答案 拓扑学基础B

合集下载

基础拓扑学讲义 尤承业 答案

基础拓扑学讲义 尤承业 答案

基础拓扑学讲义1. 引言拓扑学是数学的一个分支,研究的是空间中的集合如何存在和连接的学科。

在拓扑学中,我们关注的是集合之间的关系,而不是集合的具体性质。

本讲义将介绍拓扑学的基础知识和常见概念。

2. 基本概念2.1 集合在拓扑学中,一个集合是指由元素组成的无序对象的集合。

示例:- 集合 A = {1, 2, 3, 4}- 集合 B = {a, b, c}2.2 拓扑空间拓扑空间是指一个集合论中的空间,其中具有一组满足特定条件的子集。

示例:- 欧几里得空间- 流形空间- 度量空间2.3 拓扑结构拓扑结构是指在拓扑空间中定义的一组特殊集合的集合,它满足特定的公理。

示例:- 开集- 闭集- 连通集- 紧集3. 拓扑学的基本性质3.1 连通性在拓扑学中,连通性是指一个拓扑空间中不存在将空间分为两个或更多部分的拓扑属性。

示例:- 实数集 R 是一个连通集- 平面上的一个圆形是一个连通集3.2 完备性在拓扑学中,完备性是指拓扑空间中的每个柯西序列都有一个收敛的极限。

示例:- 实数集 R 是一个完备的度量空间3.3 紧集在拓扑学中,一个集合被称为紧集,如果它的每个开覆盖都具有有限子覆盖。

示例:- 闭区间 [0, 1] 是一个紧集4. 拓扑学的应用拓扑学在各个领域都有广泛的应用,包括物理学、生物学、计算机科学等。

示例:- 电路板设计中的连接问题- 生物分子的空间构象研究- 网络拓扑结构的分析与优化5. 总结本讲义介绍了拓扑学的基本概念、拓扑结构和其应用。

拓扑学作为一门重要的数学学科,对于理解和描述空间的性质具有重要的作用。

希望通过本讲义的学习,能够对拓扑学有一个初步了解,并能够应用于实际问题中。

注意:本讲义只是拓扑学的入门讲义,如果想深入学习拓扑学,请参考相关的高级教材和论文。

《拓朴学》题库及答案

《拓朴学》题库及答案

《拓扑学》题库及答案一、单项选择1.关于笛卡儿积,下面等式成立的是(A ))()()()(D B C A D C B A ⨯-⨯=-⨯- (B ))()()()(D C B A D B C A I I I ⨯=⨯⨯ (C ))()()()(D B C A D C B A ⨯⨯=⨯Y Y Y (D )D B C A ⨯⊆⨯当且仅当D C B A ⊆⊆,2.设Y X f →:是映射,)(,,X B A P ∈,)(,Y D C P ∈,则下面结论不成立的是: (A ))()()(111D f C f D C f ---=Y Y (B ))()()(111D f C f D C f---=I I(C ))()()(B f A f B A f Y Y = (D ))()()(B f A f B A f I I =3.在字典序拓扑空间++⨯Z Z 中,子集+⨯Z }2{是:(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,也非闭集4.设R R →2:d 为映射,(R 表示实数集合),R ∈∀y x ,,下面关于d 的定义中是R 的度量的是:(A )2(,)()d x y x y '=- (B )22),(y x y x d -=(C )||||),(y x y x d += (D )⎩⎨⎧=≠=yx yx y x d 01),(5.设)T ,(X 是平庸拓扑空间,b a X b a ≠∈,,,则交错序列Λb a b a ,,,在拓扑空间)T ,(X 中的收敛点集合是: (A )∅ (B )}{a (C )},{b a (D )X6.设}},{},{,,{},3,2,1{},,,{1b a a X Y c b a X ∅===T ,}}2{},3,2{},2,1{,,{2Y ∅=T ,}{b A =,}1{=B ,则在积空间Y X ⨯中B A ⨯等于(A ))}1,{(b (B ))}1,(),1,{(c b(C ))}2,(),1,{(b b (D ))}2,(),1,(),2,(),1,{(c c b b7.设},,,{d c b a X =,{,,{,,},{,,},{,}}x a b c b c d b c =∅T ,},,{d c a Y =,},{c a A =,则在子空间Y 中A 的内部等于:(A )∅ (B )}{a (C )}{c (D )},{c a8.拓扑空间的Lindel öff 性,可分性,紧致性,完全正则性中是有限可积性质的有: (A )1个 (B )2个 (C )3个 (D )4个 9.下列拓扑空间的蕴涵关系中,成立的有完全正则空间⇒正则空间,完全正则空间⇒正规空间,连通空间⇒局部连通空间, 度量空间⇒可分空间,度量空间⇒Lindel öff 空间(A )1个 (B )2个 (C )3个 (D )4个10.拓扑空间的可分性,紧致性,Lindel öff 性,连通性中在连续射下保持不变的性质有: (A )1个 (B )2个 (C )3个 (D )4个 11.设X X R ⨯⊆是一个等价关系,则R 不满足的条件是(A )R X ⊆∆)( (B )R ∩R -1=∅ (C )R R R ⊆ο (D )1-=R R12.设Y X f →:是映射,)(}|{X J A P ⊆∈αα,)(}|{Y r B r P ⊆Γ∈则下面等式中不成立的是 (A ))()(ααααA f A f JJ∈∈=Y Y (B ))()(ααααA f A f JJ∈∈=II(C ))()(11r r r r B f B f-Γ∈Γ∈-=Y Y (D ))()(11r r r r B f B f -Γ∈Γ∈-I I13.在字典序拓扑空间++⨯Z Z 中,子集+⨯Z }1{是:(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集14.设},,{c b a X =,}},{},{,,{b a a X ∅=T ,则在拓扑空间)T ,(X 中常值序列Λ,,a a 的 收敛点集合是 (A )}{a (B )},{c a (C )},{b a (D ) X15.设},,{c b a X =,}3,2,1{=Y ,}{},{},{,,{c b a X ∅=1T ,}}3,2{},2{},2,1{,,{Y ∅=2T ,}2,1{},,{==B b a A ,则在积空间Y X ⨯中,0)(B A ⨯等于:(A )∅ (B )}{)2,(),1,(a a (C )}{)2,(),1,(b b (D )}{)2,(),1,(),2,(),1,(b b a a16.设},,,{d c b a X =,}},{},,,{},,,{,,{d c d c a d c b X ∅=T ,}{},,,{c A d c a Y ==,则在子空间Y 中,A 的闭包等于(A )}{c (B )},{a c (C )},{b c (D )},,{c d a17.设)T ,(X 是拓扑空间,)T ,(X 是可度量空间是指存在X 的度量R →2:X d 使得由d 诱导的拓扑d T 满足: (A)T T ⊆d (B)d T T ⊆ (C)d T T = (D))(X P T d = 18.拓扑空间的可分性,Lindel öff 性, 正规性、完全正则性中是遗传性质的有 (A )1个 (B) 2个 (C) 3个 (D) 4个 19.下列拓扑空间的蕴涵关系中成立的有满足第二可数理空间⇒可分空间 度量空间⇒Lindel öff 空间 正规空间⇒完全正则空间 度量空间⇒满足第一可数公理空间 正规空间⇒正则空间 完全正则空间⇒正则空间 (A )1个 (B )2个 (C )3个 (D )4个20.设),(T X 是拓扑空间,则对X 中任意两个不相交闭集B A ,存在连续映射]1,0[:→X f 使得}0{)(⊆A f ,}1{)(⊆B f 当且仅当),(T X 是:(A )正则空间 (B )完全正则空间 (C )正规空间 (D )4T 空间 21.设X 是全集,,()A B X ∈P ,A B ⊆则当且仅当(A )∅='B A I (B )∅='B A I (C )A B A =Y (D )B B A =I 22.设Y X f →:是映射,,()A B y ∈P ,则下面结论不成立的是(A ))()()(111B f A f B A f ---=Y Y (B )111()()()f A B f A f B ---=I I (C ))()()(111B f A fB A f----=- (D )()B B f f =-)(123.在字典序拓扑空间+⨯Z }2,1{中,子集+⨯Z }2{是(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集 24.定义度量R R R →⨯22:d ,),(21x x x =∀,221),(R ∈=y y y ,}{|||,|m ax ),(2211y x y x y x d --=,则度量空间(d ,2R )中的单位球是(A (B )(C (D )25.设)T ,(X 是离散拓扑空间,b a X b a ≠∈,,, 则在)T ,(X 中交错序列Λb a b a ,,,的收敛点集合是 (A )∅ (B) }{a (C) },{b a (D)X26.设},,,,{d c b a X =}},{},,,{},,,{,,{c b d c b c b a X T ∅=,},,{c b a Y =,}{b A =,则在子空间Y 中A 的闭包等于(A )}{b (B )},{b a (C )},{c b (D )},,{c b a27.设}3,2,1{},,,{==Y c b a X ,}{,,{,},{},{,}X a b b b c =∅1T ,}{}2,1{},1{,,2Y ∅=T ,},{c b A =,}3,1{=B 则在积空间Y X ⨯中()o A B ⨯等于(A )∅ (B )}{)2,(),1,(b b (C )}{)1,(),1,(c b (D )}{(,1),(,2),(,1),(,2)b b c c28.拓扑空间的连通性、紧致性、可分性、完全正则性,Lindel öff 性,满足第二可数公理性中是可遗传性质的有(A )1个 (B )2个 (C )3个 (D )4个 29.下列拓扑空间之间的蕴涵关系中成立的有:满足第二可数合理空间⇒可分空间, 度量空间⇒满足第一可数公理空间 完全正则空间⇒正则空间, 紧致空间⇒Lindel öff 空间 (A )1个 (B )2个 (C )3个 (D )4个}0{)(⊆A f ,}1{)(⊆B f 当且仅当),(T X 是:(A )正则空间 (B )完全正则空间 (C )正规空间 (D )4T 空间 31.设f Y X f ,⨯⊆是映射,则f 满足的条件是 (A )X Y f =-)(1;如果f y x y x ∈),(),,(21,则21y y =(B )X Y f=-)(1;如果f y x y x ∈),(),,(21,则21x x =(C )Y X f =)(;如果f y x y x ∈),(),,(21,则21y y = (D )Y X f =)(;如果f y x y x ∈),(),,(21,则21x x =32.设,,(),,(),R X Y A B Y C D X ⊆⨯∈∈P P 则下面等式成立的是 (A ))()()(111B R A R B A R---=Y Y (B ))()()(111B R A R B A R ---=I I(C ))()()(D R C R D C R I I = (D ))()()(D R C R D C R -=- 33.在字典序拓扑空间+⨯Z }2,1{中,子集+⨯Z }2{是(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集 34.设),(d X 是度量空间,d T 是X 的由d 诱导的拓扑,dU ∈T ,则下列关于U 的结论不正确的是(A )存在0,>∈εX x 使得),(εx B U =(B )+∈∃∈∀Z n U x ,使得U nx B ⊆)1,((C )0,>∃∈∀εU x 使得U x B ⊆),(ε(D )存在}0,|),({>∈⊆εεX x x B U B 使得U U =U B35.设},,,{c b a X =}{},{},{,,{b a a X ∅=T ,则在拓扑空间),(T X 中常值序列,,,a a a …的收敛点集合是 (A )}{a (B )},{c a (C )},{b a (D )X36.设},,,{c b a X =}},{},,,{},,,{,,{c b d c b c b a X ∅=T ,},,,{d c a Y =},{c a A =,则在子空间Y 中A 的内部是(A )∅ (B )}{a (C )}{c (D )},{c a37.设},,,{c b a X =},3,2,1{=Y }},{},{,,{b a a X ∅=1T ,}}3,2{},2{},2,1{,,{2Y ∅=T ,}1{},{==B b A ,则在积空间Y X ⨯中,B A ⨯等于(A ))}1,{(b (B ))}1,(),1,{(c b(C ))}2,(),1,{(b b (D ))}2,(),1,(),2,(),1,{(c c b b38.拓扑空间的可分性,Lindel öff 性,紧致性,正规性,连通性中是有限可积的性质有: (A )1个 (B )2个 (C )3个 (D )4个 39.下列拓扑空间之间的蕴涵关系中成立的有正规空间⇒正则空间 完全正则空间⇒正则空间 局部连通空间⇒连通空间 满足第二可数公理空间⇒可分空间 度量空间⇒满足第一可数公理空间 度量空间⇒可分空间}1{)(,0)(⊆=A f x f 当且仅当),(T X 是(A )1T 空间 (B )正规空间 (C )完全正则空间 (D )4T 空间二.证明题1.设Y X ,是两个拓扑空间,Y X f →:是映射,证明若f 是连续映射,则)(Y B Ρ∈∀,11()(())o o fB f B --⊆。

《拓扑学》作业参考答案

《拓扑学》作业参考答案
R-拓扑T 以B 为基。 (2) a,b R, a b, (a, b) - k B ,
{(a,b) K | a,b R, a b}T ,而 (a,b) K | a,bR (a,b) | a,bR K
因此 R K T
=R k
11. 设A 是 Y 的任意一个开覆盖 (A T ),则A {Y '}是X 的一个开覆盖, 由 X 的紧致性知 {U1, ,Un} A {Y '}是X 的开覆盖, 从而{U1, ,Un} {Y '} A 是Y 的开覆盖,也是A 的有限子覆盖,故 Y 是紧致子集。
n
令U {U x1 , ,U x n }, V Vxi
i 1
则 A U, F V , U Y ,且U,V T
18. y A,则y x,由T2性知 U y , Vy T , U y Vy s, y.x U y, y Vy 又{Vy | y A}是A 的开覆盖,A 为紧改子集。
{Vy1 , ,Vyn } {Vy | y A}, s.t. {Vy1 , ,Vyn } A
VT1
(2)由T * 的定义知 ( X *,T *) 中的闭集为 P( X ) 中的有限集和任一含有 的集合。 对于任意 x X * ,及闭集 F, x F 。 ( a ) x , 则 F 必 为 P( X ) 中 有 限 集 , 因 此 X * F为T * 中 的 元 素 , F 亦 为 T * 中 元 素 , 故 X * F, F T * ( X * F ) F , x X * F, F F ( b ) x X ,则{x} 为 开 集 , 再 取 U {x}' X * {x}则U 亦 为 开 集 , 故 {x}, {x}' T , 使 得 x {x}, F X * {x}, {x} ( X * {x}) ,故 ( X *,T*) 是正则空间。

拓扑习题及答案

拓扑习题及答案

拓扑习题及答案拓扑学是数学中的一个分支,研究的是空间的性质和变形。

在拓扑学中,习题是帮助我们理解和掌握基本概念和定理的重要工具。

在本文中,我将为大家提供一些拓扑学的习题及其答案,希望能够帮助大家更好地理解这门学科。

1. 问题:什么是拓扑空间?答案:拓扑空间是一个集合,其中包含一些特定的子集,这些子集被称为开集,满足一些特定的性质。

拓扑空间中的开集可以用来描述集合中元素之间的相互关系。

2. 问题:什么是连通性?答案:在拓扑空间中,如果存在一条路径将空间中的任意两点连接起来,那么这个空间就是连通的。

换句话说,连通性描述了空间中不存在分离的部分。

3. 问题:什么是紧致性?答案:在拓扑空间中,如果空间中的任意开覆盖都可以找到有限个开集作为子覆盖,那么这个空间就是紧致的。

紧致性描述了空间中的元素有限性质。

4. 问题:什么是同胚?答案:在拓扑学中,如果两个拓扑空间之间存在一个双射函数,并且这个函数和其逆函数都是连续的,那么这两个空间就是同胚的。

同胚关系描述了两个空间之间的拓扑性质相同。

5. 问题:什么是拓扑不变量?答案:拓扑不变量是指在同胚变换下保持不变的性质。

例如,欧拉数是一个拓扑不变量,它描述了一个拓扑空间中的曲面的特征。

6. 问题:什么是连续映射?答案:在拓扑学中,如果一个函数将一个拓扑空间中的开集映射到另一个拓扑空间中的开集,那么这个函数就是连续的。

连续映射描述了空间中元素之间的连续性。

7. 问题:什么是同伦等价?答案:在拓扑学中,如果两个拓扑空间中的映射可以通过连续变形相互转化,那么这两个空间就是同伦等价的。

同伦等价关系描述了空间中的元素可以通过连续变形相互转化。

通过以上几个习题及其答案,我们可以初步了解拓扑学的基本概念和性质。

拓扑学作为一门抽象的数学学科,其应用范围非常广泛。

例如,在计算机科学中,拓扑学可以用来描述网络的结构和连接方式;在物理学中,拓扑学可以用来研究物质的性质和相变;在生物学中,拓扑学可以用来研究分子的结构和相互作用等等。

《拓朴学》B卷

《拓朴学》B卷

四川师范大学成人高等教育《拓朴学》考试B 卷(满分:100分 考试时间:120分钟)序号 姓名 专业 层次 班级 性别 出生年月 工作单位一、单项选择题(本题共5个小题,每小题2分,共10分)1、设{,,}X a b c =,那么( )是X 的一个拓扑.A.{,,{},{}}X a b φB.{,,{},{}}X a c φC.{,}X φD.{,,{,},{,}}X a b a c φ 2、下列实数空间中的区间同胚的一组是 ( )A.[,]a b ,(,]a bB.(,),(0,1)-∞+∞C.(,)a b ,[,]a bD.(,),(,]a b a b 3、下列说法正确的是 ( ) A.Lindeloff 空间一定是2A 空间 B.度量空间一定是2A 空间 C.可分空间一定是2A 空间 D.2A 空间一定是可分空间 4、在拓扑空间(,)X τ中,A X ⊂,若( ),则称x 是集合A 的一个边界点. A.对于x 的任何一个邻域U ,既有U A φ≠,又有U A φ'≠;B.x 有一个邻域U ,使得U A φ≠,而U A φ'=;C.x 有一个邻域U ,既有UA φ≠,又有UA φ'≠;D.对于x 的任何一个邻域U ,使得U A φ≠,而UA φ'=. 5、( )不一定是隔离的.A.离散空间中任何两个无交的子集B.两个不同的连通分支C.两个无交的闭子集D.两个无交的开子集二、填空题(本题共10个小题,每小题2分,共20分)1、设X 为由n 个互不相同的元素构成的集合,X 的幂集()X P 中有( )个 互不相同的元素.2、设X 和Y 是两个集合,:f X Y →,则对于任意B Y ⊂,B ( )1(())f f B -.3、如果存在一个从集合X 到正整数集+的( ),则称集合X 是一个可数集.4、拓扑学的中心任务便是研究( )性质.5、拓扑空间中的每一个开集都能表为( )中若干成员之并.6、如果拓扑空间X 是一个道路连通空间,则X 必然是一个( ).7、拓扑空间X 是一个( )空间当且仅当X 中任意两个不同的单点集有不同 的闭包.8、设X 是一个拓扑空间,如果X 的每一个开覆盖有一个有限子覆盖,则称X 是一个( )空间.9、Hausdorff 空间中的任何一个收敛序列只有一个( ). ( )是一个满的连续开映射.三、简述题(本题共4个小题,每个小题5分,共20分)2、简述拓朴学中的介值定理与不动点定理。

马克阿姆斯特朗基础拓扑学答案

马克阿姆斯特朗基础拓扑学答案

马克阿姆斯特朗基础拓扑学答案马克阿姆斯特朗()是美国著名的物理学家、发明家。

他于1946年在哥伦比亚大学获得物理学博士学位,1953年开始在耶鲁大学教授物理学,1969年开始在美国斯坦福大学任教。

1971年至1977年担任美国国家科学院院士。

1985年获得美国艺术与科学院外籍院士。

他还是美国物理学会、国际数学会议和()等学术组织的成员。

一、拓扑学研究的主要内容是什么?拓扑学是研究一类不定的几何图形和空间形式之间的相互关系的一门学科。

它的基本思想是:对给定的几何图形或空间形式,可求出任意几何图形或空间形式上所对应着的有限个数。

拓扑学包括两个部分:一为线性拓扑学;二为几何拓扑学。

线性拓扑学指对于给定几何图形或空间形式在有限个数范围内,可求出任意几何图形或空间形式上所对应着的有限个数;几何拓扑学则是将不定几何图形、空间形式上所对应着的有限个数推广到有限个数范围内,并求得该有限个数对应着某个区间或领域内某一具体对象或事物中之最小个数或最大个数点所对应着的有限个数。

拓扑学通过对给定几何图形或空间形式上所对应着有限个数或最大个位数个点所对应着相应事物中之最小个数或最大个位数点所对应着有限个数或最大个位数点所对应着之最大个数点对应着相应事物中之最小个数点所在区域或领域所对应着之最小点所对应着的总个数(包括其个数大小和方向)来解决有限个数或最大个位数、局部个数和领域个数之间的关系。

拓扑学中一些特殊几何图形和空间形式所对应着一系列数学问题都属于拓扑学理论中所涉及到之问题。

二、对一条长波在时空中运动是什么性质?解析:由于运动波是波传播过程中产生的一种特殊的传播现象,因此,对于一条运动波波速必须满足如下条件:波穿过空间(或时间)必须有一个连续的运动状态,在该运动状态中,波向一个特定地方或一个方向(或几个方向)运动而不能出现位移叠加等现象。

否则该波将被视作一个静止波,其能量为0。

此外,运动波是一种波速传播过程中产生或传播方向相反的运动状态,因此传播波波速必须满足以下条件:一是运动波向该运动状态所处方向相切才能实现对波与波之间相互作用作用(波速与振幅方向)所产生频率变化速率相一致;二是波速与运动方向相切才能实现对波与波之间相互作用作用(波速与振幅方向相一致)所产生频率变化速率相一致。

考研拓扑学试题及答案

考研拓扑学试题及答案

考研拓扑学试题及答案一、选择题(每题3分,共30分)1. 在拓扑学中,一个集合的子集被称为开集,如果它是全空间的开集。

以下哪个选项不是开集的特征?A. 包含空集B. 任意两个开集的交集是开集C. 任意有限个开集的并集是开集D. 任意无限个开集的并集不是开集2. 拓扑空间中的一个基本性质是连续性。

以下哪个选项不是连续函数的特征?A. 函数的逆像是开集B. 函数的值域是开集C. 函数的图像是连续的曲线D. 函数在其定义域内连续3. 以下哪个命题是正确的?A. 有限个连通空间的不交并仍然是连通的B. 任意个连通空间的不交并是连通的C. 任意个连通空间的并集是连通的D. 有限个连通空间的并集是连通的4. 在拓扑空间中,一个点的闭包是指包含该点的最小闭集。

以下哪个说法是错误的?A. 闭包是闭集B. 闭包包含该点的所有邻域C. 闭包是唯一的D. 闭包可能是开集5. 以下哪个选项不是紧空间的特征?A. 任意开覆盖都有有限子覆盖B. 任意序列都有收敛的子序列C. 任意闭区间是紧的D. 任意闭集在空间中是紧的6. 拓扑空间中的分离公理是描述空间中点和子集之间关系的一种性质。

以下哪个选项是错误的?A. T0空间中,每个点由其闭包唯一确定B. T1空间中,每个点由其开核唯一确定C. T2空间中,任意两个不同点都由不相交的开集分离D. T3空间中,任意闭集和任意开集都由不相交的开集分离7. 以下哪个命题是错误的?A. 任意两个拓扑空间的乘积空间是豪斯多夫空间B. 任意两个豪斯多夫空间的乘积空间是豪斯多夫空间C. 任意两个紧致空间的乘积空间是紧致的D. 任意两个可数紧空间的乘积空间是可数紧的8. 以下哪个选项不是局部紧空间的特征?A. 每个点都有一个紧致的邻域B. 空间本身是紧致的C. 每个点都有一个开集邻域,其闭包是紧致的D. 每个点都有一个紧致子集作为其邻域9. 以下哪个命题是正确的?A. 任意两个拓扑空间的和空间是豪斯多夫空间B. 任意两个豪斯多夫空间的和空间是豪斯多夫空间C. 任意两个紧致空间的和空间是紧致的D. 任意两个可数紧空间的和空间是可数紧的10. 在拓扑空间中,一个点的导集是指所有包含该点的序列的极限点的集合。

试题集:拓扑学初步

试题集:拓扑学初步

1.在拓扑空间中,下列哪项不是开集的定义?o A. 开集是拓扑空间中的一个集合,它属于该空间的拓扑。

o B. 开集是所有点的邻域。

o C. 开集是所有点的闭包。

o D. 开集是包含在它自身的邻域内的集合。

参考答案: C. 开集是所有点的闭包。

解析: 开集的定义是它属于拓扑空间的拓扑,即它是一个邻域,包含在它自身的邻域内,但开集不是所有点的闭包,闭包是开集的补集的补集。

2.下列哪项不是拓扑空间的定义?o A. 一个集合和它的子集族,其中包含空集和全集。

o B. 任意多个开集的并集仍然是开集。

o C. 有限多个开集的交集仍然是开集。

o D. 任意多个闭集的并集仍然是闭集。

参考答案: D. 任意多个闭集的并集仍然是闭集。

解析: 拓扑空间的定义包括集合和它的子集族,其中包含空集和全集,任意多个开集的并集和有限多个开集的交集仍然是开集,但任意多个闭集的并集不一定是闭集。

3.在拓扑学中,下列哪项不是连续函数的定义?o A. 对于函数f的定义域中的任意开集,其像集也是开集。

o B. 对于函数f的值域中的任意开集,其原像集也是开集。

o C. 函数f在其定义域的每一点都是连续的。

o D. 函数f在其值域的每一点都是连续的。

参考答案: A. 对于函数f的定义域中的任意开集,其像集也是开集。

解析: 连续函数的定义是对于函数f的值域中的任意开集,其原像集也是开集,函数在其定义域的每一点都是连续的,但函数f的定义域中的开集的像集不一定是开集。

4.下列哪项不是紧致空间的定义?o A. 紧致空间中的任意开覆盖都有有限子覆盖。

o B. 紧致空间中的所有序列都有收敛子序列。

o C. 紧致空间中的所有连续函数都有界。

o D. 紧致空间中的所有连续函数都有最大值和最小值。

参考答案: B. 紧致空间中的所有序列都有收敛子序列。

解析: 紧致空间的定义是任意开覆盖都有有限子覆盖,所有连续函数都有界和最大最小值,但紧致空间中的所有序列不一定都有收敛子序列。

拓扑学复习题与参考答案

拓扑学复习题与参考答案

点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0 ② 1 ③ 2 ④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1 ② 2 ③ 3 ④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 419、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1)24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3)25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 442、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z =③ T Z = ④ {}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 连通性③ 离散性 ④ 第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 连通性③ 第二可数性公理 ④ 平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 可分性③ 第二可数性公理 ④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 可分性③ 离散性 ④ 第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个()① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A是有限补空间X中的一个无限子集,则()d A= ;7、设A是有限补空间X中的一个无限子集,则A= ;8、设A是可数补空间X中的一个不可数子集,则()d A= ;9、设A是可数补空间X中的一个不可数子集,则A= ;10、设{1,2,3}X=,X的拓扑{,,{2},{2,3}}=,则X的子集{1,2}A=的内部T Xφ为 ;11、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{1},{2,3}}T Xφ为 ;12、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{2,3}}为 ;13、设{1,2,3}A=的内部=,则X的子集{1,3} X=,X的拓扑{,,{2},{2,3}}T Xφ为 ;14、设{,,}=,则X的平庸拓扑为 ;X a b c15、设{,,}=,则X的离散拓扑为 ;X a b c16、设{1,2,3}A=的内部=,则X的子集{1,3}T XφX=,X的拓扑{,,{2},{3},{2,3}}为 ;17、设{1,2,3}A=的内部=,则X的子集{1,2}T XφX=,X的拓扑{,,{1},{3},{1,3}}为 ;18、:f X Y→是拓扑空间X到Y的一个映射,若它是一个单射,并且是从X到它的象集()f X的一个同胚,则称映射f是一个 .19、:f X Y→是拓扑空间X到Y的一个映射,如果它是一个满射,并且Y的拓扑是对于映射f而言的商拓扑,则称f是一个 .20、设,→是一个映射,若X中任何一个开集U的象集X Y是两个拓扑空间,:f X Yf U是Y中的一个开集,则称映射f是一个;()21、设,→是一个映射,若X中任何一个闭集U的象集X Y是两个拓扑空间,:f X Y()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的内点3、集合A 的内部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。

答案-拓扑学基础

答案-拓扑学基础

东 北 大 学 秦 皇 岛 分 校课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页一、填空题:(每空2分,共20分)1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ∅,{,,{1}}X ∅, {,,{2}}X ∅,{,,{3}}X ∅。

(注:答案不唯一,正确即可)2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。

3.字母Y 的割点个数为 无穷 。

字母T 中指数为3的点个数为 1 。

4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。

二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B )A 连通空间一定是道路连通空间B 道路连通空间一定是连通空间C 道路连通空间一定局部道路连通D 以上说法都不对 2.下列说法正确的是( A )A 紧空间的闭子集紧致B 紧致空间未必局部紧致C 有限空间一定不紧致D 列紧空间是紧致空间 3.下列说法错误的是( A )A 离散空间都是1T 空间B 2T 空间中单点集是闭集C ¡赋予余有限拓扑不是2T 空间D 第二可数空间可分 4.下列不具可乘性的是( D )A 紧致性B 连通性C 道路连通性D 商映射三、计算题:(共16分)1.在¡上赋予余有限拓扑,记¤为有理数集合,[0,1]I =。

试求'¤和I 。

(4分) 答:'=ぁ,I =¡。

2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。

(8分)答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。

答案-拓扑学基础

答案-拓扑学基础

东 北 大 学 秦 皇 岛 分 校课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页一、填空题:(每空2分,共20分)1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ∅,{,,{1}}X ∅, {,,{2}}X ∅,{,,{3}}X ∅。

(注:答案不唯一,正确即可)2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。

3.字母Y 的割点个数为 无穷 。

字母T 中指数为3的点个数为 1 。

4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。

二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B )A 连通空间一定是道路连通空间B 道路连通空间一定是连通空间C 道路连通空间一定局部道路连通D 以上说法都不对 2.下列说法正确的是( A )A 紧空间的闭子集紧致B 紧致空间未必局部紧致C 有限空间一定不紧致D 列紧空间是紧致空间 3.下列说法错误的是( A )A 离散空间都是1T 空间B 2T 空间中单点集是闭集C ¡赋予余有限拓扑不是2T 空间D 第二可数空间可分 4.下列不具可乘性的是( D )A 紧致性B 连通性C 道路连通性D 商映射三、计算题:(共16分)1.在¡上赋予余有限拓扑,记¤为有理数集合,[0,1]I =。

试求'¤和I 。

(4分) 答:'=ぁ,I =¡。

2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。

(8分)答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。

拓扑学基础试题及答案

拓扑学基础试题及答案

拓扑学基础试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,以下哪个概念不是基本的?A. 开集B. 闭集C. 连续函数D. 距离函数答案:D2. 以下哪个选项不是拓扑空间的性质?A. 空集和整个空间是开集B. 任意开集的并集是开集C. 有限个开集的交集是开集D. 任意集合的补集是闭集答案:D3. 在拓扑学中,两个拓扑空间之间的映射被称为?A. 同胚B. 连续映射C. 同伦D. 同调答案:B4. 拓扑空间中的邻域系统是指?A. 包含某点的所有开集的集合B. 包含某点的任意集合的集合C. 包含某点的有限个开集的交集D. 包含某点的任意开集答案:A5. 拓扑空间中的连通性是指?A. 空间不能被分割成两个不相交的非空开集B. 空间中的任意两点都可以通过连续路径相连C. 空间中的任意两点都可以通过直线相连D. 空间中的任意两点都可以通过曲线相连答案:A二、填空题(每题3分,共15分)1. 如果拓扑空间中任意两个不同的点都存在不相交的邻域,则称该空间为________。

答案:豪斯多夫空间2. 拓扑空间中的紧致性是指该空间的任意开覆盖都有________。

答案:有限子覆盖3. 拓扑空间中的连通空间是指不能表示为两个不相交的非空开集的并集的空间,这种性质也称为________。

答案:不可分割性4. 拓扑空间中的基是指由开集构成的集合,使得空间中的每一个开集都可以表示为基中集合的________。

答案:并集5. 拓扑空间中的同胚是指两个拓扑空间之间存在一个双射的连续映射,并且其逆映射也是连续的,这种映射也称为________。

答案:同胚映射三、简答题(每题10分,共20分)1. 请简述拓扑空间中闭集的定义。

答案:在拓扑空间中,如果一个集合的补集是开集,则称该集合为闭集。

2. 请解释什么是拓扑空间中的同伦等价。

答案:如果存在两个拓扑空间之间的连续映射,使得这两个映射的复合与各自空间上的恒等映射是同伦的,则称这两个空间是同伦等价的。

拓扑学基础答案

拓扑学基础答案

拓扑学基础(数学教育本科)试卷参考答案一、单项选择题1、C2、A3、B4、A5、A6、C7、D 8、A 9、B 10、D二、填空题11、满射 12、同胚 13、A 的补集A '是一个开集 14 、Y B 15、可分 16、一 17、x 和y 连通18、X ,)(x f 19、Y 中每一个开集U 的原象)(1U f -是X 中的一个开集三、名词解释题1、如果存在一个从集合X 到正整数集Z +的单射,则称集合X 是一个可数集。

2、设X 是一个集合,T 是X 的一个子集族,如果T 满足如下条件:(1)∈φ,X T ,(2)若A ,∈B T ,则∈B A T ,(3)若T ⊂1T ,则1A ∈∈ T T ,则称T 是X 的一个拓扑。

偶对(X ,T )是一个拓扑空间。

3、设X 和Y 是两个拓扑空间,如果f:X →Y 是一个一一映射,并且f 和f -1:Y →X 都是连续的,则称f 是一个同胚映射。

4、设X 是一个拓扑空间,如果对于任何x 、y ,存在X 中的一条从x 到y 的道路(或曲线),则称X 是一个道路连通空间。

5、一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个A 1空间。

6、一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个A 2空间。

7、设X 是一个拓扑空间,如果X 的每一个开覆盖都有一个可数子覆盖,则称拓扑空间X 是一个Lindel öff 空间。

8、设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各有一个开邻域,它们互不相交,则称拓朴空间X 是一个正则空间。

9、设X 是一个拓扑空间,如果X 的每一个开覆盖有一个有限子覆盖,则称拓扑空间X 是一个紧致空间。

10、设X 是一个拓扑空间,如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个可数紧致空间。

四、判断题1、√2、√3、×4、×5、√6、×7、√ 8、× 9、√ 10、× 11、√ 12、×五、解答与证明题1、解:(1)1T 不是X 的拓扑,这是因为∈},{b a 1T ,∈},{d b 1T ,但∈/=}{},{},{b d b b a 1T(2)2T 是X 的拓扑,满足拓扑的定义2、证∵()()()()A B A B d A B A B d A d B ==B A B d B A d A ==))(())((3、证:∵B B A A B A ⊂⊂ ,,故A B A ⊂ ,B B A ⊂∴B A B A ⊂5、设Y 是紧致空间X 中的一个闭子集,如果A 是Y 的一个覆盖,它由X 中的开集构成,则B =A {Y '}是X 的一个开覆盖,设1B 是2B 的一个有限子族并且覆盖X ,则1B }{Y '-便是A 的一个有限子族并且覆盖Y ,这说明Y 是X 的一个紧致子集。

上学期拓扑学考试试卷答案(B)

上学期拓扑学考试试卷答案(B)

中南大学拓扑学考试试卷参考答案〔B 〕2021--2021学年 二 学期 拓扑学 课程48 学时,3.0学分,闭卷,总分100分,占总评成绩 70 %时间:100分钟, 专业年级:数学与应用数学2021级5分)1、B2、C3、A4、D5、C 二、简答题〔每题4分,共20分〕 1、1 A 空间答案:一个拓扑空间如果在它的每一点处有一个可数邻域基,那么称这个拓扑空间是一个满足第一可数性公理的空间,简称为1 A 空间. 2、0T 空间答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点中必有一个点有一个开邻域不包含另一点,那么称拓扑空间X 是0T 空间.3、列紧空间答案:设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,那么称拓扑空间X 是一个列紧空间. 4、同胚映射答案:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,那么称f 是一个同胚映射或同胚.5、正那么空间答案:设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,那么称X 是正那么空间.三、判断,并给出理由〔20分,每题5分,判断2分,理由3分〕 1、设1 2,是集合X 的两个拓扑,那么12⋂不一定是集合X 的拓扑( ) 答案:×理由:因为(1)1 2,是X 的拓扑,故 1,X φ∈, 2,X φ∈,从而 12,X φ∈⋂;(2)对任意的 12,A B ∈⋂,那么有 1,A B ∈且 2,A B ∈,由于1 2,是X 的拓扑,故 1A B ⋂∈且 2A B ⋂∈,从而 12A B ⋂∈⋂;(3)对任意的12'⊂⋂,那么 12,''⊂⊂,由于1 2,是X 的拓扑,从而A A '∈∈,A A '∈∈,故A A '∈∈⋂;综上有12⋂也是X 的拓扑.2、从离散空间到拓扑空间的任何映射都是连续映射( )答案:√ 理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.3、设A 为离散拓扑空间X 的任意子集,那么d A φ= 〔 〕答案:√ 理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.4、假设拓扑空间X 中存在一个既开又闭的非空真子集,那么X 是一个不连通空间( ) 答案:√ 理由:这是因为假设设A 是X c B A =,那么,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空间.四、证明题〔共40分〕1、设{}i x 是2T 空间X 的一个收敛序列,证明:{}i x 的极限点唯一. (10分) 证明:假设极限点不唯一,不妨设1lim i i x y →∞=,2lim i i x y →∞=,其中12y y ≠,由于X 是2T 空间,故1y 和2y 各自的开邻域,U V ,使得U V φ⋂=.因1lim i i x y →∞=,故存在10N >,使得当1i N >时,i x U ∈;同理存在20N >,使得当2i N >时,i x V ∈12max{,}N N N =,那么当i N >时,i x U V ∈⋂,从而U V φ⋂≠,矛盾,故{}i x 的极限点唯一.2、设(,)X 为拓扑空间,证明X 是1T 空间的充分必要条件是X 的每一独点集都为闭集.(10分)证明:〔必要性〕设x X ∈,{}c y x ∀∈,由(,)X 为1T 空间,故有y 的开领域V ,..s t x V ∉,所以{}c V x ⊂,所以{}c x 为开集,从而{}x 为闭集。

拓扑学基础试题及解答

拓扑学基础试题及解答

“拓扑学基础”试题及答案一、单项选择题(每小题2分,共20分)1、设{1,2,3}X =,则下列是X 的拓扑的是【 A 】A 、{,,{1}}X φB 、{,,{1,2},{2,3}}X φC 、{,,{2},{3}}X φD 、{,,{1},{2},{3}}X φ2、下列有关连续映射:f X Y →正确的是【 B 】A 、对X 中的任意开集U ,有()f U 是Y 中的一个开集B 、Y 中的任何一个闭集B ,有1()f B -是X 中的一个闭集C 、Y 中的任何一个子集A ,有11()()f A f A --⊂D 、若f 还是一一映射,则f 是一个同胚映射3、设X 和Y 是两个拓扑空间,A 是X 的一个子集,则下列错误的是【 C 】A 、若:f X Y →是连续的,则|:A f A X →也是连续的B 、若:f X Y →是一个同胚,则|:()A f A f A →也是一个同胚。

C 、:()f X f X →是一个连续映射,则:f X Y →不一定是一个连续映射D 、若X 可嵌入Y ,则X 的任何一个子空间也可嵌入Y4、设X 是一个拓扑空间,A X ⊂,则()A ∂=【 D 】A 、A A -'⋂B 、00A A ''⋃C 、0()A ∂D 、()X A ∂-5、下列有关连通性的命题正确的是【 C 】A 、若A 和B 是拓扑空间X 中的两个隔离子集,且X A B =⋃,则X 是不连通的。

B 、有理数集Q 作为实数空间子空间是一个连通空间C 、若12,Y Y 均为X 的连通子集,且12Y Y φ⋂≠,则12Y Y ⋃也是X 的一个连通子集D 、设Y 是X 的一个连通子集,Z X ⊂,若Y Z ⊂,则Z 也是X 的一个连通子集6、下列拓扑性质中,没有继承性的是【 D 】A 、1T 空间B 、2T 空间C 、3T 空间D 、4T 空间7、下列有关命题,正确的是【 B 】A 、若拓扑空间X 是连通的,则X 一定是局部连通的B 、若拓扑空间X 是道路连通的,则X 一定是连通的C 、若拓扑空间X 是局部连通的,则X 一定是道路连通的D 、若拓扑空间X 是连通的,则X 一定是道路连通的8、下列有关实数空间,不正确的是【 D 】A 、它满足第一可数性公理B 、它满足第二可数性公理C 、它的任何一个子空间都满足第二可数性公理D 、它的任何一个子空间都是连通的9、下列有关Lindel öff 空间的描述正确的是【 A 】A 、任何一个满足第二可数性公理的空间都是Linde öff 空间B 、任何一个Lindel öff 空间都是第二可数性空间C 、Lindel öff 空间的子空间还是Linde öff 空间D 、满足第一可数性公理的空间的每一个子空间都是Linde öff 空间10、设A 是度量空间(,X ρ)中的一个非空子集,则下列命题错误的是【 C 】A 、()x d A ∈当且仅当(,{})0x A x ρ-=B 、()x d A ∈当且仅当(,)0x A ρ=C 、对x A ∀∈,且有(,)B x A εφ⋂≠,则A 为X 中的一个开集D 、x A ∈当且仅当(,)0x A ρ=二、填空题(每空2分,共20分)请将答案写在横线上。

拓扑答案

拓扑答案
· · · ∪ (B ∩ An) 是 X 的闭集.
3
练习 11 (11.). • 设 Y 是 X 的子空间,x ∈ Y ,则 x ∈ DY (A) 当且仅当 x ∈ DX (A),即 DY (A) = DX (A) ∩Y ,这里,DY (A) 表示 A 在 Y 中的导集.
证明
• 任取 x ∈ DY (A),则对 x 在 X 中的任意邻域 U 有 (U ∩Y )∩(A \ {x}) ̸= 0/ ,所以 U ∩ (A \{x}) ̸= 0/ , 从而 x ∈ DX (A).
1 2
(d
(x,
a)

r),则
a
的邻域
B(a,
r0)
满足
B(a,
r0)

B[x,
r]c,从而
B[x, r]
– 事实上,任取 y ∈ B(a, r0),则
1 d(x, y) ≥ d(x, a) − d(a, y) > d(x, a) − r0 = 2 (d(x, a) + r) > r, * 即 y ∈/ B[x, r],再由 y 的任意性有 B(a, r0) ⊆ B[x, r]c. – 反例:在多于一点的离散空间 X,有 B[x, 1] = X,但 B(x, 1) = {x}.
f −1(F),
* 即 f −1(F) = f −1(F),于是 f −1(F) 是 X 的闭集。
证明:(4)⇐⇒(1) • (4)⇒(1)
– 假设对 Y 中的每一子集 B,有 f −1(B◦) ⊆ [ f −1(B)]◦. * 则对 Y 的开集 B 有 f −1(B) = f −1(B◦) ⊆ f −1(B)◦ ⊆ f −1(B), · 所以有 f −1(B) = f −1(B)◦,因此 f −1(B) 是 X 的开集。 * (1)⇒(4) · 设 f 连续,则 f −1(B◦) 是开集. · 由于 f −1(B◦) ⊆ f −1(B),所以有 f −1(B◦) ⊆ f −1(B)◦.

答案 拓扑学基础B

答案 拓扑学基础B

东 北 大 学 秦 皇 岛 分 校课程名称: 拓扑学基础 (答案) 试卷: B 考试形式:闭卷授课专业:数学与应用数学 考试日期: 2011年 5月26日 试卷:共 3 页一、填空题:(每空2分,共30分)1. 数字30的连通分支的个数是 2 ,数字9的连通分支的个数是 1 。

2.数字8的割点的个数是 1 。

数字6的割点的个数是 无穷 。

3. 汉字“土” 的指数为1的点的个数为 5 ,指数为2的点的个数为 无穷 ,指数为3的点的个数为 1 ,指数为4的点的个数为 1 。

4.给实数集赋予欧式拓扑,则区间[0,1]的内部是 (0,1) ,导集是 [0,1] ,闭包是 [0,1] 。

5.设{1,2}X =,写出所有拓扑 平凡拓扑 , 离散拓扑 ,{,,{1}}X ∅ , {,,{2}}X ∅ 。

二、问答题:(共30分)1. 分别给出既开又闭既不开又不闭的集合的例子。

(5分)答:双曲线中每个连通分支都是既开又闭的集合。

(2分) {1,2,3}X =,取拓扑为{,,{1}}X ∅,则{2}是既不开又不闭的集合。

(5分) 注:例子不唯一,正确即可。

2. 叙述同胚映射的定义并给出一个不是同胚映射连续的满开映射。

(5分)答:定义:拓扑空间之间的一个连续映射称为同胚映射,若它是一一对应且它的逆也 是连续的。

(3分) 商映射在不是一一对应时是一个不是同胚映射连续的满开映射。

(5分) 注:例子不唯一,正确即可。

3. 叙述0T 空间、1T 空间、2T 空间的定义并给出不是0T 空间的例子以及不是2T 空间的1T 空间的例子。

(10分)答:设X 是拓扑空间,若对其中任意两点都存在其中一点的开邻域不包含另外一点,则称其为0T 空间; (2分) 若对其中任意两点都存在每一点的开邻域不包含另外一点,则称其为1T 空间;(4分) 若对其中任意两点都存在各自的开邻域使得这两个开邻域不相交,则称其为2T 空间;(6分)不少于两点的平凡空间不是0T 空间; (8分) 给实数集赋予余有限拓扑,则它是1T 空间,不是2T 空间。

基础拓扑学讲义答案第二章

基础拓扑学讲义答案第二章

基础拓扑学讲义答案第二章第二章基本拓扑学
1.什么是拓扑学?
拓扑学是一门研究空间结构的数学学科,它研究的是空间中的点、线、面和体的关系,以及它们之间的连接关系。

它是一门抽象的数学学科,它不关心物体的形状和大小,而是关注物体之间的关系。

2.拓扑学的基本概念有哪些?
(1)点:拓扑学中的点是一个抽象的概念,它可以表示一个物体的位置,也可以表示一个物体的属性。

(2)线:拓扑学中的线是一个抽象的概念,它表示两个点之间的连接关系。

(3)面:拓扑学中的面是一个抽象的概念,它表示一组点之间的连接关系。

(4)体:拓扑学中的体是一个抽象的概念,它表示一组面之
间的连接关系。

3.拓扑学的基本概念有哪些?
(1)连通性:拓扑学中的连通性是指一组点之间的连接关系,它表示一组点之间是否存在路径,以及路径的长度。

(2)闭合性:拓扑学中的闭合性是指一组点之间的连接关系,它表示一组点之间是否存在一个完整的回路,以及回路的长度。

(3)同构性:拓扑学中的同构性是指两个空间结构之间的关系,它表示两个空间结构之间是否存在一种可以将一个空间结构
变换成另一个空间结构的变换。

(4)等价性:拓扑学中的等价性是指两个空间结构之间的关系,它表示两个空间结构之间是否存在一种可以将一个空间结构
变换成另一个空间结构的变换,并且这种变换不会改变空间结构
的性质。

《基础拓扑学讲义》部分习题解答

《基础拓扑学讲义》部分习题解答

《基础拓扑学讲义》部分习题解答六1. 设(,)X Γ是空间,是任何一个不属于1T ∞X 的元素。

令*{}X X =∞∪和*{}*X Γ=Γ∪。

证明:(1)**(,X )Γ是一个拓扑空间。

(2)**(,X )Γ是一个空间但不是空间。

0T 1T 证明 (1)(略)(2)先证(,X ∗∗)Γ是空间:由于0T X 是空间,故也是空间,对1T 0T X ∗中的任意两个不相同的点,如果这两个点都不是,则有一个点有一个开邻域不包含另一个点;如果这两个点有一个是∞,则对另一点记为∞p (p ≠∞)而言,X 是包含点p 的一个开邻域,并且X ∞∉,所以是T 空间.(,X ∗∗Γ))0再说明(,X ∗∗Γ不是空间:由于1T {}X ∗∗Γ=Γ∪ ,故包含的开邻域只有一个,就是∞{}X X ∗=∪∞,因此对X 中一点p 而言,包含∞的开邻域一定包含p ,所以不是空间.(,X ∗∗Γ)1T 2.设和Γ Γ是集合X 上的两个拓扑,并且 Γ⊂Γ。

证明:如果拓扑空间(,)X Γ是一个或空间,则拓扑空间0T 1T (,)X Γ相应也是一个或空间。

0T 1T证明 (1)若是空间,则对(,)X Γ0T X 中任意两个不同的点,存在一个点的一个开邻域不包含另外一个点,又 Γ⊂Γ,故上述开邻域也是该点在拓扑空间 (,)X Γ下的一个开邻域,它同样不包含另一个点,得到 (,)X Γ也是空间.T (2)若(,)X Γ是空间,则对1T X 中任意两个不同的点x 与,分别各自存在一个开邻域不包含另外一点,又y Γ⊂Γ,这两个开邻域也是点x 与在拓扑空间y (,)X Γ下的开邻域,它们同样不包含另一个点,得到 (,)X Γ也是空间.1T 3.对中的区间进行同胚分类,问总共有几个类? 答:三个。

(1)[,;(2);(3)[,。

]a b (,)a b )a b注:如果对一维连通流形进行同胚分类则有四个,加上。

1S。

拓扑学复习题及答案

拓扑学复习题及答案

拓扑学复习题及答案1. 什么是拓扑空间?请给出拓扑空间的定义。

答:拓扑空间是一个集合X,连同一个子集的集合T(称为开集),满足以下三个条件:(1)空集和X本身都在T中;(2)T中任意有限个开集的交集仍然在T中;(3)T中任意开集的并集也在T中。

2. 什么是连续函数?请给出连续函数的定义。

答:在拓扑空间之间,如果对于每一个开集U⊆Y,其原像f^(-1)(U)是X中的开集,则称函数f: X→Y是连续的。

3. 什么是同胚映射?请解释同胚映射的概念。

答:同胚映射是两个拓扑空间之间的双射连续函数,并且其逆映射也是连续的。

如果存在这样的映射,我们称这两个拓扑空间是同胚的。

4. 什么是紧致性?请说明紧致性的定义。

答:在拓扑空间X中,如果每一个开覆盖都有有限子覆盖,那么称X是紧致的。

5. 什么是连通性?请解释连通性的概念。

答:如果一个拓扑空间不能被分成两个非空的不相交开集,那么称这个空间是连通的。

6. 什么是路径连通性?请给出路径连通性的定义。

答:如果对于拓扑空间X中的任意两点x, y,都存在一个连续函数f: [0, 1]→X,使得f(0)=x且f(1)=y,则称X是路径连通的。

7. 什么是同伦等价?请说明同伦等价的定义。

答:如果存在两个连续映射f: X→Y和g: Y→X,使得g∘f和f∘g分别与X和Y上的恒等映射同伦,则称X和Y是同伦等价的。

8. 什么是基本群?请解释基本群的概念。

答:对于拓扑空间X中的基点x0,基本群π1(X, x0)是由所有以x0为起点和终点的回路构成的集合,这些回路在同伦意义下是等价的,并且群的运算是回路的连接。

9. 什么是覆盖空间?请给出覆盖空间的定义。

答:拓扑空间p: E→B称为B的覆盖空间,如果对于B中的每一个点b,都存在一个开邻域U,使得p^(-1)(U)是E中开集的不相交并,每个开集都通过p同胚映射到U。

10. 什么是商空间?请说明商空间的概念。

答:如果对于拓扑空间X中的等价关系~,商空间X/~是由X中所有等价类构成的集合,并且X/~上的拓扑是由X到X/~的商映射诱导的,那么称X/~是X的一个商空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东 北 大 学 秦 皇 岛 分 校
课程名称: 拓扑学基础 (答案) 试卷: B 考试形式:闭卷
授课专业:数学与应用数学 考试日期: 2011年 5月26日 试卷:共 3 页
一、填空题:(每空2分,共30分)
1. 数字30的连通分支的个数是 2 ,数字9的连通分支的个数是 1 。

2.数字8的割点的个数是 1 。

数字6的割点的个数是 无穷 。

3. 汉字“土” 的指数为1的点的个数为 5 ,指数为2的点的个数为 无穷 ,指数为3的点的个数为 1 ,指数为4的点的个数为 1 。

4.给实数集赋予欧式拓扑,则区间[0,1]的内部是 (0,1) ,导集是 [0,1] ,闭包是 [0,1] 。

5.设{1,2}X =,写出所有拓扑 平凡拓扑 , 离散拓扑 ,
{,,{1}}X ∅ , {,,{2}}X ∅ 。

二、问答题:(共30分)
1. 分别给出既开又闭既不开又不闭的集合的例子。

(5分)
答:双曲线中每个连通分支都是既开又闭的集合。

(2分) {1,2,3}X =,取拓扑为{,,{1}}X ∅,则{2}是既不开又不闭的集合。

(5分) 注:例子不唯一,正确即可。

2. 叙述同胚映射的定义并给出一个不是同胚映射连续的满开映射。

(5分)
答:定义:拓扑空间之间的一个连续映射称为同胚映射,若它是一一对应且它的逆也 是连续的。

(3分) 商映射在不是一一对应时是一个不是同胚映射连续的满开映射。

(5分) 注:例子不唯一,正确即可。

3. 叙述0T 空间、
1T 空间、2T 空间的定义并给出不是0T 空间的例子以及不是2T 空间的1T 空间的例子。

(10分)
答:设X 是拓扑空间,若对其中任意两点都存在其中一点的开邻域不包含另外一点,则称其为0T 空间; (2分) 若对其中任意两点都存在每一点的开邻域不包含另外一点,则称其为1T 空间;(4分) 若对其中任意两点都存在各自的开邻域使得这两个开邻域不相交,则称其为2T 空间;
(6分)
不少于两点的平凡空间不是0T 空间; (8分) 给实数集赋予余有限拓扑,则它是1T 空间,不是2T 空间。

(10分) 注:例子不唯一,正确即可。



线
装 订 线 内 不 要 答 题
学 号
姓 名
班 级
4.简述克莱因瓶的定义。

(5分)
答:在单位正方形22{(,)|0,1}I x y E x y =∈≤≤上定义等价关系: [0,1]x ∀∈,(x, 0)与(x, 1)等价
[0,1]y ∀∈,(0, y )与(1, 1-y )等价 则商空间称为克莱因瓶。

5. 谈谈你对拓扑学中商空间的思想的认识。

(5分)
注:无唯一标准答案。

三、证明题:(任选4个小题,每小题10分,共40分)
1. 设X 是一个拓扑空间, W X ⊂, 求证W 是开集当且仅当它是它的每个点的邻域。

证明:“⇒”由邻域的定义,这是显然的。

(2分) “⇐”x W ∀∈,因为W 是x 的邻域,由邻域的定义,
存在开集x O W ⊂,使得x x O ∈。

(5分)
所以{}x W
x W
x W x O W ∈∈=⊂
⊂。

所以x W
x W O ∈=
(8分)
因为开集的任意并集是开集,所以W 是开集。

(10分)
2.证明第二可数空间是可分空间。

证明:设X 是第二可数空间。

T 为一组可数基。

(2分) B T ∀∅≠∈,取b B ∈,则这些b 构成可数集合D 。

x X ∀∈及x 的每一邻域U ,由于U 包含非空开集,从而包含T 中成员。

(5分) 所以U
D ≠∅。

这说明x D ∈。

(8分) 从而X D = (10分)


线
装 订 线 内 不 要 答 题
学 号
姓 名
班 级
3. 设:f X Y →是紧空间X 到2T 空间Y 之间的连续满射,证明f 是商映射。

证明:由已知,X 是紧空间,Y 是2T 空间,:f X Y →是连续满射。

A X ∀⊂,A 是闭集。

由X 是紧空间,而紧空间的闭子集是紧的,从而
A 是紧的。

(3分) 因为紧空间在连续映射下的像是紧的,所以()f A 是紧的。

(5分) 又Y 是2T 空间,而2T 空间的紧子集是闭的,所以()f A 是闭的。

(8分)
这说明f 是闭映射。

从而是商映射。

(10分) 4. 证明2T 空间的紧子集是闭集。

证明:设X 是2T 空间,A 是紧子集。

现证明c A 是开集。

(2分) c
x A ∀∈,a A ∈,由于X 是2T 空间,所以分别存在x 与a 的不相交的开邻域a U 与a V 。

(4分) 由{V |a A}a ∈是A 的开覆盖,A 是紧子集,所以有有限的子覆盖 1{,,}n a a V V (6分)
记1i n
i a U U ==
,1i
n
i a V V ==
,则
U 是x 的开邻域,V U =∅,V A ⊃。

(8分) 所以c c U V A ⊂⊂。

这说明c A 是开集。

(10分)
5. 证明有连通的稠密子集的拓扑空间是连通的。

证明:设X 是拓扑空间,Y 是稠密子集,A 是X 的既开又闭的非空子集。

则有 A Y ≠∅。

(4分) 又A Y 是Y 的既开又闭的非空子集,Y 连通,
所以A Y Y =。

(7分) 所以A Y ⊃
所以X Y A A =⊂=。

(9分) 这说明X 连通。

(10分)
6. 证明若拓扑空间连通则它无既开又闭的非空真子集。

证明:设X 是连通空间。

设A X ⊂既开又闭且非空。

设A X ≠。

(2分) 则X A -既开又闭,且X A X -≠,()A X A X -=。

(4分) 因为()A X A -=∅,()A X A -=∅, (7分) 所以X 不是连通空间。

矛盾。

所以A X =。

(10分)


线
装 订 线 内 不 要 答 题
学 号
姓 名
班 级。

相关文档
最新文档