泛函分析讲义习题精解 第2版 配北京师范大学
数学专业参考材料书汇总整编推荐
学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路以上几点请在学其他课程时参考。
数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
《应用泛函分析》习题解答
1泛函分析与应用-国防科技大学第 一 章第 一 节3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞<N∈k k x sup 。
证明:0>∀ε,0N ∃,当0,N n m >时,有εε<-⇒<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。
取0N m =,则有0 ,0N n x x N n >+<ε,令},,,,m a x {0021ε+=N N x x x x c ,则1 ,≥<n c x n 。
6.设E 是Banach 空间,E 中的点列满足∞<∑∞=1k kx(此时称级数∑∞=1k k x 绝对收敛),证明存在E ∈x ,使∑∞=∞→=1lim k kn xx (此时记x 为∑∞=1k kx,即∑∞==1k kxx ).证明:令∑==nk kn xy 1,则∑∑++=++=+≤=-pn n k kpn n k kn p n xxy y 11。
由于∞<∑∞=1k kx绝对收敛,则它的一般项0→k x 。
因此0>∀ε,总0N ∃,当0,N p n ≥时,有ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必存在E ∈x ,使得∑∑∞==∞→==11limk k nk kn x xx 。
9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。
若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。
此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。
通常用E dim 表示E 的维数,并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。
《泛函分析》习题解答(不完全版)
( x1 , y) ( x1 , x2 ) ( x2 , y) , ( x2 , y ) (x2 , x1 ) (x1 , y ).
对两端关于 y A 取下确界, 可以得到 . inf ( x1 , y) ( x1 , x2 ) inf ( x2 , y) , inf (x2 , y ) (x2 , x1 ) inf (x1 ,y )
1 1
f ( x) L1 ([a, b]) , 需要证明: 对于任意的 0 , 存在 g ( x) C[a, b] , 使得
( f , g)
[ a ,b ]
| f ( x ) g ( x) | dx .
事实上, 首先根据积分的绝对连续性, 存在 0 , 使得当 E [a, b] , 只要 mE , 就有
x n , 0 x 1, f n ( x ) : 1, 1 x 2.
则 { f n ( x )} C ([0,2]) 在本题所定义的距离的意义下是 Cauchy 列, 因为
( f n , f m ) | f n ( x) f m ( x) | dx
因此, 根据 Lebesgue 有界收敛定理, 可以得到
( f n , g ) | f n ( x ) g ( x ) | dx
0
1
| x n 0 | dx x n dx
0 0
1
1
1 0. n 1
但 g ( x) C ([0,2]) . (2) C ([a, b]) 的完备化空间是 L ([a, b]) . 因为 (i) 在距离 的意义下, C ([a, b]) 是 L ([a, b]) 的稠密子集. 事实上, 任意取定一个
泛函分析习题
第七章 度量空间和赋范线性空间复习题:1。
设(,)X d 为一度量空间,令0000(,){|,(,)},(,){|,(,)},U x x x X d x x S x x x X d x x εεεε=∈<=∈≤问0(,)U x ε的闭包是否等于0(,)S x ε?2.设[,]C a b ∞是区间[,]a b 上无限次可微函数的全体,定义()()()()01|()()|(,)max.21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑ 证明[,]C a b ∞按(,)d f g 成度量空间.3。
设B 是度量空间X 中闭集,证明必有一列开集12,,,,n O O O 包含B ,而且1.n n O B ∞==4.设(,)d x y 为空间X 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离.5。
证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f的各阶导数.6.设[,]B a b ⊂,证明度量空间[,]C a b 中的集 {|t , (t)=0}fB f ∈当时为[,]C a b 中的闭集,而集 {||()|}(0)A ft B f t a a =∈<>当时,为开集的充要条件是B 为闭集。
7。
设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。
8.设[,]B a b 表示[,]a b 上实有界函数全体,对[,]B a b 中任意两元素,[,]f g B a b ∈,规定距离为(,)sup |()()|.a t bd f g f t g t ≤≤=-证明[,]B a b 不是可分区间.9.设X 是可分距离空间,f 为X 的一个开覆盖,即f 是一族开集,使得对每个x X∈,有f 中开集O ,使x O ∈,证明必可从f 中选出可数个集组成X 的一个覆盖. 10。
泛函分析讲义张恭庆答案
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
泛函分析答案
泛函分析答案泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若?ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ?B ?A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k 个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:?x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,?n∈ +,?x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =?[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =?[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得?f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.F∈A,存在f∈M,使得F(x) =?[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a,b] | F(x) | = max x∈[a, b] | ?[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.ε > 0,?s, t∈[a, b],当| s-t| < ε/K时,F∈A,存在f∈M,使得F(x) =?[a, x]f(u) du.| F(s) -F(t) | = | ?[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n 和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:?n∈ +,?C n> 0,使得x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(?) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(?) 我们只要证明,?n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(?x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1),f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E?C(M),E中的函数一致有界并且满足下列的H?lder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(?x∈E,?t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由H?lder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出?OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2 ≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用H?lder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.?x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义? : X →l∞,f #? ( f ) = ( f (a1), f (a2), ...).则? : X →l∞是线性双射,且|| ? ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,? : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (?[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (?f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),?x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,?x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (?[a, b] | f(x) |2dx )1/2,q( f ) = (?[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((?[a, b] | f(x) |2dx )1/2 + (?[a, b] | g(x) |2dx )1/2)2= ?[a, b] | f(x) |2dx + 2(?[a, b] | f(x) |2dx )1/2 · (?[a, b] | g(x)|2dx )1/2 + ?[a, b] | g(x) |2dx≥?[a, b] | f(x)|2dx + 2 ?[a, b] | f(x) | · | g(x)| dx + ?[a, b] | g(x)|2dx = ?[a, b] ( | f(x) | + | g(x)| )2dx ≥?[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’) + p( g’) ≥p( f’+ g’),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ?x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ?x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ?x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (?[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (?[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (?[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f?C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ?x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (?[0, 1] | f(x) |2dx )1/2,|| f ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (?[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (?[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.?f∈C[0, 1]|| f ||1 = (?[0, 1] | f(x) |2dx )1/2 ≤ (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (?[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (?[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (?[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (?[0, ∞) e-ax | f(x) |2dx )1/2 + (?[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (?[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (?[0, ∞) e-ax | f n(x) |2dx )1/2 = (?[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1?X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1?X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1?X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1?X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1?X2中的收敛列.所以X = X1?X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对?{x n}?X,∑n≥ 1 || x n || < +∞?∑n≥ 1x n 收敛.证明:(?) ?{x n}?X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(?) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故?n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为n.求证:?f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意?f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对?x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ?x≠θ, y≠θ) ?x = c y ( c > 0).证明:(?) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(?) 设?x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数? : X → 1称为凸的,如果不等式( λ x + (1 -λ) y ) ≤λ?( x ) + (1 -λ)?( y ) ( ? 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数?的一个局部极小点.如果存在x∈X,使得?( x ) < ?( x0),则? t ∈(0, 1),( t x + (1 -t ) x0) ≤t ?( x ) + (1 -t )?( x0) < t ?( x0) + (1 -t )?( x0) = ?( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此?x∈X,都有?( x0) ≤?( x ),即x0是?的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对?c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c ie i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g || = || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )|| = || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定?c∈(0, 1)使得?y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,?ε > 0,x1∈X0,s.t. || y–x1 || < c || y || + ε /4.x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(?n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,?n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ?x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但?y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠?,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则?ε > 0,存在N∈ +,使得?k > N,|| x k -x || < ε.此时,?n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),?z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但?y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:?y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ?x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,?n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ?x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) –f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]?Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,?λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) –g (y) | | ?x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) –g (y) | | ?x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) –f (y) | | ?x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(?δ> 0).而ωδ( f ) = 0(?δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα?C[0, 1].f∈Lipα,?x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) –f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,?f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,?x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) –f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) –f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此?ε > 0,?N∈ +,使得?n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故?δ > 0,ωδ( f n-f m) < εδα.即?x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即?δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.f, g∈lipα,?λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,?? > 0,使得?δ∈(0, ?),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’-x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(?) 若x∈[ y ],则x~y.u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ?x + X0.反过来,?u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ? [ y ].所以[ y ] = x + X0.(?) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(?[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(?[ x ]∈X/X0 , ?λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ?[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,?[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.[ x ]∈X/X0,?λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对?y∈[ x ]有inf { || y -z || | z∈X0 } = ||[ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射? : X →X/X0为? (x) = [ x ] = x + X0(?x∈X ).求证?是线性连续映射.证明:?x, y∈X,?α, β∈ ,( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = α? (x) + β? (y).|| ? (x) -? (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = in f z∈[ x-y ] || z || ≤ || x-y ||.所以,?是线性连续映射.(5) ?[ x ]∈X/X0,求证?y∈X,使得? (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在?y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有? (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),?k∈ +,?y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中?的连续性,在X/X0中,?(s k) →?(s) ( k→∞ ).而?(s k) = ?( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ?( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ? ,其中记号“?”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ? f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.f, g∈X,?α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而?c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,?f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ?P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (?) 若x∈int(E),存在δ > 0,使得Bδ(x) ?E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ?E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(?) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ?E.令η = δ(a - 1)/a,?z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ?E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ?E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ? cl(E).下面证明相反的包含关系.若x∈cl(E),则?ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ? cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,?ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设?x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j 的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ?C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.。
泛函分析:变分法
2020/6/9
北京师范大学网络教育-云南学习中心
5
第二章 变分法及其在最优控制中的应用
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链
线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。
惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经 由物理的论证,得知伽利略的猜测不对,但那时,他也求不出
一、泛函的定义
如果变量J对于某一函数类中的每一个函数x(t),都 有一个确定的值与之对应,那么就称变量J为依赖于函 数x(t)的泛函,记为:J=J[x(t)]。
x(t) R n , J R 函数 x(t) t x
泛函 J x(t) x(t) J ; x(t)又称为泛函的宗量
说明:由于函数的值是由自变量的选取而确定的,而
4
第二章 变分法及其在最优控制中的应用
有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提 出著名的悬链线问题 (The Hanging Chain Problem),向数学 界征求答案,即,固定项链的两端,在重力场中让它自然垂 下,问项链的曲线方程是什么。在大自然中,除了悬垂的项 链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的 蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链 线(catenary)。
2
第二章 变分法及其在最优控制中的应用
2.1 变分法简介
作为数学的一个分支,变分法(calculus of variations)的诞生,是现实世界许多现象不断探索的 结果:
约翰·伯努利(Johann Bernoulli,1667-1748)1696 年向全欧洲数学家挑战,提出一个难题:“设在垂直 平面内有任意两点,一个质点受地心引力的作用,自 较高点下滑至较低点,不计摩擦,问沿着什么曲线下 滑,时间最短?”这就是著名的“最速降线”问题 (The Brachistochrone Problem)。
《实变函数与泛函分析基础》第二版 程其襄 9§1-5,习题选讲与答案
第九章 内积空间和希尔伯特空间例题选讲例1. Hilbert 是X 可分的充分必要条件X 存在一个可数的完全规范正交系{}n e 证明:若X 是可分的,设{}n x 是X 的一个可数稠密子集。
不妨设{}n x 是线性无关的。
用Gram Schmidt -方法,存在可数的完全规范正交系{}n e ,使span {}1,,n e e ={}1,,n span x x 。
这样。
因此{}n e 是完全的。
反之,若{}ne 是X 的一个完全规范正交系,则span{}n e 在X 中稠密。
()01,,1,2,3,n k k k k k k X a ib e a b Q N =⎧⎫=+∈=⎨⎬⎩⎭∑是X 中的可数稠密子集,因此X 是可分的。
证毕例2.求证:P 是Hilbert 空间X 上的投影算子的充分必要条件是:2P P =且*P P = 证明:设P 是X 中相对应与闭线性子空间Y 的投影算子。
对任意x ∈X ,存在1x Y ∈,2x ∈Y ⊥,使12x x x =+,1Px x =。
对于1x ,1x =10x +,其中1x Y ∈,0Y ⊥∈。
因此11Px x =,即21P x Px Px ==,因此2P P =设,x y X ∈,12x x x =+,12y y y =+。
其中11,x y Y ∈,22,x y Y ⊥∈。
这样()()()()()1121112,,,,,Px y x y y x y x x Py x Py =+==+=。
这就证明了*P P =。
反之,若P 满足*P P =,*P P =。
令{}Y x Px x ==,则Y 是X 中的线性子空间。
Y 还是闭的。
事实上,若n x Y ∈,0lim n n x x →∞=,则00lim lim n n n n Px Px x x →∞→∞===。
故0x Y ∈,因此Y 是闭的线性子空间,我们要证明P 是Y 上的投影算子。
设x X ∈,则()x Px x Px =+-。
泛函分析部分课后习题答案
T : R n E ,对于 1 , 2 n R n , 。
下证 T 为同构映射。 显 然 T 为 单 射 , 容 易 证 T 也 为 满 射 。 事 实 上 , 对 于 x E , 令
n
ci x, ei R, i 1, 2, n ,必有 T c1 , c2 cn ci ei x 。
f x 为
n
Cauchy 列 , 则 f n x , f n1 x 0 n , 由
f ni x f ni1 x f n , f n 1 0 n 知 f ni x 也为 Cauchy 列。由 Cauchy
由于时间和能力有限,只完成了部分习题,仅供参考,有错误的请指出,大家共同进步!——陈建军
习题 1 1、解: C a,b 按 是非完备的。
n1
令函数列 Pn x
i 0
b
xi ,显然 Pn C a,b ,且有 2i
b
Pn , Pn1 Pn1 Pn dx
T x1 , x2 , xn 0, x1 , x2 , xn 1 , S x1 , x2 , xn 0, x2 , xn 。易证 T,S 为线性算
子。取点 1,0, 0 R n ,显然有 TS 1, 0, 0 T 0,0, 0 0, 0, 0 ,
n k 1
fi x f ek ,显然 f X 且 fi i 1 为 X 的基。令 T : X X ,使得
f f e1 , f e2 , f en ,易证 T 为双射。命题得证。
泛函分析(变分法)
欧拉(Euler Lonhard,1707~1783)和拉格朗日(Lagrange, Joseph Louis,1736-1813)发明了这一类问题的普遍解法,从 而确立了数学的一个新分支——变分学。
2021/4/11
北京师范大学网络教育-云南学习中心
泛函的值是由自变量的函数的选取而确定的,所以将21/4/11
中心
9
第二章 变分法及其在最优控制中的应用
例2.1.1 函数的定积分
1.连续时间系统:
1
J 0 x(t)dt
是泛函 吗?
q
2. 离散系统 J x2 (i) 2u2 (i) i 1
2
第二章 变分法及其在最优控制中的应用
2.1 变分法简介
作为数学的一个分支,变分法(calculus of variations)的诞生,是现实世界许多现象不断探索的 结果:
约翰·伯努利(Johann Bernoulli,1667-1748)1696 年向全欧洲数学家挑战,提出一个难题:“设在垂直 平面内有任意两点,一个质点受地心引力的作用,自 较高点下滑至较低点,不计摩擦,问沿着什么曲线下 滑,时间最短?”这就是著名的“最速降线”问题 (The Brachistochrone Problem)。
2021/4/11
北京师范大学网络教育-云南学习中心
5
第二章 变分法及其在最优控制中的应用
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链
线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。
惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经 由物理的论证,得知伽利略的猜测不对,但那时,他也求不出
刘炳初泛函分析部分习题解答
. 要证 x0 A ,即证 F x 0 k . 由
xn x0 , n 且 F 连 续 F xn F x0 . 由 于
xn A
, 故
F xn k F x0 k x0 A . 故 x X : F x k 为闭集 . 所以每一个 wk 为
d x,0 d x,0 d 0,0 即 7 3 3 6 . 矛盾
(7)证明在空间 S 中,按距离收敛等价于按坐标收敛. 证 设 x x 1 ,x 2 , ,x n S , y y1 , y2 ,, yn S , 则
d x, y
d xn , xm .
(1)
由 rn 0 , n 知, 对上述 0, N 2 , 当 n N 2 时有 rn . 而当 m n 时,
som , rm son , rn ,从而 xm son , rn , 有
d xn , xm rn .
பைடு நூலகம்
d x n , x0 0 ,
即
n .
1 xi x 0 0 , n . i n n x0 i 1 2 1 xi
n
n
故有
xi
n
0 xi , i 1,2, , n .
(1)
反之若(1)成立,从(1)依次递推可得 xn x0 , n . 即 S 中点列若按坐 标收敛, 则按距离收敛. (8)试举例说明有界集不是全有界集. 证 取 C 0, 1 中的点列 xn ,
0
Sx 0 ,r U , M k 0 ,命题得证.
(16)举例说明,在压缩映射原理中, 1)空间完备性条件不可少; 2)映射 T 所满足的条件不能代之以条件: d Tx, Ty d x, y 解 1) 设T : 0, 0, 且Tx x ,x 0, ,其中 0 1 . 可以 看出 T 为 0, 上的压缩映射. 事实上 x ,y 0, 有
泛函分析讲义
泛函分析讲义第五章Banach代数1代数准备知识2 Banach代数2.1 Banach代数的定义2.2 Banach代数的极大理想与Gelfand表示3例与应用4 c’代数5 Hilbert空间上的正常算子5.1 Hilbert空间上正常算子的连续算符演算5.2正常算子的谱族与谱分解定理5.3正常算子的谱集6在奇异积分算子中的应用第六章无界算子1 闭算子2 cayley变换与自伴算子的谱分解2.1 cayley变换2.2自伴算子的谱分解3无界正常算子的谱分解3.1 B0rel可测函数的算子表示3.2无界正常算子的谱分解?4 自伴扩张4.1 闭对称算子的亏指数与自伴扩张4.2 自伴扩张的判定准则5自伴算子的扰动5.1稠定算子的扰动5.2自伴算子的扰动5.3 自伴算子的谱集在扰动下的变化?6无界算子序列的收敛性6.1预解算子意义下的收敛性6.2图意义下的收敛性第七章算子半群1无穷小生成元1.1无穷小生成元的定义和性质1.2 Hme—Yosida定理2无穷小生成元的例子3单参数酉群和Stone定理3.1单参数酉群的表示——stone定理3.2 stone定理的应用1.B0chner定理2.Schr6dinger方程的解3.遍历(ergodic)定理3.3 Trotter乘积公式4 Markov过程4.1 Markov转移函数4.2扩散过程转移函数5散射理论5.1波算子5.2广义波算子6发展方程第八章无穷维空间上的测度论1 C[O,T]空间上的wiener测度1.1 C[O,T]空间上wiener 测度和wiener积分1.2 Donsker泛函和Donske卜Lions定理1.3 Feynman—Kac公式2 Hilbert空间上的测度2.1 Hilbert—Schmidt算子和迹算子2.2 Hilbert空间上的测度2.3 Hilbert空间的特征泛函3 Hilbert空间上的Gauss测度3.1 Gauss测度的特征泛函3.2 Hilbert空间上非退化Gauss测度的等价性清词丽句必为邻2015-09-21 04:05 | 豆瓣:烟波浩渺1980杜甫的《戏为六绝句》(其五)不薄今人爱古人,清词丽句必为邻。
实变函数论与泛函分析(上,下)第二版
基础知识1.1度量空间一、基本概念 1.距离定义:设R 是一个非空集合,若对R 中任意一对元素x ,y 都有给定的一个实数d (x ,y ) 与它们对应,而且d 适合如下条件: (1) d(x ,y)≥0且d (x ,y )=0 x=y(2) 三角不等式d (x ,z )≤d (x ,y )+d (y ,z )则称d (x ,y )是元素x ,y 之间的距离,并称R 按d (x ,y )成为度量空间或距离空间,记(R ,d )R 中的元素称为点。
由性质(1)(2)令z=x ,可推出距离还有对称性 即(3) d (x ,y )=d (y ,x )(4) 另外还有与(2)等价的不等式|d (x ,y )-d (y ,z )|≤d (x ,z )例1:平面任意两点)p 1(X 1,y 1) p 2(x 2,y 2)(不是距离)例2:[a ,b]上黎曼绝对可积的函数的集合R ,对其中任意两点f ,g 按距离 d (f ,g )=⎰-ba|x g x f |)()(dx 可证:R 按照d 成为一个度量空间(黎曼可积可改为连续函数)另外 R 上还可以有另外一个度量空间:d (f ,g )=],[x max b a ∈|f (x ),g (x )|记该度量空间为c[a ,b]2.极限定义1.1.2:设R 是一个度量空间X n (n=1,2,…) 及x ∈R ,加入n →∞ 时, 数列d (X n ,X )→0 则称{ X n }按距离d 收敛于x 记为∞→n lim X n =X或X n →X 此时称{X n }是R 中的收敛点列,x 称为点列{ X n }的极限 定义1.1.3:(基本点列)设{ X n }是度量空间(R ,d )中的一个点列。
若 { X n }满足N ∃>∀,0ε 当m ,n>N 时 有d (x x n m ,)<ε 则称{ X n }为R 中的基本点列(也称为柯西列)可以证明收敛点列一定是基本列 证明:若x x0n→(n →∞)即N ∃>∀,0ε 当m ,n>N 时 有d ( x x 0n ,)<2ε d (x x m 0,)<2ε d (xx mn,)≤d (xx 0n,)+d (x x m,)<ε∴{X n }是基本列但反之,不成立 例如 R=(0,+∞)X n =n1∈R (n=1,2^…){ X n }是基本列但{ X n }不是收敛列,因为R 中没有x , d (X n ,X )→0 (n →∞)又如3,3.1,3.14,3.141……是有理数集Q 中的基本列但不是Q 中的收敛列定义1.1.4 (完备性)若度量空间R 中的基本列都是收敛列则称R 是完备的度量空间,设A 是R 中的子集,若A 按R 的度量成为一个完备的度量空间,则称A 是R 的一个完备子集。
泛函分析讲义
2.2.5 线性泛函的连续性和有界性 . . . . . . . . . . . . . . . . . . . . . . . 71
2.2.6 赋范空间中的Hahn-Banach定理 . . . . . . . . . . . . . . . . . . . . . 75
2.2.7 赋范线性空间中的分离性定理 . . . . . . . . . . . . . . . . . . . . . . 78
1.6 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.1 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Riesz引理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 有界线性算子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
目录
iii
3.3 开映照定理、闭图像定理和共鸣定理 . . . . . . . . . . . . . . . . . . . . . . 104 3.3.1 开映照定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.3.2 闭图象定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3.3 共鸣定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
泛函分析习题解答
泛函分析习题解答第⼀章练习题1.记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-?∈?,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么?答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =L ,定义,01,():1,1 2.n n x x f x x ?≤<=?≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++另⼀⽅⾯, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在⼏乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈?→=?∈?因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dx但()([0,2])g x C ?.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密⼦集. 事实上, 任意取定⼀个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-.事实上, ⾸先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ?, 只要mE δ<, 就有|()|3Ef x dx ε<.因为()f x (Lebesque)可积, 故⼏乎处处有限, 即10N N m E ∞==I ,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个⾃然数N , 使得N mE δ<且|()|3NE f x dx ε<,因此有|()|f x N ≤,[,]\N x a b E ∈.引⼊⼀个新函数定义为(),[,]\():0,,Nf x x a b E f x E ∈?=?% 显然对于[,]x a b ∈恒有|()|f x N ≤%. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ?, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进⽽()()g x f x ≡%,x F ∈.则()g x 限制在[,]a b 即为所求, 因为: [,](,)|()()|a b f g f x g x dx ρ=-?([,]\)|()()|a b F Ff xg x dx ?=-?[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-?%[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx≤++-+-%%[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+?\|()|0NNF E F E f x dx dx ?++?333εεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2.设(,)X ρ是距离空间,A 是X 的⼦集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2)若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三⾓不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+.即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满⾜Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =L , 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法⼀:记为⽅便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈?==?∈?显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是?.进⽽有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b E mE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ?∈=?∈=?∈=?∈==-=-=-==我们⽤反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密⼦集123{,,,,,}i g g g g L L , 因此⾄少有⼀个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.⽽由三⾓不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=证法⼆:既然E 是正测度集,存在0R >使得((0,))0m S R E ?>. 不难验证, 存在⼀列正数1{}i i R ∞=满⾜:120i R R R R <<<<<且1([(0,)\(0,)])0i i m E S R S R +?>.对于每⼀个12(,,,,)i λλλλ=L L ,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈?,1,2,i =L . 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N表⽰具有上述性质的λ的全体. 则()A L E ∞.既然对于不同的,λµ∈{0,1}N, (不妨设1(,,,)i λλλ=L L , 1(,,,)i µµµ=L L 且对于某个i ,0i λ=1i µ=)f λ与f µ不同的部分⾄少是正测度集1[(0,)\(0,)]i i E S R S R +?,容易看出A 的势与{0,1}N的势都是连续统的势?.进⽽有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λµλµλµρλµ++?∈=?∈?=?∈?=≥=-≥-=-= 我们⽤反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密⼦集123{,,,,,}i g g g g L L , 因此⾄少有⼀个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f µ.⽽由三⾓不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λµλµρρρ=≤+≤+这是⼀个⽭盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记[,]1,,():0,.a t a x t x t x b χ≤≤?=?<≤?显然[,]K L a b ∞, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, ⽽K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有⼀个可数的稠密⼦集合{()|1,2,}k A f x k ==L , 且11(,)3kk S f K ∞=?U . 但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以⾄少有K 中的两个不同的12[,][,],a t a t χχ属于同⼀个开球01(,)3k S f , 由此得到⽭盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此⽭盾表明[,]L a b ∞不可能是可分的.4.设([,])kC a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义C a b ?是Banach 空间.证:(1) 这⾥只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每⼀个0,1,,i k =L , ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x ?→??→,,0,1,,n i n →∞=L , 其中“??→??→”表⽰是⼀致收敛. 如果我们记0()()f x f x =,利⽤数学分析中函数序列⼀致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''===L (*)例如, 因为1()()n f x f x ??→??→', 故 1()()xxn aaf t dt f t dt ??→??→'?, 即1()()()xf x f a f t dt ??→??→-?, ⼜0()()n f x f x ?→??→及0()()nf a f a ??→??→, 故 001()()()xaf x f a f t dt -=?.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间.(2)证略.7.证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ?是完备的. 记E 中的⼀组基为:12,,,n v v v L .因此对于任意的x E ∈, 存在唯⼀⼀组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 反之亦然.(i) 我们断⾔存在⼀个与x ⽆关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =L .(*)⾸先定义⼀个映射:nf ?→?为: 对于任意的12(,,,)n x x x L n ∈?,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v L L .则对于任意的,x y E ∈(1122n n y y y y =+++v v v L )有≤由此容易知道f 是n R 上的连续函数. 记1B ?是nR 中的单位球⾯, 即21121{(,,,)|1}nn k k B x x x x =?==∑L . 则对于任意的11(,,)n x x B ∈?L , 有1(,,)0n f x x >L .(事实上, 若有1(,,)0n f x x =L 则111(,,)||||0n n n f x x x x =++=v v L L ,因此110n n x x ++=v v L , 但12,,,n v v v L 线性⽆关, 故必有120n x x x ====L , 此与11(,,)n x x B ∈?L 相⽭盾. )注意到1B ?是n R 中的有界闭集(紧⼦集), 连续函数f 必可在其上达到正的最⼩值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯⼀的⼀组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 不失⼀般性, 可设0x ≠因此, 12,,,n x x x L 不全为零, 注意到1y B ?? ?=∈?L , 故12()1,n f y f K +++=?? ?=≥v L L或1122||||n n x x x x =+++≥v v v L 由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这⾥()()()()1122k k k k n n x x x x =+++v v v L ,即()()||||0k l x x -→, 当,k l →∞.利⽤(*)式便可以得到对于每⼀个1,2,,i n =L , 成⽴()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =L ).记(0)()(0)(0)1122k n n xx x x =+++v v v L , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ?是完备的.9.设X 为线性赋范空间, 0X 是X 的线性闭⼦空间. 在X 中定义等价关系:为0x y x y X ?-∈:. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是⼀个线性赋范空间.证:(⼀) 0/X X 按照所定义的线性运算是线性空间 (证明略).(⼆) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每⼀个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是⼀个确定的数, 因此00||||:/X X ?→R 是映射.(i) (⾮负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每⼀个⾃然数1,2,k =L , 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到⼀个序列0{}k y X ?且||||0k y x →-.因为0X 是闭⼦空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=?+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=?,(iii) (三⾓不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进⽽, ,u v 的取法是相互独⽴的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可⽤下⾯的证明⽅法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10.设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利⽤三⾓不等式, 成⽴111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)kk nn S x==∑在范数意义下收敛, 其极限⾃然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再⼀次利⽤三⾓不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞11.设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ?是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x→, 由三⾓不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ?是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1?中的Cauchy 数列, 因此收敛, 即存在某个数A ∈?使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分⼤时, 总有||||0n x >, 不失⼀般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进⽽ ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-,由此易知{}n y T ?是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y→. 最后我们断⾔: ||||0n x Ay →.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-000||||||||n n n Ay x y y y x ??≤-+-00||||1||||n n n A x y y y x ??=-+-0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满⾜内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ?, 如果范数满⾜平⾏四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =?==?=C C .同理可证(,)0x x ≥R 且(,)00x x x =?=R . (ii)⾸先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表⽰为如下形式: (,) (,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()2222 1||||||||||||||||4x z y z x z y z ??=+++--+-?? 22142222x y x yx y x yz z ??+-+-=++++-22142222x y x y x y x y z z ??+-+---++--, 再由平⾏四边形法则222222x y x y x y x yz z +-+-++++-22222x y x y z ??+-=++ ? ??; 222222x y x y x y x yz z +-+--++--22222x y x y z ??+-=-+ ? ??. 因此(,)(,)x z y z +R R 221222x y x yz z++=+-- ? ???2,2x y z +??= R.进⽽, 令0y =可以得到(,)x z R 2,2x z ??= R,这⾥利⽤了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +??= R. 对照上述⼆式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)⾄于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利⽤上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) ⾸先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满⾜如下的函数⽅程:。
泛函分析之期末考习题解答-实变函数与泛函分析概要第二册
泛函分析之期末考习题解答-实变函数与泛函分析概要第⼆册赋范线性空间E 局部紧证:→不妨设E 为实n 维赋范线性空间,则E 与R n 拓扑同构⽽R n 中任意有界闭集是紧的,由紧集上的连续函数定理知E 的任意有界闭⼦集是紧的,即E 局部紧←设E ⽆限维但任意有界闭⼦集是紧的S 是E 中的单位球⾯:S={x:||x||=1}则S 是E 中的紧集由⾥斯定理:x1∈S,?x2∈S,ST,||x2-x1||≥1/2,?x3∈S,ST,||x3-xi||≥1/2,(i=1.2) … …类推,由E ⽆限维,故可取S 中的⼀个系列元素x1,x2…xk … ST ,||xk-xl||≥1/2,显然{xk }⽆收敛⼦列,⽭盾X 是完备的距离空间,T:X →X,?x,y ∈X,ρ(Tx,Ty)≤θρ(x,y),0≤θ<1,则T 中存在唯⼀不动点x`,ST,Tx`=x`,&&x`可⽤迭代法求出证:x0∈X,Set,x1=Tx0,…,xn+1=xn …则ρ(x1,x2)≤θρ(x0,x1) …ρ(xn,xn+p)≤(θn +θn+1+…+θn+p )ρ(x0,Tx0)=θn ρ(x0,Tx0)/(1-θ)→0 则{xn}是基本点列,⼜因为X 完备,故{xn}收敛于某x`∈Xρ(Tx,Ty)≤θρ(x,y)知T 连续,xn+1=xn 令n →∞得x`=Tx`即x`是不动点设另有不动点y`∈X,则ρ(x`,y`)≤θρ(x`,y`)得ρ(x`,y`)=0即x`=y` 闭图像定理:T 是E 到E1的闭算⼦,E ,E1都是B 空间,则T 有界证:E,E1是B 空间,则E ⊕E1也是B 空间,||(x,y)||=||x||+||y|| 设G 是E ⊕E1的闭⼦空间,则G 也是B 空间定义:T`:G→E,T`(x,Tx)=x,则T 为双射再者由||T`(x,Tx)||=||x||≤||x||+||Tx||=||(x,Tx)||知T`有界故T`有有界逆算⼦T~,则?x ∈E,(x,Tx)=T~x→||(x,Tx)||≤||T~||||x||→||Tx|||T~||≤||x||即T 有界 P669.(a)略(b)提⽰:设A={多项式全体},每个函数都有傅⽴叶展开式 11.(a)略(b)提⽰:同胚即找双射,距离之间存在双射,要连续的 17.证明第三节例题六的空间L ∞[a,b]是完备的距离空间证:取基本点列{x n }∈L ∞[a,b]ε>0,?N ∈Ν,m,n ≥N 时||x m -x n ||<ε故?[a,b]中的Lebesgue 集{Emn}ST||x m -x n ||=SUP{x m -x n |x ∈[a,b]/Emn} Set E=Y Emn ?[a,b],则x ∈[a,b]/E ,m,n ≥N 时|x m -x n |≤SUP{x m -x n |x ∈[a,b]/E}≤||x m -x n ||<ε故x ∈[a,b]/E 时,{xn}是实基本列,必收敛于某实数x显然x 可测,令m →∞则n ≥N 时|x-x n |<ε在x ∈[a,b]/E 成⽴x-x n ∈L ∞[a,b]故x ∈L ∞[a,b]&&|x-x n |≤SUP{x-x n |x ∈[a,b]/E}≤ε即x n 按L ∞[a,b]的距离收敛于x ,即L ∞[a,b]完备 34.证明lp 中的⼦集A 准紧的充要条件是: (a)?k>0,ST,?x={ξ1,ξ2…ξn …}∈A,∑∞1||pn ξ(b)?ε>0,?N>0,ST,m>N 时,?x ∈A,∑∞1||pn ξ<ε(a).证:→A 准紧,则A 全有界,则A 有界可分(对应定理4.1,4.2)←?k>0,ST,?x={ξ1,ξ2…ξn …}∈A,∑∞1||pn ξ1||pn ξ收敛由准紧的定义,A 中每个点列必含有收敛⼦列,故A 准紧注:A 准紧的充要条件是A 有界+A 等度连续 (b).命题与(a )等价P1241.V[a,b]是定义在[a,b]的有界变差函数全体,线性运算与C[a,b]相同,定义范数:||x||=|x(a)|+V a b (x),证明V[a,b]按||·||是不可分B 空间证:V[a,b]是线性空间,易证范数满⾜范数公理,故只要证完备性即可取V[a,b]中的基本列{xn(t)},?ε>0,?N ∈Ν,m,n ≥N 时||x m -x n ||<ε易知xn(t)⼀致收敛,令Lim xn(t)=x(t),以下证其是有界变差函数设Δt>0,因为xn 右连续(有界变差的条件之⼀)且|x(t)-x(t+Δt)|≤|x(t)-xn(t)|+|xn(t)-xn(t+Δt)|+|x(t+Δt)-xn(t+Δt)| 故x 右连续。
《实变函数与泛函分析基础》第二版 程其襄 第十章答案 10§1-7,答案剖析(word文档良心出品)
第十章 巴拿赫(Banach)空间中的基本定理1. 设X 是赋范线性空间,12,,,k x x x 是X 中K 个线性无关向量,12,,,k ααα是一组数,证明:在X 上存在满足下列两条件:(1)(),1,2,,v v f x v k α==,(2) M f ≤ 的线性连续泛函f 的充要条件为:对任何数12,,,k t t t ,11kkv vv vv v t Mt xα==≤∑∑都成立。
证明 必要性。
若线性连续泛函f 满足(1)和(2),则1111()kkkkv vv v v vv vv v v v t f t x ft xMt xα=====≤≤∑∑∑∑充分性。
若对任意数12,,,k t t t ,有11kkv vv vv v t Mt xα==≤∑∑。
令0X 为12,,,k x x x 张成的线性子空间。
对任意01kv vv t xX =∈∑,定义上线性泛函:0011:()k kv v v v v v f f t x t α===∑∑。
因0111()k kkv v v v v v v v v f t x t Mt x α====≤∑∑∑,故0f是有界的,且0f M ≤。
由泛函延拓定理,存在X 上的线性连续泛函f ,使f 限制在0X 上就是0f 。
f 显然满足条件(1)和(2)。
证毕。
2.设X 是赋范线性空间,Z 是X 的线性子空间,0x X ∈,又0(,)0d x Z >,证明存在'f X ∈,满足条件: 1)当x Z ∈时,()0f x =; 2)00()(,)f x d x Z = ;3)1f = 。
证明 记0{,}M x y C y Z λλ=+∈∈。
在M 上定义泛函0f :000()(,)f x y d x Z λλ+=,则以下三条件成立:1)当y Z ∈时,0()0f y =; 2)00()(,)f x d x Z =;3)0f 在M 上有界,且01Mf =。
其中3)可以这样证明:若0x y M λ+∈,则00000()(,)yf x y d x Z x x y λλλλλ+=≤+=+,所以01Mf ≤。