乳液聚合制备二氧化硅-PMMA核壳结构纳米粒子Silica-PMMA core-shell and hollow nanospheres
原位乳液聚合法制备PAn_PMMA导电复合材料
第25卷 第4期Vol 125 No 14材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering总第108期Aug.2007文章编号:167322812(2007)0420624203原位乳液聚合法制备PAn ΠPMMA 导电复合材料孙文兵(湖北师范学院化学与环境工程系,湖北黄石 435002) 【摘 要】 以(NH 4)2S 2O 8为氧化剂、十二烷基苯磺酸(DBS A )为乳化剂和掺杂剂、苯胺(An )为单体,原位乳液聚合制备了聚苯胺(PAn )Π聚甲基丙烯酸甲酯(PAM M )导电复合材料。
观察了复合物粒子形貌。
研究了反应温度、反应时间、掺杂酸及单体用量等对聚苯胺产率、导电性能的影响。
结果表明:复合物粒子为纳米级核Π壳结构。
适宜的掺杂条件为:APS ΠAn (摩尔比)=1.0~1.2;DBS A ΠAn (摩尔比)=1.5~1.8;An ΠP M M A (质量比)=1∶4;反应时间18小时;反应温度低于5℃。
红外光谱研究表明:P M M A 的加入会使体系的掺杂率有所降低。
【关键词】 乳液聚合;十二烷基苯磺酸;聚苯胺;掺杂;电导率中图分类号:T Q324.8 文献标识码:APreparation of the PAn ΠPMMA Conductive Compositeby in 2situ Emulsion PolymerizationSUN Wen 2bing(Dep artment of Chemistry and E nviromental E ngineering ,H ubei N orm al U niveristy ,H u angshi 435002,China)【Abstract 】 By in 2situ emulsion polymerization ,the composite of polyaniline Πpolymethyl methacrylate was synthesized ,using(NH 4)2S 2O 8as oxidant ,dodecylbenzenesulphonic acid as emulsifier and dopant ,and aniline as m onomer.The shape of the composite wasobserved.The effect of emulsion polymerization conditions ,such as doping acid ,m onomer ,oxidant ,reaction time and temperature on the conductivity and yield of polyaniline was studied.The results show that the composite particles have core 2shell structure and nano 2scale size.The proper doping conditions were :APS ΠAn (m ole ratio )=1.0~1.2,DBS A ΠAn (m ole ratio )=1.5~1.8,An ΠP M M A (mass ratio )=1Π4,reation time =18hours ;reaction temperature <5℃.The shift to high frequency direction of the In frared spectrum abs orption peaks of dopped polyaniline proved that the addition of P M M A lessen the doping ratio of the composite.【K ey w ords 】 emulsion polymerization ;dodecylbenzenesulphonic acid ;polyaniline ;doping ;conductivity收稿日期:2006210215;修订日期:2006212222作者简介:孙文兵(1966-),男,讲师,湖北黄冈人,主要从事高分子功能材料研究。
细乳液聚合制备纳米粒子及技术要点
3.1 正相细乳液组成
水
连续相 (极 性溶剂) 离子型乳化剂常见
十二烷基硫酸钠(SDS) 十二烷基磺酸钠(SLS) 十六烷基硫酸钠(SHS)
分散相 (非极 性有机 溶剂)
单体 疏水性单体:苯乙烯(St) 甲基炳烯酸甲脂(MMA)
助乳化剂(强疏水试剂)例如:十六烷(HD) 十六醇(CA)
3.2正相细乳液的制备
5.1细乳液稳定机理
一般小液滴的能量比大液滴的能量高,小液滴会 逐渐迁移到大液滴里,最后消失。怎样使小液滴 稳定?
➢ 细乳液聚合是液滴成核,并非胶束成核。 ➢ 相比于微乳液聚合,需要的表面活化剂更少。 ➢ 细乳液是热力学亚稳体系,不能自发形成,必
须依靠高剪切力,由乳化剂和助乳化剂共同作 用来克服邮箱内聚能和形成液滴的表面能
5.2造成不稳定的因素
范德华吸引力
• 色散力 • 诱导力 • 取向力
Ostwald熟化
• 颗粒团聚的一种 方式
• 由于大小液滴的 溶解度不同造成 的
Ostwald熟化机理—造成液 滴不稳定的主要原因
➢ 从理论上讲,ostwald熟化效应会导致所以的液滴聚集 在一起。
➢ 事实上,根据公式知道,熟化效应的速率会随着液体 体积的增加而降低。最后在大液滴状态保持稳定。
细乳液聚合制备纳米 材料技术及要点
2015/10/18
1.细乳液
细乳液聚合最早出现在一篇美国文献。细乳 液在高剪切力作用下形成是的分散的、稳定的、 大小介于50-500 nm之间的微小液滴,液滴内包含 单体、水、乳化剂、助乳化剂和引发剂等成分, 聚合在微小液滴内进行,因此称为细乳液聚合。
细乳液聚合中,液滴是主要成核点,进而成为 主要聚合场所。在稳定的细乳液聚合中,体系中 基本上不发生水相中质量的传输,乳胶粒的数目 和尺寸主要是由聚合前液滴的数目和尺寸决定, 并在聚合过程中保持基本不变,而不像常规乳液 或微乳液那样由聚合过程动力学决定。
PMMA_SiO_2复合微球在常规乳液体系中的制备及其形态研究
第21卷第4期高校化学工程学报No.4 V ol.21 2007 年 8 月 Journal of Chemical Engineering of Chinese Universities Aug. 2007文章编号:1003-9015(2007)04-0665-06PMMA/SiO2复合微球在常规乳液体系中的制备及其形态研究乔晓光1, 程新建2, 武利民1,2(1. 湖北大学化学与材料学院, 湖北武汉 430062; 2. 复旦大学材料科学系, 上海 200433)摘 要:以4-乙烯基吡啶(4-VP)为辅助单体,分别使用十二烷基硫酸钠(SDS)和OP-40(CA897)作乳化剂,在SiO2存在下用常规乳液聚合合成了PMMA/SiO2复合微球。
在阴离子乳化剂体系中,通过改变聚合物乳胶粒大小可以得到不同形态的复合微球,在非离子乳化剂体系中,可以得到草莓型或核-壳形态的SiO2/PMMA复合微球,取决于单体滴加速度、乳化剂的浓度和单体/SiO2比。
复合微球的形态通过透射电镜及扫描电镜进行表征。
关键词:PMMA/SiO2复合微球;阴离子乳化剂;非离子乳化剂;常规乳液聚合中图分类号:TQ316.334 文献标识码:APreparation of PMMA/SiO2 Composite Microspheres via Conventional EmulsionPolymerization and its MorphologyQIAO Xiao-guang1, CHENG Xin-jain2, WU Li-min1,2(1. College of Chemistry and Material Science, Hubei University, Wuhan 430062, China;2. Department of Materials Science, Fudan University, Shanghai 200433, China)Abstract: PMMA/SiO2 composite microspheres with different morphologies were prepared via conventional emulsion polymerization with sodium dodecyl sulfate (SDS) or polyoxyethylene otyl phenyl ether (OP-40) as surfactant and 4-VP as the auxiliary monomer. TEM photographs show that in the anionic system, the particle size of the PMMA has great effect on the morphology of the composite microspheres. The PMMA/SiO2 or SiO2/PMMA composite microspheres could be obtained by changing the size of PMMA particles. In the nonionic system, SiO2/PMMA composite microspheres with different morphologies, such as core-shell type or raspberry-like, could be controlled by modulating monomer feed speed, emulsifier content and monomer/silica ratio. The morphologies of these obtained composite microspheres were studied via TEM and SEM.Key words: PMMA/SiO2composite microsphere; anionic surfactant; nonionic surfactant;conventional emulsion polymerization1 前言近年来,如何制备有机-无机复合微球已成为国际上材料研究中的一热点课题,因为这种复合微球的有机或无机相尺寸、组成可控,因此不仅具有比单纯的有机物和无机物更好的性能,而且还可以获得一些新的性能,可望在催化、电子、光电器件、生物材料、涂料、油墨等行业获得广泛应用 [1~8]。
悬浮乳液聚合在制备PMMA微球中的应用
收稿 日期 : 2 0 1 4 — 1 1 - 1 2
业 级纯水( 自制 ) ; 种 球 (自制 ) 。
作者简介:滕领贞( 1 9 7 7 一 ) , 男, 衡水人 , 高工 , 现 主要从事 高分 子材 料 方 面 的研 究 。
置顶 式数显搅 拌 ( 上海人 和科学 仪器 ) 、 恒 温
制得 P MMA微 球 , 进行测试 。
体 系稳 定 性 , 确定采用乳化剂采为乳化剂 3 。
3 . 2不 同 O/ W 比 对产 物 粒 径 的影 响 实验 条 件 : MMA 4 3 g , H 2 0, N a N O 3 0 . 0 5 g , 种 球 2 9 g , P V A ( 5 %) 2 0 g ,乳 化 剂 3 ( D O WF O X A1 0 . 4 g 、 S E 一 1 0 N 0 . 4 g 、 E C 4 0 3 0 . 1 g ) , 引 发剂 ( a v o) 0 . 2 4 g , 反
圈广
信息记录材料
2 0 1 5年
第1 6 卷
第1 科工 贸 ) ;紫 外 分 光 光 度 计
( 上海精科分析仪器 厂 ) 。
2 . 2实 验 方 法
果; 当乳 化 剂用 量 高 于 2 %且 进 一 步 增 加 时 粒 径 分
布 变 宽 、粒 径 变 小 ,这 可 能是 由 于乳 化 剂 用 量 过
乳 液 聚 合 的 优 点 ,采 用 悬 浮乳 液 聚 合法 ,通 过 不
同 引发 剂 引 发 甲基 丙 烯 酸 甲酯 聚 合 制备 聚 甲 基丙
烯 酸 甲酯 微 球 , 对 比不 同乳 化 剂 、 O / W 比、 搅 拌 速 度 以 及 引 发 剂 对 反 应 强 度 、所 得 微 球 大 小 等 影
新型乳液聚合制备疏松PMMA树脂及成粒机理
32003204209收稿,2003205225修稿;国家自然科学基金资助项目(基金号29906009);33通讯联系人新型乳液聚合制备疏松PMMA 树脂及成粒机理3包永忠33 朱 勤 黄志明 翁志学(浙江大学聚合反应工程国家重点实验室 杭州 310027)摘 要 采用以水相为分散相、甲基丙烯酸甲酯(M M A )Π环己烷混合物为连续相的新型乳液聚合制备P M M A 树脂.发现,在未加乳化剂和加入少量T ween20乳化剂时,均可制备由初级粒子凝聚而成、无明显皮膜结构的疏松P M M A 粒子,初级粒子粒径小于环己烷存在下M M A 悬浮聚合得到的P M M A 粒子的初级粒子.根据聚合体系相构成、P M M A 在M M A Π环己烷混合液的溶解性及P M M A 粒子粒径分布和形态的演变,提出了在分散水滴内乳液聚合形成初级粒子2生长2凝聚的新型乳液聚合成粒机理.关键词 甲基丙烯酸甲酯,环己烷,乳液聚合,颗粒形态,成粒机理 疏松多孔聚甲基丙烯酸甲酯(PM MA )粒子不仅具有良好的加工塑化性能,也可按粒子形式用作吸附、填充和载体材料.由于甲基丙烯酸甲酯(M MA )与PM MA 互溶,采用常规悬浮聚合不能制备疏松PM MA 粒子.Skovby 等[1]通过加入环己烷等PM MA 不良溶剂(又称致孔剂或稀释剂),由悬浮聚合制备了疏松的交联PM MA 粒子,并对其酶催化剂吸附性进行了研究.K üc ük 等[2]研究了稀释剂对悬浮聚合得到的交联PM MA 粒子孔隙结构的影响.T aw onsree 等[3]采用Shirasu 多孔玻璃乳化技术制备了微米级中孔PM MA 粒子.K im 等[4,5]采用水包油包水(W ΠO ΠW )乳液聚合制备中孔PM MA 粒子.本文采用以水相为分散相、M MA Π环己烷混合物为连续相的新型乳液聚合制备疏松PM MA 粒子,并对成粒机理进行了研究.1 实验111 实验原料M MA ,工业级,使用前减压蒸馏;环己烷,分析纯,杭州双林化学试剂厂;引发剂过硫酸钾(K PS ),分析纯,上海化学试剂二厂,过氧化苯甲酰(BPO ),工业级,精制使用;聚氧化乙烯失水山梨醇单月桂酸酯(T ween20),化学纯,温州清明化工厂;羟丙基甲基纤维素(牌号90SH100),日本合成化学公司产品.112 聚合聚合在500m L 四口夹套玻璃釜中进行,先向釜内加入M MA 单体和环己烷(M MA Π环己烷质量比为112Π110),再加入去离子水,通氮,搅拌15min 后升温至70℃,加入K PS 水溶液开始聚合,K PS 浓度8189mm ol ΠL (相对体系总水量),油水质量比为110Π0135;聚合过程中和结束后取样分析PM MA 粒径分布.为了对比,以90SH100为分散剂,BPO 为引发剂,在70℃下进行环己烷存在下的M MA (环己烷ΠM MA =112Π110)悬浮聚合.113 表征聚合体系的电导率采用DDS 211A 型电导率仪测定;分散体系形态采用显微镜观察,并用数码相机拍照;聚合物粒径分布采用C oulter LS 2230激光粒径分析仪测定;低转化率聚合物乳胶粒子形态采用透射电镜(TE M )观察拍片,高转化率PM MA 粒子经切片后用扫描电镜(SE M )观察颗粒形态并拍片.2 结果与讨论211 聚合体系相构成和PMMA 在环己烷ΠMMA混合物中的溶解性分别在T ween20浓度为4176mm ol ΠL 和无乳化剂条件下,将质量比为112∶1的环己烷ΠM MA 混合物与含少量NaCl 的水混合,测定体系的电导率,得到电导率与油水比的关系如图1所示.由图可见,当油水比较小时,体系电导率大,表明此时体系以水为连续相;当油水比增大到某一临界值(对未加乳化剂和含T ween20的情况,临界值分别为1150和1106左右),体系的电导率急剧下降,第2期2004年4月高 分 子 学 报ACT A PO LY MERIC A SI NIC AN o.2Apr.,2004232表明此时体系已实现相反转,油相成为连续相.在实际聚合中油水质量比为110Π0135,因此聚合体系中油相为连续相,水相为分散相.将油水质量比为110Π0135、T ween20浓度为4176mm ol ΠL 的分散体系搅拌分散30min 以上,取样后用显微镜快速观察并拍照,得到分散水滴粒径分布如图2所示.由图可见,水滴粒径集中在10~60μm 之间,与一般悬浮聚合体系中分散相尺寸接近.Fig.1 In fluences of v olume ratio between oil and water on the systemconductivityFig.2 Photo of dispersed water droplets图3为将定量PM MA 溶于M MA ,再逐渐滴加环己烷后,PM MA 在混合溶剂中的溶解量与混合溶剂中环己烷质量分数的关系.由图可见,当环己烷质量分数达到0155时,PM MA 的溶解度已很小,大于016时,PM MA 已基本不溶于混合溶剂.聚合体系中环己烷ΠM MA 质量比为112Π1,形成的PM MA 基本不溶于油相,因此,在分散水相中按乳液聚合机理形成的PM MA 乳胶粒子能稳定存在.另一方面,即使有大分子自由基从水相扩散进入油相(由于大分子自由基一端含亲水性的引发剂残基,能扩散进入油相的自由基数目应非常有限),引发油相M MA 聚合形成的聚合物也将沉淀成为聚集粒子.212 聚合过程PMMA 粒子粒径分布和形态变化分别在未加乳化剂和加入T ween20条件下进Fig.3 S olubility of PM M A in the m ixture of M M A and cyclohexane (70℃)行M MA 聚合,取样分析PM MA 粒子粒径分布,得到粒径分布随聚合时间的变化如图4所示.图5为未加乳化剂时,聚合初期PM MA 粒子TE M 照片,图6、7分别为未加乳化剂和加入T ween 20聚合时,最终PM MA 粒子的SE M 照片.Fig.4 Variations of particle size distribution with polymerization timein polymerization withnoemulsifier (a )and with the addition of T ween20(b )当聚合时间较短(如10~30min )、转化率较低(聚合时间30min 以内时转化率小于10%)时,取样得到稳定的乳状液,图4、5表明这时PM MA 粒子的粒径小、分布窄,与普通乳液聚合得到的PM MA 乳胶粒子的粒径分布和形态类似.随着聚合时间(转化率)增加,粒径逐渐增大,粒径分布变宽;最终聚合产物(转化率为90%左右)为粒径较3322期包永忠等:新型乳液聚合制备疏松P M M A 树脂及成粒机理大的PM MA 粒子.由图6、7可见,最终PM MA 粒子由许多粒径为015μm 左右、分布较为均一的初级粒子(即乳胶粒子)凝聚而成,初级粒子尺寸与图4中30min 时的乳胶粒子粒径基本吻合,说明聚合30min 以后,乳胶粒子逐渐凝聚成为次级粒子.次级粒子具有许多孔隙,结构疏松,与采用类似聚合方法(但不加沉淀剂)得到的聚氯乙烯树脂的颗粒形态相类似[6].Fig.5 TE M m icrographs of PM M A particles obtained at the early stage of polymerization with no emulsifier a )P olymerization time :5m in ;b )P olymerization time :10minFig.6 SE M m icrographs of final PM M A particle prepared by polymerization with no emulsifier a )Surface layer of particle ;b )Interior ofparticleFig.7 SE M m icrographs of final PM M A particle prepared by polymerization with the addition of T ween20a )Sectioned particle ;b )Surface layer of particle ;c )Interior of particle213 聚合成粒机理为了说明乳液聚合过程中疏松PM MA 树脂的形成与环己烷存在下M MA 悬浮聚合不同,对后一种聚合方法得到的PM MA 粒子也进行SE M 观察,得到其颗粒外部和内部的形态如图8所示.对照图6、7和8可见,采用乳液聚合得到的疏松PM MA 粒子的形态与环己烷存在下M MA 悬浮聚合得到的粒子的形态差别较大.首先,前者颗粒基本呈球形,后者呈“塌陷”的球形结构,这是悬浮聚合过程单体转化为聚合物后的体积收缩,及干燥时未反应单体和环己烷的脱除所致;其次,悬浮聚合PM MA 粒子表面有较为致密的表面层(皮膜),而乳液聚合PM MA 粒子无致密的皮膜结构;第三,悬浮聚合PM MA 粒子内部初级粒子较大,大多在210μm 以上,而乳液聚合PM MA 颗粒的初级粒子粒径为015μm 左右.由此可以推测新型乳432高 分 子 学 报2004年Fig.8 SE M m icrographs of PM M A particle prepared by M M A suspension polymerization in the presence of cyclohexanea)Whole particle;b)Sectioned particles液聚合过程中初级粒子的形成主要在水相进行.根据以上结果,提出了新型M MA乳液聚合形成疏松PM MA粒子的机理,即聚合开始阶段水相以分散液滴形式存在于连续的有机相中,由于M MA在水中具有较大的溶解度[7],因而溶解在各个分散水滴中的单体在K PS的引发作用下进行乳液聚合,并主要按乳液聚合的均相成核机理形成乳胶粒子;由于有机相中加入了环己烷,PM MA基本不溶于有机相,因此乳胶粒子得以稳定存在并通过水相单体的扩散进入、聚合而增长,水相单体不断由油相提供补充.由于聚合体系不加或仅加少量乳化剂,达到一定转化率后,乳胶粒子的稳定性下降,再加上空间限制(即聚合主要在最初的水滴内进行),因此凝聚成为疏松的PM MA次级粒子.当然,在宏观成粒上,水滴或PM MA次级粒子间聚并与分散同时存在,再由于PM MA粒子非常疏松,聚合过程及后处理过程都会出现初级粒子或其小聚集体从已凝聚粒子上脱落现象,因此最终产物的粒径分布相对较宽.REFERENCES1 K ovby M H B,K ops J.J Appl P olym Sci,1990,39:169~1772 Kücük H,K uyulu A,Okay O.P olym Bulletin,1995,35:511~5163 T aw onsree S,Om i S,K iatkam jornw ong S.J P olym Sci,P olym Chem,2000,38:4038~40564 K im B S,K im J W,Suh K D.J Appl P olym Sci,2000,76:38~445 K im B S,K im J W,Suh K D.C olloid P olym Sci,1999,277:252~2566 Bao Y ongzhong,W ei Zhenli,W eng Zhixue,Huang Zhim ing.Chinese J P olym Sci,2003,21(4):447~4527 Chern C S,Lin C H.P olymer,2000:4473~4481PREPARATION OF POR OUS PMMA RESIN B Y A NEW EMU LSIONPOLYMERIZATION PR OCESS AN D THE MECH ANISM OFPARTIC LE FOR MATIONBAO Y ongzhong,ZH U Qin,H UANG Zhiming,WE NG Zhixue(Institute o f Polymer Reaction Engineering,Zhejiang Univer sity,Hangzhou 310027)Abstract A new emulsion polymerization process,in which water acted as the dispersed phase and the mixture of methyl methacrylate(M MA)and cyclohexane as the continuous phase,was applied to prepare PM MA resin.It showed that porous PM MA particles com posed of aggregated primary particles were prepared by the new polymerization process.The size of these primary particles was smaller than that of the primary particles of PM MA resin prepared by M MA suspension polymerization in the presence of cyclohexane.According to the phase structure of the initial polymerization system,the s olubility of PM MA in the mixture of M MA and cyclohexane and the variations of particle size distribution and m orphology of PM MA resin,a particle formation mechanism of the new polymerization was proposed,covering the formation and grouth of primary particles and their coagulation in the dispersed water droplets.K ey w ords Methyl methacrylate,Cyclohexane,Emulsion polymerization,Particle m orphology,Particle formation mechanism5322期包永忠等:新型乳液聚合制备疏松P M M A树脂及成粒机理。
纳米颗粒协同稳定的硅油乳液制备及其应用性能
第31卷㊀第6期2023年11月现代纺织技术AdvancedTextileTechnologyVol.31ꎬNo.6Nov.2023DOI:10.19398∕j.att.202305026纳米颗粒协同稳定的硅油乳液制备及其应用性能熊春贤ꎬ章云菊ꎬ翁艳芳ꎬ余建华ꎬ刘作平ꎬ张建设(浙江科峰有机硅股份有限公司ꎬ浙江嘉兴㊀314423)㊀㊀摘㊀要:针对氨基硅油乳液存在的乳化剂用量高㊁分散稳定性差等问题ꎬ以丙烯酸异辛酯(EHA)和甲基丙烯酸甲酯(MMA)为主要单体ꎬ采用半连续种子乳液聚合法制备共聚物乳胶颗粒ꎬ并将其作为Pickering纳米颗粒ꎬ协同低剂量乳化剂构建 纳米颗粒∕乳化剂 Pickering乳化体系ꎬ以此提高乳液稳定性和降低乳化剂用量ꎬ并将不同稳定体系的硅油乳液用于织物后整理ꎮ对比了Pickering硅油乳液与乳化剂单独稳定的硅油乳液对整理残液化学需氧量(ChemicaloxygendemandꎬCOD)以及整理织物的性能影响ꎮ结果表明:Pickering乳化体系中(以P(EHA ̄MMA)颗粒为例)ꎬ纳米颗粒吸附在硅油液滴的表面ꎬ形成机械阻隔ꎬ提升了硅油乳液的分散稳定性ꎬ使乳化剂用量降低60%以上ꎻ浸轧整理织物时ꎬ相比乳化剂单独稳定的乳化体系ꎬPickering乳化体系的硅油乳液吸附织物效率更高ꎬ整理后残液COD值降低60%ꎬ整理织物的经纬向纰裂值别降低至5.18㊁5.26mmꎮ关键词:硅油乳液ꎻPickeringꎻCODꎻ稳定性ꎻ协同稳定ꎻ纰裂中图分类号:TS195.2㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄265X(2023)06 ̄0181 ̄07收稿日期:20230526㊀网络出版日期:20230807作者简介:熊春贤(1965 )ꎬ男ꎬ江西临州人ꎬ硕士ꎬ主要从事新型染整工程技术方面的研究ꎮ㊀㊀硅油是一类重要的化学品ꎬ广泛应用于纺织㊁皮革㊁涂料等行业[1]ꎮ在纺织行业中ꎬ硅油主要应用于纺织品的后整理ꎬ赋予织物柔软㊁光滑㊁蓬松等手感ꎮ在印染加工中ꎬ往往需要将硅油制成乳液使用ꎮ以常见的氨基硅油为例ꎬ一方面ꎬ柔软整理给织物带来滑爽㊁柔软的手感ꎬ但也会使织物出现严重的纰裂[2]ꎬ影响织物的使用寿命ꎻ另一方面ꎬ其高相对分子质量及高黏度的特性ꎬ导致乳液的分散稳定性差ꎮ为了避免因乳液破乳导致粘辊及面料出现 硅斑 等现象ꎬ乳液中乳化剂添加量有时甚至高达硅油质量的50%ꎮ高剂量的乳化剂不仅增加乳液生产成本[3]ꎬ而且其在油滴表面形成的厚亲水层ꎬ降低了硅油乳液的吸附效率ꎬ高浓度的助剂残留还会造成残液化学需氧量(ChemicaloxygendemandꎬCOD)增高[4]㊁污水处理负担加重等问题ꎮ因此开发新型高效硅油乳化剂至关重要ꎮ20世纪初ꎬRamsden[5]首次发现并描述了固体颗粒替代乳化剂来稳定乳液ꎬPickering[6]对其进行了系统的研究和改善ꎬ因而将此类乳液命名为 Pickeringemulsion (Pickering乳液)ꎮ在Pickering乳液中ꎬ固体颗粒不可逆地吸附在油水界面ꎬ充当了抑制液滴之间聚集的机械阻隔ꎬ对乳液起到稳定作用[7]ꎮ通过对固体颗粒粒径以及颗粒表面亲疏水性的调控ꎬ固体颗粒可在油水界面形成不可逆吸附ꎬ相较于乳化剂动态吸附稳定的传统乳液ꎬPickering乳液稳定性更强ꎬ不易受外界因素(如体系的pH值㊁温度等)的影响[8]ꎬ因此可以大大降低分散稳定剂的用量[9]ꎮ有研究[10]已证实胶体颗粒能够稳定有机硅乳液ꎮ研究中所用的Pickering颗粒多为二氧化硅(SiO2)㊁二氧化钛(TiO2)等ꎬ所获得的乳液平均粒径多在50μm以上ꎻ用于纺织品后整理时ꎬ大尺寸液滴容易在布面留下肉眼可见的油性 硅斑 ꎮ针对传统硅油乳液存在乳化剂用量高㊁分散稳定性差等问题ꎬ本文采用丙烯酸乙基己酯共聚物(PEHA)㊁甲基丙烯酸甲酯共聚物(PMMA)以及丙烯酸乙基己酯∕甲基丙烯酸甲酯共聚物P(EHA ̄MMA)纳米颗粒协同低剂量乳化剂构建 纳米颗粒∕乳化剂 Pickering乳化体系ꎬ进而将Pickering乳化体系稳定和乳化剂单独稳定的硅油乳液分别用于织物后整理ꎬ对比分析整理液COD的变化和整理织物的手感㊁表面摩擦系数㊁纰裂性能的变化ꎮ1㊀实㊀验1.1㊀实验材料与仪器实验材料:涤纶(经㊁纬纱线密度均为6.3texꎬ经㊁纬密分别为472㊁312根∕(10cm)ꎬ面密度为56g∕m2ꎬ厚度为0.08mm)ꎬ莱美科技股份有限公司ꎻ甲基丙烯酸甲酯(MMA)㊁丙烯酸 ̄2 ̄乙基己酯(2 ̄EHA)ꎬ卫星化学股份有限公司ꎻ十六烷基三甲基溴化铵(CTAB)㊁烷基糖苷(APG)和2ꎬ2ᶄ ̄偶氮双(2 ̄甲基丙基脒)二盐酸盐(AIBA)ꎬ山东豪耀新材料有限公司ꎻ氨基硅油KF ̄5102(动力黏度18000mPa sꎬ25ħꎬ有效含量98%)ꎬ浙江科峰有机硅有限公司ꎻ异构十三醇聚氧乙烯醚(TO ̄5)ꎬ广州市宝盛化工有限公司ꎻ二甲基丙烯酸乙二醇酯(EGDMA)㊁冰醋酸(HAc)ꎬ上海麦克林生化科技有限公司ꎻ去离子水ꎬ实验室自制ꎮ仪器:RW ̄20数显电动搅拌机(德国IKA集团)ꎻNano ̄ZS90粒度分析仪(英国马尔文仪器有限公司)ꎻLD25.504万能试验机(力试(上海)科学仪器有限公司)ꎻJUKIDDL缝纫机(上海重机缝纫机有限公司)ꎻCX40M正置金相显微镜(宁波舜宇仪器有限公司)ꎻP ̄BO卧式气动小轧车(宁波纺织仪器厂)ꎻR ̄3定型烘干机(宁波纺织仪器厂)ꎻDRB200消解仪㊁DR6000紫外 ̄可见光分光光度计(美国哈希水质分析仪器有限公司)ꎮ1.2㊀实验方法1.2.1㊀Pickering纳米颗粒的制备实验所需3种纳米颗粒制备方法相同ꎬ以制备PEHA胶乳颗粒为例ꎬ合成方法如下:a)采用半连续种子乳液聚合工艺ꎬ设计胶乳的固含量为32%ꎻ将0.06gAPG㊁0.09gCTAB溶于108gH2O中ꎬ搅拌均匀后得到打底液ꎻ将0.45gAPG和1.30gCTAB溶于236gH2O中ꎬ之后再加入160g2 ̄EHA与5gEGDMA混合形成的油相ꎬ搅拌均匀后得到单体乳液ꎮb)将打底液和9.5g的单体乳液ꎬ移入装有冷凝管㊁温度计㊁搅拌桨以及氮气进出口的四口烧瓶ꎬ并将烧瓶浸于水浴中ꎻ向四口烧瓶通氮气30minꎬ待瓶内打底液升温至90ħ时ꎬ将0.04gAIBA溶解于少量去离子水中ꎬ快速注入烧瓶ꎬ引发聚合ꎻ反应30min后ꎬ开始滴加剩余的单体乳液ꎬ滴加时长为3hꎬ并在滴加结束后继续反应30minꎮ反应完毕后降至室温ꎬ以150目细纱布过滤出料ꎬ得到用于稳定硅油乳液的PEHA颗粒ꎮ合成P(EHA ̄MMA)时ꎬ将160g2 ̄EHA单体换成80g2 ̄EHA和80gMMAꎬ以上述同样的操作进行制备ꎮ1.2.2㊀硅油乳液的制备本文 纳米颗粒∕乳化剂 Pickering乳化体系的硅油乳液制备方案见表1ꎬ分别以PEHA㊁P(EHA ̄MMA)和PMMA为Pickering纳米颗粒乳液制备Pickering硅油乳液ꎬ其中:纳米颗粒的干质量为硅油质量的6%ꎬ乳化剂占硅油质量的8%ꎮ硅油乳液制备方法如下:设计硅油乳液的固含量为30%ꎻ将28.57g硅油㊁2.29g乳化剂及0.50gHAc加入烧杯中ꎬ在机械搅拌下搅拌均匀后ꎬ采用蠕动泵向烧杯中缓慢滴加盛有5.36g纳米颗粒乳液与58.53gH2O混合形成的水相ꎻ搅拌机转速为1200r∕minꎬ滴加时间控制在1h左右ꎻ滴加结束后以150目细纱布过滤后出料ꎬ得到Pickering硅油乳液(水包油)ꎮ表1㊀硅油乳液的制备方案Tab.1㊀Emulsificationschemeofsiliconeoilemulsion颗粒种类颗粒用量∕g水∕g乳化剂(TO ̄5)∕g硅油∕gHAc∕gPEHA5.3658.532.2928.570.50PMMA5.3658.532.2928.570.50P(EHA ̄MMA)5.3658.532.2928.570.501.2.3㊀织物的整理工艺以水将硅油乳液稀释至10g∕Lꎬ搅拌均匀后待用ꎻ采用一浸一轧工艺整理面料(轧余率约为70%)ꎬ并在190ħ下焙烘90sꎬ得到整理的涤纶织物ꎮ1.3㊀测试方法COD值测试:参照HJ828 2017«水质化学需氧量的测定重铬酸盐法»进行ꎮ将整理前后工作液稀释200倍ꎬ取2mL加入到COD试剂管中ꎬ放于DRB200消解仪中进行消解ꎬ消解条件:150ħꎬ2hꎬ消解完成后ꎬ自然冷却至室温ꎬ放入DR6000紫外 ̄可见光分光光度计样品池中进行测试ꎬ读取COD数值(mg∕L)ꎬ读3次取平均值ꎮ贮存稳定性测试:将样品放置室温下ꎬ固定间隔天数ꎬ用光学显微镜观察硅油乳液的微观形貌ꎬ拍照ꎬ然后通过Nano ̄measure软件统计其粒径ꎮ281 现代纺织技术第31卷粒径和Zeta电位测试:将乳胶颗粒用去离子水稀释1000倍ꎬ然后用采用Nano ̄ZS90粒度分析仪在25ħ下测量其粒径和Zeta电位ꎮ接触角测试:将10μLPickering颗粒乳液滴在预先固定于匀胶机旋转台的载波片表面ꎬ开启匀胶机并将转速设定为3000r∕minꎬ旋涂时间30sꎻ将旋涂完毕的载波片置于烘箱中ꎬ于60ħ下烘干ꎻ以DSA20型视频接触角张力仪测试涂膜的静态水接触角ꎮ将体积为2μL的去离子水滴在试样表面ꎬ静置30sꎬ采用五点拟合法计算接触角ꎮ每个试样测试5个不同位点ꎬ取平均值ꎮ整理织物纱线滑移(纰裂性能)测试:参照GB∕T13772.2 2018«纺织品机织物接缝处纱线抗滑移的测定第2部分:定负荷法»进行测定ꎮ剪取试样尺寸为20cmˑ10cmꎬ沿着长度方向ꎬ将试样的正面朝内进行对折ꎬ试样在距折痕15mm处缝制一条直形缝迹ꎬ且缝迹线与折痕线平行ꎬ在距缝迹线9mm处剪开试样ꎬ剪切线与折痕线应保持平行ꎮ试样缝纫条件:缝线9.8tex涤纶包芯纱ꎻ机针11号ꎻ缝迹密度5针∕cmꎻ针迹为平缝(301)ꎮ该实验在标准大气压下进行ꎬ夹持试样的尺寸为25mmˑ25mmꎬ设定拉伸速度为50mm∕minꎬ夹持距离为10cmꎬ定负荷为60Nꎮ整理织物综合手感测试:具体由10位专业人士分组手感触摸评级ꎬ评级分1~5级ꎬ1级表示手感最差ꎬ5级表示手感优良ꎮ整理织物平滑性(表面摩擦系数)测试:参照GB∕T10006 2021«塑料薄膜和薄片摩擦系数的测定»进行ꎮ将待测样剪成长条状(15cmˑ10cm)与方块状(7cmˑ7cm)ꎻ将长条状试样测试面朝上ꎬ固定于仪器实验台上ꎻ将方块状试样测试面向下ꎬ包住滑块ꎻ将包裹试样的滑块缓慢放至在长条试样中央ꎬ启动设备ꎬ使两试样相对移动ꎬ记录实验数据ꎬ并保留两位有效数字ꎮ2㊀结果与讨论2.1㊀Pickering颗粒的粒径及Zeta电位图1示出了PEHA㊁P(EHA ̄MMA)和PMMA3种纳米颗粒的粒径及Zeta电位ꎮ由图1可知ꎬ3种纳米颗粒的平均粒径分别为178.8㊁167.8㊁151 9nmꎬPDI在0.077左右ꎬ粒径分布较窄ꎮZeta电位测试表明:3种纳米颗粒均带正电ꎬ且Zeta电位的绝对值均大于60mVꎬ远高于粒子稳定分散的临界值30mVꎬ即颗粒之间可通过静电斥力ꎬ从而使得纳米颗粒保持稳定分散[11]ꎮ㊀㊀㊀㊀图1㊀颗粒的粒径及Zeta电位Fig.1㊀ParticlesizeandZetapotential2.2㊀Pickering颗粒表面亲水性颗粒表面的亲∕疏水性对乳液的分散稳定性有很大影响ꎮ为此ꎬ将3种乳胶烘干成膜ꎬ通过测试胶乳膜的水接触角评价颗粒表面的亲疏水性ꎮ接触角测试结果如图2所示ꎬ从图2中可以看出:PEHA㊁P(EHA ̄MMA)和PMMA3种胶乳膜的水接触角分别为88.1ʎ㊁88.5ʎ㊁89.6ʎꎬ均接近90ʎꎮ由油∕水 界面上球形颗粒的吸附能[12]可知ꎬ3种颗粒均能够吸附在油水界面ꎬ形成了稳定的吸附层ꎬ使得Pickering硅油乳液分散稳定性提升ꎮ381第6期熊春贤等:纳米颗粒协同稳定的硅油乳液制备及其应用性能图2㊀乳胶膜的水接触角图Fig.2㊀Watercontactangleofthreelatexfilms2.3㊀Pickering乳化体系稳定的Pickering硅油乳液㊀㊀在室温条件下ꎬ通过改变乳化剂用量ꎬ并与PEHA㊁PMMA和P(EHA ̄MMA)构建Pickering乳化体系ꎬ制备了6种硅油乳液ꎬ其稳定性情况见表2ꎮ由表2可知:仅以乳化剂稳定时ꎬ硅油乳液的稳定性较差ꎬ乳化剂质量分数为8%和16%的乳液静置分别在14㊁33d发生失稳ꎬ仅当乳化剂质量分数高达24%时ꎬ才得到了稳定的乳液ꎮ与之相比ꎬ构建Pickering乳化体系时ꎬ乳化剂用量为硅油质量的8%ꎬ颗粒为硅油质量6%时ꎬ3种乳液(编号4㊁5和6)均可实现90d室温静置稳定ꎬ此时Pickering颗粒与乳化剂的质量和也仅为硅油的14%ꎬ远低于乳化剂单独稳定时的24%ꎬ乳化剂质量分数降低了66 66%ꎬ表明Pickering乳化体系具有更高的稳定效率ꎮ进一步对比还发现ꎬ与乳化剂单独稳定的体系相比ꎬPickering乳化体系的硅油乳液具有更高的正电性ꎬ其原因可能是ꎬPickering乳化体系中ꎬ吸附在油滴表面的颗粒带有正电性ꎬ提高了乳化硅油液滴的Zeta电位ꎮ测试了表2中3 6号乳化硅油静置90d内的粒径变化ꎬ结果如图3所示ꎮ由图3可知:随着贮存时间的延长ꎬ乳化剂单独稳定的硅油乳液平均粒径明显增长ꎬ贮存90d后的平均粒径增幅为2.21μmꎮ表2㊀纳米颗粒对硅油乳液静置稳定性的影响Tab.2㊀Effectofnano ̄particlesonthestoragestabilityofsiliconeoilemulsion编号颗粒质量分数∕%颗粒类型TO ̄5质量分数∕%静置稳定性Zeta电位∕mV18失稳+20.12216失稳+25.31324均一ꎬ稳定+30.2146PEHA8均一ꎬ稳定+53.1556P(EHA ̄MMA)8均一ꎬ稳定+55.6466PMMA8均一ꎬ稳定+57.35㊀㊀改以 纳米颗粒∕乳化剂 Pickering乳化体系后ꎬ虽然乳液Zeta电位均在+50mV以上ꎬ但乳液在静置期间ꎬ平均粒径也有增大的趋势ꎬ并在50d后趋于稳定ꎬ最终乳液粒径增大值分别为1.32μm(PEHA)㊁1.26μm(P(EHA ̄MMA))和1.08μm(PMMA)ꎬ略小于单一乳化剂稳定的体系ꎮ在高Zeta电位情况下ꎬ乳液粒径依然变化的原因可能是由于Pickering乳液的液滴粒径分布很宽ꎬZeta电位为所有颗粒的平均电位ꎬ但对应尺寸较小的油滴而言ꎬ其表面积小ꎬ因此所吸附的Pickering颗粒数目有限ꎬ对硅油液滴的Zeta电位提升有限ꎬ因此这些小油滴的Zeta电位可能并不高ꎬ因此在贮存过程中易发生聚集ꎬ导致复合稳定硅油乳液平均粒径增大ꎮ图3㊀稳定体系对硅油乳液室温贮存稳定性的影响Fig.3㊀Effectofthestabilizationsystemonthestoragestabilityofsiliconeoilemulsionatroomtemperature481 现代纺织技术第31卷2.4㊀硅油乳液的应用性能2.4.1㊀整理残液的COD值将硅油乳液配成织物整理液ꎬ对比了乳化剂单独稳定体系和 纳米颗粒∕乳化剂 Pickering乳化体系对整理残液COD的影响ꎬ结果如图4所示ꎮ其中编号1 6对应表2中的硅油乳液ꎬ工作液浓度均为10g∕Lꎮ由于硅油乳液均为新鲜配置ꎬ因此在应用中乳液尚未发生明显失稳ꎮ图4㊀稳定体系对整理前后工作液中COD的影响Fig.4㊀InfluenceofthestabilizationsystemonCODinworkingfluidbeforeandafterfinishing工作液整理前后COD数值如图4所示ꎬ相同硅油用量下ꎬ整理前工作液的COD值相近ꎬ约8.5ˑ104mg∕Lꎬ受稳定体系的影响很小ꎬ表明COD主要源于乳液中的硅油ꎮ然而ꎬ浸轧整理后ꎬ残余工作液的COD值受乳化体系的影响很大ꎮ从图4可以看出ꎬ采用乳化剂单独稳定的硅油乳液ꎬ残液的COD值随乳化剂用量的增高急剧增大ꎬ当乳化剂质量分数为24%时ꎬ残液COD高达57000mg∕Lꎬ相比整理前的工作液ꎬCOD值仅降低30%ꎬ残液COD是乳化剂质量分数8%时的1.8倍ꎮ高剂量的乳化剂降低了硅油对面料的吸附效率ꎬ导致大量硅油滞留在残液中ꎬ将浪费助剂并加重污水处理的负担ꎮ与之相比ꎬ改用Pickering乳化体系稳定后ꎬ稳定乳液所需的乳化剂用量明显降低ꎬ整理残液的COD值也降至较低水平ꎻ相较于整理前ꎬCOD降幅达60%ꎬPickering乳化体系样品是乳化剂质量分数24%样品降幅的2倍ꎬ表明Pickering乳化体系的硅油乳液吸附织物的效率更高ꎮ不仅如此ꎬ残液COD数值甚至略低于采用等量乳化剂的对比样品ꎬ其原因可能是:阳离子的纳米颗粒吸附在乳液液滴表面ꎬ增强了液滴的正电性(表2)ꎬ促进了液滴对带负电涤纶织物的吸附ꎮ2.4.2㊀稳定体系对整理织物性能影响将硅油乳液配成织物整理液ꎬ并用于织物后整理ꎬ考察了乳化稳定体系对整理织物表面摩擦系数㊁手感以及纰裂性能的影响ꎬ其结果见表3ꎮ由表3可知:原织物的表面静㊁动摩擦系数分别为0.73和0.70ꎬ手感评级为1级ꎮ经6种硅油整理后ꎬ整理织物的静㊁动摩擦系数均明显降低ꎬ手感评级均高于原织物ꎮ表3㊀稳定体系对整理织物手感及纰裂性能的影响Tab.3㊀Influenceofthestabilizationsystemonthehand ̄feelingandyarndispersistsoffinishedfabrics编号静摩擦系数动摩擦系数手感评级经向∕纬向纰裂值∕mm00.730.7014.53∕4.7510.530.5055.45∕5.5620.570.563~45.14∕5.2930.600.612~34.76∕4.9240.520.4955.26∕5.3850.540.524~55.18∕5.2660.580.573~45.17∕5.24㊀㊀注:编号0为原布ꎬ编号1 6为表1中1 6号硅油乳液整理后的织物ꎮ当采用乳化剂单独稳定的硅油乳液时ꎬ随着硅油中乳化剂用量的增高ꎬ织物的静㊁动摩擦系数均逐渐增大ꎮ如表3所示ꎬ动㊁静摩擦系数分别由乳化剂质量分数为8%时的0.53和0.50ꎬ升至24%乳化剂质量分数时的0.60和0.61ꎮ结合图4中COD数据可知:其原因在于高浓度的乳化剂抑制了硅油对织物的吸附ꎬ随着乳化剂用量的增加ꎬ整理织物的经向∕纬向纰裂值由 5 45∕5.54 mm逐渐增至 5 14∕5.29 mmꎬ最终达到 4.76∕4.92 mmꎮ这与整理织物表面摩擦系数增大的趋势相符(表3)ꎬ即增大的摩擦系数抑制了纱线间的滑移ꎬ抑制了整理织物的纰裂ꎮ换以Pickering乳化体系稳定的硅油乳液后ꎬ残液COD的测试数据表明ꎬ硅油吸附织物的效率较24%乳化剂质量分数(编号3)的效率有所提升ꎬ因此整理织物的静㊁动摩擦系数均低于3号布样ꎮ尽管4㊁5和6号布样整理时ꎬCOD测试表明硅油的吸附效率相同ꎬ但3块布样的动㊁静摩擦系数却不相581 第6期熊春贤等:纳米颗粒协同稳定的硅油乳液制备及其应用性能同ꎮ其中最软的PEHA为Pickering颗粒时(编号4)ꎬ摩擦系数最小ꎬ抗纰裂性能最差ꎻ硬度最大的PMMA为Pickering颗粒时(编号6)ꎬ摩擦系数最大ꎬ抗纰裂性能最优ꎮ这表明颗粒吸附在织物表面ꎬ可以抑制纱线的受力滑移ꎬ且随着颗粒硬度的增大ꎬ抑制滑移的能力也随之提升ꎮ将1号与5号对比后发现:样品5不仅摩擦系数低于1号ꎬ而且抗纰裂性能也较优ꎮ因此ꎬ采用Pickering乳化体系时ꎬ选用P(EHA ̄MMA)纳米颗粒ꎬ可有效的平衡织物平滑性与织物易纰裂的矛盾ꎮ对比表3中经纬向纰裂值还发现ꎬ纬向的纰裂值总是略高于径向ꎮ这是由于当织物经向紧度较大时ꎬ单位尺寸的纬线由于受到较大的经线阻力变得相对难以滑移[13]ꎮ反之ꎬ当织物纬向紧度较大时ꎬ经线就不易滑移ꎮ通常情况下ꎬ织物的经向紧度大于纬向紧度ꎬ即织物单位尺寸上经纱受到的阻力小于纬纱受到的阻力ꎬ因此纰裂现象多沿纬向发生ꎮ3㊀结㊀论针对硅油乳液乳化剂用量大和分散稳定性差的问题ꎬ本文研究制备了一种纳米颗粒协同乳化剂稳定的Pickering硅油乳液ꎬ并研究了Pickering硅油乳液作为平滑整理剂的应用性能ꎬ得到结论如下:a)采用半连续种子乳液聚合技术ꎬ可以得到用于稳定硅油乳液的Pickering颗粒ꎬ且颗粒涂膜与水的接触角接近90ʎꎬ表明制备的纳米颗粒适合用于制备 O∕W 的Pickering硅油乳液ꎬ且在油水界面上的解析能较高ꎮb)构建 纳米颗粒∕乳化剂 Pickering乳化体系能够大幅提升硅油乳液的分散稳定性ꎬ乳化剂质量分数由24%降低至8%ꎬ降低66.66%ꎬ将其用于织物整理时ꎬ与乳化剂单独稳定的体系相比ꎬPickering乳化体系稳定(以P(MMA ̄EHA)颗粒为例)的硅油乳液吸附织物的效率更高ꎬ乳液稳定时ꎬ整理残液中COD值由57000mg∕L(表面活性剂质量分数24%)降低至30870mg∕Lꎬ整理后的织物具有更低的表面摩擦系数(静㊁动摩擦系数分别为0.54㊁0.52)和更好的手感(4~5级)ꎬ并在兼顾手感的同时也提升了其耐纰裂性能ꎬ经纬向纰裂值分别为5.18㊁5.26mmꎮ参考文献:[1]曹政ꎬ王小花ꎬ蔡继权ꎬ等.新型表面活性剂在氨基硅油乳化中的应用[J].杭州化工ꎬ2015ꎬ45(2):33 ̄36.CAOZhengꎬWANGXiaohuaꎬCAIJiquanꎬetal.Applicationofnovelsurfactantsinemulsificationofaminosiliconeoil[J].HangzhouChemicalIndustryꎬ2015ꎬ45(2):33 ̄36.[2]罗胜利ꎬ张宇群ꎬ袁彬兰ꎬ等.柔软整理对织物纰裂性能的影响研究[J].质量技术监督研究ꎬ2015(6):2 ̄5.LUOShengliꎬZHANGYuqunꎬYUANBinlanꎬetal.Effectsofsoftfinishonthestitchslippingperformanceoffabric[J].QualityandTechnicalSupervisionResearchꎬ2015(6):2 ̄5.[3]王欣欣ꎬ吴霞ꎬ李德富ꎬ等.明胶纳米颗粒稳定的Pickering乳液的制备及表征[J].食品与发酵工业ꎬ2023ꎬ49(1):124 ̄131.WANGXinxinꎬWUXiaꎬLIDefuꎬetal.PreparationandcharacterizationofPickeringemulsionstabilizedbygelatinnanoparticles[J].FoodandFermentationIndustriesꎬ2023ꎬ49(1):124 ̄131.[4]余华东.氨基硅油微乳废水电化学预处理技术研究[D].杭州:浙江大学ꎬ2012:1 ̄2.YUHuadong.StudyonAminosiliconeMicroemulsionsWastewaterPretreatmentbyElectrochemicalTechnology[D].Hangzhou:ZhejiangUniversityꎬ2012:1 ̄2. [5]RAMSDENW.Separationofsolidsinthesurface ̄layersofsolutionsand'suspensions'(observationsonsurface ̄membranesꎬbubblesꎬemulsionsꎬandmechanicalcoagulation):Preliminaryaccount[J].ProceedingsoftheRoyalSocietyofLondonꎬ1904ꎬ72(4):156 ̄164.[6]PICKERINGSU.CXCVI. Emulsions[J].JournaloftheChemicalSocietyꎬ1907ꎬ91:2001 ̄2021. [7]陶钰恬ꎬ王晓波ꎬ王子旭ꎬ等.Pickering乳液的应用进展[J].广东化工ꎬ2020ꎬ47(12):83 ̄84.TAOYutianꎬWANGXiaoboꎬWANGZixuꎬetal.TheprogressofapplicationofPickeringemulsion[J].GuangdongChemicalIndustryꎬ2020ꎬ47(12):83 ̄84. [8]SUNZꎬYANXꎬXIAOYꎬetal.Pickeringemulsionsstabilizedbycolloidalsurfactants:Roleofsolidparticles[J].Particuologyꎬ2022ꎬ64:153 ̄163.[9]杨传玺ꎬ王小宁ꎬ杨诚.Pickering乳液稳定性研究进展[J].科技导报ꎬ2018ꎬ36(5):70 ̄76.YANGChuanxiꎬWANGXiaoningꎬYANGCheng.ResearchprogressonthestabilityofPickeringemulsion[J].Science&TechnologyReviewꎬ2018ꎬ36(5):70 ̄76.[10]KAWAGUCHIM.Siliconeoilemulsionsstabilizedbypolymersandsolidparticles[J].AdvancesinColloidandInterfaceScienceꎬ2016ꎬ233:186 ̄199.[11]袁婷婷ꎬ沈玲ꎬ王汉峰ꎬ等.可聚合乳化剂DNS ̄86对丙烯酸酯乳液稳定性的影响[J].粘接ꎬ2010ꎬ31(9):63 ̄66.681 现代纺织技术第31卷YUANTingtingꎬSHENLingꎬWANGHanfengꎬetal.InfluenceofpolymerizbleemulsifierDNS ̄86onwater ̄basedacrylicemulsionstability[J].Adhesionꎬ2010ꎬ31(9):63 ̄66.[12]BINKSBPꎬLUMSDONSO.Influenceofparticlewettabilityonthetypeandstabilityofsurfactant ̄freeemulsions[J].Langmuirꎬ2000ꎬ16(23):8622 ̄8631.[13]乔敏.涤纶长丝织物纰裂性能研究[D].上海:东华大学ꎬ2012:14 ̄15.QIAOMin.ResearchonSlippagePropertyofPolyesterFilamentFabrics[D].Shanghai:DonghuaUniversityꎬ2012:14 ̄15.PreparationandapplicationpropertiesofsiliconoilemulsionstabilizedwithnanoparticlesXIONGChunxianꎬZHANGYunjuꎬWENGYanfangꎬYUJianhuaꎬLIUZuopingꎬZHANGJianshe(ZhejiangKefengSiliconeCo.ꎬLtd.ꎬJiaxing314423ꎬChina)Abstract:Siliconeoiliswidelyusedintextile leather paintandotherindustries.Inthetextileindustry siliconeoilismainlyusedinthefinishingoftextiles givingfabricssoft smooth fluffyandotherfeel.Inprintinganddyeingprocessing itisoftennecessarytousesiliconeoilintheformofemulsion.Withthecommonaminosiliconeoilasanexample ontheonehand softfinishingwillnotonlybringsmoothandsoftfeeltothefabric butalsomakethefabricsufferseriousslipping affectingtheservicelifeofthefabric ontheotherhand duetoitshighrelativemolecularweightandhighviscositycharacteristics thedispersionstabilityoftheemulsionispoor.Inthispaper thecopolymeremulsionparticlesofisooctylacrylate EHA andmethylmethacrylate MMA werepreparedbysemi ̄continuousseedemulsionpolymerizationandusedasPickeringparticles.Pickeringsiliconeoilemulsionstabilizedwithnanoparticlesandemulsifierwaspreparedtoimprovethestabilityoftheemulsionandreducetheamountofemulsifier.Theresultingemulsionwasusedinfabricfinishing.TheeffectsofPickeringsiliconeoilemulsionandemulsifierstabilizedsiliconeoilemulsiononthechemicaloxygendemand COD andtheproperties feel stitch etc. offinishedfabricswereinvestigated.Firstly thehydrophilicityofPickeringgranulelatexwasevaluatedbytestingthewatercontactangleofthefilm.Theresultsareshowninthebarchart.ThecontactangletestshowsthatthewatercontactanglesofPEHAP EHA ̄MMA andPMMAare88.1ʎ 88.5ʎand89.6ʎ respectively whichareallcloseto90ʎ.Accordingtothefreeenergyformulaofallthreekindsofsphericalparticlesonthe"oil∕water"interface theycanbeadsorbedonthe"siliconeoil∕water"interfacetoformastableadsorptionlayer whichgivesPickeringsiliconeoilemulsionhighdispersionstability.Inordertoobtainastableemulsion whentheemulsifierisstabilizedalone theamountofemulsifierisashighas24%ofthemassofsiliconeoil Tab.2 .ItcanbeseenfromTab.2thatthesiliconeoilemulsioncanbestabilizedwhenonly8%emulsifierand6%nanoparticlesareusedinthecooperativestabilizationsystem indicatingthatthePickeringemulsionsystemhashighstabilizationefficiency.TheemulsificationsystemalsohassignificantinfluenceontheCODvalueoftheworkingliquidbeforeandafterfinishingandthefeelandstitchpropertyofthefinishedfabric.Whenemulsifierisusedalonetostabilizetheemulsion theCODvalueinthefinishedresidueincreasessharplywiththeincreaseoftheemulsifierdosage.Studieshaveshownthatthemethodofincreasingtheamountofemulsifiertoimprovethedispersionstabilityoftheemulsionwillleadtoalargeamountofsiliconeoilremainingintheresidualliquid whichwillnotonlycausethewasteofadditivesandtheburdenofsewagetreatment butalsoleadtothedeteriorationofthefeelofthefinishedfabric Tab.3 .ByreplacingtheemulsifierstabilizationsystemwiththePickeringemulsionsystem thesurfacefrictioncoefficientofthefabricislower thefeelratingis4 ̄5 andtheCODvalueinthefinishedresidueislower.P EHA ̄MMA nanoparticlesnotonlyguaranteethefeelofthefinishedfabric butalsoensurethegoodskidresistanceofthefabric.Keywords:siliconeoilemulsion Pickering COD stability synergisticstability slippage781 第6期熊春贤等:纳米颗粒协同稳定的硅油乳液制备及其应用性能。
乳液聚合合成单分散纳米级PMMA微球
乳液聚合合成单分散纳米级PMMA微球
何雅琴;吴艳雪;徐敏;戴明欣;张幼维;赵炯心
【期刊名称】《纳米科技》
【年(卷),期】2013(000)001
【摘要】采用乳液聚合法制备了单分散性聚甲基丙烯酸甲酯(PMMA)纳米微球,分析了聚合过程中不同单体滴加时间、不同表面活性剂用量、不同引发剂用量以及不同引发剂种类等因素对聚合体系中微球的粒径以及粒径分布的影响,研究表明,PMMA微球的粒径随单体滴加时间、表面活性剂用量、引发剂用量的增加而减小;采用AIBN引发剂制备的微球的粒径较采用KPS引发剂大。
【总页数】4页(P40-42,85)
【作者】何雅琴;吴艳雪;徐敏;戴明欣;张幼维;赵炯心
【作者单位】东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201620
【正文语种】中文
【中图分类】O643.13
【相关文献】
1.无皂乳液聚合法合成单分散性阴离子聚苯乙烯微球 [J], 范欣;范平;吴跃焕;李松
栋
2.无皂乳液聚合法合成单分散交联PS纳米微球 [J], 吴其晔;高卫平;贾云
3.乳液聚合法合成单分散交联PS纳米微球 [J], 吴其晔;高卫平;贾云;陈军强
4.无皂乳液聚合合成均分散PMMA微球 [J], 唐业仓;傅中;罗时忠;孙益民
5.无乳化剂乳液聚合法合成单分散大粒径高分子微球的研究 [J], 朱世雄;杜金环;金熹高;陈柳生
因版权原因,仅展示原文概要,查看原文内容请购买。
PMMA/SiO2复合颗粒制备与表征
Ke o d :c mp st atce ;sl—s e b y aieak lf n t n l a in;c a a t rz t n y w r s o o i p rils efa sm l ;s l — l y u c i ai t e n o z o h r ce ia i o
z t n a d i v s i a e i a i n n e tg t d va EDS,F R ,TEM ,LS . Th e u t e e l t a r e u a r s a tce o TI S e r s ls r v a h ti r g lr e o e p r il
s l a smb ely r ef s e l e.Th M MA/ i o o iep rilsa ep e a e y s a ls mu so o y r— — a eP S Oz mp st a t e r rp rd b o p e se lin p lme i c c
Ab ta t sr c :Em u s o o y rz t n i o l i n p l me ia i s a c mm o t o o a o p r il o iy n o n me h d f r n n — a tce m d f i g, b t d f c s i u e e t n
Y AN il ,MA ec e g,L儿 Gu —h n・CAO n -i Pe—i Ti—h n is a Yi g je
( c o l fCh mity E gn eig & Mae il S h o e sr n ie rn o tra。Dain Isiueo g n u ty l n t t fLihtId s r .Dain 1 6 3 a t l 1 0 4・Chn ) a ia
PMMASiO2 纳米杂化材料的制备及作为润滑油添加剂的摩擦学性能
图 1 为纳米二氧化硅和表面有机化纳米二氧化硅 的 FTIR 光谱图,从图中可以看出 2957cm-1 附近出现了 CH3 的不对称伸缩振动,在 1720cm-1 附近出现了 C==O 的伸缩振动,在 1455cm-1 附近出现了 CH3 的变形振动 , 这些表明在二氧化硅表面接枝有有机层。
图 1 纳米 SiO2 和表面有机化纳米 SiO2 的 FTIR 谱图 Fig 1 FT-IR spectrum of nano -SiO2 and surface organi-
composite 图 4和 5分别是SiO2和PMMA/SiO2纳米杂化材料的 电镜照片 。从图中可见,原料SiO2 微粒有严重团聚现象, 粒径在 20nm左右 ;而PMMA/SiO2样品 颗粒比较均匀 , 且分散良好,粒径 <100nm,和原料 SiO2相比 ,且粒径 增大,推测是因为有机单体在SiO2颗粒表面聚合、生长, 从而使颗粒变大并形成了核壳结构。
图 5 PMMA∕ SiO2 纳米杂化材料的 TEM 图 Fig 5 TEM morphologies of PMMA/SiO2 nano-hybrid
composites 3.2 摩擦学性能
各浓度 PMMA/SiO2 纳米杂化材料对 AN10 油 PB 值影响和在 294N 下含各浓度 PMMA/SiO2 纳米杂化材 料的 AN10 油对钢球磨斑直径(WSD)的影响曲线如图 6。由图可见 PMMA/SiO2 纳米杂化材料能提高 AN10 油
乳液聚合法制备纳米聚合物微球毕业设计论文
摘要纳米聚合物微球由于其特殊的结构,具有比表面积大、吸附性强、凝集作用大及表面反应能力强等特性。
它在许多领域有着重要的作用,例如可作为粒度标准物质和制备胶粒晶体的原料,也可作为模板制备微胶囊及多孔材料。
本文采用乳液聚合法制备出了粒度在20~50nm的聚苯乙烯(PS)胶体微球,同时考察了单体浓度,乳化剂用量,温度等工艺条件对PS 微球的粒度及单分散性的影响。
研究发现,微球平均粒径随单体浓度升高而增大,随乳化剂用量的增加先增大后减小,随温度的升高而减小。
在苯乙烯的质量为4.025g,水的质量为56g,过硫酸钾的质量为0.0305g,苯乙烯磺酸钠的质量为0.403g,温度为80℃的实验条件下成功制备出平均粒径为42.23nm的单分散聚苯乙烯微球。
同时尝试超声乳液聚合法制备PS微球,考察了超声时间对PS微球的粒度的影响,研究发现,微球平均粒径随超声时间延长而增大。
关键词:乳液聚合;纳米;单分散;聚苯乙烯微球AbstractThe nano-polymer microsphere has large surface area, strong adsorption, aggregation, and surface reaction ability and so on due to its special structure. It plays an important role in many areas, for example ,it can be used as the size standard materials and materials of preparing colloidal crystals, and the template to prepare micro-capsules and porous materials.The monodispersed polystyrene(PS) colloidal microspheres were prepared by emulsion polymerization and the microspheres‟ average particle size are 20 ~ 50nm. At the same time ,some conditions such as the concentration of monomers, emulsifier content, temperature and other processing conditions on monodisperse and particle size of PS microspheres were investigated. that the average particle size increases as the monomer concentration increasess; the average particle size increases at first and then decreases as the emulsifier increases; the average particle size decreases as the temperature rises. The average particle size of 42.23nm monodisperse polystyrene microspheres was successfully prepared in the experimental conditions: the quality of styrene is 4.025g, the quality of water is 56g, the quality of The quality of potassium persulfate) is 0.0305g, the quality of Styrene sulfonate is 0.403g and the temperature is 80℃. At the same time we try to use ultrasonic dispersion method to prepare small particle size of PS microspheres, and investigate the impact of ultrasonic time on the PS microsphere particle size,we found that average particle size increases when we prolong the ultrasonic time .Key words: emulsion polymerization; nm; monodispersed; polystyrene microspheres目录摘要 (I)Abstract (II)第1章绪论 (1)第2章国内外文献综述 (2)2.1 聚合物微球的制备方法 (2)2.1.1 分散聚合 (2)2.1.2 乳液聚合 (5)2.1.3 超声辐射乳液聚合 (7)2.1.4 种子乳液聚合 (8)2.1.5 核壳乳液聚合 (9)2.1.6 无皂乳液聚合 (9)2.1.7 微乳聚合 (10)2.1.8 反相乳液聚合 (11)2.2单分散聚合物微球的应用 (11)2.2.1 单分散聚合物微球作为粒度标准物质 (11)2.2.2 单分散聚合物微球作为制备胶粒晶体的原料 (12)2.2.3 单分散聚合物微球作为模板制备微胶囊 (12)2.2.4单分散聚合物微球作为模板制备多孔材料 (12)2.3课题的研究意义与研究内容 (13)2.3.1 研究意义 (13)2.3.2 研究内容 (13)第3章实验部分 (14)3.1 试剂及仪器 (14)3.1.1 试剂 (14)3.1.2 仪器 (14)3.2 实验过程 (15)3.2.1 单体的处理 (15)3.2.2 聚苯乙烯微球的制备 (16)3.2.3 微球平均粒径的表征 (16)3.3实验结果与讨论 (17)3.3.1 温度对粒径大小的影响及结果分析 (17)3.3.2 乳化剂用量对粒径大小的影响及结果分析 (18)3.3.3 单体用量对粒径大小的影响及结果分析 (19)3.3.4 超声时间对粒径大小的影响 (20)3.4 小结 (20)第4章结论与展望 (21)4.1结论 (21)4.2 展望 (21)参考文献 (22)致谢 (24)第1章绪论聚合物微球即为高分子微球,指直径在纳米级至微米级,形状为球形或其他几何体的高分子材料或高分子复合材料,其形貌可以是多种多样的,包括实心、空心、多孔、哑铃形、洋葱形等。
乳液聚合法制备纳米CaC03/P(BA-co-MMA)复合粒子及其表面性质表征
售试 剂 。
12 实验 方法 .
可提高无机粒子与基体的相容性 , 促进填料在 基体中的分散 , 因而受到青睐。在众多的聚合
物包覆处理方法中, 乳液聚合法较为成熟 , 已成 功地应 用 于 T O tl i22、 a O [3A , [ i el、 O [ C C 3 、 I S ] 3 ]
理 , 滤, 抽 干燥 , 研磨 。在 三 口瓶 中加 入计 量 的 S S 蒸馏 水和经 表面 预处 理 的纳米 CC , D 、  ̄ O3用 氨水 调 p H至 8 , ~9 超声分 散 5ri 升温 、 n后 a 搅
拌, 5 5℃时加入 K S P 溶液 , 采用 “ 饥饿法” 先后
分段缓 慢加入 B A及 MMA,0℃ 反 应 7h 经 7 ,
MMA 乳液聚合 , ) 制备核壳结构 的无机一 聚合物
后处理得到纳米 C C 3聚合物复合粒子。  ̄O/
13 分析表 征方 法 . 红外光 谱 分 析 采 用 P ri Ee r ekn l me I R
纳米复合粒子 , 并对其表面性质进行表征。
1 实验 部分
1 1 原 料及试 剂 .
S e mm 20型红外光谱 仪, B 压 片法。接 pc t 0 Kr 触角测定采用河北 承德实验机总厂 的 T - Y8 2
收稿 日期 : 0 61— ; 2 0 . 1 修订 日 : 0 70 . 22 期 2 0 —6 6 2 基金项 目: 福建省教育厅资助( o 6 3 )福建省科技厅资助(o 4o 7 2o F 1 , 2 o j1 ) 联系人 : 生 瑜, 主要从事聚合物填充 改性研究 , Ema :seg u  ̄u eu c . i hny @l .d .n l n
基于乳液聚合法制备无机纳米粒子/聚合物复合粒子及其应用研究进展
关键词 : 无机 纳米粒子 ; 聚合物 ; 乳液 聚合 ; 核壳 复合粒子 ; 研究 进展
中 图分 类 号 .Q 60 4 T 3 . 3 文献标识码 : A 文 章 编 号 :2 3— 32 2 1 )7— 0 0— 6 0 5 4 1 (0 2 0 0 7 0
第4 2卷 第 7期 21 02年 7月
涂 料 1 二业
PAI NT & C0ATI NGS I NDUS TRY
V0 . No. 142 7
J 12 1 u.0 2
基 于 乳 液 聚 合 法 制 备 无 机 纳 米 粒 子/ 聚 合 物 复合 粒 子 及 其应 用 研 究 进 展
o n Em u so lm e ia i n a t li n Po y rz to nd IsApp ia in lc to
Hu n e g n , uX ay e hnZ e g M u xa a gZ n f g Q i u ,C e h n , aJn i a o n
i to u e lo F n ly,t i e eo me tp o p c s e p ce nrd c d as . ial herd v l p n r s e twa x e t d.
Ke or yW ds:n r a i a o—p ril p lme e iog ncn n a tce; o y r; muli n poy rz to c r so l me iai n; o e—s elc mp st ril h l o o iepa tce;
黄 增 芳 , 晓岳 , 瞿 陈 正 , 马军 现 ( 电子 科技 大 学 中山学 院化 学与 生物 工程 学院 , 东 中山 5 8 0 ) 广 2 4 2
无皂乳液聚合法制备聚甲基丙烯酸甲酯包覆厚度可控的纳米核-壳二氧化硅微球
究
.将粒 径 分布均 匀 的无机 纳米 粒子 表面包 覆 上一 层 均一 、表 面 光滑 、厚 度可 控 的 聚合 物 , 可 则
以兼 备 窄分布 粒子 和核 一 壳包 覆材 料 的优点 .将 聚合 物包 覆 到二 氧化硅 纳米 粒子 上得 到改性 产 品 ,引起 人们 的极 大兴 趣 .Ste 等 在 乙醇溶 液 中利用 碱催 化制 备窄 分布 二 氧化 硅 纳米 粒 子后 , 们 很容 易 t r i b 人 制备 预期 大小 、窄分 布 的二 氧化 硅纳米 粒 子及 二 氧 化硅/ 聚合 物 核一 壳微 球 .B uga—a 等 利用 阳 oret mi L
厚度 在 64~ 6 3n . 9 . m之 间可控 ,表 面洁净 的窄 分布 有机 一 纳 米复合 微球 ,合成路 线见 Shm . 无机 ce e1
●
Grf ic at l a si
p ri l at e c
War M t. A eM
一
一
_ r
M M A,
P MA M
法将 3 乙氧基 甲基丙烯酸丙基硅烷 ( P ) 一 M S 修饰在纳米 的二氧化硅表 面后 , 用无皂乳 液聚合法制 备核一 壳纳米 微球 .该法简单有效且得到厚度均匀 的聚合物 包覆层.随着 单体 MMA用量 的增加 , 动态光散 射法测 量 , 用 P MMA壳层 的厚度从 64n . m增加 到 9 . m 63n .热 重分析表 明 ,P A的含量 从 2 .5 MM 2 2 %增 加到 9 . 1 3 4 %.扫
PMMA胶体晶体模板法制备SiO2多孔材料
PMMA胶体晶体模板法制备SiO2多孔材料杨鹏;周浪;李俊;邓仕英;刘长生【期刊名称】《武汉工程大学学报》【年(卷),期】2008(030)001【摘要】通过PMMA胶体晶体模板法制备了有序的SiO2多孔材料.首先采用两阶段加料的无皂乳液聚合方法,成功地合成了单分散的甲基丙烯酸改性聚甲基丙烯酸甲酯微球,然后将聚合合成的胶乳在一定温度下蒸发一段时间使单分散微球组装成大面积的有序胶体晶体,再以硅溶胶填充胶体晶体,经干燥后煅烧去掉PMMA胶体晶体模板等过程制备较大面积有序的SiO2多孔薄膜.粒径分析、紫外一可见光透过光谱图分析结果表明:所制备的甲基丙烯酸改性聚甲基丙烯酸甲酯微球为单分散且粒径为250 nm左右.扫描电镜、热失重、红外光谱等分析结果表明:SiO2多孔材料孔洞规则排列、相互连接、较好的复制了胶体晶体的有序结构,孔径分布在250 nm左右.【总页数】4页(P76-79)【作者】杨鹏;周浪;李俊;邓仕英;刘长生【作者单位】武汉工程大学材料科学与工程学院,湖北,武汉,430074;武汉工程大学材料科学与工程学院,湖北,武汉,430074;武汉工程大学材料科学与工程学院,湖北,武汉,430074;武汉工程大学材料科学与工程学院,湖北,武汉,430074;武汉工程大学材料科学与工程学院,湖北,武汉,430074【正文语种】中文【中图分类】TQ31【相关文献】1.PMMA胶体晶体模板法制备有序大孔SiO2材料 [J], 龙永福;许静;张学骜;谢凯;肖加余2.多孔PMMA/SiO2纳米复合材料的制备及其力学性能 [J], 姜勇;胡朝晖;丁燕怀;尹久仁;许福;张平3.胶体晶体模板法制备三维有序排列的大孔SiO2材料 [J], 杨卫亚;郑经堂4.PMMA胶体晶体模板法制备三维有序大孔TiO2/SiO2 [J], 刘国栋;王彤文;怒青梅;王艳鳞;顾怀章;刘玲5.三维多孔锂电池材料合成模板剂聚甲基丙烯酸甲酯(PMMA)微球的制备研究 [J], 华丽;谢厚鹏;戴伟;李颢蕻;邵玉娇;戴月因版权原因,仅展示原文概要,查看原文内容请购买。
微乳液法制备核壳及空心结构纳米材料的研究进展
siq包覆发光半导体纳米晶广泛用于光催化和光电子设 备,已经引起研究者的极大兴趣o…。si晓壳层可以提高纳米晶 的光化学稳定性,增加纳米晶量子产额。核壳结构(=ds Siq复 合纳米微粒在生物及催化领域具有潜在的应用价值。文献[18] 报道了采用NP_7/正丁醇/环己烷/水溶液体系所形成的反相微 乳制备单分散性cdS/siq核壳结构微粒。首先混合分别增溶 有0.2moI/L cdNU、Na。s水溶液的微乳液,搅拌并经2h老化 后形成cds内核;向含有(Ⅺs内核的微乳液中加入25wt% NHt()H水溶液的微乳液,并不断搅拌形成混台微乳液,然后再 向该微乳液中滴加正硅酸乙酯,经过24h老化后,加人丙酮破乳 并经高速离心分离收集样品。制各过程中通过调整反应物的加 入量及其加入方式可以得到不同粒径的cdS/Sioz核壳结构纳 米微粒。
微乳液法制备核一壳及空。结构纳米材料的研究进展/李 晖等
·177·
微乳液法制备核一壳及空心结构纳米材料的研究进展。
李晖朱振峰朱敏
(陕西科技大学材料科学与工程学院.咸阳712081)
摘要 核一壳结构度空心结构纳米材料以其独特的物理化学性能而备受关注。介绍了微乳液法制备棱一壳蛄约 纳米材料的原理,综述了当前微乳液法制备核壳及空心结构纳米材料的研究进展,并概述了谊类材料的表征技术。
pmma粒子
pmma粒子PMMA粒子是一种常见的聚甲基丙烯酸甲酯颗粒,具有广泛的应用价值。
本文将对PMMA粒子的制备方法、物理性质、应用领域等方面展开研究,以期为相关领域的研究和工程应用提供参考。
PMMA粒子的制备方法有多种途径,常见的包括溶液聚合法、悬浮聚合法和乳液聚合法等。
其中,溶液聚合法是一种常用的制备方法,通过在溶剂中加入引发剂和稳定剂,使单体分子聚合形成颗粒。
此外,还可以通过乳化聚合法在水相中制备PMMA颗粒,该方法操作简单,成本低廉,适用于大规模生产。
PMMA粒子的物理性质对其在应用领域的影响至关重要。
研究表明,PMMA颗粒的粒径、形状和分布均会影响其力学性能、耐热性和光学透明度等特性。
因此,精确控制PMMA颗粒的物理性质对于提高其应用性能具有重要意义。
同时,PMMA颗粒的表面性质也是一个重要的研究方向,通过改变颗粒表面的化学性质可以实现颗粒的功能化修饰,拓展其应用领域。
PMMA粒子在材料科学领域具有广泛的应用价值,主要包括制备透明材料、橡胶增容剂和微纳米颗粒等方面。
其中,PMMA颗粒在制备透明材料方面表现突出,可用于制备高透明度的玻璃、光学镜片和光纤等材料。
此外,PMMA颗粒还可作为橡胶增容剂,提高橡胶的抗拉强度和耐磨性。
在微纳米颗粒领域,PMMA颗粒的纳米化处理可以实现颗粒的尺寸调控和表面功能化,进一步拓展了其应用范围。
梳理一下本文的重点,我们可以发现,PMMA粒子作为一种重要的聚合物颗粒,在材料科学和工程领域具有广泛的应用前景。
通过深入研究PMMA 粒子的制备方法、物理性质和应用领域,不仅可以拓展其应用范围,同时也为相关领域的研究和工程应用提供了新的思路和方法。
希望可以进一步推动PMMA粒子的研究和开发,为实现材料科学领域的创新发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Colloids and Surfaces A:Physicochem.Eng.Aspects277 (2006) 145–150Silica-PMMA core-shell and hollow nanospheresKai Zhang,Linli Zheng,Xuehai Zhang,Xin Chen,Bai Yang ∗Key Lab of Supramolecular Structure and Materials,College of Chemistry 130012,Jilin University,2699#Qianjin Avenue,Changchun,PR ChinaReceived 8November 2005;received in revised form 15November 2005;accepted 17November 2005Available online 18 January 2006AbstractMonodispersed silica-polymer core-shell nanospheres (CSNs)were prepared by emulsion polymerization.To coat the cores by polymer,silica nanoparticles were modified by 3-(trimethoxysilyl)propyl methacrylate (MPS).The thicknesses of polymer shells were found to be dependent on the amount of monomer and grafted silica nanoparticles,the concentration of emulsifier and the sizes of grafted silica nanoparticles,and the morphologies of CSNs were affected by the kind of monomer.The formation mechanism of SiO 2-PMMA CSNs was speculated.In addition,we investigated the formation of hollow polymer nanospheres.© 2005 Elsevier B.V. All rights reserved.Keywords:Core-shell;Emulsion polymerization;Hollow;Nanospheres1.IntroductionDuring the past decades,there have been a lot of works devised with the preparation of core-shell nanospheres (CSNs)because of their excellent optical,electrical,thermal,mechan-ical,electro-optical,magnetic and catalytic properties [1–5].CSNs display interesting functions and characters,which come from different functional components in core and shell materials.Furthermore,CSNs provide a facile platform for the fabrication of hollow spheres or capsules by the removal of template cores.These CSNs and hollow capsules can open up potential applica-tions in catalysis,controlled delivery,artificial cells,light fillers,low dielectric constant materials and photonic crystals [6–9].Various facile or clever procedures have been developed to prepare these CSNs and hollow spheres,including tem-plate directed self-assembly [10,11],template directed living polymerization [12,13],template directed aggregations [14–16],copolymerization of hydrophobic and hydrophilic monomer [17]and core-shell emulsion polymerization [18].Using silica spheres as template cores to prepare silica-polymer CSNs is well known in the field of the inorganic–organic CSNs.Silica-polymer CSNs are broadly used in research on the physical performances of composite materials,pho-∗Corresponding author.Tel.:+864315168478;fax:+864315193423.E-mail address:yangbai@ (B.Yang).tonic crystals and antireflection film.Silica-polymer CSNs with various morphologies could be synthesized by physic-ochemical or chemical processes.After Bourgeat-Lami pre-pared silica-polystyrene (SiO 2-PS)core-shell microspheres by dispersion polymerization [19],other polymerization proce-dures involving emulsion,miniemulsion,and atom transfer radical polymerization have been tried to realize the coat-ing of silica spheres with polymer shells [20–24].Recently,Asher et al.have successfully synthesized monodispersed SiO 2-polymer core-shell spheres in submicrometer via the dis-persion polymerization,and then used them as the building blocks for the fabrication of photonic crystals [25].How-ever,the preparation of monodispersed SiO 2-polymer core-shell spheres in nanoscale is still an attractive work because of their potential applications in photonic crystals and antireflection film.In this paper,we report the preparation of 131–225nm silica-polymethyl methacrylate (SiO 2-PMMA)CSNs with 51–195nm cores by an emulsion polymerization.We have investigated the effects of several reaction parameters on the morphologies and sizes of SiO 2-polymer CSNs,such as,different monomers (MMA and St),concentration of emulsifier,amounts of grafted silica and monomer.And then,the formation mechanism of SiO 2-polymer CSNs was speculated and a suitable system for preparing silica-polymer CSNs was confirmed.Finally,hollow polymer nanospheres were obtained via an etching process using a solvent.0927-7757/$–see front matter © 2005 Elsevier B.V. All rights reserved.doi:10.1016/j.colsurfa.2005.11.049146K.Zhang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 277 (2006) 145–1502.Experimental part2.1.MaterialsTetraethyl orthosilicate(TEOS),absolute ethanol and ammo-nium hydroxide were analytical grade and used as received. 3-(trimethoxysilyl)propyl methacrylate(MPS),styrene(St)and methyl methacrylate(MMA)were distilled under reduced pres-sure before used.4,4 -isopropylidenediphenol bimethacrylate (BV A)was used as cross-linker and prepared in our laboratory. Potassium persulfate(K2S2O8)and other agents of analytical grade were utilized without further purification.Deionized water was applied for all polymerization and treatment processes. 2.2.Synthesis of SiO2-polymer CSNsThe monodispersed silica nanospheres grafted by MPS with average diameters ranging from51to195nm were prepared in ethanol according to the St¨o ber method[27]at ambient tem-perature,and the process was narrated in our prevenient paper [26].SiO2-polymer CSNs were synthesized using an emulsion polymerization.In the typical case of preparation for SiO2-PMMA CSNs,0.7g of grafted silica spheres(111nm in diame-ter)dispersed in5ml of ethanol by ultrasonic for30min,0.019g of sodium dodecyl benzene sulfonate(SDBS)as emulsifier, 0.24g of NaHCO3as buffer agent,100ml of water as the disper-sion medium,0.04g of KPS as initiator and4ml of MMA with 0.16g of BV A were added into a three-neckflask with a machine stirring(300rpm).The polymerization was then carried out in an atmosphere of nitrogen at80◦C for10h,and then the prod-uct was centrifuged by various speeds and time according to the different sizes to remove the PMMA nanospheres without SiO2 (for example,159nm SiO2-PMMA CSNs with111nm cores were centrifuged by15000rpm for6min).SiO2-PMMA CSNs were obtained.2.3.Preparation of hollow polymer nanospheresSolventfilled hollow polymer nanospheres were obtained after dissolving the SiO2cores using hydrofluoric acid(HF) as the etching solvent.Typically,Silica cores in SiO2-polymer CSNs were etched by a40wt.%HF aqueous solution at mod-erate stirring(about50rpm)within5min.The hollow polymer nanospheres can be obtained.2.4.Extraction of SiO2-polymer CSNsThe emulsion of SiO2-polymer CSNs were dried in vacuum oven under45◦C,then1.0g of the SiO2-polymer CSNs solid were dispersed in40.0ml solvent(toluene for PS and butyl acetate for PMMA)under vigorous magnetic stirring(about 200rpm)for1h at ambient temperature,and then they were centrifuged by various speeds and time according to the differ-ent sizes,and repeated the redispersion and centrifuged cycle until polymer remained in solvent after centrifuging could not be detected by FTIR.2.5.CharacterizationThe29Si solid NMR spectrum was characterized by Varian Infinity plus400spectrometer.FTIR spectra were measured in the wave number range4000–400cm−1at a resolution of 4cm−1using a Nicolet Avatar360FTIR spectrophotometer. The morphology of grafted silica,CSNs and hollow poly-mer nanospheres were investigated by transmission electron microscopy(TEM)using a JEOL JEM2010at an accelerator voltage of200kV.The diameter and size distribution of grafted silica and CSNs were determined by Zetasizer3000HS and TEM image.3.Results and discussion3.1.Effect of the monomerMonodispersed silica-polymer CSNs were obtained through emulsion polymerization of monomer and grafted silica parti-cles,as the preparation of SiO2-PS CSNs in our previous report [26].The silica particles were modified by C C bonds on their surfaces and used as templates in the polymerization process. Fig.1shows the TEM images of SiO2-PMMA(A)and SiO2-PS (B)CSNs.It is clearly seen from Fig.1that the morphologies of SiO2-PMMA and SiO2-PS CSNs are different.The SiO2core lies in the center of SiO2-PMMA CSN,while for SiO2-PS CSNs, the SiO2core dose not lie in the center of SiO2-PS CSN.Even if the silica cores with other diameters and cross-linking reagent with different amount were used,we could only get the similar results.We believed that the different morphologies of SiO2-polymer CSNs result from the different formation mechanisms of polymer shells.We have investigated the formation of the shells of SiO2-PS CSNs,which consists of two stages[26]:the polymerization of St with MPS on the grafted silica,and the physical cross-linking of twisted and adsorbed polystyrene polymerized in the further emulsion polymerization with polystyrene layer copoly-merized with MPS.In order to prove the formation of the shells of SiO2-PMMA CSNs,we characterized the content of SiO2 in SiO2-PMMA CSNs and SiO2-PMMA CSNs extracted with butyl acetate by element analysis,the PMMA chains adsorbed and twisted on SiO2-PMMA CSNs will be removed when the CSNs are extracted by solvent(here,the PMMA is not cross-linked).We found the weight proportion of polymer shell decreased32%(while for PS,the data is79%),which indicates that only a few of PMMA chains in shells are formed through adsorption and twist,and most of the PMMA chains in shells are linked on the SiO2surface.So we believe that the poly-mer shells of SiO2-PMMA CSNs were mostly formed by the copolymerization of MMA and MPS on the surfaces of grafted SiO2.In emulsion polymerization system,compared with St,the solubility of MMA in water is higher and the reaction activity of the carbon double bond of MMA is stronger.In our polymer-ization system,because of the addition of ethanol,the solubility of MMA became much higher and the polymerization of MMA in aqueous phase is easier than the copolymerization of MMAK.Zhang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 277 (2006) 145–150147Fig.1.TEM images of SiO2-PMMA CSNs(A)and SiO2-PS CSNs(B).with MPS grafting on silica spheres.In the polymerization,part of MMA dissolved in aqueous phase whereas others formed monomer minidroplets,and then MMA molecules were released from the monomer minidroplets when the polymerization was processing.A few of MMA dissolving in aqueous phase copoly-merized with MPS on the surfaces of silica cores to form PMMA shells and coat silica cores,and most of MMA dissolving in aqueous phase rapidly polymerized to form PMMA oligomers. Most of PMMA oligomers entered the emulsifier micelles and formed the PMMA colloids without silica cores,whereas a few of them were adsorbed and twisted on the shells of SiO2-PMMA CSNs.Finally,a mixture of the PMMA colloids without silica (the weight proportion to MMA could vary from5%to87%) and SiO2-PMMA CSNs was obtained.We separated the SiO2-PMMA CSNs from the mixture via centrifugation by various speeds and time according to the different sizes to remove the PMMA nanospheres without SiO2.SiO2-PMMA CSNs with symmetrical structures were syn-thesized for the formation mechanism of shells of SiO2-PMMA CSNs.While for SiO2-PS CSNs,because the polarity of St is weak,so the wetting between the surfaces of grafted silica and polystyrene is weak,SiO2-PS CSNs with dissymmetrical struc-tures were obtained.At the same time,because the shells of SiO2-PS CSNs were mostly formed by adsorption and twist of PS chains(about79%),the morphologies of SiO2-PS CSNs were also affected by the shearing stress coming from the agitation in an emulsion polymerization.Further experiments also proved the formation of shells of SiO2-polymer CSNs through changing the amount of emulsifier, monomer and the size of cores,etc.3.2.Effect of the concentration of emulsifierIt is well known that the content of emulsifier plays an impor-tant role in the emulsion polymerization.Tofind an appropriate concentration of emulsifier to prepare the SiO2-polymer CSNs, we tried a number of experiments and observed the results by the characterization of TEM.As shown in Fig.2,the sizes of SiO2-polymer CSNs decrease with the increase of emulsifier, but the affection of emulsifier for SiO2-PMMA and SiO2-PS CSNs is different in detail.The shells thicknesses of the SiO2-PMMA CSNs decreased from30to9nm when emulsifier SDBS increased from0.0002 to0.0018g/ml(Fig.2A).By TEM,we noted that the num-ber of PMMA nanospheres without silica cores increased with the increase of emulsifier,but most of SiO2-PMMA CSNs had a single silica core,and the number of colloids with two or more cores did not increase.This result was coincident with the formation mechanism of SiO2-PMMA CSNs spec-ulated by us.The increase of emulsifier lead to form more new PMMA micelles in system,because the polymerization of MMA in water is easier than the copolymerization of MMA with MPS grafting on silica spheres,more MMA will polymer-ize and form PMMA colloids without SiO2,and the monomer copolymerizing with MPS on the surface of grafted silica will decrease,and then the shells of SiO2-PMMA CSNs will become thinner.Here,the diameter and amount of grafted silica nanoparticles are80nm and0.7g,respectively,and the amount of MMA is 4.0ml.So,we can obtain SiO2-PMMA CSNs with different thicknesses shells when we change the concentration of SDBS148K.Zhang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects277 (2006) 145–150Fig.2.The relation plot between the content of emulsifier (SDBS)and the sizes of SiO 2-polymer CSNs (the data from TEM images).Here,the polymer is PMMA (A)and PS (B),respectively.in a broad range.However,it is difficult to do this for SiO 2-PS CSNs.Considering the SiO 2-PS CSNs,it can be found by TEM that the colloid particles without silica increase with the increase of emulsifier because the empty micelles increase,and the col-loid particles with several cores increase and the stability of the emulsion synthesized decreased with the decrease of emulsifier.We find 0.00024–0.00032g/ml SDBS is the appropriate amount of emulsifier in the synthesis system in order to achieve col-loid particles with a single core,and it is lower than the critical micelle concentration (CMC)of SDBS (the CMC of SDBS is 0.00042g/ml in 60◦C in water.).The result is accordance with the formation mechanism of SiO 2-PS CSNs.The concentration of emulsifier has an obvious affection for the PS shells formed by adsorption and twist,SiO 2-PS CSNs can be obtained in a narrow concentration range of emulsifier.3.3.Effect of the amount of monomerFig.3shows the relation plot between the amount of monomer and the sizes of polymer shell.It indicates a linear rela-tion between the thickness of polymer shell and the amount of monomer in a definite range.PS shell of 140nm can be obtained when the content of St is 13.0ml (Fig.3B).Beyond 13.0ml,although we continued adding St,the diameter of spheres no longer varied linearly and a great more coagulation appeared because of the lack of emulsifier [26].The change of PMMA shell thickness shows a similar result (Fig.3A),the thickness of PMMA shell initially increased from 0to 43nm as the MMA content increased from 0to 15ml.However,the maximal size of PMMA shell is much smaller than that of PS shell although we increased the content of MMA much more than that of St.The better polymerization activity and bigger solubility of MMA than St limited the growth of PMMA shells,and most of MMA molecules were polymerized to form PMMA colloids.The fact further proves our speculations for the formation of PMMA shells or PS shells on SiO 2.3.4.Effect of the size of coresWhen the amount of monomer and SiO 2,and the concen-tration of emulsifier were constant,the thickness changesofFig.3.The relation plot between the amount of monomer and the sizes of polymer shell (the data from TEM images).Here,the polymer is PMMA (A)and PS (B),respectively.K.Zhang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 277 (2006) 145–150149Fig.4.TEM images of the SiO 2-PMMA CSNs.the size of SiO 2is 51,126,165,195nm,respectively (from left to right).polymer shell are similar for PMMA and PS following the sizes altering of grafted silica nanoparticles.As shown in Fig.4,the PMMA shell of SiO 2-PMMA CSNs is thinner when the sizes of SiO 2are bigger.For the grafted silica cores of 51,126,165and 195nm,the average thickness of shell is 40,19,17and 15nm,respectively.For the grafted silica nanospheres,when the amount of SiO 2is constant,the total superficial extent of nanospheres decreases linearly with the increase of colloid diameter,and the total amount of MPS on surface of colloids decreases,then the amount of MMA copolymerized with MPS on the surface of grafted silica will decrease,so that much more monomers will form polymer colloids without cores,as a result,the polymer shells of SiO 2-MMA CSNs became thinner.At the same time,we calculated the amount of MMA to form SiO 2-PMMA CSNs according to the sizes of cores and shells of CSNs,and found there were less than 21%of total MMA to form the shells of SiO 2-PMMA CSNs,which further proved the formation mechanism for SiO 2-PMMA CSNs.In conclusion,we found the appropriate system to prepared monodispersed SiO 2-polymer CSNs.The SiO 2-polymer CSNs with different sizes and morphologies can be obtained accord-ing to need,via controlling the concentration of emulsifier,the amount of cores and monomer and changing different monomer.3.5.Hollow nanospheresHollow polymer nanospheres were obtained via dissolving the SiO 2cores using hydrofluoric acid.Fig.5shows TEM micrographs of hollow PS nanospheres (A;insert,SiO 2-PS CSNs)and PMMA nanospheres (B;insert,SiO 2-PMMA CSNs).Compared the hollow PS nanospheres with SiO 2-PS CSNs,it can be clearly seen that the surfaces of hollow nanospheres are as smooth as those of SiO 2-PS CSNs,but some creases and folds appear at the thin parts of shells.We think the PS shells without cross-linking cannot support the cavities so that the thin parts of shells shrank and deformed.This can be further proved by the cross-linking hollow PMMA nanospheres (Fig.5B;the cross-linking degree is 4%),which holds perfect spherical shape.From Fig.5B and the inset,we also note the thickness of hollow PMMA shell increased and the cavity shrank in a certain extent than that of original SiO 2-PMMA CSNs,which is the result of melting of PMMA under electronic beam.Hollow polymer nanospheres with dif-ferent sizes and thickness can be obtained,when we choose appropriate SiO 2-polymer CSNs.The hollow polymer can be applied in the research of photonic crystals and antireflectionfilm.Fig.5.TEM images of hollow polymer nanospheres,hollow PS nanospheres (A;insert:TEM image of SiO 2-PS CSNs);hollow PMMA nanospheres (B;insert:TEM image of SiO 2-PMMA CSNs).The scale bar is 200nm.150K.Zhang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 277 (2006) 145–1504.ConclusionIn summary,the monodispersed SiO2-polymer CSNs and hollow polymer nanospheres were prepared by versatile pro-cesses.We investigated the effects on the morphologies and sizes of SiO2-polymer CSNs coming from the monomer,emulsifier and the grafted silica,and demonstrated the thickness of shells and the size of cores could be adjusted in a wide range.At the same time,we investigated the synthesis mechanisms of dif-ferent monodispersed SiO2-polymer CSNs.Then,we prepared hollow polymer nanospheres that would display large potential application in photonic crystals and antireflectionfilm.AcknowledgementsThis work was supported by the National Natural Science Foundation of China(no.200340062)and the Special Funds for Major State Basic Research Projects(no.G1999064803).References[1]W.Sch¨a rtl,Crosslinked spherical nanoparticles with core-shell topology,Adv.Mater.12(2000)1899–1908.[2]I.L.Radtchenko,G.B.Sukhorukov,N.Gaponik,A.Kornowski,A.L.Rogach,H.M¨o hwald,Core-shell structures formed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex spheres,Adv.Mater.13(2001)1684–1687.[3]B.O.Dabbousi,J.Rodriguez-Viejo,F.V.Mikulec,J.R.Heine,H.Mat-toussi,R.Ober,K.F.Jensen,M.G.Bawendi,(CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites,J.Phys.Chem.B101(1997)9463–9475.[4]J.J.Schneider,Magnetic core/shell and quantum-confined semiconductornanoparticles via chimie douce organometallic synthesis,Adv.Mater.13 (2001)529–533.[5]ndfester,R.Rothe,M.Antonietti,Convenient synthesis offluori-nated latexes and core-shell structures by miniemulsion polymerization, Macromolecules35(2002)1658–1662.[6]D.G.Shchukin,G.B.Sukhorukov,H.M¨o hwald,Smart inorganic/organicnanocomposite hollow microcapsules,Angew.Chem.Int.Ed.42(2003) 4472–4475.[7]Z.Yang,Z.Niu,Y.Lu,Z.Hu,C.C.Han,Templated synthesis of inor-ganic hollow spheres with a tunable cavity size onto core-shell gel particles,Angew.Chem.Int.Ed.42(2003)1943–1945.[8]H.J.Hah,J.S.Kim,B.J.Jeon,S.M.Koo,Y.E.Lee,Simple preparationof monodisperse hollow silica particles without using templates,Chem.Commun.(2003)1712–1713.[9]Q.Peng,Y.Dong,Y.Li,ZnSe semiconductor hollow microspheres,Angew.Chem.Int.Ed.42(2003)3027–3030.[10]F.Caruso,Nanoengineering of particle surfaces,Adv.Mater.13(2001)11–22.[11]Z.Liang,A.Susha,F.Caruso,Gold nanoparticle-based core-shell andhollow spheres and ordered assemblies thereof,Chem.Mater.15(2003) 3176–3183.[12]M.J.Percy, C.Barthet,J.C.Lobb,M.A.Khan,scelles,M.Vamvakaki,S.P.Armes,Synthesis and characterization of vinyl polymer-silica colloidal nanocomposites,Langmuir16(2000)6913–6920.[13]A.Mingotaud,S.Reculusa, C.Mingotaud,P.Keller, C.Sykes, E.Duguetd,S.Ravaineb,Ring-opening metathesis polymerization on well defined silica nanoparticles leading to hybrid core-shell particles,J.Mater.Chem.13(2003)1920–1925.[14]K.P.Velikov, A.van Blaaderen,Synthesis and characterization ofmonodisperse core-shell colloidal spheres of zinc sulfide and silica, Langmuir17(2001)4779–4786.[15]S.W.Kim,M.Kim,W.Y.Lee,T.Hyeon,Fabrication of hollow palladiumspheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions,J.Am.Chem.Soc.124(2002) 7642–7643.[16]Y.Lu,Y.Yin,Z.Y.Li,Y.Xia,Synthesis and self-assembly of Au@SiO2core-shell colloids,Nano Lett.2(2002)785–788.[17]T.Hellweg, C.D.Dewhurst,W.Eimer,K.Kratz,PNIPAM-co-polystyrene core-shell microgels:structure,swelling behavior,and crys-tallization,Langmuir20(2004)4330–4335.[18]R.P.A.Dullens,M.Claesson, D.Derks, A.Blaaderen,W.K.Kegel,Monodisperse core-shell poly(methyl methacrylate)latex colloids,Lang-muir19(2003)5963–5966.[19]E.Bourgeat-lami,ng,Encapsulation of inorganic particles by dis-persion polymerization in polar media,J.Colloid Interface Sci.197 (1998)293–308.[20]J.Luna-Xavier,A.Guyot,E.Bourgeat-Lami,Synthesis and characteri-zation of silica/poly(methyl methacrylate)nanocomposite latex particles through emulsion polymerization using a cationic Azo initiator,J.Col-loid Interface Sci.250(2002)82–92.[21]F.Tiarks,ndfester,M.Antonietti,Silica nanoparticles as surfactantsandfillers for latexes made by miniemulsion polymerization,Langmuir 17(2001)5775–5780.[22]C.Perruchot,M.A.Khan,A.Kamitsi,S.P.Armes,Synthesis of well-defined,polymer-grafted silica particles by aqueous ATRP,Langmuir17 (2001)4479–4481.[23]H.Sertchook,D.Avnir,Submicron silica/polystyrene composite parti-cles prepared by a one-step sol–gel process,Chem.Mater.15(2003) 1690–1694.[24]T.Cui,J.Zhang,J.Wang,F.Cui,W.Chen,F.Xu,Z.Wang,K.Zhang,B.Yang,CdS-nanoparticle/polymer composite shells grown on silicananospheres by atom transfer radical polymerization,Adv.Funct.Mater.15(2005)481–486.[25]X.Xu,S.A.Asher,Synthesis and utilization of monodisperse hollowpolymeric particles in photonic crystals,J.Am.Chem.Soc.126(2004) 7940–7945.[26]K.Zhang,H.Chen,X.Chen,Z.Chen,Z.Cui,B.Yang,Monodispersesilica-polymer core-shell microspheres via surface grafting and emulsion polymerization,Macromol.Mater.Eng.288(2003)380–385.[27]W.St¨o ber,A.Fink,Controlled growth of monodisperse silica spheresin the micron size range,J.Colloid Interface Sci.26(1968)62–69.。