1.2.1函数的概念优秀课件.ppt
合集下载
1.2.1 函数的概念 课件(人教A必修1)
栏目 导引
第一章
集合与函数概念
解:要使函数解析式有意义,
x+1≥0, (1)由 解得 x≥-1 且 x≠2, x-2≠0,
所以函数定义域为{x|x≥-1 且 x≠2}.
栏目 导引
第一章
集合与函数概念
x+3≠0, (2) -x≥0, x+4≥0,
且 x≠-3,
x≠-3, 即 x≤0, x≥-4,
1 x≥0 |x| (4)f(x)= ,g(x)= . x -1x<0
栏目 导引
第一章
集合与函数概念
【解 】 (1)f(x)的定义 域为 R,g(x)的 定义域为 {x|x≠2}. 由于定义域不同, f(x)与 g(x)不是相等 故 函数. (2)f(x)的定义域为 R,g(x)的定义域为 R,即定义 域相同. 由于 f(x)与 g(x)解析式不相同,则 f(x)与 g(x)不是 相等函数. (3)g(x)= x2=|x|=f(x),是相等函数.
栏目 导引
第一章
集合与函数概念
1 【解】 (1)∵f(x)= , 1+x 1 1 ∴f(2)= = ; 1+2 3 ∵g(x)=x2+2, ∴g(2)=22+2=6 1 1 (2)f(g(2))=f(6)= = 1+6 7
1 (3)f(x)= 的定义域为{x|x≠-1}, x+1 ∴值域是(-∞,0)∪(0,+∞) g(x)=x2+2 的定义域为 R,最小值为 2. ∴值域是[2,+∞)
集合与函数概念
变式训练
1.判断下列对应关系f是否为从集合A到集合 B的一个函数:
(1)A = {1,2,3} , B = {7,8,9} , f(1) = f(2) = 7 ,
f(3)=8; (2)A=Z,B={-1,1},n为奇数时, f(n)=-1,n为偶数时,f(n)=1; (3)A=B={1,2,3},f(x)=2x-1.
人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
人教版必修1数学课件1.2.1 函数的概念精选ppt课件
(1)判断一个集合 A 到集合 B 的对应关系是不是函数关系的 方法:①A,B 必须都是非空数集;②A 中任意一个数在 B 中 必须有并且是唯一的实数和它对应.
[注意] A 中元素无剩余,B 中元素允许有剩余. (2)函数的定义中“任意一个 x”与“有唯一确定的 y”说明函 数中两变量 x,y 的对应关系是“一对一”或者是“多对一”,而不 能是“一对多”.
符号 (-∞,+∞) _[_a_,__+__∞__) (_a_,__+__∞_) (_-__∞_,__a_] (_-__∞_,__a_)
1.判断(正确的打“√”,错误的打“×”) (1) 函 数 值 域 中 的 每 一 个 数 都 有 定 义 域 中 的 数 与 之 对 应.(√ ) (2)函数的定义域和值域一定是无限集合.( × ) (3)定义域和对应关系确定后,函数值域也就确定了.( √ ) (4)若函数的定义域只有一个元素,则值域也只有一个元 素.( √ ) (5)区间表示数集,数集一定能用区间表示.( × ) (6)数集{x|x<-3},其区间表示为(-∞,-3).( √ )
2.函数 y= 1-x+ x的定义域为( D )
A.{x|x≤1}
B.{x|x≥0}
C.{x|x≥1,或 x≤0} D.{x|0≤x≤1}
3.已知 f(x)=x2+1,则 f(f(-1))=( D )
A.2
B.3
C.4
D.5
4.已知 f(x)=2x1+1,x∈{0,1,2},则函数 f(x)的值函数符号,f 表示对应关系,f(x)表示 x 对应的函 数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等(下节讲函 数这三种表示).函数除了可用符号 f(x)表示外,还可用 g(x), F(x)等表示.
函数的概念ppt课件
基础 梳理
解析:A.定义域不同;B.定义域不同;C.虽然自变量所用 字母不同,但两个函数的定义域和对应法则都分别相同,因此 是同一个函数;D.对应法则不同. 答案:C
思考 应用 1.怎样检验两个变量之间是否具有函数关系?
解析: 由函数近代定义知, 我们要检验两个变量之间是否具有函 数关系, 只要检验: ①定义域和对应关系是否给出且定义域为非空数 栏 目 集;②根据给出的对应关系,自变量在其定义域内任一个值,是否都 链 接 能确定唯一的函数值.
2.形如f(x)=ax2+bx+c(a≠0)的函数叫二次函数,它的图 象为抛物线.
例如:已知f(x)=x2+2x+3,函数值为6时,相对应的自变 x=1或x=-3 量的值为____________ .
栏 目 链 接
基础 梳理 3 .一般地,设 A、 B是非空的数集,如果按照某个确定的 对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B中都有 唯一确定的数f(x)和它对应,那么f:A→B就称为从集合A到集 合B的一个函数.记作y=f(x),x∈A.其中,x叫做自变量, x 的取值范围A叫做函数的定义域;与x的值相对应y的值叫做函 数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 例如:正方形边长为 x,与 x的值相对应的面积为 y,把 y表 y=x2 {x|x>0} ; 示为 x 的函数: ____________ ;该函数的定义域为 ________ 16 {y|y>0} ;当边长为 4 的时候,面积为 ________ 值域为 ________ ;当面 2 积为4的时候,相应的边长为________ .
链 时,{x|a≤x≤b} 接
自测 自评 1 . 下列各图中,可表示函数 y = f(x) 的图象的只可能是 ( D )
函数的概念函数的概念与性质优秀课件
三
一二3.一个函数的构成有哪些要素?起决定作用的是哪些?为什么
一
二
6.判断正误:(1)对应关系与值域都相同的两个函数是相等函数.( )(2)函数的值域中每个数在定义域中都只存在一个数与之对应.( )答案:(1)× (2)×
三
一二6.判断正误:三公开课课件优质课课件PPT优秀课件PPT
一
二
二、区间的概念及表示1.阅读教材P64相关内容,关于区间的概念,请填写下表:设a,b∈R,且a<b,规定如下:
探究一探究二探究三探究四思想方法随堂演练函数的定义公开课课件
探究一
探究二
探究三
探变式训练 1集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是( )答案:C
探究一探究二探究三探究四思想方法随堂演练变式训练 1集合A=
探究一
探究二
探究三
探究四
思想方法
随堂演练
探究一探究二探究三探究四思想方法变式训练4下列各组函数: ④
探究一
探究二
探究三
探究四
思想方法
解析:①f(x)与g(x)的定义域不同,不是同一个函数;②f(x)与g(x)的解析式不同,不是同一个函数;③f(x)=|x+3|,与g(x)的解析式不同,不是同一个函数;④f(x)与g(x)的定义域不同,不是同一个函数;⑤f(x)与g(x)的定义域、值域、对应关系都相同,是同一个函数.答案:⑤
随堂演练
探究一探究二探究三探究四思想方法变式训练 2(1)集合{x|
探究一
探究二
探究三
探究四
思想方法
求函数的定义域例3求下列函数的定义域:分析:观察函数解析式的特点→列不等式(组)→求自变量的取值范围
一二3.一个函数的构成有哪些要素?起决定作用的是哪些?为什么
一
二
6.判断正误:(1)对应关系与值域都相同的两个函数是相等函数.( )(2)函数的值域中每个数在定义域中都只存在一个数与之对应.( )答案:(1)× (2)×
三
一二6.判断正误:三公开课课件优质课课件PPT优秀课件PPT
一
二
二、区间的概念及表示1.阅读教材P64相关内容,关于区间的概念,请填写下表:设a,b∈R,且a<b,规定如下:
探究一探究二探究三探究四思想方法随堂演练函数的定义公开课课件
探究一
探究二
探究三
探变式训练 1集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是( )答案:C
探究一探究二探究三探究四思想方法随堂演练变式训练 1集合A=
探究一
探究二
探究三
探究四
思想方法
随堂演练
探究一探究二探究三探究四思想方法变式训练4下列各组函数: ④
探究一
探究二
探究三
探究四
思想方法
解析:①f(x)与g(x)的定义域不同,不是同一个函数;②f(x)与g(x)的解析式不同,不是同一个函数;③f(x)=|x+3|,与g(x)的解析式不同,不是同一个函数;④f(x)与g(x)的定义域不同,不是同一个函数;⑤f(x)与g(x)的定义域、值域、对应关系都相同,是同一个函数.答案:⑤
随堂演练
探究一探究二探究三探究四思想方法变式训练 2(1)集合{x|
探究一
探究二
探究三
探究四
思想方法
求函数的定义域例3求下列函数的定义域:分析:观察函数解析式的特点→列不等式(组)→求自变量的取值范围
高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)
3 两个函数相同:当且仅当三要素相同。
例1 y= x 3 + 2 x 是函数吗?
——函数的定义域和值域均为非空的数集
例2 y=± x 是函数吗?
——对于函数定义域中每一个x,值域中都有 唯一确定的y和它对应。(不是函数)
练习:下列图形哪个可以表示函数的图象?
y
0x
A
y
0x
B
y
0x
C
四、如何求函数的定义域
想 f(1)表示什么意思? 一 想 f(1)与f(x)有什么区别?
一般地,f(a)表示当x=a时的函数值,是一个常量。 f(x)表示自变量x的函数,一般情况下是变量。 14
例:已知函数f(x)=3x2-5x+2.求f(0),f(a)和 f(a+1)
想一想 f[f(0)]等于多少?
练习:f(x)=|x+1|,则f(-1) +f(1)等于多少?
六、小结
1 函数的概念
2 定义域的求法 3 对函数符号y=f(x)的理解
七、布置作业
一、复习回顾
初中时学过函数的概念,它是怎样叙述的? 设在一个变化过程中,有两个变量x和y,
如果对于x的每一个值,y都有唯一的值与 它对应.那么就说y是x的函数. 其中x叫做 自变量,y是函数值。
想一想
y=1(x∈R)是函数吗?
Go to 13
研究函数y 1 x
为了研究的方便,取几组特殊的x值和对应的y值
当x=1时,y=1
当x=2时,y
1 2
当xБайду номын сангаас3时,y 1
3
A
B
y1
x
1
1
1
2
2
人教版高中数学必修一1.2.1函数的的概念_ppt课件
题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;
(绝对经典)1.2.1函数的概念
x a x b 写成闭区间
a, b
x a x b 写成开区间
a, b
x a x b 写成左闭右开区间a,b
x a x b 写成左开右闭区间 a,b
另外还有 ,,a,,a,,,b,,b
例 1.已知函数 f x x 1 1
函数值的集合 f x x A 叫做函数的值域,注意,值域是 B 的子集。
指出下列函数的定义域和值域,对应法则
(1) y 2x 1
(2) f x x2 2x 2
(3) g(x) 3 x
(4) h x 1 x 1
区间的概念及其写法介绍
当 a b 得时候
(3)求 f x 1 并指出其中 x 的范围。
例 2.下列函数中,哪些函数与函数 f x x 相同
2
(1) g x x
(2) h x x2
(3) t t2
t
(4) k s 3 s3
1.2.1函数的概念
定义:一般地,设 A, B 是非空数集,如果按照某种确定的对应关系 f ,使对于集合 A 中
的任意一个数 x ,在集合 B 中,都有唯一确定的数 f x 和它对应,那么就称 f : A B
为从集合 A 到集合 B 的一个函数,记作
y f x,xA
其中 x 叫做自变量, x 的取值范围 A 叫定义域,与 x 的值相对应的 y 值叫做函数值,
x 2
(1)求 f x 的定义域;
(2)求
f
3 ,
f
2 3
(3)求 f x 1 并指出其中 x 的范围。
例 1.已知函数 f x x 1 1 x 20
a, b
x a x b 写成开区间
a, b
x a x b 写成左闭右开区间a,b
x a x b 写成左开右闭区间 a,b
另外还有 ,,a,,a,,,b,,b
例 1.已知函数 f x x 1 1
函数值的集合 f x x A 叫做函数的值域,注意,值域是 B 的子集。
指出下列函数的定义域和值域,对应法则
(1) y 2x 1
(2) f x x2 2x 2
(3) g(x) 3 x
(4) h x 1 x 1
区间的概念及其写法介绍
当 a b 得时候
(3)求 f x 1 并指出其中 x 的范围。
例 2.下列函数中,哪些函数与函数 f x x 相同
2
(1) g x x
(2) h x x2
(3) t t2
t
(4) k s 3 s3
1.2.1函数的概念
定义:一般地,设 A, B 是非空数集,如果按照某种确定的对应关系 f ,使对于集合 A 中
的任意一个数 x ,在集合 B 中,都有唯一确定的数 f x 和它对应,那么就称 f : A B
为从集合 A 到集合 B 的一个函数,记作
y f x,xA
其中 x 叫做自变量, x 的取值范围 A 叫定义域,与 x 的值相对应的 y 值叫做函数值,
x 2
(1)求 f x 的定义域;
(2)求
f
3 ,
f
2 3
(3)求 f x 1 并指出其中 x 的范围。
例 1.已知函数 f x x 1 1 x 20
人教版高中数学必修一(1.2.1-1函数的概念)ppt课件
定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)
x
2
2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。
高一数学必修一课件1.2.1函数的概念
2.y = ax2 + bx + c(a 0)
定义域是R,值域是集合B,当a>0时,B={y︱ y≥ 4ac - b2},当a<0时,B={y︱y≤ 4ac - b}2. 对于R4中a 的任意一个数x,在B中都有4a唯一确定的
y = a素x2是+定b构x义+成c域函(a、数0对的) 和应三它关要对应.
3.y 系= k和(值k 域 0. ) x
定义域是A={ xR︱x≠0 },值域是R.
对于集合A中的每一个x,在R中都有唯一确定的 值 y = k (k 0) 与它对应.
x
用实心点表示包括在区 与函数相间关内的的概端念点—,—用区空间心点表示
不包括在区间内的点.
定义 {x︱a≤x≤b} {x︱a<x<b}
域就是{x︱x<0}.
(2)使根式 x + 2 有意义的实数的集合是{x︱x≥-2}, 使分式 1 成立的实数的集合是{x︱x≠10}.所以,这
10 - x
个函数的定义域就是
{x︱x≥-2} {x︱x≠10}={x︱x ≥-2,且x≠10} .
例2 已知函数 f(x) = 3 - x + x + 1 - 1 (1)求f(-1),f(0)的值; (2)当-1≤a ≤ 3时,求f(a)的值.
x
A. f ( x) ln x B. f (x) 1
x
C. f (x) | x | D. f ( x) e x
1
解析:y = x的定义域为{x|x>0},而 f ( x) ln x
的定义域也为{x|x>0}.
3.(2008 山东)设函数
f
(
x
)
定义域是R,值域是集合B,当a>0时,B={y︱ y≥ 4ac - b2},当a<0时,B={y︱y≤ 4ac - b}2. 对于R4中a 的任意一个数x,在B中都有4a唯一确定的
y = a素x2是+定b构x义+成c域函(a、数0对的) 和应三它关要对应.
3.y 系= k和(值k 域 0. ) x
定义域是A={ xR︱x≠0 },值域是R.
对于集合A中的每一个x,在R中都有唯一确定的 值 y = k (k 0) 与它对应.
x
用实心点表示包括在区 与函数相间关内的的概端念点—,—用区空间心点表示
不包括在区间内的点.
定义 {x︱a≤x≤b} {x︱a<x<b}
域就是{x︱x<0}.
(2)使根式 x + 2 有意义的实数的集合是{x︱x≥-2}, 使分式 1 成立的实数的集合是{x︱x≠10}.所以,这
10 - x
个函数的定义域就是
{x︱x≥-2} {x︱x≠10}={x︱x ≥-2,且x≠10} .
例2 已知函数 f(x) = 3 - x + x + 1 - 1 (1)求f(-1),f(0)的值; (2)当-1≤a ≤ 3时,求f(a)的值.
x
A. f ( x) ln x B. f (x) 1
x
C. f (x) | x | D. f ( x) e x
1
解析:y = x的定义域为{x|x>0},而 f ( x) ln x
的定义域也为{x|x>0}.
3.(2008 山东)设函数
f
(
x
)
人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)
A={t|0≤t≤26} B={h|0≤h≤845}
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).
《函数概念》PPT课件
⑥当函数y=f(x)是用表格给出时,函数的定义域
是指表格中实数的集合.
⑦当函数y=f(x)是用图象给出时,函数的定义域
是指图象在x轴上投影所覆盖的实数的集合.
2021/4/24
3
§1.2.1函数的概念
【1】设 A {x | 0≤ x ≤ 2}, B {x | 1≤ y ≤ 2}. 下图表示从A到B的函数是…………( ).D
x≤b { x | x ≤b }
x>a x<b
2021/4/24
{ x | x >a } { x | x <b }
区间
( a, b) ( a, b]
[a,b) [a,b] (-∞ , +∞ ) [a , + ∞ ) (-∞ , b ] (a,+∞) (-∞ , b )
名称
开区间 半开半闭区间 闭区间
4
3
2
配方法
1
-1 o
•
x 1 2 3 4
2021/4/24
19
§1.2.1函数的概念
【3】已知y=2x2-x+5(0≤x≤15),
求值域.
解:y
2x2
x
5
2(
x
1 4
)2
39 8
.
y
[
39 8
,440].
2021/4/24
20
§1.2.1函数的概念
(8) y=|x+1|-|1-x| 解:由 y = | x + 1 | -| x -1 |
11
§1.2.1函数的概念
【1】把下列不等式写成区间表示
1. -2<x<4,记作:(_-2_,_4_); 2.x >4,记作:___(4_,_+_∞__)__; 3. 5≤x≤7,记作: [5;,7] 4. 2≤x<5,记作: [2,5;)
人教版高中数学必修一1.2.1函数的概念ppt课件
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
例2、求下列函数的定义域。
(1)
f (x)
1
(12x)(x1)
(2) f(x) x4 x2 1
(3) ;f(x) x1 2- x
例3、 已知: f =(xx2)x+3 求:f(-1), f(a),
f(x+1), f(
1 ),f(x2),f(f(x)), x
注意: 1在 y f中(xf)表示对应法则,不同 的函数其含义不一样。
初中已经学过:正比例函数、反比例函数、 一次函数、二次函数等。
1.[引例1](P15)一枚炮弹发射后,经过26s落到地面击
中目标。炮弹的射高为845m,且炮弹距地面的高度h
(单位:m)随时间t(单位:s)变化的规律是
h13t 05t2 (﹡)
提出以下问题: (1) 炮弹飞行1秒、8秒、15秒、25秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和 集合B表示出来。 (4) 对于集合A中的任意一个时间t,按照对应关系
• 1930 年库拉托夫斯基(Kuratowski)用集合概念给出现代函数定义为“若对 集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上 定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
1.2.1函数的概念
2x 3 2. 求函数 f ( x) 的定义域. 2 x 1 3. 求函数 f ( x ) x 1 的定义 2 x 域. 0 ( x 2) 4. 求函数 f ( x) 的定义域. 1 x
1. 求函数 f ( x) 定义域.
x 2 3 x 的
例2、下列函数中哪个与函数y=x相等?
时间 93 94 95 96 97 98 99 00 01
恩格 尔系 50.1 数
49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
恩格尔系数越低,生活质量越高!
函 数
设A、B是非空数集,如果按照某种确定的对 应关系f,使对于集合A中的任意一个数x,在集 合B中都有唯一确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数,记作
{x | a x b}
{x | a x b}
数轴表示 a b
. .
b 。 b 。
a 。
{x | a x b}
{x | a x b}
半开半闭 [a,b) 区间
.
a
a
半开半闭 (a,b] 区间
。
.
b
实数集R可以用区间表示为 (,) , “≦”读作“无穷大”,“-≦”读作 “负无穷大”, “+≦”读作“正无穷 大”. 满足x≥a,x>a,x≤b,x<b的实数x 的集合怎样表示呢?
y=f(x),x ∈A
其中,x叫做自变量. x的取值范围A 叫做函数的定义域.
集合
与x值相对应的y的值叫做函数值.
函数值的集合{f(x)| x∈A}叫做函数的值域.
定义域、值域、对应关系:函数的三要素
思 考