叠加法求梁的位移
04-8.3 叠加法求梁的位移
BC段弹性曲引起 wCF (↓)
结果:
wC
wCF
B
a
2qa4 3EI
注意:引起 θB的有两项 —— q 和qa2,他们的转向不同,叠加时注意正负号
梁的刚度校核
梁的设计:——利用强度条件设计,利用刚度条件校核
刚度条件:
wmax l
w l
max
w 精密机床主轴 l 吊车梁
土建
1 5000
三、方法
1.分解——每种情况都是简单模型 2.分别计算——查表 3.叠加
简单模型 ——悬臂梁
Me
l
A
A
Mel EI
wA
Mel 2 2EI
F
l
A
A
Fl 2 2EI
wA
Fl 3 3EI
q
A
A
ql 3 6EI
ql 4
wA
8EI
l
简单模型 —— 简支梁
F
A
l
C
l
B
A
Fl 2 16EI
wBF
F( l2)3 3EI
Fl 3 24EI
B
F ( l 2)2 2EI
Fll 2
wCM 2EI
结果:
wC
w BF
B
l 2 wCMe
19Fl 3 48EI
例题 3
q A
2a
已知:EI=常数,求wC
qa
q
B
CA
a
2a
qa
θB B qa2
a
qa
B
C
wCF
a
分析:AB段B截面转角引起 θB a (↑)
B
wCF
2. 分别计算
工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解
得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI
结构力学 叠加法
2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。
在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。
所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。
这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。
叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。
也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。
例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。
求梁的极值弯矩和最大弯矩。
解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。
于是两图共有部分,其正、负纵坐标值互相抵消。
剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。
叠加后的弯矩图仍为抛物线。
如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。
求极值弯矩时,先要确定剪力为零的截面位置。
由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。
令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。
当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。
这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。
因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。
由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。
用叠加法求梁的变形
y B y Bq y BRB
y Bq y BRB 0
(3).将(a)(b)代入(c)得:
(c)
RB L3 qL4 0 8EI Z 3EI Z
RB
3 qL 8
yBRB
A
RB
目录
§7-5 梁的刚度校核
一.刚度条件:
土建工程:以强度为主,一般强度条件满足了,刚度要求也
max
M max Wz
q 2
(其中:M max L2 45 KNm
Wz
b 2 2 3 h b ) 6 3
b3
3M max 178m m 2
h 2b 356 mm
(2).按刚度条件设计: 由附录查得:
f max f L L
就满足了,因此刚度校核在土建工程中处于从属地位。 机械工程:对二者的要求一般是平等的,在刚度方面对挠度 和转角都有一定的限制,如机床中的主轴,挠度过大影响加工 精度,轴端转角过大,会使轴承严重磨损。
桥梁工程:挠度过大,机车通过时将会产生很大的振动。
综上所述:在工程设计中,我们有必要对梁的挠度和转角进行限
MeL 3EI Z
Bq
BM
qL3 24EI Z
MeL 6 EI Z
yCq
5qL4 384EI Z
MeL2 16EI Z
yCM
(2).进行代数相加,求得:
yC yCq yCM
5qL4 MeL2 384EI Z 16EI Z
A Aq AM
§7-3 用叠加法求梁的变形
一.概述:
我们上面所讲的直接积分法是求梁变形的基本方法, 但在载荷复杂的情况下,要列多段弯矩方程,从而产生很 多的积分常数。运算非常复杂。现在我们将要介绍的叠加
梁的变形计算
例题
解: 4. 利用约束条件和连续条件 确定积分常数
EI1
3 8
FP x 2
C1
EI
=-3
2
8
FP
x 2+1 2
FP
x- l 4
2
C2
EIw1
1 8
FP
x3
C1x
D1
EIw2=-81
FP
x 3+1 6
FP
dx 2
EI
弹性曲线的小挠度微分方程,式中的正负号与w坐标的取向有关。
小挠度微分方程
d2w 0,M 0 dx 2
d2w M dx 2 EI
本书采用向下的w坐标系,有
d2w 0,M 0
dx 2
d2w M dx2 EI
d2w M dx2 EI
小挠度微分方程
d2w M
叠加法应用于多个载荷作用的情形
当梁上受有几种不同的载荷作用时,都可以将其分解为各种载 荷单独作用的情形,由挠度表查得这些情形下的挠度和转角,再将 所得结果叠加后,便得到几种载荷同时作用的结果。
叠加法应用于多个载荷作用的情形 例题
已知:简支梁受力如图 示,q、l、EI均为已知。
求:C截面的挠度wC ; B截面的转角B
3
7
l 2 x
EI 8 6 4 128
据此,可以算得加力点B处的挠度和支承处A和C的转角分别为
wB
3 256
FPl 3 EI
A
7 128
1《材料力学》试卷答案2
***学院期末考试试卷一、 填空题(总分20分,每题2分)1、求杆件任一截面上的内力时,通常采用 法。
2、工程中常以伸长率将材料分为两大类:伸长率大于5%的材料称为 材料。
3、梁截面上剪力正负号规定,当截面上的剪力使其所在的分离体有 时针方向转动趋势时为负。
4、虎克定律可以写成/N l F l E A∆=,其中E 称为材料的 ,EA 称为材料的 。
5、材料力学在研究变形固体时作了连续性假设、 假设、 假设。
6、在常温、静载情况下,材料的强度失效主要有两种形式:一种是 ,一种是 。
7、在设计中通常由梁的 条件选择截面,然后再进行 校核。
8、外力的作用平面不与梁的形心主惯性平面重合或平行,梁弯曲后的扰曲轴不在外力作用平 面内,通常把这种弯曲称为 。
9、在工程实际中常见的组合变形形式有斜弯曲、 , 。
10、当材料一定时,压杆的柔度λ越大,则其稳定系数ϕ值越 。
二、 单项选择(总分20分,每题2分)1、构件的刚度是指( )A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持原有平衡态的能力C. 在外力作用下构件抵抗破坏的能力D. 在外力作用下构件保持原有平稳态的能力2、轴向拉伸细长杆件如图所示,则正确的说法应是( )A 1-1、2-2面上应力皆均匀分布B 1-1面上应力非均匀分布,2-2面上应力均匀分布C 1-1面上应力均匀分布,2-2面上应力非均匀分布D 1-1、2-2面上应力皆非均匀分布4、单位长度扭转角 与( )无关。
A 杆的长度;B 扭矩C 材料性质;D 截面几何性质。
5、当梁的某段上作用均布荷载时。
该段梁上的( )。
A. 剪力图为水平直线 B 弯矩图为斜直线。
C. 剪力图为斜直线 D 弯矩图为水平直线6、应用叠加原理求梁横截面的挠度、转角时,需要满足的条件是( )。
A 梁必须是等截面的B 梁必须是静定的C 变形必须是小变形;D 梁的弯曲必须是平面弯曲7.若某轴通过截面的形心,则( )A .该轴一定为主轴, B. 该轴一定是形心轴C .在所有轴中,截面对该轴的惯性矩最小。
材料力学-第八章叠加法求变形(3-4-5)
C
刚化
P
EI=
C
θc1
fc1
pa3 3EI
fc1
c1
pa2 2EI
2)AB部分引起的位移fc2、 θc2
P
A
θ B B2
C
fc2 刚化
EI=
B2
PaL 3EI
fc2 B2 a
PaL a 3EI
c c1 B2
θB2
P Pa
c
Pቤተ መጻሕፍቲ ባይዱ 2 2EI
PaL 3EI
fc fc1 fc2
fc
pa3 3EI
MPa,[]=100
MPa,E=210
GPa,
w l
1 400
。
例题 5-7
解:一般情况下,梁的强度由正应力控制,选择梁横 截面的尺寸时,先按正应力强度条件选择截面尺寸, 再按切应力强度条件进行校核,最后再按刚度条件 进行校核。如果切应力强度条件不满足,或刚度条 件不满足,应适当增加横截面尺寸。
[例8-3]如图用叠加法求 wC、A、B
解:1.求各载荷产生的位移 2.将同点的位移叠加
=
wC
5qL4 384EI
A
qL3 24EI
B
qL3 24EI
+
PL3 48EI
PL2
16EI PL2
16EI
+
ML2 16EI
ML 3EI
ML 6EI
例题 5-4
试按叠加原理求图a所示简支梁的跨中截面的
16EI
1 qa4 24 EI
()
例题 5-5
图b所示悬臂梁AB的受力情况与原外伸梁AB
段相同,但要注意原外伸梁的B截面是可以转动的,
材料力学试卷及答案
一、低碳钢试件的拉伸图分为 、 、 、 四个阶段。
(10分)二、三角架受力如图所示。
已知F =20kN,拉杆BC 采用Q235圆钢,[钢]=140MPa,压杆AB 采用横截面为正方形的松木,[木]=10MPa ,试用强度条件选择拉杆BC 的直径d 和n =180 r/min ,材分)四、试绘制图示外伸梁的剪力图和弯矩图,q 、a 均为已知。
(15分)qaa22qa ABCA B五、图示为一外伸梁,l=2m,荷载F=8kN,材料的许用应力[]=150MPa,试校核该梁的正应力强度。
(15分)六、单元体应力如图所示,试计算主应力,并求第四强度理论的相当应力。
(10分)e =200mm 。
b =180mm , h =300mm 。
求max和min。
(15分)x=x=y=lllFAB DC4F 100m m 100mm八、图示圆杆直径d=100mm,材料为Q235钢,E=200GPa ,p=100,试求压杆的临界力F cr。
(10分)Fm3d1)答案及评分标准一、弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。
评分标准:各分。
二、d=15mm; a=34mm.评分标准:轴力5分, d结果5分,a结果5分。
三、=87.5MPa, 强度足够.评分标准:T 3分,公式4分,结果3分。
四、评分标准:受力图、支座反力5分,剪力图5分,弯矩图5分。
五、max=>[]=100 MPa ,但没超过许用应力的5%,安全.评分标准:弯矩5分,截面几何参数 3分,正应力公式5分,结果2分。
六、(1)1=141.42 MPa ,=0,3=141.42 MPa ;(2)r4=245 MPa 。
评分标准:主应力5分,相当应力5分。
七、max =0.64 MPa ,min= MPa。
FM评分标准:内力5分,公式6分,结果4分。
八、Fc r =评分标准:柔度3分,公式5分,结果2分。
一、什么是强度失效、刚度失效和稳定性失效二、如图中实线所示构件内正方形微元,受力后变形 为图中虚线的菱形,则微元的剪应变γA 、 αB 、 α-090C 、 α2900-D 、 α2答案:D三、材料力学中的内力是指( )。
材料力学复习考点
南通大学建工学院材料力学考点复习(个人自己参考一些资料,总结的复习考点)01 本章小结1.材料力学研究的问题是构件的强度、刚度和稳定性。
2.构成构件的材料是可变形固体。
3.对材料所作的基本假设是:均匀性假设,连续性假设及各向同性假设。
4.材料力学研究的构件主要是杆件,且是小变形杆件。
5.内力是指在外力作用下,物体内部各部分之间的相互作用;显示和确定内力可用截面法;应力是单位面积上的内力。
点应力可用正应力与剪应力表示。
6.对于构件任一点的变形,只有线变形和角变形两种基本变形。
7.杆件的四种基本变形形式是:拉伸(或压缩),剪切,扭转以及弯曲。
02-1 本章小结1.本章主要介绍轴向拉伸和压缩时的重要概念:内力、应力、变形和应变、变形能等。
轴向拉伸和压缩的应力、变形和应变的基本公式是: 正应力公式AN=σ 胡克定律EEAll σε==∆,F 胡克定律是揭示在比例极限内应力和应变的关系,它是材料力学最基本的定律之一。
平面假设:变形前后横截面保持为平面,而且仍垂直于杆件的轴线。
轴向拉伸或压缩的变形能。
2.材料的力学性能的研究是解决强度和刚度问题的一个重要方面。
对于材料力学性能的研究一般是通过实验方法,其中拉伸试验是最主要、最基本的一种试验。
低碳钢的拉伸试验是一个典型的试验。
它可得到如下试验资料和性能指标:拉伸全过程的曲线和试件破坏断口;b s σσ,—材料的强度指标; ψδ,—材料的塑性指标。
其中E —材料抵抗弹性变形能力的指标;某些合金材料的2.0σ—名义屈服极限等测定有专门拉伸试验。
3.工程中一般把材料分为塑性材料和脆性材料。
塑性材料的强度特征是屈服极限 sσ和强度极限 b σ(或 2.0σ),而脆性材料只有一个强度指标,强度极限 b σ。
4.强度计算是材料力学研究的重要问题。
轴向拉伸和压缩时,构件的强度条件:[]σσ≤=AN它是进行强度校核、选定截面尺寸和确定许可载荷的依据。
5.应通过本章初步掌握拉压超静定问题的特点及解法。
第八章叠加法求变形(3,4,5)
用叠加法计算梁的变形及 梁的刚度计算
一、用叠加法计算梁的变形——简捷方法 叠加法应用的条件 在材料服从胡克定律、且变形很小的前 提下,载荷与它所引起的变形成线性关系。 即挠度、转角与载荷(如P、q、M)均为一次线性关系 计算梁变形时须记住梁在简单荷载作用下 的变形——转角、挠度计算公式(见附录Ⅳ)。
3 3
pl 7 pl 3 pl wc wc1 wc 2 24 EI 48EI 16 EI
B
c
c
p
这种分析方法叫做梁的逐段刚化法。
例题2 用叠加法求AB梁上E处的挠度 E
p
p
p
wE 2
wE 1
B
wE = wE 1+ wE 2 = wE 1+ wB/ 2
wB=?
P
机械:1/5000~1/10000,
土木:1/250~1/1000 机械:0.005~0.001rad
[w]、[θ]是构件的许可挠度和转角,它们决定于构 件正常工作时的要求。 [例8-8]图示工字钢梁,l =8m,Iz=2370cm4,Wz=237cm3 ,[ w/l ]= 1/500,E=200GPa,[σ]=100MPa。试根据梁 的刚度条件,确定梁的许可载荷 [P],并校核强度。
例题 2
按叠加原理得
wC wC 1 wC 2
5ql 4 5ql 4 0 768EI 768EI
ql 3 ql 3 3ql 3 A A1 A2 48EI 384EI 128EI ql 3 ql 3 7ql 3 B B1 B 2 48EI 384EI 384EI
c
c
A
P M =Pl/2 B C B
(完整版)材料力学简答题
(完整版)材料力学简答题1、(中)材料的三个弹性常数是什么?它们有何关系?材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角?挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件?用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围?=只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ110、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征?(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
材料力学简答题
1、(中)材料的三个弹性常数是什么它们有何关系材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类最大应切力理论属于哪一类强度理论Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体在材料力学中对变形固体有哪些基本假设在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围=只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ110、列举图示情况下挤压破坏的结果一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显着的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
《工程力学(II)(材料)》在线考试课程考前辅导材料(新)
C.与压杆的长度大小以及柔度大小均有关;
D.与压杆的柔度大小和长度大小无关。
16. 在美国“9.11”事件中,恐怖分子的飞机撞击国贸大厦后,该大厦起火燃烧,然后坍塌。该大厦的破坏属于(A)。
A.强度破坏
B.刚度和稳定性破坏
C.物理和结构破坏
D.化学破坏
17. 各向同性假设认为,材料沿各个方向具有相同的(A)。
各向同性假设,认为材料沿各个方向的力学性能的相同的。
39. 材料力学中材料的三个弹性常数是什么?它们有何关系?
答案:材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比 ,它们的关系是 。
40. 提高梁刚度的措施。
答案:1、增大梁的弯曲刚度EI。因为增大刚材的的E值并不容易,所以,只要增大I值,在截面面积不变的情况下,宜采用面积分布远离中性轴的截面形状,以增大截面的惯性矩,从而降低应力,提高弯曲刚度。2、调整跨长或改变结构,由于梁的挠度和转角值与其跨长的n次幂成正比,所以,缩短梁的跨长能显著减小位移值。或将静定结构增加支座使其变为超静定结构。
19. 直杆的两端固定,如图所示。当温度发生变化时,杆(C)。
A.横截面上的正应力为零,轴向应变不为零
B.纵截面上的正应力和轴向应变均不为零
C.横截面上的正应力不为零,轴向应变为零
D.横截面上的正应力和轴向应变均大于等于零
20. 构件要能够安全正常的工作,它必须要满足(D)。
A.强度、刚度条件
B.刚度条件、稳定性要求
A.力学性质;
B.化学性质;
C.变形;
D.相同的外力。
18. 材料的疲劳极限与构件的疲劳极限相比较,若两者的材料、变形形式和循环特征相同,而构件不作表面化处理,则(B)。
第六章 梁的位移
可解出
Fa 2 c2 , 2
1 1 1 EI z v ql 2 x 2 qlx3 qx 4 c1 x c2 4 6 24
(2)
2.16
第6章
梁的位移
6.2 用积分法求梁的位移
考虑边界条件,对于悬臂梁来说,悬臂端的转角和挠度为0,即
x0 x0
v 0
v0
将上述2个边界条件代入式(1)和式(2),可解出积分常数为
1 1 EI z v qlx 2 qx3 c1 4 6
(2)
2.20
第6章
该梁的边界条件为
梁的位移
6.2 用积分法求梁的位移
x0 x 1
v0 v0
先将第1个边界条件代入式(2),解出积分常数c2:
c2 0
再将第2个边界条件代入式(2),可解出积分常数c1:
ql 3 c1 24
tan v f ( x)
即有
f ( x)
(c)
2.6
Qm
第6章
梁的位移
6.1 梁的挠曲线微分方程
式(c)称为转角方程,它表达了梁各横截面转角与挠度的关系。 在第5章,我们曾建立了挠曲线曲率(curvature)与弯矩的关系,即式 (5.1)所示 1 M EI z 在高等数学中,我们有曲率公式如下:
2.9
第6章
梁的位移
6.1 梁的挠曲线微分方程
x M (a) M (b) M M
x
M<0
vⅱ >0
y y
M>0
vⅱ <0
图6.2 曲率正负号的规定 (a) 梁受负弯矩作用;(b)梁受正弯矩作用
2.10
第6章
梁的位移
6.2 用积分法求梁的位移
(完整版)材料力学简答题
1、(中)材料的三个弹性常数是什么?它们有何关系?材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角?挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ.研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件?用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围?只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ1=10、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征?(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
计算梁与刚架位移两类叠加法的适用范围
(6)
(2)简支端(如图 3(a)的 C 点,设 x = 3a )
w2 (3a) = 0
(7)
(3)自由端 无位移边界条件
(4)载荷分界点(如图 1 的 B 点,设 x =
xk )
wk θk
( (
xk xk
) )
= =
θwkk++11((xxkk))⎭⎬⎫
(8)
(5)中间铰(如图 2 的 B 点,设 x = xk )
a3
w3Dc
=
7FC 3EI
a3
−
4F 3EI
a 3 , w3Db
=
0
由
w3Db
1F 2
,故
w3Da
=
w3Db
+ w3Dc
= − Fa3 6EI
。它表明将静不定结构
变换为静定的相当系统,逐段变形效应叠加 法可以用于求解静不定问题。可见逐段变形 效应叠加法在分析梁、杆系与刚架系统的位 移中有重要的实用价值。在另一方面,像弹 性力学平面问题、板壳力学问题及弹性力学 的三维问题,本质上都是静不定问题,不能 变换为静定的相当系统,逐段(部分)变形效 应叠加法不能应用,而载荷叠加法可以应
a3 , w1Dc
= − 5F a3 6EI
故有 w1Da = w1Db + w1Dc 。它表明应用载荷叠加
法计算位移正确。对于图 2 中的四梁
w2Da
=− F EI
a3,
w2Db
=
−F 3EI
a3
w2Dc
=
−F 3EI
a3,
w2Dd
=− F 3EI
a3
故有 w2Da = w2Db + w2Dc+w2Dd ,它表明这样采
建筑力学与结构 第四章静定结构的变形计算与刚度校核
F
Bx
EIw Flx Fx2 C (3) 2
EIw Flx2 Fx3 C x D (4) 26
边界条件 x 0, w 0
x 0, w 0 将边界条件代入(3)(4)两式中,可得 C 0 D 0
梁的转角方程和挠曲线方程分别为
EIw Flx Fx2 2
最大转角和最大挠度分别为
在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
qmax
q A
qB
ql 3 24EI
在梁跨中点处有最大挠度值
wmax
w
x l 2
5ql 4 384EI
三、用叠加法求梁的位移
1、叠加原理
梁的变形微小, 且梁在线弹性范围内工作时, 梁在几项荷载 (可以是集中力, 集中力偶或分布力)同时作用下的挠度和转角, 就分别等于每一荷载单独作用下该截面的挠度和转角的叠加. 当 每一项荷载所引起的挠度为同一方向(如均沿w轴方向), 其转角 是在同一平面内(如均在 xy 平面内)时,则叠加就是代数和. 这就 是叠加原理.
1 K R C Mdq Vd Nd
材料力学公式
dq M ds d ds k V ds d ds N ds
EI
GA
EA
若支座位移为零,则
KP
MMP EI
ds
kVVP GA
ds
NNP EA
ds
4.3 虚功原理 单位荷载法求梁的位移
反之为负。
四、图乘法计算位移
常见图形的面积和形心
三角形
2l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
B C F
F a (2) a 2a (3)
Fa 3 Fa 2 F ( 2a ) 3 11Fa 3 wB1 = wB 2 + wB 3 = a + = 3EI 2 EI 3EI 6 EI 3 11Fa wC = wB1 = 6 EI
F A a a C a
F B a a
F
F B
→
C
→
B C
+
B C F
P a (1)
2 2
a (2)
a
2
2a (3)
Fa F ( 2a ) 3Fa θ B1 = θ B 2 + θ B 3 = = 2 EI 2 EI 2 EI 3Fa θ B = θ B1 = 2 EI
2
对称问题
只要是简支梁、梁上的载荷对称, 只要是简支梁、梁上的载荷对称,就能采用上 述方法求解。 述方法求解。
F A l C EI l F F D l B
解:
(1)
A C
D
B
+
F
(2)
A
C
D
B
叠加法的基本思想
F
(1) A
D
曲线
B
对于图(1): 对于图 :
θC1 × 2l θB1
wC1 wB1
wC1 C
θ C1
直线
Fl 2 θ B1 = θ C1 = 顺时针) (顺时针) 2 EI
4 Fl 3 Fl 2 Fl wB1 = wC1 + θ C1× 2l = × 2l = 向下) (向下) + 3EI 3EI 2 EI
截面的挠度和转角。 求C截面的挠度和转角。 截面的挠度和转角
F A l C EI l F D l B
弯矩方程 挠度和转角←挠曲函数←{ 挠曲函数 位移条件
(3) A l F C F Fl
2 F × l 2 Fl × l 2 Fl 2 = + θC = θC3 = EI 2 EI EI 3 2 3 7 Fl Fl × l 2F × l = + wC = wC 3 = 6 EI 2 EI 3EI
梁的EI已知 已知, 例 梁的 已知,求wC、 wD和θB
F A a D a C B F a a F
→
A a
D a (1)
C
F ( 2a ) Fa wD = wD1 = = wC = wC1 = 0 48EI 6 EI 2 2 F ( 2a ) Fa 反对称问题 θ B = θ C1 = [ ]= 16 EI 4 EI
切断+ 切断+简化
由叠加原理求图示弯曲刚度为EI的外伸梁 的外伸梁C截面 例 : 由叠加原理求图示弯曲刚度为 的外伸梁 截面 的挠度和转角以及D截面的挠度 截面的挠度。 的挠度和转角以及 截面的挠度。
A a EI F=qa D a F=qa A a (a) EI D a B qa qa2/2 B a C
§7-3 用叠加法求梁的位移
叠加法适用的条件: 叠加法适用的条件: 1)线弹性范围工作; )线弹性范围工作 2)小变形。 )小变形。 简单载荷下梁的挠度和转角见表7-1。 简单载荷下梁的挠度和转角见表 。
利用叠加原理求图示弯曲刚度为EI的悬臂梁自由 例 : 利用叠加原理求图示弯曲刚度为 的悬臂梁自由 截面的挠度和转角。 端B截面的挠度和转角。 截面的挠度和转角
3 2
向下) (向下)
F
(1)
A
C
D
B
+
F
(2)
A
C
D
B
4 Fl 3 14 Fl 3 6 Fl 3 = + wB = wB1 + wB 2 = 向下) (向下) EI 3EI 3EI 2 2 2 5 Fl Fl 2 Fl = + θ B = θ B1 + θ B 2 = 顺时针) (顺时针) 2 EI 2 EI EI
3
2
qa qa(2a ) qa qa = + = 16 EI 3EI 4 EI 6 EI
3 3
4 2
qa(2a ) qa 3 qa 3 qa wC = wCb + θ Ba × a = + [ + ]×a = 16 EI 3EI 6 EI 8 EI
F=qa A a (a) EI D a
qa Bபைடு நூலகம்
qa2/2
+
B a (b)
C
wD = wDa = wDaF + wDaM
qa 4 = 24 EI
qa × (2a ) 3 qa 2 / 2 × (2a ) 2 + = 16 EI 48 EI
例
梁的EI已知, 梁的 已知,求wC和θB 已知
F F C a a a B a a (1) a F F B C
A
→
→
B C
三角形分布载荷(适用于简支梁) 三角形分布载荷(适用于简支梁)
总
一、对载荷分组叠加
结
二、继承与发扬 在前一点位移的基础上叠加新的位移。 在前一点位移的基础上叠加新的位移。 切断+简化, 三、切断+简化,将原来作用在悬臂部分上的载 荷向切口简化(适用于悬臂梁或外伸梁) 荷向切口简化(适用于悬臂梁或外伸梁) 对称问题(适用于简支梁) 四、对称问题(适用于简支梁) 将简支梁从跨中切断,将切口取为固定支座, 将简支梁从跨中切断,将切口取为固定支座, 将一简支端改为自由端; 将一简支端改为自由端;保留半跨上的载荷和简支 端的反力。 端的反力。 反对称问题(适用于简支梁,含跨中集中力偶) 五、反对称问题(适用于简支梁,含跨中集中力偶) 将简支梁从跨中切断,改为半跨的简支梁; 将简支梁从跨中切断,改为半跨的简支梁;保 留半跨上的载荷。 留半跨上的载荷。
解 :
+
B a (b)
C
θ C = θ Cb + θ Ba (继承 继承) 继承
wC = wCb + θ Ba × a (继承和发扬 继承和发扬) 继承和发扬 wD = wDa
F=qa A a (a) EI D a
qa B
qa2/2
+
B a (b)
C
θ C = θ Cb + θ Ba = θ Cb + θ BaF + θ BaM
只要是简支梁、梁上的载荷反对称, 只要是简支梁、梁上的载荷反对称,就能采用上 述方法求解。 述方法求解。
3
3
例
A
梁的EI已知,求wC和θA 梁的 已知, 已知
M C l 2 l 2 B
M/2 C l 2 (1)
→
A
wC = wC1 = 0
( M / 2)(l / 2) Ml θ A = θ A1 = = 6 EI 24 EI
注意事项
一、不要漏项 二、叠加位移时注意每一项的符号 三、注意载荷的变化 简支梁在半跨均布载荷作用下, 减半; 简支梁在半跨均布载荷作用下,简化后集度q减半; 简支梁在跨中集中力偶作用下,简化后集中力偶M减半 减半。 简支梁在跨中集中力偶作用下,简化后集中力偶 减半。 四、注意计算长度的变化 公式中长度为l,题目中的计算长度可能是 、 、 公式中长度为 ,题目中的计算长度可能是l、a、 2l、2a、l/2或a/2。 、 、 或 。 五、简支梁在集中力偶作用下两个铰支端的转角不 等,此时的挠度公式计算的时跨中截面的挠度
3
变形的继承和发扬
对图(2),可得 截面的挠度和转角为 截面的挠度和转角为: 对图 ,可得D截面的挠度和转角为:
F
(2)
B A C 曲线 D
直线
2
θD1
wD1
θD1 × BD
wB2
θB 2
θ B2
wB 2
2 Fl = θ D1 = 顺时针) (顺时针) EI
F × (2l ) F × (2l ) 14 Fl 3 = wD 2 + θ D 2 × l = + ×l = 3EI 2 EI 3EI