最新湖南省2018年高考对口招生考试数学真题资料
(完整版)湖南省2012-2018年对口升学考试数学试题
湖南省2012年普通高等学校对口招生考试数学试题时量120分钟 总分:120分、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1. ...................................................................................................................... 设集合 A=(x | x >1},B={ x |0< x <1}, WJ AU B 等丁 ............................... () A.( x | x >0} B.{ x | x 丰 1} C.{ x | x >0 或x 丰 1}D.{ x | x >0且 x 丰 1}2. “ x 3 ” 是” x 2 9 ” 的 ............................................. ()A.充分不必要条件 D.既不充分也不必要条件3. .................................................................................................................... 不等式|2 x -3|>1的解集为 ..................................................... () A.(1,2)B.(- 8,1)U (2,+ 8)C.(- 8,1)D.(2,+ 8)4. ................................................................................ 已知 tan a =-2,贝U ^^~~22a)=cos aA. 4B. 2C. -2 抛掷一枚骰子,朝上的一面的点数大丁 3的概率为A. 1B. 1C.-6326. 若直线x y k 0过加圆x 2 y 2 2x 4y 7 0的圆心,则实数k 的值为........................................................................................................... () A. -1 B. -2 C. 1 D. 2 7. 已知函数f(x) =sinx, ............................................... 若e m =2,则f(m)的值为 () A. sin2B. sineC. sin(ln2)D. ln(sin2)8. 设a ,b,c 为三条直线,a , 6为两个平■面,则下列结论中正确的是• • •() A.若 a ± b, b ± c ,则 a II c B.若 a ?也,b?6, a II b, WJ a // p C.若 a // b, b? a ,则 a //a D.若 aLa, b // a,则 b ± a9. 将5个培训指标全部分配给三所学校,每所学校至少有一个指标,则不同的分配方、填空题(本大题共5个小题,每小题4分,共20分.将答案填在答题卡中对应题号 后机密★启用前B.必要不充分条件C.充分必要条件D. -45. 案有() A. 5种2210.双曲线L J916B. 6种C. 10 种 1的一个焦点到其渐近线的距离为A, 16 B. 9 C. 4D. 12 种 .............. ()D. 3的横线上)11. 已知向量a =(1,-1), b=(2,y).若a // b ,则y= .12. 某校高一年级有男生480人,女生360人,若用分层抽样的方法从中抽取一个容量为21的样本,则抽取的男生人数应为.13. 已知球的体积为七,则其表面积为^314. (x+ M)9的二项式展开式中的常数项为.( 用数字作答)x15. 函数f(x)=4 x-2x+1的值域为.三、解答题(本大题共7小题,其中第21,22小题为选做题,共60分.解答应写出文字说明或演算步骤))16. (本小题满分8分)已知函数f(x)=lg(1 - x2).(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性,并说明理由.17. (本小题满分10分)uuu uuu已知a, b是不共线的两个向量.设AB =2a+b , BC =- a-2b .uuur uuu uuu(1)用a, b 表示AC ;(2)若|a|=|b|=1,< a , b >=60o,求AB BC .18. (本小题满分10分)设( a n}是首项a〔=2,公差不为0的等差数歹U ,且a〔, a3, a、成等比数歹U ,(1) 求数列{a n}的通项公式;(2) 若数列{b n}为等比数列,且bi =a〔, a2 = b3,求数列{b n}的前n项和S n.19. (本小题满分10分)某射手每次射击命中目标的概率为2,且各次射击的结果互不影响.假设3该射手射击3次,每次命中目标得2分,未命中目标得-1分.记X为该射手射击3 次的总得分数.求(1) X的分布列;(2) 该射手射击3次的总得分数大丁0的概率.20. (本小题满分10分)x2 V2 6 4 , 一,已知点A 2,0是椭圆C:-y & 1(a b 0)的一个顶点,点B(—,—)在C上. a2 b2 5 5(1) 求C的方程;(2) 设直线l与AB平行,且l与C相交丁P,Q两点.若AP垂直AQ,求直线l的方程.四、选做题(注意:第21题(工科类),22题(财经,商贸与服务类)为选做题,请考生选择其中一题作答.)21. (本小题满分12分)已知函数 f (x) sin x , 3 cos x⑴ 将函数V f ( x)(0 3)图象上所有点向右平■移;个单位长度,得到函数g(x)的图象,若g(x)的图象经过坐标原点,求①的值.⑵ 在/\ ABCfr,角A,B,C 所对的边分别为a,b,c,若 f (A) V3 , a =2, b+c=3,求/\ ABC的面积.湖南省2013年普通高等学校对口招生考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.已知集合A= {3,4,5 } , B= {4,5,6 },贝U A B 等丁A. (3,4,5,6} B{4,5} C. {3,6} D .2.凶数y=x2在其定义域内是A.增函数 B .减函数C.奇函数D.偶函数3. “x=2” 是“(x-1 )A.充分不必要条件(x-2 ) =0” 的B.必要/、充分条件C.充分必要条件D.既小充分乂不必要条件4.已知点A (m^ -1 )关丁y轴的对称点为1B (3, n),则m n的值分别为A. m=3 n=-1B.m=3 n=1C.m=-3, n=-1D.m=-3, n=15.圆(x+2) 2+ (y-1 )2=9的圆心到直线3x+4y-5=0的距离为A. -B.3C.3D.15__ 4 一6.已知sin = —,且5是第二象限的角,则tan 的值为5 A 34 八43A. —B C D. —43347.不等式x2-2x-3>0的解集为A. (-3 , 1)B.(-,-3) U (1, +)C. (-1 , 3)D.(-,-1) U (3, +)8.在100件产品中有3件次品,其余的为正品。
湖南省2018年普通高等学校对口招生考试数学试卷与答案
湖南省 2018 年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三部分,共 4 页。
时量 120 分钟。
满分120 分一. 选择题(本大题共 10 小题,每小题 4 分,共 40 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合 A={1,2,3,4} , B={3,4,5,6} ,则 ( )A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6} 2. “ x 2 9 是 x 3的( ) 条件A. 充分必要B. 必要不充分C. 充分不必要D.既不充分也不必要3. 函数 y x 22 x 的单调增区间是 ( )A. (,1] B. [1, )C. ( , 2]D.[0, )4. 已知 cos3 ,且 为第三象限角,则 tan =( )A.45334B.C. D.3 4435. 不等式 | 2 x 1| 1的解集是 ()A. { x | x 0}B.{x | x 1}C.{ x | 0 x 1} D. { x | x 0 或 x 1}6. 点 M 在直线 3x+4y-12=0 上, O 为坐标原点,则线段 OM 长度的最小值是 ()A.3B.4C.12D.122557. 已知向量 a 、 b 满足 | a | 7,| b | 12 , a b 42 , 则向量 a 、 b 的夹角为 ()A.30 °B.60 °C.120° D.150°8. 下列命题中,错误 的是 ( )..A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交9.已知 a sin 15 , b sin 100 , c sin 200 , 则 a,b,c 的大小关系为 ( )A. a b cB.a c bC.c b aD.c a b面积的最10. 过点( 1,1 )的直线与圆x 224相交于A,B 两点,O 为坐标原点,则△大值为 ()yOABA.2B.4C.3D. 2 3二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11. 某学校有 900 名学生,其中女生 400 名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为 45 的样本,则应抽取男生的人数为 ______。
湖南2018年高考对口招生测验数学真题及参考答案
湖南2018年高考对口招生测验数学真题及参考答案————————————————————————————————作者:————————————————————————————————日期:湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=•b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .13.6)1(+x 的展开式中5x 的系数为 (用数字作答)14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x +b y,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S . 若n S =100,求n . 17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量ξ的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D 为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A (0,1)在椭圆C 上.(I)求椭圆C的方程;AF垂直,l与椭圆C相交于M,N两点, (II)(Ⅱ)直线l过点1F且与1求MN的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD中,∠BCD120°,BC,4=6=CD=AB,=∠ABC75°,求四边形ABCD的面积.=22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?甲乙原料限额A(吨) 1 2 8B(吨) 3 2 12参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15.321 三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }的前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n17. 解:(Ⅰ)ξ的可能取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ的分布列是:ξ12P52158151(Ⅱ)设事件A 表示检测出的全是合格饮料,则A 表示有不合格饮料检测出的全是全格饮料的概率=)(A P 52260224=⋅C C C故检测出有不合格饮料的概率53521)(=-=A P18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) ∴12log =a ∴2=a)3(log )(2-=x x f 有意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 的定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 的定义域是),3(+∞,即3>m∴53<<mm 的取值范围是(3,5)19. (Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC ∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 的中点. ∴BD ⊥AC 而A AC AA = 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成的角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21= ∴21sin 11==∠B A BD D BA∴ 301=∠D BA即直线1BA与平面C C AA 11所成的角是 30. 20. 解:(Ⅰ)∵椭圆:C 12222=+b y a x (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴1=c 又点A (0,1)在椭圆C 上∴12=b∴211222=+=+=c b a ∴椭圆C 的方程是1222=+y x(Ⅱ)直线1AF 的斜率11=AF k而直线l 过点1F 且与1AF 垂直 ∴直线l 的斜率是1-=k直线l 的方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN 即MN 的长是234 21. 解:如图,连结BD在BCD ∆中,6==CD BC , =∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222)21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 的面积ABCD S 四边形=ABD S ∆∆+BCD S=ABD BD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21=45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯=6639+ 22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才能使公司获得的利润z 最大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC作直线x y 54-=及其平行线l :554z x y +-=,直线l 表示斜率为54-,纵截距为5z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.。
最新湖南省高考对口招生考试数学真题及参考答案
湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=∙b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .6)1(+x 13.的展开式中5x 的系数为 (用数字作答) 14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x +b y,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S . 若n S =100,求n .17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量ξ的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A(0,1)在椭圆C 上. (I) 求椭圆C 的方程;AF垂直,l与椭圆C相交于M,N两点, (II)(Ⅱ)直线l过点1F且与1求MN的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD中,=CD∠BCD120°,BC,4=6=AB,=∠ABC75°,求四边形ABCD的面积.=22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15. 321 三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }的前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n17. 解:(Ⅰ)ξ的可能取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ的分布列是:(Ⅱ)设事件A 表示检测出的全是合格饮料,则A 表示有不合格饮料检测出的全是全格饮料的概率=)(A P 52260224=⋅C C C故检测出有不合格饮料的概率53521)(=-=A P18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) ∴12log =a ∴2=a)3(log )(2-=x x f 有意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 的定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 的定义域是),3(+∞,即3>m∴53<<mm 的取值范围是(3,5)19. (Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC ∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 的中点. ∴BD ⊥AC 而A AC AA = 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成的角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21=∴21sin 11==∠B A BD D BA∴301=∠D BA即直线1BA与平面C C AA 11所成的角是30. 20. 解:(Ⅰ)∵椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴1=c又点A (0,1)在椭圆C 上 ∴12=b∴211222=+=+=c b a ∴椭圆C 的方程是1222=+y x(Ⅱ)直线1AF 的斜率11=AF k而直线l 过点1F 且与1AF 垂直∴直线l 的斜率是1-=k直线l 的方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x 344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN即MN 的长是23421. 解:如图,连结BD在BCD ∆中,6==CD BC ,=∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222)21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 的面积ABCD S 四边形=ABD S ∆∆+BCD S =ABD BD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21 =45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯ =6639+22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才能使公司获得的利润z 最大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC 作直线x y 54-=及其平行线l :554z x y +-=,直线l表示斜率为54-,纵截距为5z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.。
最新湖南2018年高考对口招生考试数学真题资料
精品文档湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A∩B=()A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}23x?9x?)”的( 2. “”是“必要不充分条件A.充分必要条件 B. 既不充分也不必要条件C.充分不必要条件D.2xx2?y?函数3.)的单调增区间是(∞∞,2] D.[0,+)) C.(-A.(-∞,1] B. [1,+∞3??cos???)4.已知=( , 且,为第三象限角则tan54433?? C. A. B. D.44331??2x1的解集是(不等式)5.1|?x|x0xx?} A.{} B.{1xx|??x0或1?0x|x?}} D.{C.{精品文档.精品文档0?y?123x?4OMO M长度的在直线为坐标原点,上,则线段点6. )最小值是(1212 A. 3 B. 4 C. D. 525????????12b?7a?b?42ba?b?aa的夹,,,7.已知向量则向量,满足, )角为(?30 D. 150°° C. 120A. ° B. 60 )错误下列命题中,的是( 8...平行于同一个平面的两个平面平行A. 平行于同一条直线的两个平面平行B.交线平行C. 一个平面与两个平行平面相交, 则必与另一个相交D. 一条直线与两个平行平面中的一个相交,c,b,a?200c?sinsina?sin15?b?100?的大小关系为,,则,9.已知)(b?ac?abca?c?c?b?ba?? A. B. D. C. 224?y?xO BA为坐标原,10.过点(1,1)的直线与圆相交于,两点OAB?)面积的最大值为(点,则33A. 2 B. 4 C. D. 2二、填空题(本大题共5小题,每小题4分,共20分)精品文档.精品文档11.某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .f(x)?cosx?bbb= .则12.函)的部分图像如图所示(,为常数6)?1(x13.展开式的5x的系中数为用数()字作答??????bybacaxc则,且=14.已知向量=(1,2),+=(3,4),=(11,16),??yx .再将这个正方形各边的中点相连,画一个边长为4的正方形,15.如图个则第.10个正方形这样一共画了依次类推个正方形得到第2,,10 .正方形的面积为精品文档.精品文档60满分22,小题为选做题.本大题共7小题,其中第21(三、解答题解答应写出文字说明、证明过程或演算步骤)分,)分16.(本小题满分10aaa,}为等差数列,=5=1,已知数列{31n a }的通项公式;(Ⅰ)求数列{n SaS nn. 若{}的前=100项和为,求 . (Ⅱ)设数列nnn分)17.(本小题满分10 .用,从中随机抽取2瓶检测瓶不合格6某种饮料共瓶,其中有2?求表示取出饮料中不合格的瓶数. 随机变量)的分布列;(Ⅰ?. 检测出有不合格饮料的概率(Ⅱ))分本小题满分18.(10精品文档.精品文档f(x)?log(x?3)(a?0,且a?1)的图像过点(5,1) 已知函数a f(x)f(x)的定义域;的解析式,并写出Ⅰ)求 (f(m)?1m的取值范围若,求(Ⅱ)19.(本小题满分10分)ABC?ABCAAAA?AB?BCABC,,在三棱柱中,,⊥底面如图11111?ABC?AC D的中点,.为90°AACC BD;(I)证明: ⊥平面11BAAACC所成的角. (Ⅱ)求直线与平面111精品文档.精品文档20.(本小题满分10分)22yx?1?FF0?a?b:C(1,0),(已知椭圆(-1,0))的焦点为、2122ba A(0,1)在椭圆C点上.C的方程; (I)求椭圆FAFCll M,且与与椭圆垂直,(II)(Ⅱ)直线过点相交于11NMN的长求.两点,选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)ABCDBC?CD?6?BCD?4AB?120°,,,如图在四边形中,,?ABC?ABCD的面积.,75°求四边形精品文档.精品文档22.)10分(本小题满分23.BA吨已知生产1两种原料某公司生产甲、乙两种产品均需用.,吨1每种产品所需原料及每天原料的可用限额如表所示.如果生产该公问:.生产1吨乙产品可获利润5万元4甲产品可获利润万元,?,才能使公司每天获得的利润最大司如何规划生产精品文档.。
2018对口升学高考数学
2018年普通专业对口高考题一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1. 下列关系式中,正确的是( )A. A ∩∅= AB.A ∩A C U =∅C. A ∩B ⊇AD. A ∩B ⊇B2. 若0<x<1,则下列式子中,正确的是( )A.3x >2x >xB.x>2x >3xC.2x >3x >xD.x>3x >2x3. 已知函数 ƒ(x)为奇函数, 且当x>0时, ƒ(x)=2x +x1, 则 ƒ(-1)的值为( )A. 1B. 0C. 2D. -24. 函数 ƒ(x)=3x 12-10++的定义域是( )A. (-3,0]B. (-3,1]C. (-3,0)D. (-3,1)5. 已如α是第二象限角,135sin =α,则αcos 的值为( )A. -1312B. -135C. 1312D. 1356. 设首项为1,公比为32的等比数列}{n α的前n 项和为n S ,则( )A. n S =2n a -1B. n S =3n a -2C. n S =4-3n aD. n S =3-2n a 7.下列命题中,错误的是A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一平面的两个平面平行.C.若两个平面平行,则位于这两个平面内的直线也互相平行.D.若两个平面平行。
则其中一个平面内的直线平行于另一个平面. 8.下列命题中,正确的是:A.若|a|=|b|,则a=b .B.若a=b ,则a 与b 是平行向量. C .若|a|>|b|,则a>b. D.若a ≠b ,则向量a 与b 不共线. 9.下列事件是必然事件的是:A.第一枚硬币,出现正面向上.B.若X ∈R 则X ²≥0.C.买一张奖券,中奖.D.检验一只灯泡合格. 10.(1+ax)(x+1)5的展开式中含X ²项的系数为5,则a 的值为 A.-4 B.-3 C.-2 D.-1 二、填空题11.已知集合M={0,1,3,4},N={x ∈R|0<x<2},则M ∩N=___. 12,已知22121=+-aa ,则=+-22a a =_____.13.若A 是△ABC的一个内角,且21cos =A 则A 2sin =____.14.设等差数列{}的前n 项和为n s ,若21-=-m s ,=0,=3,则公差d=______.15.抛物线241x y =的焦点坐标是_____.16.椭圆2x ²+3y ²-12=0的高心率为_____. 17.若向量a=(-2,1),b=(1.3),c=a+2b,则c=______18.掷两颗质地均匀的骰子,则点数之和为5的概率是_____. 三、计算题(每小题8分,共24分)19.若一元一次不等式+2x+a+1<0无解,求实数a 的取值范围。
(完整版)湖南省2012-2018年对口升学考试数学试题
机密 ★ 启用前湖南省2012年普通高等学校对口招生考试数学试题时量120分钟 总分:120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x |x >1},B={x |0<x <1},则A ∪B 等于 ·········· ( )A.{ x |x >0}B.{ x |x ≠1}C.{ x |x >0或x ≠1}D.{ x |x >0且x ≠1}2.“3x >”是” 29x >”的 ···················· ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.不等式|2x -3|>1的解集为 ···················· ( )A.(1,2)B.(−∞,1)∪(2,+∞)C.(−∞,1)D.(2,+∞)4.已知tan a =−2,则aa 2cos )2sin(+π= ·················· ( ) A. 4 B. 2 C. -2 D. -45. 抛掷一枚骰子,朝上的一面的点数大于3的概率为 ········· ( ) A. 61 B. 31 C. 21 D. 32 6. 若直线0x y k +-=过加圆222470x y x y +-+-=的圆心,则实数k 的值为······························· ( )A. -1B. -2C. 1D. 27. 已知函数f(x) =sinx,若e m =2,则f(m)的值为 ··········· ( )A. sin2B. sineC. sin(ln2)D. ln(sin2)8. 设a ,b ,c 为三条直线,α,β为两个平面,则下列结论中正确的是 ··· ( )A. 若a ⊥b ,b ⊥c ,则a ∥cB. 若a ⊂α,b ⊂β, a ∥b ,则α∥βC. 若a ∥b ,b ⊂α,则a ∥αD. 若a ⊥α, b ∥a ,则b ⊥α9. 将5个培训指标全部分配给三所学校,每所学校至少有一个指标,则不同的分配方案有( )A. 5种B. 6种C. 10种D. 12种10. 双曲线116922=-y x 的一个焦点到其渐近线的距离为 ········ ( ) A, 16 B. 9 C. 4 D. 3二、填空题(本大题共5个小题,每小题4分,共20分.将答案填在答题卡中对应题号后的横线上)11. 已知向量a =(1,−1), b =(2,y).若a ∥b , 则y= .12. 某校高一年级有男生480人,女生360人,若用分层抽样的方法从中抽取一个容量为21的样本,则抽取的男生人数应为 .13. 已知球的体积为34 ,则其表面积为 . 14. (x+21x)9的二项式展开式中的常数项为 .(用数字作答) 15. 函数f(x)=4x −2x+1的值域为 .三、解答题(本大题共7小题,其中第21,22小题为选做题,共60分.解答应写出文字说明或演算步骤))16. (本小题满分8分)已知函数f(x)=lg(1−x 2).(1) 求函数f(x)的定义域;(2) 判断f(x)的奇偶性,并说明理由.17. (本小题满分10分)已知a ,b 是不共线的两个向量.设AB =2a +b ,BC =-a -2b .(1)用a ,b 表示AC ;(2)若|a |=|b |=1,< a ,b >=60,求AB BC .18. (本小题满分10分)设{n a }是首项1a =2,公差不为0的等差数列,且1a ,3a ,11a 成等比数列,(1) 求数列{n a }的通项公式;(2) 若数列{n b }为等比数列,且1b =1a ,2a =3b ,求数列{n b }的前n 项和n s .19. (本小题满分10分) 某射手每次射击命中目标的概率为23,且各次射击的结果互不影响.假设该射手射击3次,每次命中目标得2分,未命中目标得-1分.记X 为该射手射击3次的总得分数.求(1) X 的分布列;(2) 该射手射击3次的总得分数大于0的概率.20. (本小题满分10分)()2222642,0:1(0),(.55x y A C a b B C a b +=>>已知点是椭圆的一个顶点点,)在上 (1) 求C 的方程;(2) 设直线l 与AB 平行,且l 与C 相交于P,Q 两点.若AP 垂直AQ,求直线l 的方程.四、选做题(注意:第21题(工科类),22题(财经,商贸与服务类)为选做题,请考生选择其中一题作答.)21. (本小题满分12分)已知函数()sin f x x x =(1) 将函数()(03)y f x ωω=<<图象上所有点向右平移6π个单位长度,得到函数g(x)的图象,若g(x)的图象经过坐标原点,求ω的值.(2) 在△ABC 中,角A,B,C 所对的边分别为a ,b ,c ,若()f A =a =2, b +c =3,求△ABC 的面积.湖南省2013年普通高等学校对口招生考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.已知集合A={3,4,5},B={4,5,6},则A ⋂B 等于A .{3,4,5,6}B .{4,5}C .{3,6}D .Φ2.函数y=x 2在其定义域内是A .增函数B .减函数C .奇函数D .偶函数3. “x=2”是“(x-1)(x-2)=0”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.已知点A (m ,-1)关于y 轴的对称点为B (3,n ),则m ,n 的值分别为A .m=3,n=-1B .m=3,n=1C .m=-3,n=-1D .m=-3,n=15. 圆(x+2)2+(y-1)2=9的圆心到直线3x+4y-5=0的距离为A .57 B .53 C .3 D .1 6.已知sin α=54,且α是第二象限的角,则tan α的值为 A . 43- B .34- C .34 D .43 7.不等式x 2-2x-3>0的解集为A .(-3,1)B .(-∞,-3)∪(1,+∞)C .(-1,3)D .(-∞,-1)∪(3,+∞)8.在100件产品中有3件次品,其余的为正品。
(完整版)2018对口高考数学试卷及答案(可编辑修改word版)
江苏省2018年普通高校对口单招文化统考数学试卷—、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、狳黑)1.设集合M={1, 3}, N={a+2, 5},若MPlN={3},则a 的值为A. -1B. 1C. 3D. 52.若实系数一元二次方程x2+mx + n = 0的一个根为1-z ,则另一个根的三角形式为. n . . 7T rr, 3苁..3苁、A. cos——I sin —B. V 2 (cos——+ zsin——)4 4 4 4C. y[2 (cos— + z sin —)D. x/2[cos(-—) + i sin(-—)]4 4 4 43.在等差数列{aj中,若a3, a2016是方程x2-2x-2018 = 0的两根,则3* *3a⑽的值为1A. -B. 1C. 3D. 934.已知命题P:(1101)2=(13) 10和命题q:A • 1=1(A为逻辑变量),则下列命题中为真命题的是A. ~tiB. p AqC. pVqD.-*pAq5.用1, 2, 3, 4, 5这五个数字,可以组成没有重复数字的三位偶数的个数是A. 18B. 24C. 36D. 486.在长方体ABCD-^CiDi中,AB=BC=2,AA I=2A/6,则对角线BD:与底面ABCD所成的角是— B. — C.—6 4 38.若过点P (-1,3)和点Q(1, 7)的直线&与直线mx + (3m - 7)y + 5 = 0平行,则m的值为人2 C. 69.设向量a=(cos2^, -), b= (4,6)、若sin(^--0 =-:则|25a-Z?| 的值为3 、A. -B. 3C. 4D. 5510.若函数/(x) = x2-bx+c满足/(I + x) = /(I - x),且 / ⑼=5,则f(b x)与/(O 的大小关系是A- /(dO</(C x) B. /(y)>/(c x) c. /«/)</(c x) D. /(//)>/(c x)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-l, 2, 4),b=(3, rn, -2),若a • b=l,则实数m= 。
(完整word版)湖南省2018年高考对口招生考试数学真题及参考答案.docx
湖南省 2018 年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分, 共 4 页 , 时量 120 分钟 , 满分 120 分一、选择题 ( 本大题共 10 小题 , 每小题 4 分, 共 40 分. 在每小题给出的四个选项中 , 只有一项是符合题目要求的 )1. 已知集合 A={1,2,3,4},B={3,4,5,6},则 A ∩ B=( )A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2. “ x 29 ”是“ x 3 ”的()A. 充分必要条件B.必要不充分条件C.充分不必要条件D. 既不充分也不必要条件3. 函数 y x22x 的单调增区间是()A.(- ∞ ,1]B. [1,+∞) C.(-∞,2]D.[0,+ ∞)4. 已知 cos3 , 且为第三象限角 , 则 tan=()54334A. 3B.4C.4D.35. 不等式 2x1 1 的解集是()A.{ x | x 0 }B.{C.{ x | 0 x 1}D.{x | x 1 }x | x 0或x 1 }6. 点 M 在直线 3x 4y 12 0 上, O 为坐标原点 , 则线段 OM 长度的最小值是()A. 3B. 4C.12 D.12 2557. 已知向量 a , b 满足 a7 , b12 ,a ?b42, 则向量a , b的夹角为( )数学试卷第1页(共9页)8. 下列命题中 , 错误的是()..A.平行于同一个平面的两个平面平行B.平行于同一条直线的两个平面平行C.一个平面与两个平行平面相交 , 交线平行D.一条直线与两个平行平面中的一个相交 , 则必与另一个相交9. 已知a sin15 , b sin100 , c sin 200 ,则 a, b,c 的大小关系为()A. a b cB. a c bC. c b aD. c a b10. 过点 (1,1) 的直线与圆x2y2 4 相交于A,B两点, O 为坐标原点,则OAB 面积的最大值为()A. 2B. 4C.3D. 23二、填空题 ( 本大题共 5 小题 , 每小题 4 分, 共 20 分)11.某学校有 900 名学生 , 其中女生 400 名. 按男女比例用分层抽样的方法 , 从该学校学生中抽取一个容量为45 的样本 , 则应抽取男生的人数为.12. 函f ( x)cosx b ( b 为常数)的部分图像如图所示,则 b = .6 13.(x 1)的展开式中x5的系数为( 用数字作答 )14.已知向量a=(1,2), b =(3,4), c =(11,16),且 c = xa + yb ,则 x y.15.如图 , 画一个边长为 4 的正方形 , 再将这个正方形各边的中点相连得到第 2 个正方形 , 依次类推 , 这样一共画了 10 个正方形 . 则第 10 个正方形的面积为.三、解答题 ( 本大题共 7 小题 , 其中第 21,22 小题为选做题 . 满分 60分, 解答应写出文字说明、证明过程或演算步骤)16.( 本小题满分 10 分 )已知数列 { a n } 为等差数列 , a1 =1, a3 =5,(Ⅰ)求数列 { a n } 的通项公式;(Ⅱ)设数列 { an } 的前n项和为Sn .若Sn=100,求n.17.( 本小题满分 10 分)某种饮料共 6 瓶,其中有 2 瓶不合格 , 从中随机抽取 2 瓶检测 . 用表示取出饮料中不合格的瓶数 . 求( Ⅰ ) 随机变量的分布列;( Ⅱ ) 检测出有不合格饮料的概率.18.( 本小题满分 10分 )已知函数 f ( x)log a ( x 3) (a0,且 a 1) 的图像过点(5,1)( Ⅰ ) 求f (x)的解析式,并写出 f (x) 的定义域;( Ⅱ ) 若f (m) 1, 求m的取值范围19.( 本小题满分 10分 )如图 , 在三棱柱ABC A1B1C1 中,AA1 ⊥底面ABC , AA1 AB BC , ABC 90°,D为AC的中点 .(I)证明 : BD⊥平面AA1C1C;( Ⅱ ) 求直线BA1与平面AA1C1C所成的角 .20.( 本小题满分 10 分 )x2y21( a b 0) 的焦点为F1(-1,0)、 F2(1,0),已知椭圆C :2b2点Aa(0,1) 在椭圆 C上 .(I)求椭圆 C 的方程;(II)( Ⅱ) 直线l过点F1且与AF1垂直 , l与椭圆C相交于M,N两点 , 求MN 的长.选做题 : 请考生在第 21,22 题中选择一题作答 . 如果两题都做 , 则按所做的第 21 题计分 , 作答时 , 请写清题号 .21.( 本小题满分 10 分 )如图 , 在四边形ABCD中,BC CD 6 ,AB 4, BCD 120°,ABC75°, 求四边形ABCD的面积 .22.( 本小题满分 10 分)某公司生产甲、乙两种产品均需用 A , B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示 . 如果生产 1 吨甲产品可获利润 4 万元,生产 1 吨乙产品可获利润 5 万元 . 问: 该公司如何规划生产 , 才能使公司每天获得的利润最大 ?甲乙原料限额A (吨)128B (吨)3212参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8.B9. D 10. A二、填空题:11. 25 12.213. 6 14. 5 15.132三、解答题16. 解:(Ⅰ)数列 { an } 为等差数列 ,a1 =1,a3 =5公差 d=51231故 a n 1 2( n 1)2n 1(Ⅱ)∵等差数列 { an} 的前n项和为S S=100n ,nS n n(a1 a n ) 2n(1 2n 1) 100∴2∴n 1017.解:(Ⅰ)的可能取值有 0,1,2P (0)=C42 C202C 625P (2)=C40 C 221C 6215C41 C218P(1)= C6215故随机变量的分布列是:012 P28151515(Ⅱ)设事件A表示检测出的全是合格饮料,则A表示有不合格饮料检测出的全是全格饮料的概率P(A)C42 C20225C 6P(A) 1 23故检测出有不合格饮料的概率5518.解:(Ⅰ)∵函数 f ( x)log( x3) (a0, 且a1) 的图像过点(5,1)a∴log a 2 1∴ a2f (x)log 2 (x 3)有意义,则x3 0∴ x3函数 f (x)log 2( x3) 的定义域是 (3, )( Ⅱ) ∵f ( x) log2( x3) , f (m)1∴ log 2 (m3) 1log 2 2∴m 3 2∴m 5又f ( x)log2(x 3)的定义域是(3, ),即m 3∴3 m 5m的取值范围是( 3, 5)19.(Ⅰ)证明:∵在三棱柱 ABC A1 B1C1中,AA1⊥底面ABC∴AA1⊥BD又 AB BC ,ABC90° , D为AC的中点 .∴BD ⊥AC而AA1 AC A∴BD ⊥平面AA1C1C( Ⅱ) 由(Ⅰ)可知:BD⊥平面AA1C1C连结A 1D,则BA 1D 是直线 BA 1 与平面 AA 1C 1C 所成的角 在 Rt A BDBD12 ABA B2 AB中,AC122, 1∴ sin BA 1 DBD1A 1B2∴ BA 1 D 30即直线 BA 1 与平面 AA 1C 1C 所成的角是 30 .20. (Ⅰ) 椭圆 C :x2y 21( a b0 ) 的焦点为 F (-1,0) 、F (1,0)a 2 b2解: ∵1 2∴c1又点 A (0,1) 在椭圆 C 上∴b 21∴ a2b2c21 1 2∴椭圆 C的方程是x 2y212( Ⅱ ) 直线 AF 1 的斜率kAF 11而直线 l 过点 F 1 且与 AF 1 垂直∴直线 l 的斜率是 k1直线 l 的方程是yx 1yx1消去 y 得: 3x2由 x2y214x 02设M ( x 1, y 1 ),N ( x 2, y 2 ),则x 1 x 24 x x3 ,21xx(x x 2)24x x24 1211 3MNk 21 xx24 4 212334即MN的长是3221. 解:如图,连结BD在 BCD 中, BC CD6 ,BCD120°,由余弦定理得:BD2BC2CD22BC CD cos BCD62622 6 6 (1 )2623BD6 3四边形ABCD的面积S四边形 ABCD =SBCDSABD=1 BC CD sinBCD1 BA BD sin ABD2 2= 16 6 sin 1201 4 6 3 sin 452 2=1 6 6 3 1 4 6 32 2 2 22= 9 3 6 622. 解:设公司每天生产甲产品 x吨,乙产品 y吨,才能使公司获得的利润 z最大,则 z 4x 5 y , x、 y 满足下列约束条件:x0y 0x 2y 8 3x2y 12作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC作直线y4x 及其平行线54zl:y5 5,直线l表示斜率为4,纵截距为z的平行直线x55系,当它在可行域内滑动时,由图可知,直线l 过点A时,z取得最大值,x 2y8由3x 2y 12 得A(2,3)∴z max 4 2 5 323 万元即当公司每天生产甲产品 2 吨,乙产品 3 吨时,公司获得的利润最大,最大利润为 23 万元 .。
2018年湖南省对口高中高考数学试卷习题
湖南省2018年一般高等学校正口招生考试数学本试题卷包含选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1、已知会合A{1,2,3,4},B{3,4,5,6},则ABA.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2、“x29”是“x3”的A.充足必需条件B.必需不充足条件C.充足不用要条件D.既不充足也不用要条件3、函数y x22x的单一递加区间是A.(,1]B.[1,)C.(,2]D.[0,)4、已知cos3,且为第三象限角,则tanA.45B.334C. D.3443 5、不等式2x11的解集是A.{xx0}B.1} {xxC. D.或{x0x1}{xx0x1}6、点M在直线3x4y120上,O为坐标原点,则线段OM长度的最小值是A.3 C.12 D.122557、已知向量a,b知足a7,b12,ab42,则向量a,b的夹角为°°°°A.8、以下命题中,错误的选项是B.平行于同一个平面的两个平面平行C.平行于同一条直线的两个平面平行D.一个平面与两个平行平面订交,交线平行E.一条直线与两个平行平面中的一个订交,则必与另一个订交9、已知asin15,bsin100,csin200,则a,b,c 的大小关系为A.a b cc bC.b aD.c a bc10、过点(1,1)的直线与圆x 2 y 24订交于A 、B 两点,O 为坐标远点,则ABC 面积的最大值为C. 3D.23二、填空题(本大题共5小题,每题4分,共20分)11、某学校有900名学生,此中女生 400名,按男女比率用分层抽样的方法,从该学校学生中抽取一个容量为 45的样本,则应抽取男生的人数为。
12、函数 f(x)cosxb(b 为常数)的部分图像以下图,则b=。
2018年湖南省跨地区普通高等学校对口招生第三轮联考数学试卷
2018年湖南省跨地区普通高等学校对口招生第三轮联考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1.设全集U =}5,4,3,2,1{,A =}3,2{,B =}4,3{,则=⋃)(B A C U ( )A .}5,2,1{B .}4,3,2{C .}5,4,3,2,1{D .}5,1{ 2.“3-<x ”是“0232>+-x x ”的( )A .必要不充分条件B . 充分不必要条件C .充分必要条件D .既不充分也不必要条件3. 已知角α的终边经过点)12,(-m P ,且43tan -=α,则实数m 的值是( ) A .16- B .9- C .9 D .164.圆056222=+--+y x y x 的圆心到直线01=+-y ax 的距离为1,则实数a 的值是( )A .43-B .43C .34- D .34 5.已知3125=a ,342=b ,524=c ,则c b a ,,的大小关系为( )A .a b c <<B .a c b <<C .c b a <<D . b a c <<6.下列函数在区间),0(+∞上单调递减的是( ) A. x y cos = B. x y 1-= C. x y 21log = D. 3x y = 7.不等式())10(01<<>⎪⎭⎫ ⎝⎛--m x m m x 的解集是( ) A. }1{m x m x << B. }1{m x mx << C. }1{m x m x x ><或 D. }1{m x m x x ><或 8.已知圆锥的底面半径为3,母线长为5,则它的体积是为( )A .π12B .π24C .π36D .π489.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为( )A .96B .72C .48D .2410.某校计算机协会一年级分会共有6名会员,其中有4名男生会员A ,B ,C ,D 和2名女生会员E ,F ,从中随机抽取3人学习软件开发,另外3人学习电脑绘图,则学习软件开发的会员中包含A 但不包含F 的概率是( )A .54B .53C .21D .103 二、填空题(本大题共5个小题,每小题4分,共20分)11.已知()52a x -的二项展开式中含2x 的项的系数为5,则实数=a . 12.已知直线0143=+-y x 与圆014222=--++y x y x 相交于A ,B 两点,则=AB .13.函数)3sin()(π+=x x f 在区间]2,0[π上的最小值是_________. 14.若关于x 的不等式63>-x m 的解集是}51{><x x x 或,则实数=m .15.已知双曲线12222=-by a x (00>>b a ,)的右顶点为A ,以点A 为圆心,b 为半径作圆A 与双曲线的一条渐近线交于M ,N 两点.若ο120=∠MAN ,则双曲线的离心率为 .三、解答题(本大题共7小题,其中第21、22小题为选做题。
湖南省对口高考数学试卷精编版
湖南省2018年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合=⋂==B A A ,则,{3,4,5,6}B {1,2,3,4}A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2、”的”是““392==x x A.充分必要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3、函数x x y 22-=的单调递增区间是A .]1,(-∞ B.),1[+∞ C.]2,(-∞ D.),0[+∞4、已知,53cos -=α且α为第三象限角,则=αtan A.34 B.43 C.43- D.34- 5、不等式112>-x 的解集是 A.}0{<x x B.}1{>x x C.}10{<<x x D.}10{><x x x 或6、点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是A.3B.4C.2512D.512 7、已知向量b a ,满足,42,12,7-=⋅==b a b a 则向量b a ,的夹角为A .30°B .60° C.120° D.150°8、下列命题中,错误的是A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交9、已知c b a c b a ,,,200sin ,100sin ,15sin 则︒=︒=︒=的大小关系为A .c b a <<B .b c a <<C.a b c <<D.b a c <<10、过点)(1,1的直线与圆422=+y x 相交于A 、B 两点,O 为坐标远点,则ABC ∆面积的最大值为A.2B.4C.3D.32二、填空题(本大题共5小题,每小题4分,共20分)11、某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 。
2018年职高数学高考试题
对口招收中等职业学校毕业生单独考试数学试卷第I卷一、选择题(本大题共12小题,每小题5分,共60分。
从下列每小题给出的四个选项中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案)1.已知集合U={1,2,3,4},M={1,2,3},N={2,3,4},则Cr(M∩N)A.{1,2}B.{2,3}C.{2,4}D.{1,4}2.如果a>b,那么下列不等式一定成立的是()A. ac>bcB. a-c>b-cC. D.3.已知()A. B.C. D.4.若a=(10,5),b=(2,y),且a14.双曲线的一个焦点坐标是(0,2),则m是 . 15. 如果,则 .16.用1,2,3组成没有重复数字的两位数,这个两位数大于30的概率是 . 17.中心是坐标原点,焦点在x轴上,且长轴长是8,离心率是的椭圆的标准方程是.18.函数y=2sinx在[0,2π]上的图象与直线的交点个数为 .三、解答题(本大题共6小题,共60分,将文字说明,证明过程或演算步骤写在答题卡指定位置上)19.(本小题满分8分)在△ABC中,三个内角∠A,∠B,∠C所对的边分别是a,b,c,且∠A+∠B=.(1)求的值.(2)如果a=1,b=2,求边c的长度20.(本小题满分10分已知向量a=(-3,4),b=(0,2)(1)求3a+2b(2)求cos<a,b>(3)若A点的坐标为(1,0),且满足=-a,求B点坐标。
21,(本小题满分10分)已知数列{}是首项为2,公比为的等比数列(1)求数列{}的通项公式及前n 项和.(2)设数列{+}是首项为-2,第三项为2的等差数列,求{}的通项公式及前n 项和.22.(本小题满分10分)已知二次函数的顶点坐标是(1,2)(1)求函数f(x)的解析式;(2)当x∈[2,3]时,有f(x)>m恒成立,求m的取值范围;(3)设,求使得g(x)<0成立的x的取值范围.3.(本小题满分10分)如下图,四边形ABCD为矩形,SD平面ABCD,E为SC的中点,且SD=DC=2,AD =(1)求证:SA平面BED;(2)求异面直线AD与BE所所成角的大小24.(本小题满分12分)已知点A(-4,-3),B(2,9),圆C是以线段AB为直径的圆(1)求圆C的标准方程;(2)M(0,2)为圆内一点,求经过点M且平行于AB的弦PQ所在的直线方程;(3)求弦PQ的长.>SA B CDE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省2018年普通高等学校对口招生考试
数学
本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}
2. “92
=x ”是“3=x ”的( )
A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
3.函数x x y 22
-=的单调增区间是( )
A.(-∞,1]
B. [1,+∞)
C.(-∞,2]
D.[0,+∞)
4.已知5
3
cos -=α, 且α为第三象限角,则tan α=( )
A.34
B.43
C.43-
D.3
4
-
5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}
6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )
A. 3
B. 4
C. 2512
D. 512
7.已知向量a ,b 满足7=a ,12=b ,42-=∙b a ,则向量a ,b
的夹
角为( )
A. ︒30
B. 60°
C. 120°
D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行
D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )
A. c b a <<
B. b c a <<
C. a b c <<
D. b a c <<
10.过点(1,1)的直线与圆42
2=+y x 相交于A ,B 两点,O 为坐标原
点,则OAB ∆面积的最大值为( ) A. 2 B. 4 C. 3 D. 23 二、填空题(本大题共5小题,每小题4分,共20分)
11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .
12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .
6
)1(+x 13.的展开式
5x 的系
中数
为 (用数
字作答)
14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x
+b y ,则
=+y x .
15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .
三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分10分)
已知数列{n a}为等差数列,1a=1,3a=5,
(Ⅰ)求数列{n a}的通项公式;
(Ⅱ)设数列{n a}的前n项和为n S . 若n S=100,求n.
17.(本小题满分10分)
某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ表示取出饮料中不合格的瓶数.求
(Ⅰ)随机变量ξ的分布列;
(Ⅱ)检测出有不合格饮料的概率.
18.(本小题满分10分)
已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)
如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,
=∠ABC 90°,D 为AC 的中点.
(I)证明:BD ⊥平面C C AA 11;
(Ⅱ)求直线1BA 与平面C C AA 11所成的角.
20.(本小题满分10分)
已知椭圆:
C 12
22
2=+
b
y a
x (0>>b a )的焦点为1F (-1,0)、2F (1,0),
点A (0,1)在椭圆C 上. (I) 求椭圆C 的方程;
(II) (Ⅱ)直线l 过点1F 且与1AF 垂直,l 与椭圆C 相交于M ,
N 两点,求MN 的长.
选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按
所做的第21题计分,作答时,请写清题号.
21.(本小题满分10分)
如图,在四边形ABCD 中,6==CD BC ,4=AB ,=∠BCD 120°,
=∠ABC 75°,求四边形ABCD 的面积.
22.
23.(本小题满分10分)
某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?。