2020届中考数学专题复习二次根式专题训练及参考答案
中考数学总复习《二次根式》练习题附带答案
中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
中考数学复习专题综合过关检测—二次根式(含解析)
中考数学复习专题综合过关检测—二次根式(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.(2023•盐城一模)使式子有意义,x的取值范围是()A.x>1B.x=1C.x≥1D.x≤1【答案】C【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:C.2.(2023•长沙县二模)下列根式中与是同类二次根式的是()A.B.C.D.【答案】D【解答】解:A、与不是同类二次根式,不符合题意;B、与不是同类二次根式,不符合题意;C、与不是同类二次根式,不符合题意;D、==2,与是同类二次根式,符合题意;故选:D.3.(2023•钟楼区校级模拟)已知ab<0,则化简后为()A.﹣a B.﹣a C.a D.a【答案】D【解答】解:∵ab<0,﹣a2b≥0,∴b<0∴原式=|a|,=a,故选:D.4.(2023•平罗县一模)计算的结果为()A.﹣11B.11C.±11D.121【答案】B【解答】解:∵∴故选:B.5.(2023•襄阳模拟)下列各数中与3互为相反数的是()A.|﹣3|B.C.D.【答案】C【解答】解:A、3和3的绝对值是同一个数,故A错误,不符合题意.B、3和,是互为倒数,故B错误,不符合题意.C、=﹣3,故C正确;符合题意;D、=3,不是相反数,故D错误.故选:C.6.(2023•德兴市一模)下列各等式中,正确的是()A.=﹣3B.±=3C.﹣=﹣3D.=±3【解答】解:A、没有意义,故A不符合题意;B、,故B不符合题意;C、,故C符合题意;D、,故D不符合题意;故选:C.7.(2023•未央区校级三模)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.C.16D.【答案】B【解答】解:∵n=时,n(n+1)=×(+1)=2+,且2+<15,∴将n=2+再次输入,n(n+1)=(2+)(2++1)=(2+)(3+)=6+5+2=8+5,∵8+5>15,∴输出结果是8+5,故选:B.8.(2023•邢台二模)有甲、乙两个算式:甲:;乙:.说法正确的是()A.甲对B.乙对C.甲、乙均对D.甲、乙均不对【答案】D【解答】解:∵==≠2,2+3≠5,∴甲、乙均不对.故选:D.9.(2023•大同模拟)从高空中自由下落的物体,其落到地面所需的时间与物体的质量无关,只与该物体受到的重力加速度有关,若物体从离地面为h(单位:m)的高处自由下落,落到地面所用的时间t(单位:s)与h的关系式为t=(k为常数)表示,并且当h=80时,t=4,则从高度为100m的空中自由下落的物体,其落到地面所需的时间为()A.s B.s C.s D.s【答案】D【解答】解:由题意得=4,解得k=5,∴当h=100时,t===2(s),∴从高度为100m的空中自由下落的物体,其落到地面所需的时间为2s,故选:D.10.(2023•蚌山区模拟)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+【答案】A【解答】解:代入计算可得,f()+f()=1,f()+f()=1,…,f()+f()=1,所以,原式=+(n﹣1)=n﹣.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2024•辽宁模拟)计算:=.【答案】.【解答】解:=,故答案为:.12.(2023•遵义模拟)计算的结果是2.【答案】2.【解答】解:原式=2.故答案为:2.13.(2023•榕城区二模)已知实数a在数轴上的位置如图所示,则化简的结果是1.【答案】1.【解答】解:由题意得,0<a<1,∴a﹣1<0,∴,故答案为:1.14.(2023•道外区二模)计算﹣3的结果是3.【答案】见试题解答内容【解答】解:原式=4﹣3×=4﹣=3.故答案为:3.15.(2023•南通二模)如图,从一个大正方形中恰好可以裁去面积为2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中阴影部分),则大正方形的边长为3cm.【答案】3.【解答】解:从一个大正方形中裁去面积为2cm2和8cm2的两个小正方形,则大正方形的边长是+=+2=3(cm).故答案为:3.16.(2023•绥化模拟)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为.如果在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为.【答案】6.【解答】解:∵a=5,b=6,c=7,∴p==9,则S===6.故答案为:6.三、解答题(本题共7题,共58分)。
二次根式练习题及参考答案
二次根式练习题及参考答案一、选择题1. 下列各式中,是二次根式的是()A. √2B. 2+√3C. (√2)^2D. 1/√22. 二次根式的定义域是()A. 正实数集B. 全体实数集C. 负实数集D. 零集3. 已知a为正数,b为非负数,则必有()A. √a ≠ √bB. √a > √bC. √a < √bD. √a = √b4. 如果√a = √b,则()A. a = bB. a ≤ bC.a ≥ bD. a > b5. 下列哪个数是二次根式()A. 2B. 49C. 5^2D. 3^2二、计算题1. 计算√(3+2√2) 的值。
解答:将√(3+2√2) 分解成 r+s 的形式,即等于√2 + r + s,其中 r 和 s 都是实数。
则有:√2 + r + s = √(3+2√2)√2 = √(3+2√2) - r - s为了消去开方,上式两边平方可得:2 =3 + 2√2 - 2(r+s) + r^2 + s^2 + 2rs2 =3 + r^2 + s^2 + 2rs + √2(2 - 2(r+s))由于√2和(2 - 2(r+s))都是独立存在的,所以它们的系数和常数必须分别为零。
根据此条件可以整理出以下两个方程:2 - 2(r+s) = 02 =3 + r^2 + s^2 + 2rs解得 r = 1,s = 0。
因此:√(3+2√2) = √2 + 1 + 0 = √2 + 12. 计算(√3+1)(√3-1) 的值。
解答:使用公式 (a + b)(a - b) = a^2 - b^2,将a = √3,b = 1 代入,得到:(√3+1)(√3-1) = (√3)^2 - 1^2= 3 - 1= 2三、解答题1. 计算√18 - √8 的值。
解答:将√18 和√8 分别化简,得到:√18 = √(9 × 2) = √9 × √2 = 3√2√8 = √(4 × 2) = √4 × √2 = 2√2因此,√18 - √8 = 3√2 - 2√2 = √22. 计算√(6 + 3√2) + √(6 - 3√2) 的值。
2020年中考数学必考专题04 二次根式的运算(解析版)
专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。
(或是说,表示非负数的算术平方根的式子,叫做二次根式)。
2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。
(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。
反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。
7.分母有理化的方法:分子分母同乘以分母的有理化因式。
8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。
如:①的有理化因式为,②的有理化因式为。
(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。
即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。
一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
【精选】2020中考数学 二次根式专项复习(含答案)
2020中考数学二次根式专项复习(含答案)例1 二次根式的概念(1)下列式子中:;③;)1x>;.其中是二次根式的有.(填序号)【答案】①③⑤⑦(2)当x何值时,下列式子有意义?1x-;x.【答案】①2x≥;② 2 2x x≥≤-或;③ 2 1x x≤≠且;④12x>;⑤ 2 0x x≥-≠且.例2 二次根式的非负性(1)已知:x,y为实数,且3y,则xy的算术平方根为________.【答案】32.(2)已知实数x y,()210y+=,则3=x y-________.【答案】13.(3)当a=_____________;当a=_______取最小值_______.【答案】1, 0 ; 0 , 14-.例3 二次根式的重要公式(1)填空:2=;2=.【答案】52a,32a b(2)若14x<<=__________.【答案】3.(3|1|x-_________. 【答案】8.(4)对于所有实数,a b,下列等式总能成立的是()A.2a b=+B a b=+C22a b=+Da b=+【答案】C.最简二次根式例4 请将下列二次根式化为最简二次根式:(1________ ________; (2________________;(3________ ________________;(42)=________x ≥ ()_________0x => ;_________= _________(0x >,0y >).【答案】(1) 2 5m (2)55a ;(3)7a ;(4)3- 例5 同类二次根式(1,是同类二次根式的是________.(2)最简二次根式和3-则a 的值是 . 【答案】(1)②④;(2)2.能力提升二次根式的乘除运算 例6 计算:(1(2)5÷(3)00a b >>,【答案】(1)12 , 2(2)(3)例7 分母有理化:;= ;.【答案】2-二次根式的混合运算 例8 计算:(1)⎛÷ ⎝(2)(3)÷【答案】(1)143;(2)-;(3例9(1)已知01a <<.(2)已知1a =-,求22121a a a a a-+---的值.(3)已知x =,y =-【答案】(1)原式2a=;(2)原式113a a =-+=-;(3)原式x y x y +==-.练1 (1)下列根式中有几个二次根式( )A .1个B .2个C .3个D .4个(2) x 的取值范围是( )A.1x ≥B.12x -≤≤C.2x ≤D.12x -<< 【答案】(1)C ;(2)B .练2 (1)x y =xy 的值是( ) A .B .C .m n +D .m n -(2)若05x <<,则5x -+________.【答案】(1)D (2)0练3 (1)已知3y =,求32x y +的平方根是________.(22(3)0y +=,则x y -的值为( ) A .1B .-1C .7D .-7(3)已知()2320a b ++-+,则2a b c +-=________.【答案】(1)±(2)C;(3)0练4 (1)下列根式()A.2个B.3个C.4个D.5个(2)a的取值可以是()A.5B.3C.7D.8【答案】(1)C;(2)B.练5 计算:(1) 下面计算正确的是()A.=-=C D23 B3【答案】B(2【答案】52.。
2020年中考数学 二次根式复习练习题(含答案)
2020中考数学 二次根式复习题(含答案)一、单选题(共有8道小题)1.函数y =1x +中自变量x 的取值范围为( )A.0x ≥B.1x ≥-C.1x >-D.1x ≥2.计算32827⨯+-的结果为( )A. -1B. 1C. 433-D. 7 3.若式子12x -在实数范围内有意义,则x 的取值范围是( ) A.x >1 B.x <1 C.x ≥1 D.x ≤14.在二次根式72,35a ,3,9,2x中,最简二次根式的个数是( ). A .1个B .2个C .3个D .4个5.下列根式中,不能与3合并的是( )A.13B.33C.23D.126.要使代数式x 32-有意义,则x 的( )A .最大值是32 B .最小值是32 C .最大值是23 D .最小值是23 7.下列运算正确的是( )A .326x x x =÷B .283=-C .()222224x y x xy y +=++ D .2818=-8.函数13x y x -=-的自变量的取值范围是( ) A.1x > B.13x x >≠且 C.1x ≥D.13x x ≥≠且二、填空题(共有10道小题) 9.在36,34,293中最简二次根式为 10.化简:3100=11.计算:255⎪⎪⎭⎫⎝⎛= 12.化简:72= 13.133x xy ⋅= 14.分母有理化:()123-+=15.若33a a ---有意义,则a 的值为___________. 16.计算:()111312 3.142π-⎛⎫-+---- ⎪⎝⎭= . 17.关于m 的一元二次方程22720nm n m --=的一个根为2,则22n n -+=18.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左至右第2n -个数是___(用含n 的代数式表示).三、计算题(共有3道小题)19.计算:()21122233+-+-20.计算321224⨯÷121第行32562第行72231011233第行1314154173219254第行ggg ggg ggg ggg ggg ggg ggg gggggg21.计算:()0142164123π--+--⨯+÷四、解答题(共有3道小题)22.若 03332=⎪⎪⎭⎫⎝⎛-++y x ,求()2021x y ⋅的值。
初中数学 中考复习二次根式专题练习(含答案)
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
2019-2020中考数学专题复习试卷及答案解析:二次根式(含解析)
2019-2020中考数学专题复习试卷及答案解析:二次根式(含解析)二次根式一、选择题1.下列计算正确的是()A. B.C. D.2.下列四个数中,是负数的是( )A. B.C.D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1 B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B.C.D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4 D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2 B. 2C. 2 ﹣6 D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B.C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个 D. 6个11.化简为()A. 5﹣4B. 4﹣l C. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个 D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。
16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。
中考数学总复习《二次根式》练习题附有答案
中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。
中考数学复习《二次根式》专项练习题-附带答案
中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。
中考数学专题特训第六讲:二次根式(含详细参考答案)
中考数学专题复习第六讲:二次根式【基础知识回顾】 一、二次根式式子a ( )叫做二次根式【赵老师提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】二、二次根式的性质:①(a )2= (a ≥0)= (a ≥0 ,b ≥0)(a ≥0, b ≥0)【赵老师提醒:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小】 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算【赵老师提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 】 【重点考点例析】考点一:二次根式有意义的条件(a ≥o )(a <o )例1 (2012•潍坊)如果代数式43x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≥3思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练1.(2012•德阳)使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12 C .x≥0且x≠12D .一切实数 1.C1.解:由题意得:2x-1≠0,x≥0, 解得:x≥0,且x≠12, 故选:C .考点二:二次根式的性质例2 (2012•张家界)实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b . 故选C .点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练为 . 1.-b2.解:∵由数轴可知:b <0<a ,|b|>|a|,=|a+b|+a =-a-b+a =-b ,故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3. 点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键. 对应训练4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0,(1)1)4x x x +=本题考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .804.D分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可.=80, 故选D .点评:本题考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算,本题主要考查学生的思维能力和应变能力,题目比较好,是一道具有代表性的题目.【聚焦山东中考】1.(2012•泰安)下列运算正确的是( )A 5=-B .21()164--=C .x 6÷x 3=x 2 D .(x 3)2=x 5 1.B .2.(2012•临沂)计算:= . 2.03.7【备考真题过关】一、选择题A .x >0B .x≥-2C .x≥2D .x≤2 1.DA B .5 C .2 D .22.AA .3BC .D .3.C .A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 4.A即5<m <6, 故选A .5.(2012•南充)下列计算正确的是( )A .x 3+x 3=x 6B .m 2•m 3=m 6C .3=D = 5.D6.(2012•黔东南州)下列等式一定成立的是( )A .945-=B .5315⨯=C .93=±D .2(9)9--=6.B7.(2012•广西)使式子有意义的x 的取值范围是( )A . x ≥﹣1B . ﹣1≤x ≤2C . x ≤2D .﹣1<x <2 考点: 二次根式有意义的条件。
二次根式中考数学复习专题含答案
第三节二次根式点对点·本节内考点巩固10分钟1. (2020济宁)下列各式是最简二次根式的是()A. 13B. 12C. a3D. 5 32. (2020上海改编)下列二次根式中,能与3合并的是()A. 6B. 9C. 12D. 183. (2020宁波)二次根式x-2中字母x的取值范围是()A. x>2B. x≠2C. x≥2D. x≤24. (2020桂林)若x-1=0,则x的值是()A. -1B. 0C. 1D. 25. (2020绥化改编)下列等式成立的是()A.16=±4B.3-8=2C. -32=3 D.-64=-86. (2020重庆A卷)下列计算中,正确的是()A. 2+3= 5B. 2+2=22C. 2×3= 6D. 23-2=37.如果a+1与12的和等于33,那么a的值是()A. 0B. 1C. 2D. 38. (2020天津)估计22的值在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间9. (2020临沂)设a=7+2,则()A. 2<a<3B. 3<a<4C. 4<a<5D. 5<a<610. (2020河北临门一卷)已知m为正整数,若39<m-1,则m的最小值为()A. 7B. 8C. 9D. 1011. (2020遵义)计算12-3的结果是________.12. (2020营口)(32+6)(32-6)=________.13. (2020哈尔滨)计算24+616的结果是______.14. (2020南京)计算33+12的结果是________.15.(创新题推荐)开放性试题(2020北京)写出一个比 2 大且比15小的整数________.16.(创新题推荐)新定义问题(2020青海省卷)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=a+ba-b,如:3⊕2=3+23-2=5,那么12⊕4=________.点对线·板块内考点衔接5分钟17. (2020赤峰)估计(23+32)×13的值应在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间18.如图,计算-8-3-27的结果落在()第18题图A. 段①B. 段②C. 段③D. 段④19. (2020石家庄模拟)计算:(5+2)2+(5-2)2时,李明是这样做的:(5+2)2+(5-2)2=(5)2+(2)2+(5)2-(2)2①=5+2+5-2②=10③你认为:()A. 没错B. 第①步错了C. 第②步错了D. 第③步错了20. (2020山西) 计算:(3+2)2-24=______.点对面·跨板块考点迁移5分钟21.下列结果能用二次根式表示的是()A. 边长为2的正方形的面积B. 面积为2的正方形的边长C. 边长为2的正方形的周长D. 底和高分别为2和1的三角形的面积22.如图,小幸学习了在数轴上画出表示无理数的点的方法后,进行以下练习:首先画出数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3.以点O为圆心,OB为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A. 3和3.5之间B. 3.5和4之间C. 4和4.5之间D. 4.5和5之间第22题图第三节二次根式1. A2. C3. C【解析】由题意得,x-2≥0,解得x≥2.4. C【解析】当x-1=0时,则x-1=0,∴x=1.5. D【解析】逐项分析如下:6.C【解析】A选项不是同类二次根式不能合并,错误;B选项不是同类二次根式不能合并,错误;C选项根据二次根式的乘法法则,得原式=2×3=6,正确;D选项不是同类二次根式不能合并,错误.7.C【解析】∵a+1与12=23的和等于33,∴a+1=33-23=3,故a+1=3,则a=2.8. B【解析】∵16<22<25,∴16<22<25,∴4<22<5,即22在4和5之间.9. C【解析】∵4<7<9,∴2<7<3,∴4<7+2<5,即4<a<5.10. B【解析】∵36<39<49,∴36<39<49,即6<39<7,∴m-1≥7,解得m≥8,∴m的最小值为8.11.3【解析】原式=23-3= 3.12. 12【解析】原式=(32)2-(6)2=18-6=12.13. 36【解析】原式=26+6=3 6.14.13【解析】把分子分母同时除以3,原式=3333+123=11+2=13.15. 2(或3)16.2【解析】由题意得12⊕4=12+412-4=422= 2.17. A【解析】原式=2+ 6.∵4<6<9,即2<6<3,∴4<2+6<5.18. B【解析】∵-8-3-27 =-22-(-3) =-22+3 =3-2 2 ,∵1<2<2,∴2<22<4,∴-1<3-2 2 <1,∴落在段②.19. B20. 5【解析】原式=3+26+2-26=5.21. B22. B【解析】由勾股定理得,OB=AB2+OA2=32+22=13,∵9<13<16,∴3<13<4,∴该点P位置大致在数轴上3和4之间,∵3.52=12.25<13,∴则点P所表示的数介于3.5和4之间.。
2020年中考数学一轮复习基础考点专题10二次根式(含解析)
专题10 二次根式考点总结【思维导图】【知识要点】知识点一二次根式的有关概念和性质二次根式概念:一般地,我们把形如(?≥0)的式子叫做二次根式,“ ”称为二次根号。
【注意】1.二次根式,被开方数a可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(?≥0)就表示a的算术平方根。
二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。
2.结果的取值范围相同,两者的结果都是非负数。
3.当a≧0时,考查题型一利用二次根式非负性解题1.(2013·四川中考真题)已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣6【答案】A【解析】根据算术平方根和绝对值的非负数性质,得:,解得:。
∵y为负数,∴6﹣m<0,解得:m>6。
故选A。
2.(2016·四川中考真题)若 +b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.2【答案】D【解析】试题分析:由,得:a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选D.3.(2012·湖北中考真题)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27【答案】D【解析】依题意得 .∴x+y=27.故选D.考查题型二判断二次根式有意义的取值范围1.(2013·四川中考真题)若代数式有意义,则实数x的取值范围是()A. B. C. D.且【答案】D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1。
故选D。
2.(2018·内蒙古中考真题)代数式中x的取值范围在数轴上表示为()A. B.C. D.【答案】A【详解】由题意,得:3﹣x≥0且x﹣1≠0,解得:x≤3且x≠1,在数轴上表示如图:.故选A.3.(2018·山东中考真题)若式子有意义,则实数m的取值范围是A. B.且C. D.且【答案】D【详解】由题意可知:∴m≥﹣2且m≠1故选D.考查题型三根据二次根式性质进行化简1.(2012·湖南中考真题)实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.-2a+b C.b D.2a-b【答案】C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,∴ .故选C.2.(2016·山东中考真题)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b【答案】A【详解】由图可知:,∴ ,∴ .故选A.3.(2011·北京中考真题)如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B. . 4.(2015·湖北中考真题)当1<a<2时,代数式+|1-a|的值是( ) A.-1 B.1 C.2a-3 D.3-2a【答案】B【解析】试题解析:∵1<a<2,∴ =|a-2|=-(a-2),|a-1|=a-1,∴ +|a-1|=-(a-2)+(a-1)=2-1=1.故选A.5.(2011·四川中考真题)已知,则的值为()A. B. C. D.【答案】A【解析】试题解析:由,得,解得.2xy=2×2.5×(-3)=-15,故选A.知识点二二次根式的运算二次根式的乘法法则:【注意】1、要注意这个条件,只有a,b都是非负数时法则成立。
中考数学总复习《二次根式》专项测试卷有答案
中考数学总复习《二次根式》专项测试卷有答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.如果二次根式√a 有意义,那么a 的值可以是( ) A .-3 B .-2.5 C .-1 D .12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是( ) A .2 B .5 C .10 D .203.计算√92−62所得结果是( ) A .3 B .√6C .3√5D .±3√54.估计√6的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是( )A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 .9.(2024·广东)计算:20×|-13|+√4-3-1.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.B层·能力提升=( )11.若a=√2,b=√7,则√14a2b2A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在( )A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数.14.(2024·上海)已知√2x−1=1,则.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形=10,S正方形GHIJ=1,则正方形DEFG的边长可以是.(写出一个答案即可) ABCD16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC a,b,c,记p=a+b+c2中,a=7,b=5,c=6,则BC边上的高为.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.C层·挑战冲A+19.阅读下面材料:将边长分别为a,a+√b,a+2√b,a+3√b的正方形面积分别记为S1,S2,S3,S4.则S2-S1=(a+√b)2-a2=[(a+√b)+a]·[(a+√b)-a]=(2a+√b)·√b=b+2a√b.例如:当a=1,b=3时,S2-S1=3+2√3.根据以上材料解答下列问题:(1)当a=1,b=3时,S3-S2=,S4-S3=;(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.参考答案A层·基础过关1.(2024·南宁模拟)如果二次根式√a有意义,那么a的值可以是(D)A.-3B.-2.5C.-1D.12.(2024·广东)完全相同的4个正方形面积之和是100,则正方形的边长是(B) A .2 B .5 C .10 D .203.(2024·包头)计算√92−62所得结果是(C) A .3 B .√6C .3√5D .±3√54.估计√6的值在(B)A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(2024·呼伦贝尔)实数a ,b 在数轴上的对应位置如图所示,则√(a −b)2-(b -a -2)的化简结果是(A)A .2B .2a -2C .2-2bD .-26.(2024·雅安)使式子√x −1有意义的x 的取值范围是 x ≥1 .7.计算:√18-√8= √2 .8.计算:(√6+√3)(√6-√3)的结果为 3 . 9.(2024·广东)计算:20×|-13|+√4-3-1.【解析】原式=20×13+2-4=203-2=143.10.(2024·雅安)计算:√9-12-1+(-5)×|-15|.【解析】原式=3-32+(-5)×15=3-32-1=12.B 层·能力提升11.若a =√2,b =√7,则√14a 2b 2=(A)A.2B.4C.√7D.√212.估计√2(√8+√10)的值应在(B)A.7和8之间B.8和9之间C.9和10之间D.10和11之间13.(2024·滨州)写出一个比√3大且比√10小的整数2(或3).14.(2024·上海)已知√2x−1=1,则x=1.15.(2024·深圳)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD=10,S正方形GHIJ=1,则正方形DEFG的边长可以是2(答案不唯一).(写出一个答案即可)16.阅读材料:希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c2,那么三角形的面积为S=√p(p−a)(p−b)(p−c).如图,在△ABC中,a=7,b=5,c=6,则BC边上的高为12√67.17.(2024·赤峰)计算:√9+(π+1)0+2sin 60°+|2-√3|.【解析】原式=3+1+2×√32+2-√3=4+√3+2-√3=6.18.(2024·广元)先化简,再求值;(3x+yx2−y2+2xy2−x2)÷2x2y−xy2,其中x=√3+1,y=√3.【解析】原式=(3x+yx 2−y 2-2xx 2−y 2)÷2x 2y−xy 2=3x+y−2x (x−y)(x+y)·xy(x−y)2 =x+y (x−y)(x+y)·xy(x−y)2=xy 2当x =√3+1,y =√3时 原式=√3(√3+1)2=3+√32. C 层·挑战冲A +19.阅读下面材料:将边长分别为a ,a +√b ,a +2√b ,a +3√b 的正方形面积分别记为S 1,S 2,S 3,S 4. 则S 2-S 1=(a +√b )2-a 2 =[(a +√b )+a ]·[(a +√b )-a ] =(2a +√b )·√b =b +2a √b .例如:当a =1,b =3时,S 2-S 1=3+2√3. 根据以上材料解答下列问题:(1)当a =1,b =3时,S 3-S 2= 9+2√3 ,S 4-S 3= 15+2√3 ; 【解析】(1)S 3-S 2=(a +2√b )2-(a +√b )2 =a 2+4a √b +4b -a 2-2a √b -b =2a √b +3b当a =1,b =3时,S 3-S 2=9+2√3;S 4-S 3=(a +3√b )2-(a +2√b )2=a 2+6a √b +9b -a 2-4a √b -4b =2a √b +5b当a=1,b=3时,S4-S3=15+2√3.(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想.【解析】(2)S n+1-S n=6n-3+2√3;证明:S n+1-S n=(1+√3n)2-[1+(n-1)√3]2=[2+(2n-1)√3]×√3=3(2n-1)+2√3=6n-3+2√3.。
中考数学总复习《二次根式》专项测试题-附参考答案
中考数学总复习《二次根式》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.已知n是正整数,√48n是整数,则n的最小值是( )A.1B.2C.3D.42.下列二次根式中,是最简二次根式的是( ).A.√9B.√12C.√13D.√15 3.按如图所示的程序计算,若开始输入的n值为√2,则最后输出的结果是( )A.14B.16C.8+5√2D.14+√24.在式子2x−1,1x−2,√x−1,√x−2中,x可以同时取1和2的是( )A.2x−1B.1x−2C.√x−1D.√x−25.下列各式中,化简后能与√2合并的是( )A.√12B.√8C.√23D.√0.26.下列运算中:①√4+√(−2)2=0;②√17−√10=√7;③√6√6√6=√6;④√12÷2√3=3;⑤(√6−√24)÷√6=−1;⑥(√6−√6)×√6=√6−1其中正确的有( )A.4个B.3个C.2个D.1个7.等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A.B.C.D.8.已知长方形的面积为12,其中一边长为2√2,则另一边长为( )A.2√2B.3√3C.3√2D.2√3二、填空题(共5题,共15分)9.求代数式√2x+1x−2有意义时的x的范围是.10.已知x、y为实数,且y=√x2−16−√16−x2−3,则x-y= .11.若式子√3−a的值为非负数,则满足条件的所有整数a的方差是12.当a= 时,最简二次根式√a−3与√12−2a的被开数相同。
13.最简二次根式:如果一个二次根式满足下列两个条件:(1)被开方数不含有能的因数或因式;(2)被开方数中的因数是,字母因式是我们把这个二次根式叫最简二次根式,注:二次根式的运算结果应化为最简二次根式.三、解答题(共3题,共45分)14.先化简,再求值:(2a+1−2a+1a2−1)÷a−1a2−2a+1其中a=√3−1.15.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来1<√2<2于是可用√2−1来表示√2的小数部分.请解答下列问题:(1) √35的整数部分是,小数部分是.(2) 如果√11的小数部分为a,√27的整数部分为b,求a+b−√11的值.(3) 已知:90+√117=x+y其中x是整数,且0<y<1,求x+√117+59−y的平方根.−(2+√3)(2−√3)+√27÷√12.16.计算:√12参考答案1. 【答案】C2. 【答案】D3. 【答案】C4. 【答案】B5. 【答案】B6. 【答案】D7. 【答案】D8. 【答案】C9.【答案】x≥12,且x≠210.【答案】7或-111.【答案】351212.【答案】513.【答案】化为平方数或平方式;整数;整式14. 【答案】原式=[2a−2(a+1)(a−1)−2a+1(a+1)(a−1)]÷a−1(a−1)2 =−3(a+1)(a−1)⋅(a−1)=−3a+1,当a=√3−1时原式=√3−1+1=−√3.15. 【答案】(1) 5;√35−5(2) 3<√11<4由题意可知:a=√11−3,b=5所以原式=√11−3+5−√11 =2.(3) 10<√117<11有题意可知:x=100,y=√117−10所以原式=169所以平方根为−13,13.16. 【答案】√12−(2+√3)(2−√3)+√27÷√12=√22−(4−3)+√94=√22−1+32=√2+12.。
2020届中考数学总复习(7)二次根式-精练精析(1)及答案解析
2020届中考数学总复习数与式——二次根式1一.选择题(共8小题)1.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠22.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1D.m≥﹣1且m≠13.在式子,,,中,x可以取2和3的是()A.B.C.D.4.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣15.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣26.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x 1=﹣1,x2=2C.的化简结果是 D.a,b,c均为实数,若a>b,b>c,则a>c7.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①② B.②③ C.①③ D.①②③8.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2二.填空题(共7小题)9.若y=﹣2,则(x+y)y= _________ .10.使二次根式有意义的x的取值范围是_________ .11.已知x、y为实数,且y=﹣+4,则x﹣y= _________ .12.若式子有意义,则实数x的取值范围是_________ .13.计算:﹣= _________ .14.实数a在数轴上的位置如图,化简+a= _________ .15.计算:(+1)(﹣1)= _________ .三.解答题(共8小题)16.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.17.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.18.先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.19.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.20.已知+有意义,求的值.21.计算.22.(1)计算:;(2)先化简,再求值:,其中.23.(1)|﹣|﹣+(π+4)0﹣sin30°+;(2)+÷a,其中a=.数与式——二次根式1参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围是()A.x>2 B.x≥2C.x≤2D.x≠2考点:二次根式有意义的条件.分析:二次根式的被开方数大于等于零.解答:解:依题意,得2﹣x≥0,解得x≤2.故选:C.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:m≥﹣1且m≠1.故选:D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.在式子,,,中,x可以取2和3的是()A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.解答:解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x≥3,x不能取2,故D错误.故选:C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1B.x≠1C.x≥1且x≠﹣1 D.x≥﹣1考点:二次根式有意义的条件;分式有意义的条件.分析:此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.解答:解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.点评:本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2C.x>﹣2 D.x≥﹣2考点:二次根式有意义的条件.分析:直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.解答:解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥﹣2,则实数x的取值范围是:x≥﹣2.故选:D.点评:此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x 1=﹣1,x2=2C.的化简结果是 D. a,b,c均为实数,若a>b,b>c,则a>c考点:二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程-因式分解法.专题:代数综合题.分析:根据二次根式有意义,被开方数大于等于0,因式分解法解一元二次方程,分母有理化以及实数的大小比较对各选项分析判断利用排除法求解.解答:解:A、x<1,则x﹣1<0,无意义,故本选项错误;B、方程x2+x﹣2=0的根是x1=1,x2=﹣2,故本选项错误;C、的化简结果是,故本选项错误;D、a,b,c均为实数,若a>b,b>c,则a>c正确,故本选项正确.故选:D.点评:本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的关键.7.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③考点:二次根式的乘除法.专题:计算题.分析:由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.解答:解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.点评:本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.8.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,﹣2x+4≥0,解得x≤2.故选:D.点评:本题考查的知识点为:二次根式的被开方数是非负数.二.填空题(共7小题)9.若y=﹣2,则(x+y)y= .考点:二次根式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,列式求出x,再求出y,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣4≥0且4﹣x≥0,解得x≥4且x≤4,∴x=4,y=﹣2,∴x+y)y=(4﹣2)﹣2=.故答案为:.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.使二次根式有意义的x的取值范围是x≥﹣3 .考点:二次根式有意义的条件.专题:计算题.分析:二次根式有意义,被开方数为非负数,列不等式求解.解答:解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:用到的知识点为:二次根式的被开方数是非负数.11.已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 .考点:二次根式有意义的条件.专题:计算题.分析:根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.解答:解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.12.若式子有意义,则实数x的取值范围是x≤2且x≠0.考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2﹣x≥0且x≠0,解得x≤2且x≠0.故答案为:x≤2且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.计算:﹣= .考点:二次根式的加减法.专题:计算题.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.14.实数a在数轴上的位置如图,化简+a= 1 .考点:二次根式的性质与化简;实数与数轴.分析:根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.解答:解:+a=1﹣a+a=1,故答案为:1.点评:本题考查了实数的性质与化简,=a(a≥0)是解题关键.15.计算:(+1)(﹣1)= 1 .考点:二次根式的乘除法;平方差公式.专题:计算题.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解答:解:(+1)(﹣1)=.故答案为:1.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.三.解答题(共8小题)16.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.解答:解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.17.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.考点:二次根式的混合运算;非负数的性质:绝对值;非负数的性质:算术平方根;分式的化简求值;零指数幂.专题:计算题.分析:(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0, b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.解答:解:(1)原式=﹣4××1=2﹣=;(2)原式=[﹣]•=(﹣]•=•=,∵+|b﹣|=0,∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,原式=﹣=﹣点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、非负数的性质和分式的化简求值.18.先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式求值,可得答案.解答:解;原式=x2﹣2x﹣4=(x﹣1)2﹣5,把x=+1代入原式,=(+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.19.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用.专题:计算题.分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)﹣(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.已知+有意义,求的值.考点:二次根式有意义的条件.分析:先根据二次根式的基本性质:有意义,则a≥0可求x=a,再代入即可求值.解答:解:∵+有意义,∴x﹣a≥0且a﹣x≥0,∴x=a,∴==2.点评:考查了二次根式有意义的条件,解决此题的关键:掌握二次根式的基本性质:有意义,则a≥0.21.计算.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据二次根式的除法法则、零指数幂和负整数指数幂的意义得到原式=+1﹣1+2﹣+4,然后化简后合并即可.解答:解:原式=+1﹣1+2﹣+4=2+1﹣1+2﹣+4=8﹣.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.22.(1)计算:;(2)先化简,再求值:,其中.考点:二次根式的混合运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到=2+1﹣2×+﹣1,然后合并即可;(2)先把括号内通分和除法运算化为乘法运算,再把分母分解因式,然后约分得到原式=,再把a的值代入计算即可.解答:解:(1)原式=2+1﹣2×+﹣1=3﹣+﹣1=2;(2)原式=•=,当a=时,原式==﹣2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了分式的混合运算、零指数幂、负整数指数幂和特殊角的三角函数值.23.(1)|﹣|﹣+(π+4)0﹣sin30°+;(2)+÷a,其中a=.考点:二次根式的混合运算;分式的化简求值;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、特殊角的三角函数值和分母有理化得到原式=﹣3+1﹣++1,然后合并即可;(2)先把分子分母因式分解,然后约后合并得到原式=,然后把a的值代入计算即可.解答:解:(1)原式=﹣3+1﹣++1=﹣1;(2)原式=﹣÷a=﹣1=,当a=+1时,原式==.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和特殊角的三角函数值以及分式的化简求值.。
中考数学复习《二次根式》专项训练(含答案)
~数学中考专项:二次根式【沙盘预演】1.函数y=自变量的取值范围是()A.x≠﹣3 B.x>﹣3 C.x≥﹣3 D.x≤﹣3【解析】解:根据题意得到:x+3>0,解得x>﹣3,故选B.2.下列运算正确的是()A.﹣=13 B.=﹣6C.﹣=﹣5 D.=±3【解析】解:A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选:C.3.与是同类二次根式的是()A.B.C.D.【解析】解:A、与﹣的被开方数不同,故A错误;B、与﹣的被开方数不同,故B错误;C、与﹣的被开方数相同,故C正确;D、与﹣的被开方数不同,故D错误;故选:C4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【解析】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2 D.a≠2【解析】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选A6.在函数y=34xx--中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4【解析】欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.∴x的取值范围是30,40.xx-⎧⎨-⎩≥≠解得x≥3且x≠4.故选D.7.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1 【解析】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b 【解析】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.9.若式子1-x在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.10.下列算式①=±3;②=9;③26÷23=4;④=;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【解析】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=,正确;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:.故选:B.11.若式子1x在实数范围内有意义,则x的取值范围是x≥1.-【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.若二次根式有意义,则x的取值范围是x≥1.【解析】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【真题演练】1.(•张家界)下列运算正确的是()A.a2+a=2a3B.=aC.(a+1)2=a2+1 D.(a3)2=a6【解析】解:A、a2和a不是同类项,不能合并,故原题计算错误;B、=|a|,故原题计算错误;C、(a+1)2=a2+2a+1,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.2.(•聊城)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【解析】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.3.(•扬州)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3D.x≠3【解析】解:由题意,得x﹣3≥0,解得x≥3,故选:C.4.(•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5【解析】解:A、a﹣2÷a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.5.(•郴州)下列运算正确的是()A.a3•a2=a6B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4【解析】解:A、a3•a2=a5,故此选项错误;B、a﹣2=,故此选项错误;C、3﹣2=,故此选项正确;D、(a+2)(a﹣2)=a2﹣4,故此选项错误.6.(•泰州)下列运算正确的是()A.+=B.=2C.•=D.÷=2【解析】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.7.(•郴州)计算:=3.【解析】解:原式=3.故答案为:38.(•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【解析】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.。
中考数学专题复习(有答案)二次根式
第4节二次根式A组1.化简42的结果是(B)A.-4 B.4C.±4 D.22.下列说法正确的是(C)A.-0.064的立方根是0.4B.-9的平方根是±3C.16的立方根是3 16D.0.01的立方根是0.000 0013.(2020宁波)二次根式x-2中字母x的取值范围是(C) A.x>2 B.x≠2C.x≥2 D.x≤24.如图,数轴上点N表示的数可能是(D)A. 2 B. 3C. 5 D.105.(2020上海)下列二次根式中,与3是同类二次根式的是(C) A. 6 B.9C.12 D.186.(2020河池)计算:(-3)0+8+(-3)2-4×2 2.解:原式=1+22+9-22=10.7.计算:24÷3-12×10+20.解:原式=8-5+25=8-5+25=22+ 5.B组8.在函数y=1x+3+4-x中,自变量x的取值范围是(D) A.x<4 B.x≥4且x≠-3C .x >4D .x ≤4且x ≠-39.如图,数轴上点A 表示的数为a ,化简:a +a 2-4a +4= 2 .10.(原创题)由8个同样大小的立方体组成的魔方,体积为8.则这个魔方的棱长为 2 .11.计算:214+3(-3)3×⎝⎛⎭⎫-122. 解:原式=2×12-3×14=1-34=14. C 组12.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦-秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记p =a +b +c 2,那么三角形的面积为S =p (p -a )(p -b )(p -c ).如图,在△ABC 中,∠A ,∠B ,∠C 所对的边分别记为a ,b ,c ,若a =5,b =6,c =7,则△ABC 的面积为( A )A .66B .63C .18D.192。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
A 级 基础题
1.(2018年上海)下列计算18-2的结果是( )
A .4
B .3
C .2 2 D. 2
2.(2018年山东聊城)下列计算正确的是( )
A .310-2 5= 5 B.711·⎝ ⎛⎭⎪⎫
11
7÷111=11
C .(75-15)÷3=2 5 D.13 18-3 89= 2
3.(2017年四川绵阳)使代数式1x +3+4-3x 有意义的整数x 有( )
A .5个
B .4个
C .3个
D .2个
4.与-5是同类二次根式的是( )
A.10
B.15
C.20
D.25
5.(2017年江苏南京)若3<a<10,则下列结论中正确的是( )
A .1<a<3
B .1<a<4
C .2<a<3
D .2<a<4
6.(2017年北京)写出一个比3大且比4小的无理数:______________.
7.(2017年山西)计算:418-9 2=__________.
8.计算:6 1
3-(3+1)2=________.
9.当1<a <2时,代数式()a -22+||1-a 的值是________.
10.(2018年浙江嘉兴)计算:2(8-1)+|-3|-(3-1)0.
11.(2017年贵州六盘水)计算:(-1)0-|3-π|+
3-π 2.
B 级 中等题
12.设n 为正整数,且n <65<n +1,则n 的值为( )
A .5
B .6
C .7
D .8
13.如果ab >0,a +b <0,那么下面各式:①
a b =a b ;②a b ·b a =1;③ab ÷a b =-b ,其中正确的是( )
A .①②
B .②③
C .①③
D .①②③
14.下列各式运算正确的是( ) A.5-3= 2 B.
419=213 C.1
2-3=2+ 3 D.2-52=2- 5 15.(2017年山东济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是( )
A .x≥12
B .x≤12
C .x =12
D .x≠12
16.若y =x -4+4-x 2
-2,则(x +y)y =________. 17.(2018年山东枣庄)如图131,我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,
b ,
c ,则该三角形的面积为S =14⎣⎢⎡⎦
⎥⎤a2b2-⎝ ⎛⎭⎪⎫a2+b2-c222.现已知△ABC 的三边长分别为5,2,1,则△ABC 的面积为________.
图131
C 级 拔尖题
18.已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式——海伦公式S =p p -a p -b p -c
⎝ ⎛⎭
⎪⎫其中a ,b ,c 是三角形的三边长,p =a +b +c 2,S 为三角形的面积,并给出了证明. 例如:在△ABC 中,a =3,b =4,c =5,那么它的面积可以这样计算:
∵a =3,b =4,c =5,
∴p =a +b +c 2
=6. ∴S =p p -a p -b p -c =6×3×2×1=6.
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图132,在△ABC 中,BC =5,AC =6,AB =9.
(1)用海伦公式求△ABC 的面积;
(2)求△ABC 的内切圆半径r.
图132
参考答案
1.C 2.B 3.B 4.C 5.B
6.π(答案不唯一) 解析:∵3<x<4, ∴9<x<16, ∴9<x<16,故答案不唯一,可以是π,10,11,12,13,14,15,其中之一.
7.3 2 8.-4 9.1
10.解:原式=4 2-2+3-1=4 2.
11.解:原式=1-(π-3)+(π-3)=1.
12.D 13.B 14.C 15.C 16.14
17.1 解析:∵S =14⎣⎢⎡⎦⎥⎤a2b2-⎝ ⎛⎭⎪⎫a2+b2-c222,∴△ABC 的三边长分别为1,2,5,则△ABC 的面积为:S =14⎣⎢⎡⎦
⎥⎤12×22-⎝ ⎛⎭⎪⎫12+22-5222=1. 18.解:(1)∵BC =5,AC =6,AB =9,
∴p =BC +AC +AB 2=5+6+92
=10. ∴S =p p -a p -b p -c =10×5×4×1=10 2.
故△ABC 的面积10 2.
(2)∵S =12r(AC +BC +AB),∴10 2=12
r(5+6+9). 解得r = 2.故△ABC 的内切圆半径r = 2.。