应用泛函分析讲义讲义第1章
泛函分析第一讲
线性算子和线性泛函
第二章 泛函分析
绪论
2.1 距离空间
第二章 泛函分析
一、距离空间的定义
lim
n
xn
x
0, N, 当 n 时N,有
dx, y x y
x y 0, x y 0当且仅当 x y
xy yx
xy xz zy
xn x
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
第一节 距离空间
一、距离空间的定义
例2.1.2 设 X ,d 是距离空间,对任意 x, y X ,源自定义x,y
d
1+d
x,xy, y ,则
X
,
也是距离空间.
证明 三角不等式 d(x, y) d(x, z) d(z, y),
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
例2.1.3 空间l p p 1.
x0 X. 如果d (xn , x0 ) 0, n , 则称该点列 xn
收敛于 x0 , 并记为
lim
n
xn
x0
或
xn x0 n
定理1 距离空间 X ,d 中,收敛点列的极限是唯一的.
第二章 泛函分析
第一节 距离空间
二、距离空间中的收敛
例2.1.5 在Rn 中,点列的收敛为按坐标收敛.
♣ 泛函分析在微分方程、概率论、函数论、计算 数学、控制论、最优化理论、连续介质力学、量 子物理等以及一些工程技术学科都有重要作用.
第二章 泛函分析
绪论
二、泛函分析课程内容 1.空间 集合 + 一定的结构
距离空间 赋范线性空间 内积空间 Banach空间 Hilbert空间
泛函分析 PPT课件
• 可数基数a,连续基数c。
• 主要结论:1.可数集的子集至多可数; 2.有限或可数多个可数集合的并是可数集; 3.有限个可数集的直积是可数集; 4. 无限集必于它的某真子集对等,含可数子集;
可数集的例子:整数集,有理数集,n维欧式空间中 的有理点集。
实数的基本定理:确界存在原理、单调有界原理、 闭区间套引理、聚点定理、有限覆盖定理等等都 当成已知
距离空间的拓扑
• 空间引入距离,才有了空间上映射的连续性概念 (开集的原像是开集)
• 称X的子集B(x,r)={y;p(x,y)<r}为以x为心半径为r的 开球
• 称X的子集S(x,r)={y; p(x,y)=r}为以x为心半径为r的 有着很大优越和方便之处,但并不完全一致。如:离散距离空间中的球 面只有两种可能:空集或全空间
• 紧集的连续象是紧集 • 紧集上的连续函数是一致连续的,能取到最大值
和最小值。 • 空间X是有限维的当且仅当X的闭单位球是紧集。 • 非紧的空间,可以通过一点紧致化,进而利用紧
空间的性质来研究
小结
• 我们讨论距离空间的基本性质 • 距离空间就是赋予距离的集合,是三维立体空间
概念的推广,二者既有相同又不完全相同。
• Zorn引理是集论的一个重要工具,与选择公理,良序原理都是彼此等价的,主要应用于 数学上存在性定理的证明,而不具体描述寻求的方法。
应用泛函分析教案
应用泛函分析教案第一章:泛函分析引言1.1 泛函分析的概念介绍泛函分析的基本概念,例如赋范线性空间、内积空间、巴拿赫空间等。
解释泛函分析与其他数学分支的关系,例如微积分、线性代数等。
1.2 泛函分析的应用探讨泛函分析在数学物理中的重要作用,例如偏微分方程、量子力学等。
介绍泛函分析在工程和计算机科学中的应用,例如信号处理、机器学习等。
第二章:赋范线性空间2.1 赋范线性空间的基本概念定义赋范线性空间,介绍范数的性质和例子。
解释赋范线性空间中的距离和角度概念。
2.2 赋范线性空间的主要结果介绍赋范线性空间中的基本定理,例如三角不等式、平行四边形法则等。
探讨赋范线性空间中的极限和连续性概念。
第三章:内积空间3.1 内积空间的基本概念定义内积空间,介绍内积的性质和例子。
解释内积空间中的正交性和角度概念。
3.2 内积空间的主要结果介绍内积空间中的基本定理,例如帕施-柯尔莫哥洛夫定理、正交基等。
探讨内积空间中的谱理论和量子力学中的应用。
第四章:巴拿赫空间4.1 巴拿赫空间的基本概念定义巴拿赫空间,介绍巴拿赫空间的特点和例子。
解释巴拿赫空间中的弱收敛和紧性概念。
4.2 巴拿赫空间的主要结果介绍巴拿赫空间中的主要定理,例如巴拿赫-魏尔斯特拉斯定理、Riesz表示定理等。
探讨巴拿赫空间在函数逼近论和泛函积分中的应用。
第五章:泛函分析的应用实例5.1 信号处理中的应用介绍泛函分析在信号处理中的应用,例如希尔伯特空间、正交函数等。
探讨泛函分析在信号滤波和去噪等问题的解决中的作用。
5.2 机器学习中的应用介绍泛函分析在机器学习中的应用,例如核函数、支持向量机等。
探讨泛函分析在特征选择和优化算法中的作用。
第六章:赋范线性空间的operators6.1 算子概念定义算子和赋范线性空间中的算子,例如线性映射、紧算子、有界算子等。
解释算子的性质和例子,例如线性、连续、可逆等。
6.2 算子的基本理论介绍算子的基本定理,例如谱定理、弗雷德孙定理、盖尔丹定理等。
泛函分析讲义(中文版-武汉大学).
则称 d 是 X 上的度量(距离)函数,称 X 为度量(距离)空间.有时为了明确,记为 ( X , d ) .
度量空间的子集合 E ,仍以 d 为 E 上度量构成的度量空间称为 ( X , d ) 的子空间.
例 1 对于 n 维空间Φ n 中的点 x = (x1, , xn ) 和 y = ( y1, , yn ) ,定义
利用 Zorn 引理可以证明: 任一线性空间必存在极大线性无关集合,这一集合即是 X 的 Hamel 基.换句话说,任一线性空间必存在 Hamel 基.
凸集和子空间是线性空间中时常用到的子集. X 的子集 E 称为是凸的,若 ∀x, y ∈ E ,
0 ≤ r ≤ 1 , rx + (1 − r) y ∈ E .对于任一集合 E ⊂ X ,记
容易验证 X 是线性空间. 今后对于有限维空间,无穷序列空间和函数空间将分别采用以上规定的线性运算.许多
在经典分析、代数、复变、实变、微分方程中遇到的空间都是线性空间。 注意:定义 1 与线性代数中关于线性空间的叙述是一致的,但是其内涵要比线性代数中
广泛得多。因为在线性代数中限定所考虑的对象为 n 数组。这一点很重要,例如在线性代数 中有一个结论:任何 n +1 个向量必线性相关。对于现在的空间,这一结论却不必成立。
实际上在Φ
n
上还可以定义其他度量,例如
d1 ( x,
y)
=
max
1≤i≤n
xi
−
yi
,此时 (Φ n , d1) 仍是度
量空间.但须注意应把 (Φ n , d1) 与 (Φ n , d ) 视为不同的度量空间.此外注意今后当说到Φ n 是
度量空间时,总意味着它带有欧氏度量.
应用泛函分析复习小结精讲
应用泛函分析复习小结精讲第一章实分析概要本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。
这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。
第一节集合及其运算第二节实数的完备性第三节可数集与不可数集第四节直线上的点集与连续函数第五节点集的勒贝格测度与可测函数1第六节勒贝格积分第一节集合及其运算1)A∪A=A,A∩A=A;2)A∪ Φ=A,A∩ Φ=Φ;3)若A?B,则A∪B=B,A∩B=A,A\B=Φ;4) 设X为基本集,则A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \B = A ∩ B C又若A?B,则A C?B C。
集合的运算法则:2交换律A ∪ B = B ∪ A, A ∩ B = B ∩ A ;结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C;( A∩B) ∩C=A∩ (B∩C) =A∩B∩C;分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ;( A∩B) ∪C= ( A∪C) ∩ (B∪C) ;( A \ B) ∩C= ( A∩C) \ (B∩C) .定理 1.1 设X为基本集,Aα为任意集组,则1) ( U Aα )C=I ( Aα )C (1.6)α∈I α∈I2) ( I Aα )C=U ( Aα )C (1.7)α∈I α∈IA \ ( A \ B)= A I B3第二节实数的完备性2.1有理数的稠密性2.2实数的完备性定理定义 2.1(闭区间套)设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n1)渐缩性,即[a1,b1]?[a2,b2]?L?[a n,b n]?L;2) 区间长度数列{b n?a n }趋于零,即lim(b n?a n)=0n→∞4定理 2.1 (区间套定理)设{[a n,b n]}为实数轴上的任一闭区间套,其中a n与b n都是实数,那么存在唯一的一个实数ξ属∞于一切闭区间[a n,b n](n=1,2,L),即ξ∈ ∩[a n,b n],并且n=1lim a n= lim b n=ξn→∞n→∞利用区间套定理,可以直接推出所谓的列紧性定理(定理 2.2),这个定理的名称的含义在第二章中解释。
应用泛函分析讲义第1章
在经济学中的应用
金融数学
在金融数学中,泛函分析用于描 述和解析金融市场的动态行为, 如期权定价和风险评估。
计量经济学
在计量经济学中,泛函分析用于 建立经济数据的统计模型,如时 间序列分析和回归分析。
微观经济学
在微观经济学中,泛函分析用于 描述和解析市场供需关系和个体 行为,如消费者选择和生产者行 为。
02
线性空间与线性映射
线性空间的基本概念
线性空间
由满足加法和标量乘法封闭性的元素集合构成。
基与维数
线性空间中线性无关的元素个数称为该空间的 维数,而线性无关的元素组称为该空间的基。
线性子空间
线性空间中的子集,满足子集中的元素也满足线性空间的定义。
线性映射的基本概念
01
02
03
线性映射
将一个线性空间的元素映 射到另一个线性空间的元 素,且满足线性映射的运 算性质。
感谢您的观看
THANKS
03 范数的性质包括非负性、正齐次性、三角不等式 等。
向量的模与向量范数的关系
向量的模是向量范数的特例,即当范 数定义为向量与零向量之间的距离时 ,模即为该距离。
向量的模和范数具有相同的性质,如 非负性、正齐次性和三角不等式等。
向量范数的性质
非负性
向量范数总是非负的,即对于任意向量x,有||x|| ≥ 0。
收敛序列的性质
收敛序列是稳定的,即对于任意给定的$varepsilon > 0$,存 在一个正整数$N$,使得当$n, m > N$时,有$|a_n - a_m| <
varepsilon$。
收敛性的判定
可以通过比较序列的各项大小、利用极限的性质或者通过 级数收敛的判定定理来判断序列的收敛性。
泛函分析ppt课件
E
E
E
等号相等当且仅当它们线性相关
24
例子
• 以出租车距离定义的平面距离空间; • 序列空间 l ,l p , p 1 • 函数空间C[a,b]; • 离散距离空间; • R上函数|x-y|^2;|x-y|^1/2是距离吗? • Hamming距离:X为所有0和1构成的三元序组所构成的集合
(总数为8),元素x,y的距离是x,y中不同的对应分量的个数。 • 在开关和自动化理论以及编码理论中都有重要的应用。
• 可数基数a,连续基数c。
9
• 主要结论:1.可数集的子集至多可数; 2.有限或可数多个可数集合的并是可数集; 3.有限个可数集的直积是可数集; 4. 无限集必于它的某真子集对等,含可数子集;
可数集的例子:整数集,有理数集,n维欧式空间中 的有理点集。
实数的基本定理:确界存在原理、单调有界原理、 闭区间套引理、聚点定理、有限覆盖定理等等都 当成已知
• 今天,它的观点和方法已经渗入到不少工程技术 的学科中,起着重要的作用,已成为近代分析的 基础之一。
• 泛函分析的最基本的内容:三个空间,四个定理
5
第一章 预备知识
1.集合
• 所谓集合,是指具有某种特定性质事物的全体, 构成集合的“事物”称为集合的元素。
• 集合的表示方法:1.列举法;2.描述法。 • 相关的概念和符号:集合相等,子集,真子集,
的参考书。
11
12
选择公理
• 泛函分析的研究必须首先承认一些事情 • 选择公理:设C为一个由非空集合所组成的集合,
那么,我们可以从每一个在C中的集合中,都选 择一个元素和其所在的集合配成有序对来组成一 个新的集合。 • Zorn引理:设(P,>)是偏序集,若P的每一个全 序子集在P中都有上界,则P必有极大元 • 良序原理:所有集合能被良序化。换句话说,对 每一个集合来说,都存在一种排序方法,使得它 的所有子集都有极小元素
应用泛函分析教案
应用泛函分析教案第一章:泛函分析基础1.1 集合与函数的概念集合的基本运算函数的定义与性质函数的图像与性质1.2 赋范线性空间与内积空间赋范线性空间的概念内积的定义与性质内积空间的性质1.3 线性算子与对偶空间线性算子的定义与性质对偶空间的概念与性质常用的线性算子与对偶空间第二章:赋范线性空间的基本定理2.1 泛函分析的基本定理闭图像定理共鸣定理开映射定理2.2 赋范线性空间的完备性完备性的定义与性质博尔查诺-魏尔斯特拉斯定理帕奇-弗雷歇定理2.3 赋范线性空间的同调性质同调序列与同调群直和、半直和与同调性质维数定理与同调性质的关系第三章:希尔伯特空间与自伴算子3.1 希尔伯特空间的概念与性质内积空间的进一步研究希尔伯特空间的特点与性质希尔伯特空间的对偶空间3.2 自伴算子的性质自伴算子的定义与性质自伴算子的谱分解自伴算子的对偶性质3.3 谱定理与自伴算子的应用谱定理的定义与证明自伴算子在量子力学中的应用自伴算子在偏微分方程中的应用第四章:赋范线性空间的框架4.1 框架的概念与性质框架的定义与构造框架的性质与例子框架在信号处理中的应用4.2 Riesz表示定理Riesz表示定理的定义与证明Riesz表示定理的应用框架与Riesz表示定理的关系4.3 框架的推广与变种广义框架的概念与性质框架的推广到其他赋范线性空间框架的变种与推广第五章:应用泛函分析解决问题5.1 泛函分析在数学物理中的应用偏微分方程的解的存在性与唯一性量子力学中的算子方法连续介质力学中的泛函分析方法5.2 泛函分析在信号处理中的应用框架在信号处理中的应用小波分析与泛函分析的关系信号处理中的其他泛函分析方法5.3 泛函分析在其他学科中的应用泛函分析在概率论与统计学中的应用泛函分析在优化与控制理论中的应用泛函分析在其他科学领域中的应用第六章:Banach空间与不动点定理6.1 Banach空间的概念与性质Banach空间的基本定义Banach空间的例子Banach空间的性质6.2 不动点定理及其应用不动点定理的定义与证明合同映射与不动点不动点定理在优化问题中的应用6.3 算子方程的解法算子方程的定义算子方程的解法算子方程解的存在性与唯一性第七章:Hilbert空间上的正交基与正交分解7.1 正交基的概念与性质正交基的定义正交基的性质正交基的构造方法7.2 正交分解定理正交分解定理的定义与证明正交分解的应用格拉姆-施密特正交化方法7.3 正交投影与不变子空间正交投影的概念与性质不变子空间的概念与性质正交投影在量子力学中的应用第八章:算子的谱理论8.1 谱映射定理谱映射定理的定义与证明谱映射定理的应用谱映射定理的推广8.2 算子的本征值与本征函数算子的本征值与本征函数的定义算子的谱定理算子的本征值与本征函数的应用8.3 算子的扩张与restriction算子的扩张与restriction 的定义扩张与restriction 的性质扩张与restriction 在应用中的例子第九章:泛函分析在现代数学中的应用9.1 泛函分析在代数学中的应用向量空间与线性代数环、域与代数结构泛函分析与代数拓扑的关系9.2 泛函分析在几何学中的应用向量丛与纤维丛微分几何与泛函分析度量空间与测地线9.3 泛函分析在物理学中的应用量子力学与算子方法连续介质力学与偏微分方程统计物理学与泛函分析第十章:泛函分析的前沿问题与展望10.1 泛函分析的发展历程泛函分析的起源与早期发展泛函分析的主要里程碑泛函分析在现代数学中的地位10.2 泛函分析的前沿问题希尔伯特空间中的谱理论非线性泛函分析与动力系统算子代数与量子计算10.3 泛函分析的未来展望泛函分析在数学其他领域的影响泛函分析与其他学科的交叉泛函分析在科技应用的潜力重点和难点解析重点一:泛函分析的基本概念与性质集合的基本运算、函数的定义与性质、函数的图像与性质是泛函分析的基础知识,需要重点掌握。
泛函分析 PPT课件
• 如:关于点的收敛性就与自控控制系统的输入输 出稳定性、控制算法的收敛性等密切相关。
• 下面我们介绍的这个结论,不仅在数学上,在其 它的学科也能看到广泛的应用。
定理证明:随便给定一点x 0,压缩算子T 逐次作用,得到了一个 Cauchy列,由空间X的完备性,极限点x *存在且唯一,不动点就
得到了.(Tx*, x*) (Txn ,Tx*) (Txn , x*) 0。
该定理(Banach压缩映射原理)就是某一类映射的不动点存在
性和唯一性的问题,不动点可以通过迭代序列求出。实际应用
中T未必是,但T n0是压缩时,命题仍然成立。 注:1.该原理是求解代数方程、微分方程、积分方程、以及数值
同胚变化下是保持不变的 • 练习:证明从离散空间X到任意距离空间Y
的映射T是连续映射。
证明稠密性具有传递性,即若A在B中稠密,B在C中稠密,则A 在C中稠密。
不可分空间的例子:有界数列空间在最大值定义的距离下 是不可分的。
注: Cauchy序列一定是有界序列,如果有收敛的子列,那么 Cauchy序列必是收敛的
• 若空间X本身是紧(列紧)集,则称X是紧(列紧) 空间。
• 例:实直线R是完备的距离空间,但不是紧的, 也不是列紧的;R中任意有界闭集M按R的距离是 紧空间,有界开集N是列紧的。
• 在欧式空间中,有界性和列紧性是一致的。
距离空间的紧性
• 直接从定义判定一个集合的紧性比较困难。 • 称距离空间X的子集A是全有界的,对任意
常用的几个公式
• 赫尔德不等式:p,q>1,1/p+1/q=1,则
泛函分析课程提纲
泛函分析课程提纲第一章,度量空间度量空间及其附属概念:距离、收敛、极限、Cauchy列、完备性、完备化、列紧性。
一般的拓扑空间上,可以定义收敛序列、领域、闭包、稠密性、可分性、连续映射、紧性等概念。
度量空间依所给的度量,自然成为一个拓扑空间,其相应的如上概念可以用度量重新给出定义。
要求:理解这些概念和定义,会利用这些概念和定义对一些具体的例子进行验证或否定。
理解度量空间的完备化操作。
度量空间上的列紧性与自列紧性,ϵ-网,完全有界集,列紧性与完全有界性之间的关系,度量空间上自列紧性与紧性的等价性。
要求:学会运用这些命题证明度量空间上某些集合的列紧性、完全有界性或紧性。
理解这部分几个命题的证明和技巧(Hausdorff定理)。
连续函数空间的性质:完备性,等度连续与列紧集的刻画,Arzela-Ascoli定理。
要求:理解并会运用这些性质。
度量空间上的压缩映射以及Banach不动点定理。
要求:理解压缩映射,并会运用不动点定理。
第二章,赋范向量空间基本概念:向量空间(又称线性空间),拓扑向量空间,向量空间上的范数、半范数,Banach 空间,闭单位球的列紧性与有限维。
要求:理解并会验证这些概念和定义,掌握一些常见Banach空间的例子和不完备的赋范空间例子,并会验证它们相应的完备性和不完备性。
赋范线性空间上的线性算子和线性泛函的定义,线性算子的连续性和有界性,算子的范数,算子收敛。
有界线性算子空间的完备性,对偶空间及其性质。
要求:理解这些概念和定义,会推导并运用相关性质。
三、内积空间和Hilbert空间基本概念和定义:线性空间上的内积,内积空间,Hilbert空间,正交,集合之间的距离相关性质和定理:Schwarz不等式,极化恒等式,平行四边形公式,Hilbert空间上的最优逼近,正交分解定理,正交规范集(标准正交集)及其完备性、封闭性,Bessel不等式,Parseval 恒等式,可分Hilbert空间中完备正交规范集的存在性与Gram-Schmidt正交化,Riesz表示定理及其应用。
泛函分析第一章
x, y与x1 , y1对称,
d ( x , y ) d ( x1 , y1 ) d ( x , x1 ) d ( y1 , y ).
注:若xn x0 , yn y0 , 则d ( xn , yn ) d ( x0 , y0 ).
点列收敛意义
(1) n xk ( ξ
ξ k η k ξ k ζ k ζ k η k ξ k ζ k ζ k η k (1) 1 ξ k η k 1 ξ k ζ k ζ k η k 1 ξ k ζ k 1 ζ k η k
1 (1) k 并求和,得 2
1 ξ k η k 1 ξ k ζ k 1 ζ k η k d ( x, y) k k k ζ k 1 2 1 ξ k η k k 1 2 1 ξ k k k 1 2 1 ζ k η k
n (ξ 1, ,ξ n)|ξ i ,i 1,, , n 2
x ( 1 ,ξ n ), y ( 1 ,η n ) n , 定义 ξ , η ,
d ( x, y) ( k η k )2 , ξ
k 1 n
则 n是距离空间.
证: x ( 1 ,ξ n ), y ( 1 ,η n ), ξ , η ,
在Rn中,按点列收敛等价于按坐标收敛.
(2) C [a , b]
xn xn (t ), x0 x0 (t ) C[a , b]. 设xn x0,则
d ( xn , x0 ) 0, 即
( iii ) d 2 ( x , y ) ( k η k )2 ( k ζ k ζ k η k )2 ξ ξ
k 1 k 1 n n
( k ζ k )2 2 ( k ζ k )( k η k ) ( k η k )2 ξ ξ ζ ζ
泛函分析讲义00
(4) A Ι (B Υ C) = ( A Ι B) Υ ( A Ι C) ;
A Υ (B Ι C) = (A Υ B) Ι (A Υ C)
(5) A Ι B ⊂ A, A Ι B ⊂ B.
(6) A Υ B ⊃ A, A Υ B ⊃ B.
( ) (7) Ac c = A, X c = φ,φ c = X .
xn
−
x
→
0 ,则称 x 为 {xn }的极限,记为 xn
→
x
或
lim
n→∞
xn
=
x。
定义 1 设{xn }是一数列,如果当 m, n → ∞ 时,有 xm − xn → 0 ,那末就说
{xn }是一个基本数列或柯西数列。
定理 1(柯西收敛原理)数列 {xn }收敛的充分必要条件是,它是一个基本列.
,...;
k
= 1,2,..., n),
则 A 为可数集。 例 1 有理数全体成一可数集合。
证明:设
Ai
=
⎧1 ⎩⎨ i
,
2 i
,
3 i
,...⎬⎫(i ⎭
= 1,2,3...), 则
Ai 是可数集,于是由定理 4
知全
∞
Υ 体正有理数 Q + = Ai 成一可数集,因正负有理数集通过ϕ (r) = −r 成为 1—1 对 i =1
f −1 (B0 ) = {x : x ∈ A. f (x) ∈ B0 }
一般情况下,
( ) f f −1 (B0 ) ⊂ B0
若 A0 ⊂ A, 则有
f (−1 f ( A0 )) ⊃ A0
第 3 页 共 25 页
定义 1 设 A, B 是两个集,如果存在一个从 A 到 B 的双射 f ,则称 A 与 B 是
泛函分析讲义第二版课后答案
泛函分析讲义第二版课后答案第一章函数的概念1.定义函数:函数是一种特殊的数学关系,它把一个或多个自变量映射到一个或多个因变量。
它可以用来描述物理现象、经济关系、社会现象等。
2.定义函数的基本要素:函数的基本要素包括:自变量、因变量、函数表达式、函数图像。
3.定义函数的基本性质:函数的基本性质包括:单调性、可导性、可积性、可级数展开性、可积分性、可极限性、可微分性、可反函数性。
4.定义函数的基本概念:函数的基本概念包括:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、连续函数、间断函数、有穷函数、无穷函数、可积函数、不可积函数、可微分函数、不可微分函数、可反函数函数、不可反函数函数。
第二章函数的极限1.定义极限:极限是指当自变量的值趋近于某一特定值时,函数的值趋近于某一特定值。
2.定义极限的基本性质:极限的基本性质包括:极限的存在性、极限的结合性、极限的分配性、极限的交换性、极限的绝对值性质、极限的恒等性、极限的连续性。
3.定义极限的基本概念:极限的基本概念包括:极限的定义、极限的计算、极限的应用、极限的性质、极限的极限点、极限的极限线、极限的极限面、极限的极限空间。
第三章函数的微分1.定义微分:微分是指求函数的导数,即求函数在某一点处的切线斜率。
2.定义微分的基本性质:微分的基本性质包括:微分的存在性、微分的结合性、微分的分配性、微分的交换性、微分的绝对值性质、微分的恒等性、微分的连续性。
3.定义微分的基本概念:微分的基本概念包括:微分的定义、微分的计算、微分的应用、微分的性质、微分的微分点、微分的微分线、微分的微分面、微分的微分空间。
泛函分析ppt课件
傅里叶变换与小波变换的应用
傅里叶变换的应用
傅里叶变换在信号处理、图像处理、语音处理等领域 有着广泛的应用。例如,在信号处理中,可以通过傅 里叶变换将信号从时域转换到频域,从而方便地进行 信号的分析和合成。在图像处理中,可以通过傅里叶 变换对图像进行频域滤波,从而实现图像的降噪和增 强。在语音处理中,可以通过傅里叶变换对语音信号 进行分析和处理,从而实现语音的识别、压缩和加密 等任务。
REPORTING
在物理学中的应用:量子力学与相对论
量子力学
泛函分析在量子力学中有着广泛的应用,如波函数的形式化 描述、薛定谔方程的推导等。
相对论
泛函分析也被用于相对论中的时空变换和场方程的构造,以 及在广义相对论中研究黑洞的性质等。
在工程学中的应用:控制理论、电气工程等
控制理论
泛函分析在控制理论中有着重要的应用 ,如研究系统的稳定性、时域响应等。
PART 05
泛函分析在信号处理中的 应用
REPORTING
信号处理的基本概念
信号的定义与分类
信号是传递或表达某些信息的数据或数据流。它可以分为 离散信号和连续信号,离散信号是离散时间点的数据,而 连续信号是连续时间点的数据。
信号处理的定义与目的
信号处理是对信号进行变换、分析和解释的过程,目的是 从原始信号中提取有用的信息,或者将原始信号变换为另 一种形式,使其更易于分析和理解。
其他应用
泛函分析还可以应用于滤波器设计、压缩感知等领域。例如,基于小波变换的压缩感知方 法可以在保持信号质量的同时,实现信号的压缩和存储。
实例分析:信号的傅里叶变换与小波变换
傅里叶变换的基本原理
傅里叶变换是一种将时域信号转换到频域的方法。它将一个时域信号表示为一系列不同频率的正弦和 余弦函数的线性组合。通过傅里叶变换,我们可以将信号从时域转换到频域,从而可以更好地分析信 号的频率特性。
泛函分析PPT课件
.
4
2、为什么给研究生开设泛函分析 计算机应用技术解决什么? 遇到的问题越来越复杂 涉及的知识门类多 现代数学的作用越来越突出
.
5
例1:
信号处 理技术 数学
通信技术
计算机技术
网络技术
.
6
例2:
抽象代数 数理逻辑
密码学理论
信息安全
.
7
例3:
高层
图像理解
中层
图像分析
底层
图像处理
图像中对象属 性及相互关系 分析、判别
则称 (x,z)为 x, y 间的距离,称R为距离空间,其
中的元素也称为点。
.
14
第一章 距离空间
例1:设 R 1 为非空实数集,对其中任意两个实数 x, y 定义距离:
(x,y)|xy|
即为通常意义下的距离,称欧氏距离。 另外,还可以用另一种方式来定义距离:
1(x,y)1| x| xyy| |
.
定义1:在距离空间R中,若任一Cauchy列都在R 中有极限,则称距离空间是完备的。
定义2:设R,R1都是距离空间,如果存在一个由
R到R1的映射T,使一切 x, yR 有
1(T,T x) y(x,y)
其中 1, 分别为R,R1上的距离,则称T
为R到R1的等距映射,这时,称R与R1为 等距。
.
23
第一章 距离空间
距离空间的完备化定理: 对每个距离空间R,必存在一个完备的距离空
间R0,使得R等距于R0中的一个稠密子空间R1,并 称R0为R的完备化空间,若除去等距不计,则R0是 惟一的。
.
24
第一章 距离空间
1.4 距离空间的稠密性与可分性 稠密性:
泛函分析讲义张恭庆答案
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
韩崇昭《应用泛函分析--自动控制的数学基础》课件第1章
综合自动化研究所
应用泛函分析
泛函分析的研究对象
经典的数学分析是与经典力学的成就密切相关的,主要 用来描述和分析物质作有限自由度连续运动的各种特性。在 此,主要研究一元函数或多元函数的性态,诸如单调性、连 续性、可微性和可积性等,对连续函数建立了各种微积分运 算。 数学的抽象把三维立体空间中向量的概念,推广到任意 有限维线性空间;同时把力学中简单的坐标变换,推广到一 般的线性变换,并且由此引出矩阵对线性变换的表示,以及 矩阵的运算等,这些都是线性代数的研究内容。
综合自动化研究所
应用泛函分析
本课程的特点与学习方法
系统的综合,包括控制器和补偿器的设计等,使系统得以镇 定或获得某种性能,这是分析的逆问题。传统的综合方法不仅 费时费事,而且解决问题的范围比较狭窄。现代的综合方法倾 向于构造能用计算机实现的某些算法。迭代算法或递推算法的 收敛性分析,以及闭环控制的稳定性分析等,只有借助于泛函 分析所提供的工具,才有可能使问题得以解决。系统建模和系 统的最优控制,一般是在某些约束条件下,对某个泛函指标进 行优化的问题,这更是泛函分析研究范围内的问题。 所以,学习本课程还要求掌握构造各种算法的技能,并能对 其数值稳定性等进行分析。
综合自动化研究所
应用泛函分析
泛函分析的研究内容
线性泛函分析是本书讨论的重点,同时还涉及非线性泛函 分析的基本知识,特别是有关凸集和凸泛函的凸分析理论,这 对比较广泛的一类泛函求极值问题有着重要意义。非线性泛函 分析还要把有限线性空间上函数微积分的概念,推广到无限维 线性空间上算子的微积分。 最后,还要研究泛函分析在工程技术,特别是自动控制中的 应用,包括抽象系统的描述与分析、系统稳定性与鲁棒性分析、 泛函优化与最优控制,以及控制问题的数值计算等。
泛函分析 课件第一章
i 1
Ai x | 0 x 1
Ai x | 0 x 2
1 1 A x | x (2)设 i , i 1, 2,.... i i
则
1 1 Ai x | x , n n i 1
4、逆映射 设 为A到B上的一一映射.作B到A的映射如下:如果 : x | y 令 : y | x , 确实使唯一的
x 与 y 相对应,即 是映射,
11 1 : B A
则称
是 的逆映射 ,也记为
注:逆映射是反函数概念的推广。例如,任何一个严格单调的函数都可
d c 11 : x b ( x a) c a
故(a,b)与(c,d)对等。
定理 1 对任何集合A、B、C均有
(1) (3) A B B
若
(2) A
A
A
(4) A B, B C A C
定理 2 设{An}和{Bn}是两列分别彼此互不相交的集列,
An
Bn , n 1,2,... , 则
集合表示方法:
列举法:将其元素一一列举出来。
特征描述法:将元素所具有的特征义命题的形式描述出来。
p Q {x | x q , p Z , q Z , q 0}
定理1:对任何集合A、B、C,均有
(1)A A
(2)A B,B A,则A = B
(3)A B,B C,则A C 其中(2)是经常用于证明两个集合相等。
§2 集合的运算
1、和集或并集 A B x | x A 或 x B
A x | 存在某个 使x A
2、交集
泛函分析讲义
2.2.5 线性泛函的连续性和有界性 . . . . . . . . . . . . . . . . . . . . . . . 71
2.2.6 赋范空间中的Hahn-Banach定理 . . . . . . . . . . . . . . . . . . . . . 75
2.2.7 赋范线性空间中的分离性定理 . . . . . . . . . . . . . . . . . . . . . . 78
1.6 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.1 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Riesz引理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 有界线性算子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
目录
iii
3.3 开映照定理、闭图像定理和共鸣定理 . . . . . . . . . . . . . . . . . . . . . . 104 3.3.1 开映照定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.3.2 闭图象定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3.3 共鸣定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用泛函分析
泛函分析的研究对象
常微分方程理论讨论集中参数对象连续运动过程的数学 描述,以及运动轨线即微分方程解的存在性与唯一性问题, 而且讨论连续运动过程的稳定性问题,并给出自由运动或受 迫运动中运动轨线的求解方法。这种运动也只具有限多自由 度,因为我们只考虑特定的系统,以及单个特定函数作用于 系统所产生的行为。
算子方程求解及线性算子的能解性研究,给各种代数方程 和微分方程求解,以及控制系统综合等,提供了理论基础。对 偶空间和伴随模型算子的研究,是算子理论的一个主要组成部 分。在算子理论中,还要把矩阵特征值的概念,推广到一般线 性算子的谱特性。
应用泛函分析
泛函分析的研究内容
线性泛函分析是本书讨论的重点,同时还涉及非线性泛函 分析的基本知识,特别是有关凸集和凸泛函的凸分析理论,这 对比较广泛的一类泛函求极值问题有着重要意义。非线性泛函 分析还要把有限线性空间上函数微积分的概念,推广到无限维 线性空间上算子的微积分。
应用泛函分析讲义第1章
应用泛函分析
泛函分析的研究对象
何谓“泛函分析”?根据关肇直先生给出的定义,“泛 函分析是研究无穷维线性空间上的泛函数与算子理论的一门 分析数学。无穷维线性空间是描述具无限多自由度的物理系 统的数学工具。因此,泛函分析是定量地研究诸如连续介质 力学、电磁场理论等一类具有无穷多自由度的物理系统的有 力工具”
最后,还要研究泛函分析在工程技术,特别是自动控制中的 应用,包括抽象系统的描述与分析、系统稳定性与鲁棒性分析、 泛函优化与最优控制,以及控制问题的数值计算等。
应用泛函分析Leabharlann 本课程的特点与学习方法因为控制理论中几乎所有的问题,都可以用泛函分析中有关 空间和算子的术语来描述,而泛函分析严谨广博的理论体系, 对所研究问题的归属有明确的规定,同时可以向研究者提供解 决问题的途径。例如,利用对偶空间和伴随算子的理论,可以 解释控制理论中几乎所有的对偶定理,而这些定理的发现,大 多也是数学结论直接演绎的结果。
应用泛函分析
泛函分析的研究内容
泛函分析的基本概念形成于19世纪末到20世纪初,而作 为一门独立的数学分支则出现于上世纪30年代。经过上世纪 40至50年代的发展,使其成为一门足够成熟的学科。它不断 地渗透到各种应用领域,包括连续介质力学、电磁场理论、 控制理论和系统科学等。
在某种意义上说,泛函分析提供了一种知识框架,它把 数学分析中有关函数性态分析的结论,线性代数中有关向量 与向量空间、线性变换的概念,古典变分法中关于泛函变分 的概念,微分方程中定性分析与求解的概念等,纳入统一的 框架中;同时按泛函分析的理论体系,给出统一的分析和处 理。
在电学理论和经典调节原理中,一种广泛适用的频域分 析方法要求把函数的定义域由实数扩展到复数,而复变函数 论则是专门讨论复变函数性态的数学分支,它给包括 Fourier变换和Laplace变换在内的各种频域分析方法,提供 了坚实的理论基础。同样,电学理论和经典调节原理的对象, 一般也只具有限多自由度。
所以,本课程是针对工科研究生的一门理论基础课程,既要 体现泛函分析理论体系的严谨性,又要体现工程的可应用性。
应用泛函分析
本课程的特点与学习方法
控制理论所研究的问题,可以概括为系统分析、系统综合、 建模和优化。系统分析,包括系统的稳定性分析、能控能观性 分析、鲁棒性分析等,主要是分析用以描述系统行为的算子的 特性。传统的分析方法是实用的,但只限于某些特定的系统类 型。例如传统的频域分析法只限于讨论单输入单输出的线性定 常系统。而泛函分析所提供的分析方法,有可能对包括多输入 多输出的线性时变系统、分布参数系统,以及某些类型的非线 性系统进行统一的处理,从而获得更加一般的结论。
所谓物理系统(包括社会经济系统)的自由度,是指用 于完全描述系统行为的一组无关量的个数。要澄清泛函分析 研究对象的特征,需要考察数学诸分支与自然科学之间的联 系。
应用泛函分析
泛函分析的研究对象
经典的数学分析是与经典力学的成就密切相关的,主要 用来描述和分析物质作有限自由度连续运动的各种特性。在 此,主要研究一元函数或多元函数的性态,诸如单调性、连 续性、可微性和可积性等,对连续函数建立了各种微积分运 算。
应用泛函分析
泛函分析的研究内容
首先要把有限维向量空间的概念,推广到一般线性空间, 包括由函数类形成的无限维线性空间,接着要讨论一类在元素 间定义了距离的集合,称为“度量空间”。在度量空间中,才 有可能定义点序列的收敛,并由此引出点集的某此拓扑概念, 同时还讨论定义于其上的泛函数与算子的某些性质。
一类特殊的度量空间称为“赋范线性空间”,它兼有线性 空间的代数结构和赋范数的拓扑结构,是用以描述具无限多自 由度运动过程的一般数学工具。而在赋范线性空间中,又有一 类更接近有限维空间(欧氏空间)特性的无限维线性空间,称 为“内积空间”,其上定义了内积,类似欧氏空间上向量间的 标量积,从而可以引入向量间的夹角、向量直交等概念。对各 种抽象空间的研究,是泛函分析的研究内容之一。
应用泛函分析
泛函分析的研究内容
其次要把有限维空间上的线性变换推广到一般度量空间上 的算子理论,特别是赋范线性空间上的线性算子理论。事实上, 相当广泛的一类实际系统,都可以用某些抽象空间,以及存在 于这些空间上的算子描述。算子理论,特别是线性算子理论, 这是泛函分析的主要研究内容。算子的性态,诸如连续性、有 界性、紧性和闭性等,又是算子理论研究的重点。
应用泛函分析
泛函分析的研究对象
连续介质力学、电磁场理论等的研究对象,一般是分布 参数系统,需要用偏微分方程来描述,而完全描述系统行为 的一组无关量有无限多个,即系统具无限多自由度。
现代控制理论和系统科学,已经由研究单个特定函数作 用于系统时所产生的行为,扩展到研究一类函数作用于系统 时可能产生的行为。这样的一类函数或称函数类、函数空间 同样具无限多自由度。而定义于其上的泛函数或算子,则可 用来描述系统的行为或其中的各种关系。