则P (A )=1-P (A )=1-C 34C 38=1-456=1314.因此,至少有一人是“甲部门”人选的概率是1314.(2)依题意,所选毕业生中能担任“助理工作”的人数X 的取值分别为0,1,2,3. P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16,因此,X 的分布列如下:X 0 1 2 3 P1303101216所以X 的数学期望E (X )=0×30+1×10+2×2+3×6=5.4.在四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,∠ABC=90°,AB =PB =PC =BC =2CD ,平面PBC ⊥平面ABCD . (1)求证:AB ⊥平面PBC ;(2)求平面ADP 与平面BCP 所成的二面角(小于90°)的大小;(3)在棱PB 上是否存在点M 使得CM ∥平面PAD ?若存在,求PMPB的值;若不存在,请说明理由.(1)证明 因为∠ABC =90°, 所以AB ⊥BC .因为平面PBC ⊥平面ABCD , 平面PBC ∩平面ABCD =BC ,AB ⊂平面ABCD ,所以AB ⊥平面PBC .(2)解 如图,取BC 的中点O ,连接PO . 因为PB =PC ,所以PO ⊥BC . 因为平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC , 所以PO ⊥平面ABCD .以O 为原点,OB 所在的直线为x 轴,在平面ABCD 内过O 垂直 于BC 的直线为y 轴,OP 所在的直线为z 轴建立空间直角坐标系O -xyz .不妨设BC =2.由AB =PB =PC =BC =2CD 可得,P (0,0,3),D (-1,1,0),A (1,2,0).所以DP →=(1,-1,3),DA →=(2,1,0). 设平面ADP 的法向量为m =(x ,y ,z ). 因为⎩⎪⎨⎪⎧m ·DP →=0,m ·DA →=0,所以⎩⎨⎧x -y +3z =0,2x +y =0.令x =-1,则y =2,z = 3. 所以m =(-1,2,3).取平面BCP 的一个法向量n =(0,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=22.所以平面ADP 和平面BCP 所成的二面角(小于90°)的大小为π4.(3)解 在棱PB 上存在点M 使得CM ∥平面PAD ,此时PM PB =12.取AB 的中点N ,连接CM ,,MN , 则MN ∥PA ,AN =12AB .因为AB =2CD , 所以AN =CD . 因为AB ∥CD ,所以四边形ANCD 是平行四边形, 所以∥AD .因为MN ∩=N ,PA ∩AD =A , 所以平面MNC ∥平面PAD .因为CM⊂平面MNC,所以CM∥平面PAD.。
2014年高考江苏数学试题与答案(word解析版)
2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh,其中s为圆柱的表面积,h为高.圆柱的侧面积公式:S圆柱=cl,其中c是圆柱底面的周长,l为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014年江苏,1,5分】已知集合A{2,1,3,4},B{1,2,3},则AB_______.【答案】{1,3}【解析】由题意得AB{1,3}.(2)【2014年江苏,2,5分】已知复数【答案】21 z(52i)(i为虚数单位),则z的实部为_______.2 2【解析】由题意22z(52i)25252i(2i)2120i,其实部为21.(3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n的值是_______.【答案】5n的最小整数解.2n20整数解为n5,因此输出的n5.【解析】本题实质上就是求不等式220(4)【2014年江苏,4,5分】从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有 2C46种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为21P.63(5)【2014年江苏,5,5分】已知函数ycosx与ysin(2x)(0≤),它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cossin(2)33 ,即21sin()32,2kk(1),(kZ),因为0,所36以.6(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.【答案】241【解析】由题意在抽测的60株树木中,底部周长小于100cm的株数为(0.0150.025)106024.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}a中,若na8a62a4,则a21,a的值是________.6【答案】4【解析】设公比为q,因为a21,则由a8a62a4得64224220qqa,qq,解得22q,所以4a6a2q4.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为S,S,体积分别为12 V,V,若它们的侧面积相12等,且S1S294,则V1V2的值是_______.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为r、h,r2、h2,则2r1h12r2h2,11 h r12hr21,又2Sr112Sr2294,所以r1r232,则222Vrhrhrrr11111121222Vrhrhrrr2222221232.(9)【2014年江苏,9,5分】在平面直角坐标系xOy中,直线x2y30被圆长为________.22(x2)(y1)4截得的弦【答案】2555 【解析】圆22(x2)(y1)4的圆心为C(2,1),半径为r2,点C到直线x2y30的距离为22(1)33d,所求弦长为22512 229255 l2rd24.55(10)【2014年江苏,10,5分】已知函数f(x)xmx1,若对任意x[m,m1],都有f(x)0成立,则实2数m的取值范围是________.【答案】20,2【解析】据题意22f(m)mm102f(m1)(m1)m(m1)10,解得22m0.(11)【2014年江苏,11,5分】在平面直角坐标系xOy中,若曲线2byaxx(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x2y30平行,则ab的值是________.【答案】3【解析】曲线yax 2bxb b过点P(2,5),则4a5①,又y'2ax22x,所以b74a②,由①②解得42ab11,所以ab2.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD中,已知,AB8,AD5,CP3PD,APBP2,则ABAD的值是________.【答案】22【解析】由题意,1APADDPADAB,433BPBCCPBCCDADAB,44所以13APBP(ADAB)(ADAB)442132ADADABAB,216即1322564ADAB,解得ADAB22.216(13)【2014年江苏,13,5分】已知f(x)是定义在R上且周期为3的函数,当x[0,3)时,21f(x)x2x.2 若函数yf(x)a在区间[3,4]上有10个零点(互不相同),则实数a的取值范围是________.【答案】01,22【解析】作出函数 21 f(x)x2x,x[0,3)的图象,可见21 f(0),当x1时,21 f(x)极大, 27f ,方程f(x)a0在x[3,4]上有10个零点,即函数yf(x)和图象与直线 (3) 2ya 在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线ya 与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21 a(0,). 2(14)【2014年江苏,14,5分】若ABC 的内角满足sinA2sinB2sinC ,则cosC 的最小值是_______.【答案】624【解析】由已知sinA2sinB2sinC 及正弦定理可得a2b2c , cosC a2b 222 ab() 2 222abc 2ab2ab223a2b22ab26ab22ab628ab8ab4,当且仅当 22 3a2b ,即a b 2 3时等号成立,所以cosC的最小值为 62 4. 二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤. (15)【2014年江苏,15,14分】已知2,,sin5 5 .(1)求sin的值;4(2)求cos2 6的值. 解:(1)∵sin5,,,∴ 25225cos1sin5, 210sinsincoscossin(cossin).444210(2)∵43 sin22sincoscos2cossin,,sin22sincoscos2cossin2255∴3314334 cos2coscos2sinsin2666252510. (16)【2014年江苏,16,14分】如图,在三棱锥PABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知 PAAC ,PA6,BC8,DF5.(1)求证:直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC . 解:(1)∵D ,E 为PC ,AC 中点∴DE ∥PA ∵PA 平面DEF ,DE 平面DEF ∴PA ∥平面DEF .(2)∵D ,E 为PC ,AC 中点,∴DE1PA3∵E ,F 为AC ,AB 中点,∴14 EFBC ,22∴DE 2EF 2DF 2,∴DEF90°,∴DE ⊥EF ,∵DE//PA ,PAAC ,∴DEAC , ∵ACEFE ,∴DE ⊥平面ABC ,∵DE 平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中, F ,F 分别是椭圆 12 22yxab的左、221(0)ab右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1B F22,求椭圆的方程;(1)若点C的坐标为41,,且33(2)若F CAB,求椭圆离心率e的值.13161解:(1)∵41C,,∴33 999ab22,∵2222BFbca,∴22(2)22a,∴b,21∴椭圆方程为2xy.21 2(2)设焦点F1(c,0),F2(c,0),C(x,y),∵A,C关于x轴对称,∴A(x,y),∵B,F,A三点共线,∴2bybcx,即bxcybc0①∵yb FCAB,∴11xcc ,即20xcbyc②①②联立方程组,解得xyca2bc222bc2bc22∴Cac2bc22,2222bcbcC在椭圆上,∴22ac2bc22bcbc2222ab221,化简得5ca,∴c522a5,故离心率为55.(18)【2014年江苏,18,16分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段O A上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O 正东方向170m处(OC为河岸),tan4BCO.3(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系x Oy.由条件知A(0,60),C(170,0),直线BC的斜率4k-tanBCO.BC3又因为AB⊥BC,所以直线AB的斜率3k.设点B的坐标为(a,b),AB4则k BC=b04a1703 ,k AB=603ba04,解得a=80,b=120.所以BC= 22(17080)(0120)150.因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm,(0≤d≤60.) 由条件知,直线BC的方程为4(170)yx,即4x3y6800,3由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即因为O和A到圆M上任意一点的距离均不少于80m,|3d680|6803d r.55所以rd≥ 80r(60d)≥80,即6803d 5 6803d5d80 ≥ (60d)80≥,解得10≤d ≤35.故当d=10时, 6803d r 最大,即圆面积最大.所以当OM=10m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA,CB 交于点F .因为tan ∠BCO=43 .所以sin ∠FCO=45 ,cos ∠FCO=3 5 .因为OA=60,OC=170,所以OF=OCtan ∠FCO=680 3.CF= OC 850cosFCO3 , 4从而500AFOFOA.因为O A⊥OC,所以cos∠AFB=sin∠FCO=3 45,又因为A B⊥BC,所以BF=AFcos∠AFB== 4003,从而BC=CF-BF=150.因此新桥B C的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接M D,则MD⊥BC,且MD是圆M的半径,并设MD=rm,OM=dm(0≤d≤60.)因为O A⊥OC,所以sin∠CFO=cos∠FCO,故由(1)知,sin∠CFO= M DMDr3MFOFOM 6805d3所以6803dr.5因为O和A到圆M上任意一点的距离均不少于80m,所以rd≥80r(60d)≥80,即6803d56803d5d80≥(60d)≥80,解得10≤d≤35,故当d=10时,6803dr最大,即圆面积最大.所以当OM=10m时,圆形保护区的面积最大.5(19)【2014年江苏,19,16分】已知函数()eexxfx其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤em1在(0,)上恒成立,求实数m的取值范围;x(3)已知正数a满足:存在你的结论.x0[1,),使得3ea1与f(x)a(x3x)成立.试比较000a e1的大小,并证明解:(1)x R,f(x)eef(x),∴f(x)是R上的偶函数.xx(2)由题意,(ee)e1xxxm≤,∵x(0,),∴exex10,xxxm≤m,即(ee1)e1即e1xm≤对x(0,)恒成立.令e(1)tt,则xee1xx m1t≤对任意t(1,)恒成立.tt12∵1111tt≥,当且仅当t2时等号成立,∴1m≤.223tt1(t1)(t1)113t11t1(3)f'(x)ee,当x1时f'(x)0∴f(x)在(1,)上单调增,令xx h(x)a(x3x),h'(x)3ax(x1),33∵a0,x1,∴h'(x)0,即h(x)在x(1,)上单调减,∵存在x0[1,),使得f xaxx,∴f(1)e12a,即1e1()(3)a.3000e2e∵aaaa,设m(a)(e1)lnaa1,则m'(a)e11e1a e-1lnlnlne(e1)ln1e1a1eaaa1 ,11 ae.当2e 11eae1时,m'(a)0,m(a)单调增;当ae1时,m'(a)0,m(a)单调2e减,因此m(a)至多有两个零点,而m(1)m(e)0,∴当ae时,m(a)0,a e1ea1;当1e1ea 时,m(a)0,2ea e1e1;当ae 时,m(a)0, aae1ea1.(20)【2014年江苏,20,16分】设数列{}a 的前n 项和为S .若对任意的正整数n ,总存在正整数m ,使得 nnS a , nm则称{}a 是“H 数列”. nn(1)若数列{a}的前n 项和S2(n N ),证明:{a}是“H 数列”;nnn(2)设{a}是等差数列,其首项 na 11,公差d0.若{a }是“H 数列”,求d 的值; n (3)证明:对任意的等差数列{}a ,总存在两个“H 数列”{b}和{c},使得abc(n N )成立. nnnnnn 解:(1)当n ≥2时,nn1n1 aSS1222,当n1时,nnn a 1S 12, ∴n1时, S a ,当n ≥2时, 11 S a ,∴{a }是“H 数列”. nn1n(2) n(n1)n(n1) Snadnd ,对n N ,m N 使 n122Sa ,即 nm n(n1) nd1(m1)d , 2 5取n2得1d(m 1)d ,m21d,∵d0,∴m2,又m N ,∴m1,∴d1. (3)设{} a 的公差为d ,令 n b a1(n1)a1(2n)a1,对n N , nbba , n1n1 c (n1)(ad), n1 对n N , c cad ,则 n1n1b ca1(n1)da ,且{b},{c }为等差数列. nnnnn{b}的前n 项和 n n(n1) Tna(a),令 n112T(2m)a ,则 n1 n(n3) m2. 2 当n1时m1;当n2时m1;当n ≥3时,由于n 与n3奇偶性不同,即n(n3)非负偶数,m N . 因此对n ,都可找到m N ,使T b 成立,即{b}为“H 数列”. nmn{c }的前n项和 n n(n1) R(ad),令 n12c(m1)(ad)R ,则 n1m m n (n1) 2 1∵对n N ,n(n1)是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立, nm即{}c 为“H 数列”,因此命题得证. n数学Ⅱ 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必 答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定 位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A 、B 、C 、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、D是圆O 上位于AB 异侧的两点.证明:∠OCB=∠D .解:因为B ,C 是圆O 上的两点,所以OB=OC .故∠OCB=∠B .又因为C,D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B=∠D .因此∠OCB=∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵 1211 A ,B ,向量1x212 y , x ,y 为实数,若A α=B α,求x ,y 的值.解: 2y2 A ,2xy2y B α,由A α=B α得4y2y22y , 解得14x ,y .2xy4y ,2(21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2 x1t ,2(t 为参数),直线l 与抛物线2y2t2y 24x 交于A ,B 两点,求线段A B 的长. 解:直线l :xy3代入抛物线方程24 yx 并整理得x 210x90,∴交点A(1,2),B(9,6),故|AB|82. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知x0,y0,证明: 22 1xy1xy9xy .解:因为x>0,y>0,所以1+x+y 2≥33xy 20,1+x 2+y ≥ 2≥33xy 20,1+x 2+y ≥ 22222 333 3xy0,所以(1+x+y)(1+x+y)≥3xy3xy=9xy .【必做】第22、23题,每小题10分,计20分.请把答案写在.答.题.卡.的.指.定.区.域.内...完(22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外全相同.6(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x,x,x,随机变量X表示123 x,x,x 123中的最大数,求X的概率分布和数学期望E(X).解:(1)一次取2个球共有 2C36种可能情况,2个球颜色相同共有9222CCC10种可能情况,432∴取出的2个球颜色相同的概率105P.3618(2)X的所有可能取值为4,3,2,则C14PX;(4)4C12649CCCC133131P(X3)4536;C6339 11P(X2)1P(X3)P(X4).∴X的概率分布列为:14X234P11 14 13631126故X的数学期望()2113134120EX.14631269(23)【2014年江苏,23,10分】已知函数sinxf(x)(x0)x ,设f(x)为nf x的导数,n N.n1()(1)求2f f的值;12222(2)证明:对任意的n N,等式 2nff成立.n1n4442解:(1)由已知,得sinxcosxsinxf(x)f(x)102xxx,于是cosxsinxsinx2cosx2sinx f(x)f(x)21223xxxxx ,所以4216f(),f(),122322故2f()f()1.12222(2)由已知,得xf0(x)sinx,等式两边分别对x求导,得f0(x)xf0(x)cosx,即f0(x)xf1(x)cosxsin(x),类似可得2 2f(x)xf(x)sinxsin(x),123 3f(x)xf(x)cosxsin(x),232 4f(x)xf(x)sinxsin(x2).34下面用数学归纳法证明等式nnfxxfxx对所有的nnn1()()sin()2N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kkf1(x)xf(x)sin(x).kk2因为[kf(x)xf(x)]kf(x)f(x)xf(x)(k1)f(x)f(x),k1kk1kkkk1(k1) kkk[sin(x)]cos(x)(x)sin[x],所以2222 (k1)f(x)f(x)kk1(k1)sin[x].2所以当n=k+1时,等式也成立.综合(i),(ii)可知等式nnf1(x)xf(x)sin(x)对所有的nnnN都成立.*2令x,可得4nnf1()f()sin()(nnn44442N).所以*2nff(nn1n()()4442N).*7。
(江苏专版)2014届高考数学大二轮专题复习审题解题回扣(要点回扣+易错警示+查缺补漏)第一篇文
2014届高考数学(文科,江苏专版)大二轮专题复习-审题·解题·回扣 word 版(要点回扣+易错警示+查缺补漏):第一篇审题是解题的开端,深入细致的审题是成功解题的必要前提.著名数学教育家波利亚说,“最糟糕的情况就是学生没有弄清问题就进行演算和作图.”为此波利亚总结出一张“怎样解题表”,将解题的过程分为四个阶段.其中第一步弄清问题就是我们常说的审题.审题就是多角度地观察,由表及里,由条件到结论,由数式到图形,洞察问题实质,选择正确的解题方向.事实上,很多考生往往对审题掉以轻心,或不知从何处入手进行审题,致使解题失误而丢分,真是令人痛心不已.本讲结合实例,教你正确的审题方法,给你制订一条“审题路线图”,破解高考不再难.一审条件挖隐含任何一个数学问题都是由条件和结论两部分构成的.条件是解题的主要素材,充分利用条件间的内在联系是解题的必经之路.条件有明示的,有隐含的,审视条件更重要的是要充分挖掘每一个条件的内涵和隐含的信息,发挥隐含条件的解题功能.例1 已知0≤α<β<γ<2π,且sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,求β-α.审题路线图条件sin α+sin β+sin γ=0,cos α+cos β+cos γ=0根据审题路线图,可以规范地将题目解出.解 由已知得⎩⎪⎨⎪⎧sin α+sin β=-sin γ, ①cos α+cos β=-cos γ, ②①2+②2得2+2(sin αsin β+cos αcos β)=1, 故cos(β-α)=-12.由0≤α<β<γ<2π,知0<β-α<2π,所以β-α=2π3或β-α=4π3.同理可得cos(γ-α)=-12,0<γ-α<2π,所以γ-α=2π3或γ-α=4π3.由于β<γ,得β-α<γ-α,所以β-α取小值,γ-α取大值,即β-α=2π3.设α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于 ( ) A.2525B.255C.2525或255D.55或525答案 A解析 依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin2α+β=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.故选A.二审结论会转换问题解决的最终目标就是求出结论或说明已给结论正确或错误.因而解决问题时的思维过程大多都是围绕着结论这个目标进行定向思考的.审视结论,就是在结论的启发下,探索已知条件和结论之间的内在联系和转化规律.善于从结论中捕捉解题信息,善于对结论进行转化,使之逐步靠近条件,从而发现和确定解题方向.例2 已知抛物线C :x 2=2py (p >0)的焦点为F ,A 、B 是抛物线C 上异于坐标原点O 的不同两点,抛物线C 在点A ,B 处的切线分别为l 1,l 2,且l 1⊥l 2,l 1与l 2相交于点D . (1)求点D 的纵坐标; (2)证明:直线AB 过定点. 审题路线图通过审视结论,我们画出了审题路线图,根据审题路线图,即可规范求解. (1)解 如图,设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). ∵l 1,l 2分别是抛物线C 在点A ,B 处的切线,∴直线l 1的斜率k 1=y ′|x =x 1=x 1p, 直线l 2的斜率k 2=y ′|x =x 2=x 2p. ∵l 1⊥l 2,∴k 1k 2=-1,得x 1x 2=-p 2.∵A ,B 是抛物线C 上的点,∴y 1=x 212p ,y 2=x 222p .∴直线l 1的方程为y -x 212p =x 1p (x -x 1),直线l 2的方程为y -x 222p =x 2p(x -x 2).由⎩⎪⎨⎪⎧y -x 212p =x 1px -x 1y -x 222p =x2px -x 2,解得⎩⎪⎨⎪⎧x =x 1+x 22y =-p2.∴点D 的纵坐标为-p2.(2)证明 ∵F 为抛物线C 的焦点,∴F ⎝ ⎛⎭⎪⎫0,p 2.∴AF →=⎝ ⎛⎭⎪⎫-x 1,p 2-x 212p =⎝ ⎛⎭⎪⎫-x 1,p 2-x 212p ,BF →=⎝ ⎛⎭⎪⎫-x 2,p 2-x 222p =⎝ ⎛⎭⎪⎫-x 2,p 2-x 222p . ∵p 2-x 212p p 2-x 222p=p 2-x 21p 2-x 22=-x 1x 2-x 21-x 1x 2-x 22=x 1x 2, ∴AF →∥BF →,即直线AB 过定点F .已知椭圆x 22+y 24=1的上、下焦点分别为F 1、F 2,点P 在第一象限且是椭圆上一点,并满足PF 1→·PF 2→=1,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点. (1)求证:直线AB 的斜率为定值; (2)求△PAB 面积的最大值.(1)证明 由条件可得F 1(0,2),F 2(0,-2), 设P (x 0,y 0) (x 0>0,y 0>0),则PF 1→=(-x 0,2-y 0),PF 2→=(-x 0,-2-y 0),所以PF 1→·PF 2→=x 20-(2-y 20)=1, 又点P (x 0,y 0)在椭圆上, 所以x 202+y 204=1,所以x 2=4-y 202,从而4-y 202-(2-y 20)=1,得y 0= 2.则点P 的坐标为(1,2).因为直线PA 、PB 的斜率必存在,故不妨设直线PB 的斜率为k (k >0),则直线PB 的方程为y -2=k (x -1),由⎩⎪⎨⎪⎧y -2=k x -x 22+y 24=1,消去y ,得(2+k 2)x 2+2k (2-k )x +(2-k )2-4=0, 设B (x B ,y B ),A (x A ,y A ),则1+x B =2k k -22+k2, x B =2k k -22+k2-1=k 2-22k -22+k2, 同理可得x A =k 2+22k -22+k2, 则x A -x B =42k2+k2,y A -y B =-k (x A -1)-k (x B -1)=8k 2+k2. 所以直线AB 的斜率k AB =y A -y Bx A -x B=2为定值. (2)解 由(1)可设直线AB 的方程为y =2x +m .由⎩⎪⎨⎪⎧y =2x +m x 22+y 24=1,消去y ,得4x 2+22mx +m 2-4=0, 由Δ=(22m )2-16(m 2-4)>0,得m 2<8, 即-22<m <22,又点P 到直线AB 的距离为d =|m |3,则S △PAB =12|AB |d =121+2|x A -x B |d=12⎝ ⎛⎭⎪⎫4-12m 2×3×|m |3=18m 2-m 2+≤18⎝ ⎛⎭⎪⎫m 2-m 2+822= 2. 当且仅当m =±2时取等号. 所以△PAB 面积的最大值为 2. 三审图形抓特点在不少数学高考试题中,问题的条件往往是以图形的形式给出,或将条件隐含在图形之中,因此在审题时,要善于观察图形,洞悉图形所隐含的特殊的关系、数值的特点、变化的趋势.抓住图形的特征,运用数形结合的数学思想方法,是破解考题的关键. 例3 给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是______.审题路线图 〈观察方向一〉〈观察方向二〉〈观察方向三〉解析 建立如图所示的坐标系,则A (1,0),B (cos 120°,sin 120°), 即B (-12,32).设∠AOC =α,则OC →=(cos α,sin α). ∵OC →=xOA →+yOB →=(x,0)+⎝ ⎛⎭⎪⎫-y2,32y =(cos α,sin α).∴⎩⎪⎨⎪⎧x -y2=cos α,32y =sin α.∴⎩⎪⎨⎪⎧x =sin α3+cos α,y =2sin α3,∴x +y =3sin α+cos α=2sin(α+30°). ∵0°≤α≤120°,∴30°≤α+30°≤150°. ∴x +y 有最大值2,当α=60°时取最大值. 答案 2点评 从上面三种审题角度看,认真审图,抓住图形特征,解题又快又准,所以观察方向三值得考虑.如图是半径为2,圆心角为90°的直角扇形OAB ,Q 为AB 上一点, 点P 在扇形内(含边界),且OP →=tOA →+(1-t )OB →(0≤t ≤1),则OP →·OQ →的最大值为________. 答案 4解析 ∵OP →=tOA →+(1-t )OB →, ∴B ,P ,A 三点共线,∴BP →=tBA →, 又0≤t ≤1,∴P 在线段BA 上运动. ∵Q 为AB 上一点,设∠POQ =θ,∴OP →·OQ →=|OP →||OQ →|cos θ=2|OP →|cos θ≤2|OP →|≤2×2=4, 即当P ,Q 重合且位于A 或B 处时,OP →·OQ →取得最大值4. 四审结构定方案数学问题中的条件和结论,很多都是以数式的结构形式进行搭配和呈现的.在这些问题的数式结构中,往往都隐含着某种特殊关系,认真审视数式的结构特征,对数式结构进行深入分析,加工转化,可以寻找到突破问题的方案.例4 在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +ab =6cos C ,则tan C tan A +tan Ctan B的值是________. 审题路线图 〈观察方向一〉〈观察方向二〉解析 由b a +a b=6cos C ,得b 2+a 2=6ab cos C . 化简整理得2(a 2+b 2)=3c 2,将tan C tan A +tan C tan B 切化弦,得sin C cos C ·(cos A sin A +cos Bsin B ) =sin C cos C ·A +Bsin A sin B =sin C cos C ·sin Csin A sin B=sin 2Ccos C sin A sin B . 根据正、余弦定理得 sin 2Ccos C sin A sin B=c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4点评 观察方向二从数式的特点出发,选择特殊化方法,这种解题方案往往会达到令人非常满意的效果.已知O 是锐角△ABC 的外接圆的圆心,且∠A =θ,若cos B sin C ·AB →+cos C sin B·AC →=2mAO →,则m =________(用θ的三角函数表示).答案 sin θ解析 方法一 设AB =c ,AC =b ,AO =R , 将等式cos B sin C ·AB →+cos C sin B ·AC →=2mAO →两边平方,得cos 2B ·⎝⎛⎭⎪⎫c sin C 2+cos 2C ·⎝ ⎛⎭⎪⎫b sin B 2+2cos B cos C ·c sin C ·b sin B ·cos θ=4m 2R 2.设△ABC 的外接圆半径为R ,由正弦定理,得 cos 2B +cos 2C +2cos B cos C cos θ=m 2.降幂,得1+12cos 2B +12cos 2C +2cos B cos C cos θ=m 2,则m 2=1+12cos[(B +C )+(B -C )]+12cos[(B +C )-(B -C )]+2cos B cos C cos θ,将上式右边展开并化简,得m 2=1+cos θcos(B +C )=1-cos 2θ=sin 2θ.注意到m >0,可知m =sin θ. 方法二 设AB =c ,AC =b ,AO =R , ∠BAO =α,∠CAO =β.等式cos B sin C ·AB →+cos C sin B ·AC →=2mAO →两边同时乘以AO →,得cos B sin C ·cR cos α+cos C sin B ·bR cos β=2mR 2, 由正弦定理及cos α=c2R=sin C ,cos β=b2R =sin B ,得cos B sin C +cos C sin B =m ,所以m =sin(C +B )=sin θ.方法三 设A =B =C =θ=60°,AB =AC =1, 则AB →+AC →=23mAO →,上式两边平方,得1+1+1=4m 2,注意到m >0, 所以m =32=sin 60°=sin θ. 五审图表、数据找规律题目中的图表、数据包含着问题的基本信息,往往也暗示着解决问题的目标和方向.在审题时,要认真观察分析图表、数据的特征和规律,常常可以找到解决问题的思路和方法.例5 (2012·湖南)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率) 审题路线图解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P(A1)=15100=320,P(A2)=30100=310,P(A3)=25100=14.因为A=A1∪A2∪A3,且A1,A2,A3是互斥事件,所以P(A)=P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=320+310+14=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:(1)(2)若该校高一年级有学生360人,试估计他们参加社区服务的次数在区间[15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.解 (1)由区间[10,15)内的频数是10,频率是0.25知,10M=0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3,p =m M =340,n =2540=0.625.因为a 是区间[15,20)内的频率组距,所以a =n5=0.125.(2)参加社区服务的次数在区间[15,20)内的人数约为360×0.625=225.(3)在样本中,在区间[20,25)内的人数为3,可分别记为A ,B ,C ,在区间[25,30)内的人数为2,可分别记为a ,b .从该5名同学中取出2人的取法有(A ,a ),(A ,b ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(A ,B ),(A ,C ),(B ,C ),(a ,b ),共10种,至多一人在区间[20,25)内的情况有(A ,a ),(A ,b ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b ),共7种,所以至多一人参加社区服务次数在区间[20,25)内的概率为710.六审细节更完善审题不仅要从宏观上、整体上去分析、去把握,还要更加注意审视一些细节上的问题.例如括号内的标注、数据的范围、图象的特点等.因为标注、范围大多是对数学概念、公式、定理中所涉及的一些量或解析式的限制条件.审视细节能适时地利用相关量的约束条件,调整解决问题的方向.所以说重视审视细节,更能体现审题的深刻性. 例6 各项均为正数的数列{a n }的前n 项和为S n ,S n =14a 2n +12a n (n ∈N *).(1)求a n ;(2)令b n =⎩⎪⎨⎪⎧a n , n 为奇数,b n2, n 为偶数,c n =b 2n +4 (n ∈N *),求{c n }的前n 项和T n .审题路线图解 (1)a 1=S 1=14a 21+12a 1⇒14a 21-12a 1=0,因为a 1>0,故a 1=2; 当n ≥2时,a n =S n -S n -1=14a 2n +12a n -14a 2n -1-12a n -1, 所以14(a 2n -a 2n -1)-12(a n +a n -1)=0, 即(a n +a n -1)(a n -a n -1-2)=0.因为a n >0,所以a n -a n -1=2,即{a n }为等差数列,所以a n =2n (n ∈N *).(2)c 1=b 6=b 3=a 3=6,c 2=b 8=b 4=b 2=b 1=a 1=2, n ≥3时,c n =b 2n +4=b 2n -1+2=b 2n -2+1=a 2n -2+1=2n -1+2,此时,T n =8+(22+2)+(23+2)+…+(2n -1+2) =2n +2n ;当n =2时,T 2=22+2×2=8=c 1+c 2.所以T n =⎩⎪⎨⎪⎧ 6, n =1,2n +2n , n ≥2且n ∈N *.点评 从审题路线图可以看出,细节对思维的方向不断地修正着.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n =1,2,…. (1)若t =35,求证:⎩⎨⎧⎭⎬⎫1a n -1是等比数列,并求出{a n }的通项公式; (2)若a n +1>a n 对一切n ∈N *都成立,求t 的取值范围.(1)证明 由题意知a n >0,1a n +1=2a n +13a n =13a n +23,1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1, 由于a 1=t =35,所以1a 1-1=23. 所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列, 1a n -1=23⎝ ⎛⎭⎪⎫13n -1=23n , 所以a n =3n3n +2. (2)解 由(1)知1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1, 数列⎩⎨⎧⎭⎬⎫1a n -1的通项为1a n -1=⎝ ⎛⎭⎪⎫1t -1⎝ ⎛⎭⎪⎫13n -1, 由a 1>0,a n +1=3a n 2a n +1知a n >0,又a n +1>a n ,得1a n +1<1a n .即⎝ ⎛⎭⎪⎫1t -1⎝ ⎛⎭⎪⎫13n +1<⎝ ⎛⎭⎪⎫1t -1⎝ ⎛⎭⎪⎫13n -1+1, 得1t-1>0,又t >0, 所以t 的取值范围是(0,1).1. 解题先审题,养成认真审题,缜密思考的良好习惯.2. 审题要慢要细,要谨慎思考:(1)全部的条件和结论;(2)必要的图形和图表;(3)数学式子和数学符号.要善于捕捉题目中的有效信息,要有较强的洞察力和显化隐含条件的能力.要制订和用好审题路线图.3.审题路线图:一审条件挖隐含→二审结论会转换→三审图形抓特点→四审结构定方案→五审图表、数据找规律→六审细节更完善.。
江苏省2014年高考数学二轮专题复习素材:阶段检测卷3
阶段检测卷(三)一、填空题(每小题5分,共70分)1.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=________.解析 由a 3a 11=16,得a 27=16,故a 7=4=a 5×22⇒a 5=1.答案 12.若{a n }为等差数列,S n 是其前n 项的和,且S 11=223π,则tan a 6=________. 解析 S 11=11(a 1+a 11)2=11a 6=223π,∴a 6=2π3,∴tan a 6=- 3. 答案 - 33.设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析 由已知得⎩⎨⎧a 1+a 1q =3a 1q +2, ①a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2, ②②-①得a 1q 2+a 1q 3=3a 1q (q 2-1),即2q 2-q -3=0.解得q =32或q =-1(舍). 答案 324.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________. 解 由题意S 9=S 4,得a 5+a 6+a 7+a 8+a 9=0,∴5a 7=0,即a 7=0,又a k +a 4=0=2a 7,a 10+a 4=2a 7,∴k =10. 答案 105.在等差数列{a n }中,a 8=12a 11+6,则数列{a n }前9项的和S 9等于________. 解析 设等差数列{a n }的公差为d ,则a 1+7d =12(a 1+10d )+6,即a 1+4d =a 5=12,∵S 9=9(a 1+a 9)2=9a 5=108.答案 1086.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n } 的前n 项和S n =________.解析 设等差数列{a n }的公差为d ,由已知得a 23=a 1a 6,即(2+2d )2=2(2+5d ),解得d =12,故S n =2n +n (n -1)2×12=n 24+7n 4. 答案 n 24+7n47.若-9,a ,-1成等差数列,-9,m ,b ,n ,-1成等比数列,则ab =________. 解析 由已知得a =-9-12=-5,b 2=(-9)×(-1)=9且b <0,∴b =-3,∴ab =(-5)×(-3)=15. 答案 158.已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x ,当x =b 时取到极大值c ,则ad 等于________.解析 由等比数列的性质,得ad =bc , 又⎩⎪⎨⎪⎧f ′(b )=1b +2-1=0,f (b )=ln (b +2)-b =c ,解得⎩⎨⎧b =-1,c =1,故ad =bc =-1.答案 -19.设y =f (x )是一次函数,f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )=________.解析 设f (x )=kx +b (k ≠0),又f (0)=1,所以b =1,即f (x )=kx +1(k ≠0).由f (1),f (4),f (13)成等比数列,得f 2(4)=f (1)·f (13),即(4k +1)2=(k +1)(13k +1).因为k ≠0,所以k =2,所以f (x )=2x +1,所以f (2)+f (4)+…+f (2n )=5+9+…+4n +1=n (5+4n +1)2=n (2n +3). 答案 n (2n +3)10.S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3…a n ,则使T n 取最小值的n 值为________.解析 设等比数列的公比为q ,故由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2,故T n T n -1=a n =120×2n -1,易得当n ≤5时,T nT n -1<1,即T n <T n -1;当n ≥6时,T n >T n -1,据此数列单调性可得T 5为最小值. 答案 511.已知数列{a n }的通项公式是a n =-n 2+12n -32,其前n 项和是S n ,对任意的m ,n ∈N *且m <n ,则S n -S m 的最大值是________.解析 由于a n =-(n -4)(n -8),故当n <4时,a n <0,S n 随n 的增加而减小,S 3=S 4,当4<n <8时,a n >0,S n 随n 的增加而增大,S 7=S 8,当n >8时,a n <0,S n 随n 的增加而减小,故S n -S m ≤S 8-S 4=a 5+a 6+a 7+a 8=a 5+a 6+a 7=10. 答案 1012.(2013·南京师大附中模拟)已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,若存在常数u ,v 对任意正整数n 都有a n =3log u b n +v ,则u +v =________.解析 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则⎩⎨⎧3+d =q ,3(3+4d )=q 2,解得d =6,q =9,所以a n =6n -3,b n =9n -1,6n -3=3n log u 9+v -3log u 9对任意正整数n 恒成立,所以⎩⎨⎧log u 9=2,v -3log u 9=-3,解得u =v =3,故u +v =6. 答案 613.(2012·宿迁联考)第30届奥运会在伦敦举行.设数列a n =log n +1(n +2)(n ∈N *),定义使a 1·a 2·a 3…a k 为整数的实数k 为奥运吉祥数,则在区间[1,2 012]内的所有奥运吉祥数之和为________.解析 因为a 1·a 2·a 3…a k =log 23×log 34×…×log k +1(k +2)=log 2(k +2),当log 2(k +2)=m (m ∈Z )时,k =2m -2∈[1,2 012](m ∈Z ),m =2,3,4,…,10,所以在区间[1,2 012]内的所有奥运吉祥数之和为(22-2)+(23-2)+…+(210-2) =(22+23+…+210)-18=211-22=2 026. 答案 2 02614.(2013·盐城模拟)在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对n ∈N *恒成立,则正整数m 的最小值为________. 解析 由题意可知a n =4n -3,且(S 2n +3-S n +1)-(S 2n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=18n +9+18n +5-14n +1<0,所以{S 2n +1-S n }是递减数列,故(S 2n +1-S n )max=S 3-S 1=1a 2+1a 3=1445≤m 15,解得m ≥143,故正整数m 的最小值为5. 答案 5二、解答题(共90分)15.(本小题满分14分)已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n=(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.(1)证明 假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾,所以{a n }不是等比数列. (2)解 因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n ·(a n -3n +21)=-23b n .又b 1=-(λ+18),所以当λ=-18时, b n =0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由b n +1=-23b n . 可知b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.16.(本小题满分14分)已知数列{a n }的前n 项和是S n ,且S n +12a n =1. (1)求数列{a n }的通项公式;(2)记b n =log 3a 2n4,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n ·b n +2的前n 项和为T n ,证明:T n <316. (1)解 当n =1时,a 1=S 1,由S 1+12a 1=1,解得a 1=23.当n ≥2时,∵S n =1-12a n ,S n -1=1-12a n -1,∴S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ).∴a n =13a n -1.∴{a n }是以23为首项,13为公比的等比数列,其通项公式为a n =23×⎝ ⎛⎭⎪⎫13n -1=2×3-n . (2)证明 ∵b n =log 3a 2n4=2 log 33-n =-2n . ∴1b n ·b n +2=1(-2n )×[-2(n +2)]=14n (n +2)=18⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =18×⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -2-1n +⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=181+12-1n +1-1n +2=18⎝ ⎛⎭⎪⎫32-1n +1-1n +2<316. 17.(本小题满分14分)已知等差数列{a n }满足:a 2=5,a 4+a 6=22,数列{b n }满足b 1+2b 2+…+2n -1b n =na n ,设数列{b n }的前n 项和为S n . (1)求数列{a n },{b n }的通项公式; (2)求满足13<S n <14的n 的集合.解 (1)设等差数列{a n }的公差为d ,则a 1+d =5,(a 1+3d )+(a 1+5d )=22. 解得a 1=3,d =2.∴a n =2n +1.在b 1+2b 2+…+2n -1b n =na n 中,令n =1,则b 1=a 1=3,又b 1+2b 2+…+2n b n+1=(n +1)a n +1,∴2n b n +1=(n +1)a n +1-na n .∴2n b n +1=(n +1)(2n +3)-n (2n +1)=4n +3. ∴b n +1=4n +32n .∴b n =4n -12n -1(n ≥2).经检验,b 1=3也符合上式,则数列{b n }的通项公式为b n =4n -12n -1.(2)S n =3+7·12+…+(4n -1)·⎝ ⎛⎭⎪⎫12n -1,12S n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -1+(4n -1)⎝ ⎛⎭⎪⎫12n.两式相减得12S n =3+4⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(4n -1)·⎝ ⎛⎭⎪⎫12n,∴12S n =3+4·12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(4n -1)⎝ ⎛⎭⎪⎫12n .∴S n =14-4n +72n -1.∴∀n ∈N *,S n <14. ∵数列{b n }的各项为正, ∴S n 单调递增.又计算得S 5=14-2716<13,S 6=14-3132>13, ∴满足13<S n <14的n 的集合为{n |n ≥6,n ∈N *}. 18.(本小题满分16分)已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,2)成中心对称.(1)求函数f (x )的解析式; (2)若数列{a n }满足a 1=2,a n +1=f (a n ),试证明数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1为等比数列,并求出数列{a n }的通项公式. (1)解 ∵f (0)=0,∴c =0. ∵f (x )=bx +cx +1的图象关于点(-1,2)成中心对称, ∴f (x )+f (-2-x )=4,解得b =2. ∴f (x )=2x x +1. (2)证明 ∵a n +1=f (a n )=2a na n +1,∴当n ≥2时,a na n -1a n -1a n -1-1=a n a n -1·a n -1-1a n -1=2a n -1a n -1+12a n -1a n -1+1-1·a n -1-1a n -1=2a n -1a n -1-1·a n -1-1a n -1=2. 又a 1a 1-1=2≠0,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1是首项为2,公比为2的等比数列,∴a na n -1=2n,∴a n =2n 2n -1.19.(本小题满分16分)已知数列{a n }的前n 项和为S n ,且满足S n =n 2,数列{b n }满足b n =1a n a n +1,T n 为数列{b n }的前n 项和.(1)求数列{a n }的通项公式a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n +(-1)n 恒成立,求实数λ的取值范围. 解 (1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,验证当n =1时,也成立;所以a n =2n -1.b n =1a n a n +1=1(2n -1)(2n +1)=12[ 12n -1-12n +1],所以T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1].(2)由(1)得λ<(2n +1)[n +(-1)n ]n,当n 为奇数时,λ<(2n +1)(n -1)n =2n -1n -1恒成立, 因为当n 为奇数时,2n -1n -1单调递增, 所以当n =1时,2n -1n -1取得最小值为0, 此时,λ<0. 当n 为偶数时,λ<(2n +1)(n +1)n =2n +1n +3恒成立,因为当n 为偶数时,2n +1n +3单调递增,所以当n =2时,2n +1n +3取得最小值为152. 此时,λ<152.综上所述,对于任意的正整数n ,原不等式恒成立,λ的取值范围是(-∞,0).20.(本小题满分16分)已知数列{a n }满足a 1=a (a >0,a ∈N *),a 1+a 2+…+a n-pa n +1=0(p ≠0,p ≠-1,n ∈N *). (1)求数列{a n }的通项公式a n ;(2)若对每一个正整数k ,若将a k +1,a k +2,a k +3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k .①求p 的值及对应的数列{d k }. ②记S k 为数列{d k }的前k 项和,问是否存在a ,使得S k <30对任意正整数k 恒成立?若存在,求出a 的最大值;若不存在,请说明理由.解 (1)因为a 1+a 2+…+a n -pa n +1=0,所以n ≥2时,a 1+a 2+…+a n -1-pa n =0,两式相减,得a n +1a n =p +1p (n ≥2),故数列{a n }从第二项起是公比为p +1p 的等比数列,又当n =1时,a 1-pa 2=0,解得a 2=ap , 从而a n =⎩⎪⎨⎪⎧a (n =1),a p ⎝ ⎛⎭⎪⎫p +1p n -2(n ≥2).(2)①由(1)得a k +1=a p ⎝⎛⎭⎪⎫p +1p k -1, a k +2=a p ⎝⎛⎭⎪⎫p +1p k ,a k +3=a p ⎝ ⎛⎭⎪⎫p +1p k +1, 若a k +1为等差中项,则2a k +1=a k +2+a k +3, 即p +1p =1或p +1p =-2,解得p =-13; 此时a k +1=-3a (-2)k -1,a k +2=-3a (-2)k , 所以d k =|a k +1-a k +2|=9a ·2k -1,若a k +2为等差中项,则2a k +2=a k +1+a k +3, 即p +1p =1,此时无解;若a k +3为等差中项,则2a k +3=a k +1+a k +2, 即p +1p =1或p +1p =-12,解得p =-23, 此时a k +1=-3a 2⎝ ⎛⎭⎪⎫-12k -1,a k +3=-3a 2⎝ ⎛⎭⎪⎫-12k +1,所以d k =|a k +1-a k +3|=9a 8·⎝ ⎛⎭⎪⎫12k -1, 综上所述,p =-13,d k =9a ·2k -1或p =-23, d k =9a 8·⎝ ⎛⎭⎪⎫12k -1. ②当p =-13时,S k =9a (2k -1). 则由S k <30,得a <103(2k -1),当k ≥3时,103(2k -1)<1,所以必定有a <1,所以不存在这样的最大正整数. 当p =-23时,S k =9a 4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k ,则由S k <30,得a <403⎣⎢⎡1-⎝ ⎛⎭⎪⎫12k],因为403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k >403,所以a =13满足S k <30恒成立;但当a =14时,存在k =5,使得a >403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 即S k <30,所以此时满足题意的最大正整数a =13.。
2014江苏省南通市高三二模数学试卷含答案
南通市2014届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i 1iz =-(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,.7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA的平行线交半圆于点B ,则直线AB 的方程(第5题)是 ▲ .10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1z 成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ . 【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分PABCDE(第16题)PABCDE(第16题)FM (方法3)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.1取1.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分 因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=时,y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)xy a b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0).解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+, 所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k +==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分 (解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 116129=⨯=>;当k 不存在时,S △AMB 116229=⨯=.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OM k k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2rt S r S t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nS n S =,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分 (2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2. (1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数); (3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t =,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2), 所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,,两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x x f s x x s ++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而122e02x x s+>,所以()1202x xf +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分 所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以21002x x y -+=,即1221212e ()022x x x x a x x a +--+++=,所以2112()022x x a x x a --+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t =,所以221(1)(1)022a at t t -++-=, …………………………………… 15分 即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分(第21—A 题)南通市2014届高三第二次调研测试数学Ⅱ(附加题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设ab c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ab c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos 2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos 2sin sin 222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲ABCDD 1A 1B 1C 1E(第22题)已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分 又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=. (1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1).所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()2201CE x y λλ=+-=+,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,,. 因为二面角D 1—EC —D 的大小为π4,则1212|||⋅=n n|n n .数学参考答案及评分建议 第11页 (共11页) 解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==.因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N .显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3, 故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。
(江苏专版)2014届高考数学大二轮专题复习 审题 解题 回扣(要点回扣+易错警示+查缺补漏)压轴大题突破练
压轴大题突破练(三)(推荐时间:60分钟)1. 已知函数f (x )=12x 2-2a ln x +(a -2)x ,a ∈R . (1)当a =1时,求函数f (x )图象在点(1,f (1))处的切线方程;(2)当a <0时讨论函数f (x )的单调性;(3)是否存在实数a ,对任意的x 1,x 2∈(0,+∞)且x 1≠x 2有f x 2-f x 1x 2-x 1>a 恒成立?若存在,求出a 的取值范围;若不存在,说明理由.解 f ′(x )=x -2a x +a -2=x -2x +a x(x >0). (1)当a =1时,f ′(x )=x -x +x ,f ′(1)=-2,∴所求的切线方程为y -f (1)=-2(x -1),即4x +2y -3=0.(2)①当-a =2,即a =-2时,f ′(x )=x -2x ≥0,f (x )在(0,+∞)上单调递增.②当-a <2,即-2<a <0时,∵0<x <-a 或x >2时,f ′(x )>0;-a <x <2时,f ′(x )<0,f (x )在(0,-a ),(2,+∞)上单调递增,在(-a ,2)上单调递减;③当-a >2,即a <-2时,∵0<x <2或x >-a 时,f ′(x )>0;2<x <-a 时,f ′(x )<0,f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.(3)假设存在这样的实数a 满足条件,不妨设x 1<x 2.由f x 2-f x 1x 2-x 1>a 知f (x 2)-ax 2>f (x 1)-ax 1成立, 令g (x )=f (x )-ax =12x 2-2a ln x -2x , 则函数g (x )在(0,+∞)上单调递增,∴g ′(x )=x -2a x-2≥0,即2a ≤x 2-2x =(x -1)2-1在(0,+∞)上恒成立.∴a ≤-12,故存在这样的实数a 满足题意, 其范围为⎝⎛⎦⎥⎤-∞,-12. 2. 已知圆C :(x +3)2+y 2=16,点A (3,0),Q 是圆上一动点,AQ 的垂直平分线交CQ于点M ,设点M 的轨迹为E .(1)求轨迹E 的方程;(2)过点P (1,0)的直线l 交轨迹E 于两个不同的点A 、B ,△AOB (O 是坐标原点)的面积S ∈⎝ ⎛⎭⎪⎫35,45,若弦AB 的中点为R ,求直线OR 斜率的取值范围. 解 (1)由题意,得|MC |+|MA |=|MC |+|MQ |=|CQ |=4>23,所以点M 的轨迹是以A ,C 为焦点,长轴长为4的椭圆,即轨迹的方程为x 24+y 2=1. (2)记A (x 1,y 1),B (x 2,y 2),R (x 0,y 0),由题意,直线l 的斜率不可能为0,故可设直线l :x =my +1,由⎩⎪⎨⎪⎧ x 2+4y 2=4,x =my +1消去x ,得(4+m 2)y 2+2my -3=0. 所以⎩⎪⎨⎪⎧ y 1+y 2=-2m 4+m 2,y 1·y 2=-34+m 2.S =12|OP |·|y 1-y 2|=12y 1+y 22-4y 1y 2 =2m 2+3m 2+4, 由S ∈⎝ ⎛⎭⎪⎫35,45,解得1<m 2<6, 即m ∈(-6,-1)∪(1,6).因为R (x 0,y 0)是AB 的中点,所以y 0=y 1+y 22=-m 4+m 2,x 0=my 0+1=44+m2.故直线OR 的斜率k =y 0x 0=-m 4∈⎝ ⎛⎭⎪⎫-64,-14∪⎝ ⎛⎭⎪⎫14,64. 3. 已知x =3是函数f (x )=a ln(1+x )+x 2-10x 的一个极值点.(1)求a 的值;(2)求函数f (x )的单调区间;(3)若直线y =b 与函数y =f (x )的图象有3个交点,求b 的的取值范围.解 (1)∵f ′(x )=a 1+x+2x -10, ∴f ′(3)=a4+6-10=0,故a =16. (2)由(1),知f (x )=16ln(1+x )+x 2-10x ,x ∈(-1,+∞), f ′(x )=x 2-4x +1+x =x -x -1+x .当x ∈(-1,1)∪(3,+∞)时,f ′(x )>0;当x ∈(1,3)时,f ′(x )<0.则f (x )的单调递增区间是(-1,1]和[3,+∞),单调递减区间是[1,3].(3)由(2)知,f (x )在(-1,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增,且当x =1或x =3时,f ′(x )=0.所以f (x )的极大值为f (1)=16ln 2-9,极小值为f (3)=32ln 2-21.所以在f (x )的三个单调区间(-1,1],[1,3],[3,+∞)上,当且仅当f (3)<b <f (1),直线y =b 与y =f (x )的图象有3个交点,如图所示.因此,b 的取值范围为(32ln 2-21,16ln 2-9).4. 已知椭圆C 的中心在原点,焦点在x 轴,离心率为22,它的一个焦点恰好与抛物线y 2 =4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过A 作椭圆C 的两条动弦AB 、AC ,若直线AB 、AC 的斜率之积为14,试问直线BC 是否经过一定点?若经过,求出该定点坐标;若不经过,请说明理由. 解 (1)设所求椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∵2p =4,∴p =2,抛物线的焦点为F (1,0), ∴椭圆的一个焦点为F (1,0),∴c =1.又∵c a =22,∴a =2,∴b 2=a 2-c 2=1,故所求椭圆的方程为x 22+y 2=1.(2)由(1)知A (0,1).当直线BC 的斜率不存在时,设BC :x =x 0, 设B (x 0,y 0),则C (x 0,-y 0),k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 20x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在,设直线BC 的方程为y =kx +m , 并代入椭圆方程,整理得:(1+2k 2)x 2+4kmx +2(m 2-1)=0 ①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0得2k 2-m 2+1>0,②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=m 2-1+2k 2,由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得4y 1y 2-4(y 1+y 2)+4=x 1x 2,即4(kx 1+m )(kx 2+m )-4(kx 1+m +kx 2+m )+4=x 1x 2, 亦即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0,24k 2-1m 2-11+2k 2-16k 2m m -11+2k 2+4(m -1)2=0,整理得(m -1)(m -3)=0,又∵m ≠1,∴m =3,此时直线的方程为y =kx +3, 所以直线BC 恒过一定点P (0,3).。
江苏省2014年高考数学二轮专题复习素材:阶段检测卷5
阶段检测卷(五)一、填空题(每小题5分,共70分)1.一支田径运动队有男运动员56人,女运动员42人;现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人. 解析 设抽取的女运动员有x 人,则856=x42,解得x =6. 答案 62.(2011·江苏卷)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.解析 由题意得该组数据的平均数为x =15(10+6+8+5+6)=7,所以方差为s 2=15[32+(-1)2+12+(-2)2+(-1)2]=3.2.答案 3.23.(2011·江苏卷)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析 从中取出两个数共有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6种情况.其中一个数是另一个数的两倍的情况共有{1,2},{2,4}2种,∴p =26=13. 答案 134.(2010·江苏卷)盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色相同的概率是________.解析 四个球取出两球有6种等可能基本事件:(黑,白1),(黑,白2),(黑,白3),(白1,白2),(白1,白3),(白2,白3).两只球颜色相同有3种:(白1,白2),(白1,白3),(白2,白3). 所以所求概率为P =36=12. 答案 125.(2013·南通调研)已知正四棱锥的底面边长是6,高为7,这个正四棱锥的侧面积是________.解析由于四棱锥的斜高h=(7)2+32=4,故其侧面积S=12×4×6×4=48.答案486.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________解析当x≥4时,89+89+92+93+92+91+947=6407≠91,∴x<4,∴89+89+92+93+92+91+x+907=91,∴x=1.答案 17.(2012·辽宁卷改编)在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm2的概率为________.解析设线段AC的长为x cm,则线段CB的长为(12-x)cm,那么矩形的面积为x(12-x)cm2,由x(12-x)>20,解得2<x<10.又0<x<12,所以该矩形面积大于20 cm2的概率为2 3.答案2 38.(2013·辽宁卷改编)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.解析由频率分布直方图,低于60分的频率为(0.01+0.005)×20=0.3.所以该班学生人数150.3=50.答案509.(2012·南通模拟)给出如下10个数据:63,65,67,69,66,64,66,64,65,68.根据这些数据制作频率分布直方图,其中[64.5,66.5)这组所对应的矩形的高为________.解析落在区间[64.5,66.5)的数据依次为65,66,66,65,共4个,则矩形的高等于频率组距=41066.5-64.5=15.答案1 510.(2012·淮阴、海门、天一中学联考)在圆x2+y2=4所围成的区域内随机取一个点P(x,y),则|x|+|y|≤2的概率为________.解析|x|+|y|≤2表示的图形是正方形及其内部,用正方形的面积除以圆x2+y2=4的面积易得概率为2π.答案2π11.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD 的中点,点F在CD上,若EF∥平面AB1C,则线段EF 的长度等于________.解析∵EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=12AC=12×22= 2.答案 212.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是________.解析①个位数为1,3,5,7,9时,十位数为2,4,6,8;个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个.②个位数为0时,十位数为1,3,5,7,9,共5个,个位数为0的概率是545=19.答案 1913.已知P 是△ABC 所在平面内一点, PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是________.解析 取边BC 上的中点D ,由PB →+PC →+2P A →=0,得PB →+PC →=2AP →,而由向量的中点公式知PB →+PC →=2PD →,则有AP →=PD →,即P 为AD 的中点,则S △ABC =2S △PBC ,根据几何概率的概率公式知,所求的概率为12. 答案 1214.(2013·安徽卷改编)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93①这种抽样方法是一种分层抽样;②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差;④该班男生成绩的平均数小于该班女生成绩的平均数,则以上说法一定正确的是________.解析 若抽样方法是分层抽样,男生、女生分别抽取6人、4人,所以①错;由题目看不出是系统抽样,所以②错;这五名男生成绩的平均数,x 男=15(86+94+88+92+90)=90,这五名女生成绩的平均数x 女=15(88+93+93+88+93)=91,故这五名男生成绩的方差为s 2甲=15(42+42+22+22+02)=8,这五名女生成绩的方差为s 2乙=15(32+22+22+32+22)=6.显然③正确,④错. 答案 ③ 二、解答题(共90分)15.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90°,且AB =2AD =2DC =2PD =4,E 为P A 的中点.(1)求证:DE ∥平面PBC ;(2)求证:DE ⊥平面P AB .证明 (1)设PB 的中点为F ,连接EF 、CF ,EF ∥AB ,DC ∥AB ,所以EF ∥DC ,且EF =DC =12AB .故四边形CDEF 为平行四边形,可得ED ∥CF . 又ED ⊄平面PBC ,CF ⊂平面PBC , 故DE ∥平面PBC .(2)因为PD ⊥底面ABCD ,AB ⊂平面ABCD , 所以AB ⊥PD .又因为AB ⊥AD ,PD ∩AD =D ,AD ⊂平面P AD ,PD ⊂平面P AD ,所以AB ⊥平面P AD .ED ⊂平面P AD ,故ED ⊥AB .又PD =AD ,E 为P A 的中点,故ED ⊥P A ; P A ∩AB =A ,P A ⊂平面P AB ,AB ⊂平面P AB , 所以ED ⊥平面P AB .16.(本小题满分14分)(2013·南京、盐城模拟)如图,正方形ABCD 所在的平面与三角形CDE 所在的平面交于CD ,AE ⊥平面CDE ,且AB =2AE . (1)求证:AB ∥平面CDE ; (2)求证:平面ABCD ⊥平面ADE . 证明 (1)正方形ABCD 中,AB ∥CD , 又AB ⊄平面CDE ,CD ⊂平面CDE , 所以AB ∥平面CDE .(2)因为AE ⊥平面CDE ,且CD ⊂平面CDE ,所以AE ⊥CD ,又正方形ABCD 中,CD ⊥AD ,且AE ∩AD =A , AE 、AD ⊂平面ADE ,所以CD ⊥平面ADE , 又CD ⊂平面ABCD , 所以平面ABCD ⊥平面ADE .17.(本小题满分14分)(2013·苏州质检)如图,在直三棱柱ABC -A 1B 1C 1中,已知∠ACB =90°,M 为A 1B 与AB 1的交点,N 为棱B 1C 1的中点,(1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.证明(1)连接AC1,因为M为A1B与AB1的交点,所以M是AB1的中点,又N为棱B1C1的中点.所以MN∥AC1,又因为AC1⊂平面AA1C1C,MN⊄平面AA1C1C,所以MN∥平面AA1C1C.(2)因为AC=AA1,所以四边形AA1C1C是正方形,所以AC1⊥A1C,又AC1∥MN,所以A1C⊥MN.又因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为BC⊂平面ABC,所以CC1⊥BC.又因为∠ACB=90°,所以AC⊥BC,因为CC1∩AC=C,所以BC⊥平面AA1C1C,又AC1⊂平面AA1C1C,所以BC⊥AC1,因为MN∥AC1,所以MN⊥BC,又MN⊥A1C,又BC∩A1C=C,所以MN⊥平面A1BC.18.(本小题满分16分)如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1)求证:BD ⊥平面POA ;(2)记三棱锥P -ABD 体积为V 1,四棱锥P -BDEF 体积为V 2,且V 1V 2=43,求此时线段PO 的长.(1)证明 在菱形ABCD 中,∵BD ⊥AC , ∴BD ⊥AO .∵EF ⊥AC ,∴PO ⊥EF ,∵平面PEF ⊥平面ABFED ,平面PEF ∩平面ABFED =EF ,且PO ⊂平面PEF . ∴PO ⊥平面ABFED , ∵BD ⊂平面ABFED , ∴PO ⊥BD .∵AO ∩PO =O ,AO ,PO ⊂平面POA . ∴BD ⊥平面POA . (2)解 设AO ∩BD =H由(1)知,PO ⊥平面ABFED ,PO =CO .∴PO 是三棱锥P -ABD 的高及四棱锥P -BDEF 的高 ∴V 1=13S △ABD ·PO ,V 2=13S 梯形BFED ·PO ∵V 1V 2=43∴S 梯形BFED =34S △ABD =34S △BCD∴S △CEF =14S △BCD∵BD ⊥AC ,EF ⊥AC ,∴EF ∥BD ,∴△CEF ∽△CDB ∴⎝ ⎛⎭⎪⎫CO CH 2=S △CEF S △BCD =14∴CO =12CH =12AH =12×23= 3 ∴线段PO 的长为 3.19.(本小题满分16分)(2013·扬州调研)如图,在三棱柱ABC -A 1B 1C 1中,底面△ABC 是等边三角形,D 为AB 中点.(1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC1B1是矩形,且CD⊥DA1,求证:三棱柱ABC-A1B1C1是正三棱柱.证明(1)连接AC1,设AC1与A1C相交于点O,连接DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1∵BC1⊄平面A1CD,DO⊂平面A1CD∴BC1∥平面A1CD;(2)∵等边△ABC,D为AB的中点,∴CD⊥AB∵CD⊥DA1,DA1∩AB=D,∴CD⊥平面ABB1A1∵BB1⊂平面ABB1A1,∴BB1⊥CD,∵四边形BCC1B1是矩形,∴BB1⊥BC∵BC∩CD=C,∴BB1⊥平面ABC∵底面△ABC是等边三角形∴三棱柱ABC -A1B1C1是正三棱柱.20.(本小题满分16分)(2012·苏锡常镇调研)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE =4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.图1图2(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B -DEG的体积.(1)证明如图(1)∵CE=4,∠DCE=30°,过点D作AC的垂线交于点M,则DM=3,EM=1,∴DE=2,CD=2 3.则CD2+DE2=EC2,∴∠CDE=90°,DE⊥DC.在图(2)中,又∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE⊂平面ACD,∴DE⊥平面BCD.图(1)图(2)(2)解在图(2)中,∵EF∥平面BDG,EF⊂平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.∵点E在线段AC上,CE=4,点F是AB的中点,∴AE=EG=CG=2.作BH⊥CD交于H.∵平面BCD⊥平面ACD,∴BH⊥平面ACD.由条件得BH=3 2.S△DEG=13S△ACD=13×12AC·CD·sin 30°= 3.三棱锥B -DEG的体积V=13S△DEG·BH=13×3×32=32.。
2014届高考数学二轮总复习常考问题数列的综合应用文
常考问题9 数列的综合应用[真题感悟]1.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析 在点(a k ,a 2k )处的切线方程为:y -a 2k =2a k (x -a k ),当y =0时,解得x =a k 2,所以a k+1=a k 2,故{a n }是a 1=16,q =12的等比数列,即a n =16×⎝⎛⎭⎫12n -1,∴a 1+a 3+a 5=16+4+1=21. 答案 212.(2011·湖北卷)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解析 法一 设自上第一节竹子容量为a 1,则第九节容量为a 9,且数列{a n }为等差数列. a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即4a 5-10d =3, ① 3a 5+9d =4,②联立①②解得a 5=6766.法二 设自上第一节竹子容量为a 1,依次类推,数列{a n }为等差数列. 又a 1+a 2+a 3+a 4=4a 1+6d =3,a 7+a 8+a 9=3a 1+21d =4. 解得a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.答案67663.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去),a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n (n -11)2,由2n -5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12.答案 124.(2013·新课标全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析由已知⎩⎨⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23,由于函数f (x )=x 33-10x 23在x =203处取得极小值也是最小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49. 答案 -49 [考题分析]高考对本内容的考查主要有:(1)通过适当的代数变形后,转化为等差数列或等比数列的问题. (2)求数列的通项公式及其前n 项和的基本的几种方法. (3)数列与函数、不等式的综合问题.。
2014年高考江苏数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第14 题)、解答题(第15 题第20 题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh ,其中s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱=cl ,其中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014 年江苏,1,5 分】已知集合 A { 2 ,1,3,4} ,B { 1,2,3} ,则 A B _______ .【答案】{ 1,3}【解析】由题意得 A B { 1,3} .(2)【2014 年江苏,2,5 分】已知复数【答案】21 z(5 2i) (i 为虚数单位),则z的实部为_______. 22【解析】由题意 2 2z (5 2i) 25 2 5 2i (2i) 21 20i ,其实部为21.(3)【2014 年江苏,3,5 分】右图是一个算法流程图,则输出的n 的值是_______.【答案】 5n 的最小整数解.2n 20 整数解为n 5,因此输出的n 5 .【解析】本题实质上就是求不等式 2 20(4)【2014 年江苏,4,5 分】从1,2 ,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是_______.【答案】 13【解析】从1,2,3,6这4个数中任取 2 个数共有 2C4 6 种取法,其中乘积为 6 的有1,6 和2,3 两种取法,因此所求概率为 2 1P .6 3(5)【2014 年江苏,5,5 分】已知函数y cos x与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cos sin(2 )3 3 ,即2 1sin( )3 2,2kk ( 1) ,(k Z ) ,因为0 ,所3 6以.6(6)【2014 年江苏,6,5 分】为了了解一片经济林的生长情况,随机抽测了其中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的60 株树木中,有株树木的底部周长小于100 cm.【答案】241【解析】由题意在抽测的60 株树木中,底部周长小于100 cm 的株数为(0.015 0.025) 10 60 24 .(7)【2014 年江苏,7,5 分】在各项均为正数的等比数列{ }a 中,若na8 a6 2a4 ,则a2 1 ,a的值是________.6【答案】 4【解析】设公比为q ,因为a2 1,则由a8 a6 2a4 得 6 4 2 2 4 2 2 0q q a ,q q ,解得2 2q ,所以4a6 a2q 4 .(8)【2014 年江苏,8,5 分】设甲、乙两个圆柱的底面积分别为S,S ,体积分别为1 2 V ,V ,若它们的侧面积相1 2等,且S1S294,则V1V2的值是_______.【答案】 32【解析】设甲、乙两个圆柱的底面和高分别为r 、h ,r2、h2 ,则2 r1h1 2 r2 h2 ,1 1 h r1 2h r2 1,又2S r1 12S r2 294,所以r1r232,则2 2 2V r h r h r r r1 1 1 1 1 12 12 2 2V r h r h r r r2 2 2 2 2 2 1 232.(9)【2014 年江苏,9,5 分】在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆长为________.2 2(x2) (y1) 4 截得的弦【答案】 2 555【解析】圆 2 2(x 2) (y1) 4 的圆心为 C (2, 1) ,半径为r 2 ,点C 到直线x 2y 3 0 的距离为2 2 ( 1)3 3d ,所求弦长为2 251 22 2 9 2 55l 2 r d 2 4 .5 5(10)【2014 年江苏,10,5 分】已知函数f (x) x mx 1,若对任意x [m,m 1],都有 f (x) 0 成立,则实2数m 的取值范围是________.【答案】 2 0,2【解析】据题意2 2f (m) m m 1 02f (m 1) (m 1) m(m 1) 1 0,解得22m 0 .(11)【2014 年江苏,11,5 分】在平面直角坐标系xOy 中,若曲线 2 by axx( a,b 为常数)过点P(2 ,5) ,且该曲线在点P 处的切线与直线7x 2 y 3 0 平行,则 a b 的值是________.【答案】 3【解析】曲线y ax 2 bxb b过点P(2, 5) ,则4a 5 ①,又y'2ax 22 x,所以b 74a ②,由①②解得4 2ab11,所以 a b 2 .(12)【2014 年江苏,12,5 分】如图,在平行四边形ABCD 中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2 ,则AB AD 的值是________.【答案】22【解析】由题意,1AP AD DP AD AB ,43 3BP BC CP BC CD AD AB ,4 4所以1 3AP BP (AD AB) (AD AB)4 42 13 2AD AD AB AB ,2 16即 1 32 25 64AD AB ,解得AD AB 22 .2 16(13)【2014 年江苏,13,5 分】已知 f (x) 是定义在R上且周期为 3 的函数,当x [0 ,3) 时, 2 1f (x) x 2x .2 若函数y f ( x) a 在区间[ 3,4] 上有10 个零点(互不相同),则实数 a 的取值范围是________.【答案】0 1,22【解析】作出函数21f(x)x2x,x[0,3)的图象,可见21f(0),当x1时,21f(x)极大,27f,方程f(x)a0在x[3,4]上有10个零点,即函数y f(x)和图象与直线(3)2y a在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线y a与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21a(0,).2(14)【2014年江苏,14,5分】若ABC的内角满足sin A2sin B2sin C,则cos C的最小值是_______.【答案】624【解析】由已知sin A2sin B2sin C及正弦定理可得a2b2c,cosC222a b c2ab2ab223a2b22ab26ab22ab62 8ab8ab4,当且仅当223a2b,即ab23时等号成立,所以cos C的最小值为624.二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知2,,sin55.(1)求sin的值;4(2)求cos26的值.解:(1)∵sin5,,,∴25225cos1sin5,210s i n s i n c o s c o s s i n(c o s s i n).444210(2)∵43sin22sin cos cos2cos sin,,sin22sin cos cos2cos sin2255∴3314334 cos2cos cos2sin sin2666252510.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA AC,PA6,BC8,DF5.(1)求证:直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解:(1)∵D,E为PC,AC中点∴DE∥PA∵PA平面DEF,DE平面DEF∴PA∥平面DEF.(2)∵D,E为PC,AC中点,∴DE1PA3∵E,F为AC,AB中点,∴1 4EF BC,22∴DE2EF2DF2,∴DEF90°,∴DE⊥EF,∵DE//PA,PA AC,∴DE AC,∵AC EF E,∴DE⊥平面ABC,∵DE平面BDE,∴平面BDE⊥平面ABC.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy中,F,F分别是椭圆1222yx a b221(0)a b的左、右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1(1)若点C的坐标为41,,且33B F22,求椭圆的方程;(2)若F C AB,求椭圆离心率e的值.1316 1解:(1)∵ 4 1C ,,∴3 3 9 9 9a b2 2,∵ 2 2 2 2BF b c a ,∴22 ( 2) 2 2a ,∴b,2 1∴椭圆方程为 2 x y .2 12(2)设焦点F1( c,0) ,F2 (c,0) ,C(x,y) ,∵A,C 关于x 轴对称,∴A(x ,y) ,∵B,F ,A三点共线,∴2b ybc x,即bx cy bc 0①∵y b FC AB ,∴ 1 1x c c ,即 2 0xc by c ②①②联立方程组,解得xyca2b c2 22bc2b c2 2∴Ca c 2bc2 2,2 2 2 2b c b cC 在椭圆上,∴2 2a c 2bc2 2b c b c2 2 2 2a b2 21,化简得5c a ,∴c 52 2a 5, 故离心率为55.(18)【2014 年江苏,18,16 分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段O A 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点 A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan 4BCO .3(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系x Oy.由条件知A(0, 60),C(170, 0),直线BC 的斜率 4k -tan BCO .BC3又因为AB⊥BC,所以直线AB 的斜率 3k .设点 B 的坐标为(a,b),AB4则k BC= b 0 4a 170 3 ,k AB= 60 3ba 0 4,解得a=80,b=120.所以BC= 2 2(170 80) (0 120) 150 .因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d≤60.)由条件知,直线BC 的方程为 4 ( 170)y x ,即4x 3y 680 0 ,3由于圆M 与直线BC 相切,故点M (0,d)到直线BC 的距离是r,即因为O 和A 到圆M 上任意一点的距离均不少于80 m,| 3d 680 | 680 3d r .5 5所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d ) 80≥,解得10 ≤ d ≤35 .故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA, CB 交于点F.因为tan∠BCO = 43 .所以sin∠FCO = 45,cos∠FCO = 35.因为OA =60,OC=170,所以OF= O C tan∠FCO =6803 .CF=OC850cos FCO 3,4从而500AF OF OA .因为O A⊥OC,所以cos∠AFB =sin∠FCO =3 45,又因为A B⊥BC,所以BF =AFcos∠AFB == 4003,从而BC= C F-BF=150.因此新桥B C 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D,连接M D ,则MD ⊥BC,且MD 是圆M 的半径,并设MD =r m,OM =d m(0 ≤d≤60.) 因为O A⊥OC,所以sin∠CFO =cos∠FCO,故由(1)知,sin∠CFO = MD MD r 3MF OF OM 680 5d3所以680 3dr .5因为O和A 到圆M 上任意一点的距离均不少于80 m,所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d )≥80,解得10 ≤ d ≤35 ,故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5(19)【2014 年江苏,19,16 分】已知函数( ) e ex xf x 其中e 是自然对数的底数.(1)证明: f (x) 是R上的偶函数;(2)若关于x的不等式mf (x) ≤ e m 1在(0 ,) 上恒成立,求实数m 的取值范围;x(3)已知正数 a 满足:存在你的结论.x0 [1,) ,使得 3 ea 1 与f (x ) a( x 3x ) 成立.试比较0 0 0a e 1 的大小,并证明解:(1)x R, f ( x) e e f (x) ,∴ f (x) 是R上的偶函数.x x(2)由题意,(e e ) e 1x x x m ≤,∵x (0 ,) ,∴e x e x 1 0 ,x x xm ≤m ,即(e e 1) e 1即 e 1xm ≤对x (0 ,) 恒成立.令 e ( 1)t t ,则xe e 1x x m1 t≤对任意t (1,) 恒成立.t t 12∵ 1 1 1 1t t ≥,当且仅当t 2 时等号成立,∴ 1m ≤.2 2 3t t 1 (t 1) (t 1) 1 1 3t 1 1t 1(3)f '( x) e e ,当x 1 时 f '( x) 0 ∴ f (x) 在(1,) 上单调增,令x xh(x) a( x 3x) ,h '( x) 3ax( x 1) ,33∵a 0 ,x 1,∴h '(x) 0 ,即h( x) 在x (1,) 上单调减,∵存在x0 [1,) ,使得f x a x x ,∴ f (1) e 1 2a ,即 1 e 1 ( ) ( 3 ) a .30 0 0e 2 e∵ a a a a ,设m(a) (e 1)ln a a 1 ,则m '(a ) e 1 1 e 1 a e-1ln ln ln e (e 1)ln 1e 1 a 1e a aa 1,1 1a e .当2 e 1 1e a e 1时,m '(a) 0 ,m(a) 单调增;当 a e 1 时,m '(a) 0 ,m(a ) 单调2 e减,因此m( a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时,m(a) 0 ,a e 1 e a 1 ;当1 e 1 ea 时,m(a) 0 ,2 e a e 1 e 1 ;当a e 时,m(a) 0 ,aa e 1 e a 1 .(20)【2014 年江苏,20,16 分】设数列{ }a 的前n 项和为S.若对任意的正整数n,总存在正整数m,使得n n S a ,n m则称{}a 是“H 数列”.nn(1)若数列{ a } 的前n 项和S 2 (n N) ,证明:{ a } 是“H 数列”;n n n(2)设{ a } 是等差数列,其首项n a1 1,公差 d 0 .若{a } 是“H 数列”,求d 的值;n(3)证明:对任意的等差数列{ }a ,总存在两个“H数列”{b } 和{c } ,使得 a b c (n N) 成立.n n n n n n解:(1)当n ≥ 2 时,n n 1 n 1a S S 1 2 2 2 ,当n 1时,n n n a1 S1 2 ,∴n 1时,S a ,当n≥2时,1 1 S a ,∴{a } 是“H 数列”.n n 1 n(2)n(n 1) n(n 1)S na d n d ,对n N,m N使n 12 2S a ,即n mn(n 1)n d 1 (m 1)d ,25取n 2 得1 d (m1)d ,m 2 1d,∵d 0 ,∴m 2 ,又m N ,∴m 1,∴d 1.(3)设{}a 的公差为d,令n b a1 (n 1)a1 (2 n) a1 ,对n N ,nb b a ,n 1 n 1c (n 1)(a d) ,n 1对n N ,c c a d ,则n 1 n 1 b c a1 (n 1)d a ,且{ b } ,{c } 为等差数列.n n n n n{ b } 的前n 项和nn(n 1)T na ( a ) ,令n 1 12T (2 m)a ,则n 1n(n 3)m 2 .2当n 1时m 1;当n 2 时m 1;当n≥3时,由于n 与n 3 奇偶性不同,即n(n 3) 非负偶数,m N .因此对n ,都可找到m N ,使T b 成立,即{b } 为“H 数列”.n m n{c } 的前n项和nn(n 1)R (a d ) ,令n 12c (m 1)(ad ) R ,则n 1 mmn(n 1)21∵对n N ,n(n 1) 是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立,n m 即{ }c 为“H 数列”,因此命题得证.n数学Ⅱ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21 题有A、B、C、D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了3题或4题,则按选做题中的前 2 题计分.第22、23 题为必答题.每小题10 分,共40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A、B、C、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.(21-A )【2014 年江苏,21-A,10 分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C、 D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D.解:因为B,C 是圆O 上的两点,所以OB=OC.故∠OCB =∠B.又因为C, D 是圆O 上位于AB 异侧的两点,故∠B,∠D 为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB =∠D.(21-B )【2014 年江苏,21-B,10 分】(选修4-2:矩阵与变换)已知矩阵1 2 1 1A ,B ,向量1 x2 12y,x,y为实数,若Aα= Bα,求x,y的值.解:2 y 2A ,2 xy2 yBα,由Aα= Bα得4 y2y 2 2 y,解得 1 4x ,y .2 xy 4 y, 2(21-C)【2014 年江苏,21-C,10 分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2x 1 t ,2(t 为参数),直线l 与抛物线2y 2 t2y2 4x交于A,B 两点,求线段A B 的长.解:直线l:x y 3 代入抛物线方程 2 4y x 并整理得x2 10x 9 0 ,∴交点 A (1,2) ,B(9 ,6) ,故| AB| 8 2 .(21-D )【2014 年江苏,21-D,10 分】(选修4-5:不等式选讲)已知x 0 ,y 0 ,证明: 2 21 x y 1 x y 9xy .解:因为x>0, y>0, 所以1+ x+y 2≥33 xy2 0 ,1+x2+y≥2 2 2 2 23 3 33 x y 0 ,所以(1+ x+y )( 1+x +y) ≥3 xy 3 x y =9 xy.2≥33 xy2 0 ,1+x2+y≥【必做】第22、23 题,每小题10 分,计20 分.请把答案写在.答.题.卡.的.指.定.区.域.内...(22)【2014 年江苏,22,10 分】盒中共有9 个球,其中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完全相同.6(1)从盒中一次随机取出 2 个球,求取出的 2 个球颜色相同的概率P;(2)从盒中一次随机取出 4 个球,其中红球、黄球、绿球的个数分别记为x,x ,x ,随机变量X 表示1 2 3 x ,x ,x 1 2 3中的最大数,求X 的概率分布和数学期望E(X ) .解:(1)一次取 2 个球共有 2C 36 种可能情况, 2 个球颜色相同共有92 2 2C C C 10 种可能情况,4 3 2∴取出的 2 个球颜色相同的概率10 5P .36 18(2)X 的所有可能取值为4,3,2 ,则C 14P X ;( 4) 4C 12649C C C C 133 1 3 1P( X 3) 4 5 3 6 ;C 633911P( X 2) 1 P(X 3) P(X 4) .∴X 的概率分布列为:14X 2 3 4P 1114 13631126故X 的数学期望( ) 2 11 3 13 4 1 20E X .14 63 126 9(23)【2014 年江苏,23,10 分】已知函数sin xf (x) (x 0)x ,设 f (x) 为nf x 的导数,n N.n1 ( )(1)求2f f 的值;1 22 2 2(2)证明:对任意的n N,等式 2nf f 成立.n 1 n4 4 4 2解:(1)由已知,得sin x cosx sin xf (x) f (x)1 0 2x x x,于是cosx sin x sin x 2cos x 2sin xf (x) f (x)2 1 2 2 3x x x x x ,所以 4 2 16f ( ) , f ( ) ,1 2 2 32 2故2 f ( ) f ( ) 1 .1 22 2 2(2)由已知,得xf0 (x) sin x, 等式两边分别对x 求导,得 f 0 (x) xf0 (x) cos x ,即f0 ( x) xf1 (x) cos x sin(x ) ,类似可得2 2 f (x) xf (x) sin x sin( x ) ,1 233 f (x) xf (x) cos x sin( x ) ,2 32 4 f (x) xf (x) sin x sin( x 2 ) .3 4下面用数学归纳法证明等式nnf x xf x x 对所有的nn n1 ( ) ( ) sin( )2N*都成立.(i)当n=1 时,由上可知等式成立.(ii)假设当n=k 时等式成立, 即kkf 1 (x) xf (x) sin( x ) .k k2因为[kf ( x) xf (x )] kf (x) f (x) xf (x) (k 1) f (x) f ( x),k 1 k k 1 k k k k 1(k1)k k k[sin( x )] cos(x ) (x) sin[ x ] ,所以2 2 2 2 (k 1) f ( x) f (x)k k 1(k 1)sin[ x ] .2所以当n=k +1 时,等式也成立.综合(i),(ii) 可知等式nnf 1 ( x) xf (x) sin( x ) 对所有的nn n2 N都成立.*令x ,可得4nnf 1 ( ) f ( ) sin( ) ( nn n4 4 4 4 2N).所以*2nf f ( nn 1 n( ) ( )4 4 4 2N).*7。
2014年高考数学江苏卷完美解析版(精品资料)
已知函数 f ( x ) x 2 2 x 1 ,若存在实数 t ,当 x [ 1 ,m ] 时, f ( x t ) x 恒成立,则实数 m 的 (江苏苏州 陈海锋)
变式 5 若关于 x 的不等式 x2 mx m 1 0 恒成立,则实数 m ________. 【答案】2 (江苏苏州 陈海锋) 变式 6 设 f ( x) 是定义在 R 上的奇函数,且当 x 0 时, f ( x ) x 2 ,若对任意的 x [t , t 2] ,不等式 则实数 t 的取值范围是________. 【答案】 f ( x t ) 2 f ( x) 恒成立, 2, 11. 在平面直角坐标系 xOy 中,若曲线 y ax 2 切线与直线 7 x 2 y 3 0 平行,则 a b 的值是 【答案】 3 【解析】曲线 y ax2 又 y 2ax
又 0 ,所以
6
. (三角函数图象的交点与
【考点】函数 y A sin( x ) 的图象与性质 (B),三角函数的概念(B). 已知三角函数值求角)
1
2014 高考数学【江苏卷】解析版
6. 设抽测的树木的底部周长均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的 60 株树木 中, 有 100cm. 【答案】24 【解析】 由题意在抽测的 60 株树木中, 底部周长 小于 100cm 的株数为(0.015+0.025) 10 60=24. 【考点】总体分布的估计 (A). (频率分布直方图) 7. 在 各 项 均 为 正 数 的 等 比 数 列 {a n } 中 ,
1 AB 4, FE 2 PE 6 2 , 2
(江苏专版)2014届高考数学大二轮专题复习 审题 解题 回扣 中档大题保分练(二) 文
中档大题保分练(二)(推荐时间:50分钟)1. 已知函数f (x )=32sin 2x -12(cos 2x -sin 2x )-1,x ∈R ,将函数f (x )向左平移π6个单位后得到函数g (x ),设△ABC 三个内角A ,B ,C 的对边分别为a ,b ,c .(1)若c =7,f (C )=0,sin B =3sin A ,求a 和b 的值;(2)若g (B )=0且m =(cos A ,cos B ),n =(1,sin A -cos A tan B ),求m ·n 的取值范围.解 (1)f (x )=32sin 2x -12cos 2x -1=sin ⎝⎛⎭⎪⎫2x -π6-1 g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6-1=sin ⎝ ⎛⎭⎪⎫2x +π6-1 由f (C )=0,∴sin ⎝⎛⎭⎪⎫2C -π6=1. ∵0<C <π,∴-π6<2C -π6<116π, ∴2C -π6=π2,∴C =π3.cos π3. , ∴m ·n =cos A +cos B (sin A -cos A tan B )=cos A +sin A cos B -cos A sin B=32sin A +12cos A =sin ⎝⎛⎭⎪⎫A +π6. ∵A +C =5π6,∴0<A <5π6,∴π6<A +π6<π,∴0<sin ⎝⎛⎭⎪⎫A +π6≤1. ∴m ·n 的取值范围是(0,1].2. 某市文化馆在春节期间举行高中生“蓝天海洋杯”象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为23,且各局比赛胜负互不影响. (1)求比赛进行4局结束,且乙比甲多得2分的概率;(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望.解 (1)由题意知,乙每局获胜的概率皆为1-23=13. 比赛进行4局结束,且乙比甲多得2分即前两局乙胜一局,3,4局连胜,则P 2=C 1213·23·13·13=481. (2)由题意知,ξ的取值为2,4,6.则P (ξ=2)=⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫132=59,P (ξ=4)=C 1213·23⎝ ⎛⎭⎪⎫232+C 1213·23⎝ ⎛⎪⎫13⎛⎪⎫121·22=16.3BAD =ABCD ,且BB 1=2a ,E 为CC 1的中点,F 为AB 的中点.(1)求证:△DEB 1为等腰直角三角形;(2)求二面角B 1-DE -F 的余弦值.(1)证明 连接BD ,交AC 于O ,因为四边形ABCD 为菱形,∠BAD =60°,所以BD =a , 因为BB 1、CC 1都垂直于面ABCD ,所以BB 1∥CC 1,又面B 1C 1D 1∥面ABCD ,所以BC ∥B 1C 1.所以四边形BCC 1B 1为平行四边形,则B 1C 1=BC =a ,因为BB 1、CC 1、DD 1都垂直于面ABCD ,所以DB 1=DB 2+BB 21=a 2+2a 2=3a , DE =DC 2+CE 2=a 2+a 22=6a 2, B 1E =B 1C 21+C 1E 2=a 2+a 22=6a 2, 所以DE 2+B 1E 2=6a 2+6a 24=3a 2=DB 21, 所以△DEB 1为等腰直角三角形.(2)解 取DB 1的中点H ,因为O ,H 分别为DB ,DB 1的中点,所 以OH ∥BB 1.以OA ,OB ,OH 分别为x ,y ,z 轴建立空间直角坐标系,则D ⎝ ⎛⎭⎪⎫0,-a 2,0,E ⎝ ⎛⎭⎪⎫-32a ,0,22a ,B 1⎝ ⎛⎭⎪⎫0,a 2,2a , F ⎝ ⎛⎭⎪⎫34a ,a 4,0, 所以DB 1→=(0,a ,2a ),DE →=⎝ ⎛⎭⎪⎫-32a ,a 2,22a ,DF →=⎝ ⎛⎭⎪⎫34a ,34a ,0. 设面DB 1E 的法向量n 1=(x 1,y 1,z 1),则n 1·DB →1=0,n ·DE →=0,即ay 1+2az 1=0且-32ax 1+a 2y 1+22az 1=0, 令z 1=1,则n 1=(0,-2,1)设面DFE 的法向量为n 2=(x 2,y 2,z 2),则n 2·DF →=0,n 2·DE →=0即34ax 2+34ay 2=0 且-32ax 2+a 2y 2+22az 2=0, 令x 2=1,则n 2=⎝ ⎛⎭⎪⎫1,-33,263,则cos 〈n 1,n 2〉=63+2633×1+13+83=22, 则二面角B 1-DE -F 的余弦值为22. 4. 已知n ∈N *,数列{d n }满足d n =3+-n 2,数列{a n }满足a n =d 1+d 2+d 3+…+d 2n ;又知数列{b n }中,b 1=2,且对任意正整数m ,n ,b m n =b n m .(1)求数列{a n }和数列{b n }的通项公式;(2)将数列{b n }中的第a 1项,第a 2项,第a 3项,……,第a n 项,……删去后,剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前2 013项和.解 方法一 (1)∵d n =3+-n 2, ∴a n =d 1+d 2+d 3+…+d 2n .=3×2n 2=3n . 又由题知:令m =1,则b 2=b 21=22,b 3=b 31=23,…,b n =b n 1=2n .若b n =2n ,则b m n =2nm ,b n m =2mn ,∴b m n =b n m 恒成立. 6项、第9项……删去后构成的新数列{c n }中的奇b 1=1,b 2=4,公比均是8, c 4+c 6+…+c 2 012) =-81 0071-+-1-=20×81 006-67. 方法二 (1)=d 1+d 2+…+n =3n . 由b m n =b nm 及b 1=2>0知b n >0,对b m n =b n m 两边取对数得,m lg b n =n lg b m ,令m =1,得lg b n =n lg b 1=n lg 2=lg 2n ,∴b n =2n .(2)T 2 013=c 1+c 2+…+c 2 013=b 1+b 2+b 4+b 5+b 7+b 8+…+b 3 018+b 3 019=(b 1+b 2+…+b 3 019)-(b 3+b 6+…+b 3 018)=-23 0191-2--81 0061-23=20×81 006-67.。
2014年江苏高考数学试题及详细答案(含附加题)
2014年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.答题卡相应位置上......... 1.已知集合{2134}A =--,,,,{123}B =-,,,则A B = .【答案】{13}-,2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 . 【答案】213.右图是一个算法流程图,则输出的n 的值是 . 【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,则ϕ的值是 . 【答案】6π 6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是 . 【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是 . 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 25510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 . 【答案】202⎛⎫ ⎪⎝⎭11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的 值是 . 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a=-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】()102,14.若ABC ∆的内角满足sin 22sin A B C =,则cos C 的最小值是 . 62- 二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知()2απ∈π,,5sin 5α= (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分.(1)∵()5sin 2ααπ∈π=,,,∴225cos 1sin αα=--=()210sin sin cos cos sin sin )444210αααααπππ+=+=+=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC ==∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵ACEF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =(2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b+=∵22222BF b c a =+=,∴22(2)2a ==,∴21b = ∴椭圆方程为2212x y +=(2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称,∴()A x y -,∵2B F A ,,三点共线,∴b y b c x +=--,即0bx cy bc --=① ∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴5c a = 518.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=-解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤∵(0)x ∈+∞,,∴e e 10x x-+->,即e 1e e 1xx x m ---+-≤对(0)x ∈+∞,恒成立令e (1)x t t =>,则211tm t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2e a >+∵e-1e 111ln ln ln e (e 1)ln 1ea a aa a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2ea m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增; 当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分. (1)当2n ≥时,111222n n n n n n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =- (3)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点 证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值. 【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分.222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||AB =D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分. 证明:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y≥0>, 所以(1+x +y 2)( 1+x 2+y )≥=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况 ∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.(本小题满分10分)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- (1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+. 下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+. 因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++ (1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立. 综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+=(n ∈*N ).。
2014年高考数学(江苏专用)二轮专题复习素材:训练20
常考问题20 矩阵与变换1.求使等式⎣⎢⎡⎦⎥⎤2 43 5=⎣⎢⎡⎦⎥⎤2 00 1M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M . 解 设M =⎣⎢⎡⎦⎥⎤m n p q ,则⎣⎢⎡⎦⎥⎤2 43 5=⎣⎢⎡⎦⎥⎤2 00 1M ⎣⎢⎡⎦⎥⎤1 00 -1 =⎣⎢⎡⎦⎥⎤2m -2n p -q ,则⎩⎨⎧2m =2,-2n =4,p =3,-q =5⇒⎩⎨⎧m =1,n =-2,p =3,q =-5,即M =⎣⎢⎡⎦⎥⎤1 -23 -5. 2.(2011·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤1121,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.解 A 2=⎣⎢⎡⎦⎥⎤1 12 1⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3 24 3,设α=⎣⎢⎡⎦⎥⎤x y ,由A 2α=β得,⎣⎢⎡⎦⎥⎤3 24 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12,从而⎩⎨⎧ 3x +2y =14x +3y =2,解得⎩⎨⎧x =-1,y =2.所以α=⎣⎢⎡⎦⎥⎤-1 2.3.(2013·南京,盐城模拟)已知矩阵M =⎣⎢⎡⎦⎥⎤213 4. (1)求矩阵M 的逆矩阵;(2)求矩阵M 的特征值及特征向量. 解 (1)设M -1=⎣⎢⎡⎦⎥⎤ab cd . 则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 134=⎣⎢⎡⎦⎥⎤2a +3b a +4b 2c +3d c +4d =⎣⎢⎡⎦⎥⎤1 001,∴⎩⎨⎧2a +3b =1,2c +3d =0,a +4b =0,c +4d =1,解得⎩⎪⎪⎨⎪⎪⎧a =45,b =-15,c =-35,d =25,∴M -1=⎣⎢⎢⎡⎦⎥⎥⎤45 -15-35 25. (2)矩阵A 的特征多项式为f (x )=⎪⎪⎪⎪⎪⎪λ-2 -1 -3 λ-4=(λ-2)·(λ-4)-3=λ2-6λ+5,令f (λ)=0,得矩阵M 的特征值为1或5,当λ=1时,由二元一次方程⎩⎨⎧-x -y =0,-3x -3y =0,得x +y =0,令x =1,则y =-1,所以特征值λ=1对应的特征向量为α1=⎣⎢⎡⎦⎥⎤1-1;当λ=5时,由二元一次方程⎩⎨⎧3x -y =0,-3x +y =0,得3x -y =0,令x =1,则y =3,所以特征值λ=5对应的特征向量为α2=⎣⎢⎡⎦⎥⎤13.4.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.设向量β=⎣⎢⎡⎦⎥⎤74,试计算A 5β的值.解 由题设条件可得,⎣⎢⎡⎦⎥⎤ 1 a -1 b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,即⎩⎨⎧ 2+a =4,-2+b =2,解得⎩⎨⎧a =2,b =4,得矩阵A =⎣⎢⎡⎦⎥⎤1 2-1 4. 矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6,令f (λ)=0,解得 λ1=2,λ2=3.当λ1=2时,得α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11,由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,得m =3,n =1,∴A 5β=A 5(3α1+α2)=3(A 5α1)+A 5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤4353395.(2010·江苏卷)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k001,N =⎣⎢⎡⎦⎥⎤0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.解 由题设得,MN =⎣⎢⎡⎦⎥⎤k00 1⎣⎢⎡⎦⎥⎤0 110=⎣⎢⎡⎦⎥⎤0 k 10, 由⎣⎢⎡⎦⎥⎤0 k 10⎣⎢⎡⎦⎥⎤0 -2 -20 0 1=⎣⎢⎡⎦⎥⎤0 0 k 0 -2 -2,可知A 1(0,0)、B 1(0,-2)、C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知: |k |=2×1=2.所以k 的值为2或-2.6.设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.(1)求矩阵M 的特征值及相应的特征向量; (2)求逆矩阵M-1以及椭圆x 24+y 29=1在M -1的作用下的新曲线的方程.解 由题意M =⎣⎢⎡⎦⎥⎤2 00 3, (1)由|M -λE |=0得,λ1=2,λ2=3, 当λ1=2,⎩⎨⎧ (2-2)x =0,3y =0,∴y =0,取x =1; 当λ2=3,⎩⎨⎧2x =0,(3-3)y =0,∴x =0,取y =1.所以,特征值为2和3,特征值2对应的特征向量⎣⎢⎡⎦⎥⎤10,特征值3对应的特征向量⎣⎢⎡⎦⎥⎤01.(2)由逆矩阵公式得:M -1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 13, 设P (x 0,y 0)是椭圆x 24+y29=1上任意一点P 在M -1下对应P ′(x ,y ),则⎣⎢⎢⎡⎦⎥⎥⎤12 00 13⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y , ∴⎩⎨⎧x 0=2x ,y 0=3y ,所以,椭圆x 24+y 29=1在M -1的作用下的新曲线的方程为 x 2+y 2=1.。
2014年高考数学(江苏专用)二轮专题复习素材:常考问题18
常考问题18 二项式定理及数学归纳法[真题感悟](2013·江苏卷)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k -1k ,…,(-1)k -1k ,…,即当(k -1)k 2<n ≤k (k +1)2(k ∈N *)时,a n =(-1)k -1k ,记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数;(2)求集合P 2 000中元素的个数.解 (1)由数列{a n }的定义得a 1=1,a 2=-2,a 3=-2,a 4=3,a 5=3,a 6=3,a 7=-4,a 8=-4,a 9=-4,a 10=-4,a 11=5,所以S 1=1,S 2=-1,S 3=-3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=-2,S 9=-6,S 10=-10,S 11=-5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=-a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=-i (2i +1)(i ∈N *).事实上,①当i =1时,S i (2i +1)=S 3=-3,-i (2i +1)=-3,故原等式成立; ②假设i =m 时成立,即S m (2m +1)=-m (2m +1),则i =m +1时 ,S (m +1)(2m +3)=S m (2m +1)+(2m +1)2-(2m +2)2=-m (2m +1)-4m -3=-(2m 2+5m +3)=-(m +1)(2m +3).综合①②可得S i (2i +1)=-i (2i +1).于是S (i +1)(2i +1)=S i (2i +1)+(2i +1)2=-i (2i +1)+(2i +1)2=(2i +1)(i +1). 由上可知S i (2i +1)是2i +1的倍数,而a i (2i +1)+j =2i +1(j =1,2,…,2i +1),所以S i (2i +1)+j =S i (2i +1)+j (2i +1)是a i (2i +1)+j (j =1,2,…,2i +1)的倍数.又S (i +1)(2i +1)=(i +1)·(2i +1)不是2i +2的倍数,而a (i +1)(2i +1)+j =-(2i +2)(j =1,2,…,2i +2),所以S (i +1)(2i +1)+j =S (i +1)(2i +1)-j (2i +2)=(2i +1)(i +1)-j (2i +2)不是a (i +1)(2i +1)+j (j =1,2,…,2i +2)的倍数,故当l =i (2i +1)时,集合P l 中元素的个数为1+3+…+(2i -1)=i 2,于是,当l =i (2i +1)+j (1≤j ≤2i +1)时,集合P l 中元素的个数为i 2+j .又2 000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1 008.[考题分析]高考对本内容的考查主要有:(1) 二项式定理的简单应用,B级要求;(2)数学归纳法的简单应用,B级要求。
江苏省2014届高三高考模拟专家卷 数学(2) Word版含答案
23.已知Sn=1+++…+.
(1)求S2,S4的值;
(2)若Tn=,试比较 与Tn的大小,并给出证明.
参考答案及评分标准
一、填空题:本大题共14小题,每小题5分,共70分.
1.(0,1]2.33.84.72%5.
20.(本题满分16分)
已知数列 满足 (n∈N*),且a2=6.
(1)求数列{an}的通项公式;
(2)设 (n∈N*,c为非零常数),若数列{bn}是等差数列,记cn=,Sn=c1+c2+…+cn,求Sn.
数学附加题
21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4—1:几何证明选讲
如图,AB是⊙O的直径,点P在AB的延长线上,PC与⊙O相切于点C,PC=AC=1.求⊙O的半径.
B.选修4—2:矩阵与变换
已知△ABC三个顶点的坐标分别是A(0, 2),B(1,1),C(1,3).若△ABC在一个切变变换T作用下变为△A1B1C1,其中B(1,1)在变换T作用下变为点B1(1,-1).
化简,得a2+c2-b2=ac.
18.(本题满分16分)
已知椭圆C:+=1(a>b>0)的左焦点为F1(-3,0),过点F1作一条直线l交椭圆于A,B两点,点A关于坐标原点O的对称点为A1,两直线AB,A1B的斜率之积为-.
(1)求椭圆C的方程;高考资源网
(2)已知D(m,0)为F1右侧的一点,连AD,BD分别交椭圆左准线于M,N两点,若以MN为直径的圆恰好过点F1,求m的值.
(江苏专版)2014届高考数学大二轮专题复习 审题 解题 回扣(要点回扣+易错警示+查缺补漏)数列的
数列的综合应用 (推荐时间:70分钟)1.已知数列{a n }满足:a 1=1,a 2=a (a >0).数列{b n }满足b n =a n a n +1(n ∈N *).(1)若{a n }是等差数列,且b 3=12,求a 的值及{a n }的通项公式;(2)若{a n }是等比数列,求{b n }的前n 项和S n .解 (1)∵{a n }是等差数列,a 1=1,a 2=a ,∴a n =1+(n -1)(a -1).又∵b 3=12,∴a 3a 4=12,即(2a -1)(3a -2)=12,解得a =2或a =-56. ∵a >0,∴a =2.∴a n =n .(2)∵{a n }是等比数列,a 1=1,a 2=a (a >0),∴a n =an -1,∴b n =a n a n +1=a 2n -1. ∵b n +1b n=a 2, ∴数列{b n }是首项为a ,公比为a 2的等比数列.当a =1时,S n =n ;当a ≠1时,S n =a a 2n -1a 2-1=a 2n +1-a a 2-1. 综上,S n =⎩⎪⎨⎪⎧ n a =1,a 2n +1-a a 2-1a ≠1. 2.在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n <k 对任意n ∈N *恒成立.若存在,求出正整数k 的最小值;不存在,请说明理由. 解 (1)设数列{a n }的公比为q ,由题意可得a 3=16.又a 3-a 2=8,则a 2=8,∴q =2.∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n n +34. ∵1S n =4n n +3=43⎝ ⎛⎭⎪⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3 =43⎝ ⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<229, ∴正整数k 的最小值为3.3.已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n . 解 (1)由题知,当n =k ∈N *时, S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2, 故k 2=16(k ∈N *),因此k =4,从而a n =S n -S n -1=92-n (n ≥2). 又a 1=S 1=72,所以a n =92-n . (2)设b n =9-2a n 2n =n 2n -1, T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n 2n -1, 所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 4.(2012·某某)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m)内的项的个数记为b m ,求数列{b m }的前m 项和S m .解 (1)因为{a n }是一个等差数列,所以a 3+a 4+a 5=3a 4=84,所以a 4=28.设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9.由a 4=a 1+3d 得28=a 1+3×9,即a 1=1,所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *).(2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8,因此9m -1+1≤n ≤92m -1, 故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1) =9×1-81m 1-81-1-9m 1-9 =92m +1-10×9m +180. 5.已知等差数列{a n }的首项a 1=4,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前三项,记{b n }的前n 项和为T n ,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立,某某数λ的最小值.解 (1)由a 2+a 7+a 12=-6得a 7=-2,又a 1=4,所以公差d =-1,所以a n =5-n ,从而S n =n 9-n2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列的公比为q ,则q =b 2b 1=12, 所以T n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n . 因为f (n )=⎝ ⎛⎭⎪⎫12n 是关于自然数n 的减函数, 所以{T n }是递增数列,得4≤T n <8.又S m =m 9-m2=-12⎝ ⎛⎭⎪⎫m -922+818, 当m =4或m =5时,S m 取得最大值,即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立,则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.6.某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%.(1)设第n 年该生产线的维护费用为a n ,求a n 的表达式;(2)若该生产线前n 年每年的平均维护费用大于12万元时,需要更新生产线.求该生产线前n 年每年的平均维护费用,并判断第几年年初需要更新该生产线?解 (1)由题知,当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,故a n =4+(n -1)×2=2n +2.当n ≥8时,数列{a n }从a 7开始构成首项为a 7=2×7+2=16,公比为1+25%=54的等比数列, 则此时a n =16×⎝ ⎛⎭⎪⎫54n -7, ∴a n =⎩⎪⎨⎪⎧2n +2,n ≤7,16×⎝ ⎛⎭⎪⎫54n -7,n ≥8. (2)设S n 为数列{a n }的前n 项和, 当1≤n ≤7时,S n =4n +n n -12×2=n 2+3n , 当n ≥8时,由S 7=70,则S n =70+16×54×1-⎝ ⎛⎭⎪⎫54n -71-54=80×⎝ ⎛⎭⎪⎫54n -7-10, ∴该生产线前n 年的每年平均维护费用为S n n =⎩⎪⎨⎪⎧ n +3,1≤n ≤7,80×⎝ ⎛⎭⎪⎫54n -7-10n ,n ≥8.当1≤n ≤7时,⎩⎨⎧⎭⎬⎫S n n 为递增数列,当n ≥8时, 因为S n +1n +1-S n n =80×⎝ ⎛⎭⎪⎫54n -6-10n +1-80×⎝ ⎛⎭⎪⎫54n -7-10n =80×⎝ ⎛⎭⎪⎫54n -7·⎝ ⎛⎭⎪⎫n 4-1+10n n +1>0, ∴S n +1n +1>S n n. ∴⎩⎨⎧⎭⎬⎫S n n 也为递增数列. 又∵S 77=10<12,S 88=80×54-108=11.25<12, S 99=80×⎝ ⎛⎭⎪⎫542-109≈12.78>12, 则第9年年初需更新生产线.。
江苏省2014年高考数学二轮专题复习素材:训练8
常考问题8 平面向量的线性运算及综合应用(建议用时:50分钟)1.(2012·苏州期中)已知向量a =(2,x ),b =(x -1,1),若a ∥b ,则x 的值为________. 解析 由a ∥b ,得2-x (x -1)=0,解得x =2或-1. 答案 2或-12.已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13则|b | 等于________. 解析 向量a 与b 的夹角为120°,|a |=3,|a +b |=13, 则a ·b =|a ||b |·cos 120°=-32|b |, |a +b |2=|a |2+2a ·b +|b |2.所以13=9-3|b |+|b |2,则|b |=-1(舍去)或|b |=4. 答案 43.已知非零向量a ,b ,c 满足a +b +c =0,向量a 与b 的夹角为60°,且|a |=|b |=1,则向量a 与c 的夹角为________.解析 因为a +b +c =0,所以c =-(a +b ).所以|c |2=(a +b )2=a 2+b 2+2a ·b =2+2cos 60°=3.所以|c |= 3.又c ·a =-(a +b )·a =-a 2-a ·b =-1-cos 60°= -32,设向量c 与a 的夹角为θ,则cos θ=a ·c |a ||c |=-321×3=-32.又0°≤θ≤180°,所以θ=150°. 答案 150°4.(2013·天一、淮阴、海门中学联考)在△ABC 中,已知AB →·AC →=4,AB →·BC →=-12,则|AB→|=________. 解析 将AB →·AC →=4,AB →·BC →=-12两式相减得AB →·(AC →-BC →)=AB →2=16,则|AB →|=4. 答案 45.(2013·新课标全国Ⅱ卷)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD→=________.解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD→-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.答案 26.(2013·安徽卷改编)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是________.解析 由|OA →|=|OB →|=OA →·OB→=2,知cos ∠AOB =12,又0≤∠AOB ≤π,则∠AOB =π3,又A ,B 是两定点,可设A (3,1),B (0,2),P (x ,y ),由OP→=λOA →+μOB →,可得⎩⎨⎧x =3λ,y =λ+2μ⇒⎩⎪⎨⎪⎧λ=33x ,μ=y 2-36x .因为|λ|+|μ|≤1,所以⎪⎪⎪⎪⎪⎪33x +⎪⎪⎪⎪⎪⎪y 2-36x ≤1,当⎩⎨⎧x ≥0,3y -3x ≥0,时,3y +3x ≤6由可行域可得S 0=12×2×3=3,所以由对称性可知点P 所表示的区域面积S =4S 0=4 3. 答案 4 37.如图,在正方形ABCD 中,已知AB =2,M 为BC 的中点,若N 为正方形内(含边界)任意一点,则AM →·AN →的最大值是________.解析 由数量积的定义得AM →·AN →=|AM →|·|AN→|cos ∠NAM ,当N 点与C 点重合时,|AN→|cos ∠NAM 最大,解三角形得最大值为65,所以AM →·AN→的最大值是6.8.在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3P B →|的最小值为______. 解析 建立如图所示的直角坐标系,设DC =m ,P (0,t ),t ∈[0,m ],由题意可知,A (2,0),B (1,m ),P A →=(2,-t ),P B →=(1,m -t ),P A →+3P B →=(5,3m -4t ),|P A →+3P B →|=52+(3m -4t )2≥5,当且仅当t =34m 时取等号,即|P A →+3P B →|的最小值是5. 答案 59.(2013·南通模拟)已知a =(sin α,sin β),b =(cos(α-β),-1),c =(cos(α+β),2),α,β≠k π+π2(k ∈Z ). (1)若b ∥c ,求tan α·tan β的值; (2)求a 2+b·c 的值.解 (1)若b ∥c ,则2cos(α-β)+cos(α+β)=0, ∴3cos αcos β+sin αsin β=0,∵α,β≠k π+π2(k ∈Z ),∴tan αtan β=-3. (2)a 2+b·c =sin 2α+sin 2β+cos(α-β)cos(α+β)-2 =sin 2α+sin 2β+cos 2αcos 2β-sin 2αsin 2β-2 =sin 2α+cos 2αsin 2β+cos 2αcos 2β-2 =sin 2α+cos 2α-2=1-2=-1.10.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,C =π3,求△ABC 的面积. (1)证明 因为m ∥n ,所以a sin A =b sin B ,即a ·a 2R =b ·b 2R (其中R 是△ABC 外接圆的半径),所以a =b .所以△ABC 为等腰(2)解 由题意,可知m ·p =0,即a (b -2)+b (a -2)=0,所以a +b =ab ,由余弦定理,知4=c 2=a 2+b 2-2ab cos π3=(a +b )2-3ab ,即(ab )2-3ab -4=0,所以ab =4或ab =-1(舍去).所以S △ABC =12ab sin C =12×4×sin π3= 3.11.(2013·苏北四市模拟)如图所示,A ,B 分别是单位圆与x 轴、y 轴正半轴的交点,点P 在单位圆上,∠AOP =θ(0<θ<π),C 点坐标为(-2,0),平行四边形OAQP 的面积为S .(1)求O A →·O Q →+S 的最大值; (2)若CB ∥OP ,求sin ⎝ ⎛⎭⎪⎫2θ-π6的值.解 (1)由已知,得A (1,0),B (0,1),P (cos θ,sin θ), 因为四边形OAQP 是平行四边形, 所以O Q →=O A →+O P →=(1,0)+(cos θ,sin θ) =(1+cos θ,sin θ). 所以O A →·O Q →=1+cos θ. 又平行四边形OAQP 的面积为 S =|O A →|·|O P →|sin θ=sin θ,所以O A →·O Q →+S =1+cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4+1.又0<θ<π,所以当θ=π4时,O A →·O Q →+S 的最大值为2+1. (2)由题意,知C B →=(2,1),O P →=(cos θ,sin θ), 因为CB ∥OP ,所以cos θ=2sin θ.又0<θ<π,cos 2θ+sin 2θ=1, 解得sin θ=55,cos θ=255,所以sin2 θ=2sin θcos θ=45,cos2θ=cos 2θ-sin 2θ=35.所以sin ⎝ ⎛⎭⎪⎫2θ-π6=sin 2θcos π6-cos 2θsin π6=45×32-35×12=43-310. 备课札记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考问题9 等差数列、等比数列
(建议用时:50分钟)
1.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12
+a 13=________.
解析 a 1+a 2+a 3=15⇒3a 2=15⇒a 2=5,a 1a 2a 3=80⇒(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(舍去d =-3),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105. 答案 105
2.(2013·泰州期中)已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2a 8=2,则a 13
a
11
=________.
解析 根据等比数列的性质建立方程组求解.因为数列{a n }是递增等比数列,所以a 2a 8=a 3a 7=2,又a 3+a 7=3,且a 3<a 7,解得a 3=1,a 7=2,所以q 4=2,故a 13
a 11
=q 2= 2.
答案 2
3.(2013·南京二模)设S n 是等差数列{a n }的前n 项和,若S 3S 6
=13,则S 6
S 7
=________. 解析 设等差数列{a n }的公差为d ,则S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d ,所以S 6
S 7=
6a 1+15d 7a 1+21d =27
35.
答案 27
35
4.数列{a n }为正项等比数列,若a 2=1,且a n +a n +1=6a n -1(n ∈N *,n ≥2),则此数列的前4项和S 4=________.
解析 设{a n }的公比为q (q >0),当n =2时,a 2+a 3=6a 1,从而1+q =6
q ,∴q =2或q =-3(舍去),a 1=12,代入可有S 4=12×(1-24)1-2
=15
2.
答案 15
2
5.(2012·南京学情调研)在等比数列{a n }中,若a 1=1
2,a 4=-4,则|a 1|+|a 2|+…+|a 6|=________.
解析 求出等比数列的通项公式,再求和.由等比数列{a n }中,若a 1=12,a 4=-4,得公比为-2,所以a n =12×(-2)n -1,|a n |=1
2×2n -1,所以|a 1|+|a 2|+…
+|a 6|=12(1+2+22+…+25)=12×1-261-2=63
2
.
答案 63
2
6.(2013·新课标全国Ⅰ卷改编)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m
=0,S m +1=3,则m 等于________. 解析 a m =2,a m +1=3,故d =1, 因为S m =0,故ma 1+m (m -1)
2
d =0, 故a 1=-m -12, 因为a m +a m +1=5, 故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5, 即m =5. 答案 5
7.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为前______项的和.
解析 因为S 19=19a 10<0,而由a 11>|a 10|得a 11+a 10>0,所以S 20=10(a 11+a 10)>0,故S n 中最大的负数为前19项的和. 答案 19
8.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭
⎪⎫
12=________.
解析 因为各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,所以a 4=2,q =2,故a n =2
n -3
,又f ′(x )=a 1+2a 2x +3a 3x 2
+…+10a 10x 9
,所以f ′⎝ ⎛⎭
⎪⎫
12=2
-2
+2×2-2
+3×2-2
+…+10×2-2
=2-2
×10×112=55
4.
答案 55
4
9.已知公差不为零的等差数列{a n }的前4项和为10,且a 2,a 3,a 7成等比数列. (1)求通项公式a n ;
(2)设b n =2a n ,求数列{b n }的前n 项和S n . 解 (1)由题意知⎩⎨⎧
4a 1+6d =10,(a 1+2d )2
=(a 1+d )(a 1+6d ), 解得⎩⎨⎧
a 1=-2,d =3,
所以a n =3n -5(n ∈N *).
(2)∵b n =2a n =23n -5=14·8n -1,∴数列{b n }是首项为1
4,公比为8的等比数列,所以S n =14(1-8n
)1-8
=8n -1
28.
10.(2013·杭州模拟)已知数列{a n }是首项为133
,公比为
133
的等比数列,设b n +
15log 3a n =t ,常数t ∈N *. (1)求证:{b n }为等差数列;
(2)设数列{c n }满足c n =a n b n ,是否存在正整数k ,使c k ,c k +1,c k +2按某种次序排列后成等比数列?若存在,求k ,t 的值;若不存在,请说明理由. (1)证明 a n =3-n 3,b n +1-b n =-15log 3⎝
⎛⎭⎪⎫
a n +1a n =5, ∴{
b n }是首项为b 1=t +5,公差为5的等差数列. (2)解
c n =(5n +t ) ·3-n
3, 则c k =(5k +t )·3-k 3,
令5k +t =x (x >0),则c k =x ·3-k 3,c k +1=(x +5)·3-k +13,c k +2=(x +10)·3-k +23.
①若c 2k =c k +1c k +2,则
⎝ ⎛
⎭⎪⎫x ·3-k 32=(x +5)·3-k +13·(x +10)·3-k +23. 化简得2x 2-15x -50=0,解得x =10; 进而求得k =1,t =5; ②若c 2k +1=c k c k +2,
同理可得(x +5)2=x (x +10), 显然无解;
③若c 2k +2=c k c k +1
,同理可得13(x +10)2=x (x +5), 方程无整数根.
综上所述,存在k =1,t =5适合题意.
11.(2013·南通调研)已知数列{a n }成等比数列,且a n >0.
(1)若a 2-a 1=8,a 3=m .①当m =48时,求数列{a n }的通项公式;②若数列{a n }是唯一的,求m 的值;
(2)若a 2k +a 2k -1+…+a k +1-(a k +a k -1+…+a 1)=8,k ∈N *,求a 2k +1+a 2k +2+…+a 3k 的最小值.
解 设公比为q ,则由题意,得q >0.
(1)①由a 2-a 1=8,a 3=m =48,得⎩⎨⎧
a 1q -a 1=8,a 1q 2=48.
解之,得⎩⎨⎧ a 1=8(2-3),q =3+3;或⎩⎨⎧
a 1=8(2+3),
q =3- 3.
所以数列{a n }的通项公式为
a n =8(2-3)(3+3)n -1,或a n =8(2+3)(3-3)n -1.
②要使满足条件的数列{a n }是唯一的,即关于a 1与q 的方程组⎩⎨⎧
a 1q -a 1=8,
a 1q 2
=m .有唯一正数解,即方程8q 2-mq +m =0有唯一解. 由Δ=m 2-32m =0,a 3=m >0,所以m =32,此时q =2. 经检验,当m =32时,数列{a n }唯一,其通项公式是a n =2n +2. (2)由a 2k +a 2k -1+…+a k +1-(a k +a k -1+…+a 1)=8,
得a1(q k-1)(q k-1+q k-2+…+1)=8,且q>1.
a2k+1+a2k+2+…+a3k=a1q2k(q k-1+q k-2+…+1)=
8q2k
q k-1
=8
⎝
⎛
⎭
⎪
⎫
q k-1+
1
q k-1
+2
≥32,
当且仅当q k-1=
1
q k-1
,即q=
k
2,a1=8(
k
2-1)时,
a2k+1+a2k+2+…+a3k的最小值为32.。