圆锥曲线焦点三角形性质
圆锥曲线焦点三角形的三大问题(解析版)
圆锥曲线焦点三角形的三大问题一、焦点三角形定义:椭圆与双曲线有对称中心,称为有心圆锥曲线.有心圆锥曲线上一点与两焦点构成的三角形叫做有心圆锥曲线的焦点三角形.其中我们把椭圆短轴的一个端点与两个焦点构成的等腰三角形称之为椭圆的特征焦点三角形1.焦点三角形的角度与离心率问题离心率是椭圆的一个非常重要的定型的量,椭圆的离心率与焦点三角形中的某些量存在关系:图1图2图3图4结论1:如图1,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21PF F ∠的角平分线交x 轴于点M ,则椭圆的离心率2211PF MF PF MF e ==证明:由角平分线定理及和比定理得==2211PF MF PF MF e ac PF PF MF MF ==++222121结论2:如图2,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,I 为21F PF ∆的内心,PI 的延长线交x 轴于点M ,则椭圆的离心率IPIM e =证明:在M PF 1∆和M PF 2∆中由角平分线定理的2211,PF MF IPIM PF MF IPIM ==所以e acPF PF MF MF PF MF PF MF IPIM ==++===2221212211结论3:如图3,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,α=∠21F PF ,β=∠12F PF ,则椭圆的离心率βαβαsin sin )sin(++=e 证明:由正弦定理可知βαβαsin sin )sin(222121++=+==PF PF F F a c e 结论4:如图4,设21,F F 是双曲线)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上不同于左右顶点的任意一点,α=∠21F PF ,β=∠12F PF ,则双曲线的离心率βαβαsin sin )sin(-+=e 证明:由正弦定理可知βαβαsin sin )sin(222121-+=-==PF PF F F a c e 结论5:如图5,设21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21PF F ∠的外角平分线交x 轴于点M ,α=∠2MPF ,β=∠2PMF ,则椭圆的离心率βαcos cos =e 证明:由正弦定理得βαβαααβαβααcos cos cos sin 2cos sin 2)sin()sin(2sin 222121==-++=+==PF PF F F a c e 结论6:圆锥曲线中,过焦点F 且不垂直于坐标轴的弦为AB ,其垂直平分线和焦点所在坐标轴交于点R ,则ABFR e 2=证明:设),(),,(2211y x B y x A ,AB 中点),(00y x M ,则02122)(2ex a x x e a AB +=++=由点差法(过程略)得02022200y a x b k a b x y k k k AB AB OMAB -=⇒-=⋅=所以AB 的中垂线:)(002020x x x b y a y y -=-,令0=y 得022020x e ax b x x R =-=,所以c x e c x FR R +=+=02,所以222002eex a c x e AB FR=++=,所以ABFR e 2=典例分析例1.设椭圆的两个焦点分别为21,F F ,以21F F 为直径的圆与椭圆交于点P ,且=∠12F PF 215F PF ∠,则椭圆的离心率为()A.22B.23 C.32 D.36解析:由题意01202102175,15,90=∠=∠=∠F PF F PF PF F 所以3662426426175sin 15sin 90sin 000==++-=+=e ,故选D 例2.已知21,F F 是椭圆)0(12222>>=+b a by a x 的左右焦点,若椭圆上存在点P 使21PF PF ⊥,则该椭圆的离心率的取值范围为()A.)1,55[B.)1,22[C.]55,0( D.]22,0(解析:要使存在点P 使得21PF PF ⊥,只需当点P 在短轴端点时021902≥=∠θPF F 所以22sin ≥=θe ,所以122<≤e ,故选B 例3.已知椭圆192522=+y x 和双曲线)0,0(12222>>=-b a by a x 有共同焦点21,F F ,P 是它们的一个交点,且321π=∠PF F ,则双曲线的离心率为解法1:由题意知椭圆的离心率541=e ,又1434116cos 6sin 2221222212=+⇒=+e e e e ππ所以131341436425222=⇒=+e e 解法2:由题意知4=c ,由330cot 30tan 92221=⇒==b b S F PF ,所以13222=-=b c a所以13134134===a c e 例4.(2022·广西柳州·模拟预测(理))如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E :)0,0(12222>>=-b a b y a x 的左、右焦点分别为21,F F ,从2F 发出的光线经过图2中的B A ,两点反射后,分别经过点C 和D ,且53cos -=∠BAC ,BD AB ⊥,则E 的离心率为()A.25 B.317 C.210 D.5解析:由题意知53cos 1=∠BAF ,AB B F ⊥1,可设4,3,511===BF AB AF ,由双曲线定义知3264434511=⇒=⇒=-+=-+a a a AB BF AF 所以1,222==BF AF ,由勾股定理得172=c ,所以==a c e 22317,故选B 例5.已知双曲线)0,0(12222>>=-b a by a x 左、右焦点分别为)0,(),0,(21c F c F -,若双曲线右支上存在点P 使得1221sin sin F PF cF PF a ∠=∠,则离心率的取值范围为()A.)12,0(-B.)1,12(- C.)12,1(+ D.),12(+∞+解析:由正弦定理及1221sin sin F PF cF PF a ∠=∠得a c a PF a a c PF c PF a -=⇒-==221222又a c PF ->2,所以a c ac a ->-221221+<<-⇒e ,又1>e ,所以121+<<r 故选C例6.(2022·河南开封·高二期末)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的左、右焦点,O 为坐标原点,点M 是C 上点(不在坐标轴上),点N 是2OF 的中点,若MN 平分21MF F ∠,则椭圆C 的离心率的取值范围是()A.)1,21( B.)21,0( C.)1,31( D.)31,0(解析:由角平分线定理得321232121===c c MF MF PF PF ,又a PF PF 221=+,所以a PF 212=又c a PF c a +<<-2,所以2121>⇒+<<-e c a a c a ,又1<e ,所以121<<e ,选A二、焦点三角形面积公式及其应用有心圆锥曲线(椭圆、双曲线)上一点与有心圆锥曲线的两个焦点构成的三角形,称为有心圆锥曲线的焦点三角形.接下来利用圆锥曲线的定义,结合正弦定理、余弦定理等知识推导焦点三角形的面积公式,并举例说明其应用结论7:椭圆的焦点三角形面积公式:设椭圆)0(12222>>=+b a b y a x 的左右焦点为21,F F ,点),(00y x P 为椭圆上不同于左右顶点的任意一点,θ=∠21PF F ,则21F PF ∆的面积为r c a b y c PF PF S F PF )(2tan sin 21202121+====∆θθ(其中r 为21F PF ∆的内切圆半径)证明:略结论8:双曲线焦点三角形面积公式:设双曲线)0,0(12222>>=-b a by a x 的左右焦点为21,F F ,点),(00y x P 为双曲线上不同于左右顶点的任意一点,θ=∠21PF F ,则21F PF ∆的面积为2cot sin 21202121θθb y c PF PF S F PF ===∆证明:略典型例题例1.设P 为椭圆16410022=+y x 上一点,21,F F 是其左右焦点,若321π=∠PF F ,则21F PF ∆的面积为解析:33646tan6421==∆πF PF S 例2.已知双曲线116922=-y x 的左、右集点分别为21,F F ,若双曲线上点P 使02190=∠PF F ,则21F PF ∆的面积是()A.12B.16C.24D.32解析:1645cot 16021==∆F PF S ,故选B例3.(2020新课标Ⅰ)设21,F F 是双曲线C :1322=-y x 的两个焦点,O 坐标原点,点P在C 上且2=OP ,则21F PF ∆的面积为()A.27 B.3C.25 D.2解析:由题意知221===OP OF OF ,所以02190=∠PF F ,所以345cot 3021==∆F PF S 故选B例4.(2022城厢区校级期中)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的两个焦点,P是椭圆C 上的一点,若321π=∠PF F ,且21F PF ∆的面积为33,则=b ()A.2B.3C.6D.9解析:9336tan2221=⇒==∆b b S F PF π3=⇒b ,故选B 例5.(2022连城县校级期中)已知21,F F 是椭圆C :)0(12222>>=+b a by a x 的两个焦点,P是椭圆C 上的一点,3221π=∠PF F ,若21F PF ∆的面积为39,则=b ()A.9B.3C.4D.8解析:9393tan2221=⇒==∆b b S F PF π3=⇒b ,故选B 例6.(2020·新课标Ⅲ)设双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为5,P 是C 上的一点,且21PF PF ⊥,若21F PF ∆的面积为4,则=a ()A.1B.2C.4D.8解析:由2445cot 0221=⇒==∆b b S F PF ,又1541)(122=⇒=+=+=a a ab e ,故选A 例7.(2022·安徽省亳州市第一中学高月考)已知双曲线)0,0(12222>>=-b a by a x ,过原点的直线与双曲线交于B A ,两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF ∆的面积为22a ,则双曲线的离心率为()A.2B.3C.2D.5解析:连接11,BF AF ,易知BF AF 1为平行四边形,又090=∠AFB ,所以0190=∠AF F 所以2245cot 22221=⇒==∆ab a b S FAF ,所以5)(12=+=a b e ,故选D例8.(2022·吉林吉林·高三期末)已知P 是椭圆)0(12222>>=+b a by a x 上一动点,21,F F 是椭圆的左、右焦点,当321π=∠PF F 时,3421=∆F PF S ,当线段1PF 的中点落到y 轴上时,34tan 21=∠PF F ,则点P 运动过程中,2111PF PF +的取值范围是()A.]32,21[ B.]32,158(C.158,21[ D.)32,21[解析:由12346tan2221=⇒==∆b b S F PF π,当线段1PF 的中点落到y 轴上时,x PF ⊥2轴,所以a b PF 22=,所以342tan 222121===∠b ac PF F F PF F 8=⇒ac ,又2212c a +=所以162=a ,所以21212121811PF PF PF PF PF PF PF PF =+=+,而]6,2[1∈PF ,所以]16,12[16)4()8(211121∈+--=-=PF PF PF PF PF ,所以∈=+2121811PF PF PF PF 32,21[,故选A例9.已知点F 是双曲线C :)0,0(12222>>=-b a by a x 的左焦点,P 为C 右支上一点.以C 的实轴为直径的圆与线段PF 交于B A ,两点,且B A ,是线段PF 的三等分点,则C 的渐近线方程为()A.x y 31±= B.x y 526±= C.x y 1225±= D.x y 597±=解析:设AB 的中点为M ,t BM AM ==,则t PB A F 21==,22t a OM -=所以2222t a PF -=,21PF PF ⊥,所以a t a t PF PF 2262221=--=-a t 53=⇒由勾股定理得2597257292222222212=⇒+=-+=+=e a a t a t OM M F c 又5262597)(122=⇒=+=a b abe ,故选B 三、焦点三角形内切圆的性质在圆锥曲线的考查中,焦点三角形是考查椭圆与双曲线第一定义的良好载体.焦点三角形结合圆,这样的试题难度一定不会小,往往还涉及中位线、角平分线、中垂线、相似等平面几何的知识.接下来归纳椭圆、双曲线焦点三角形内切圆的相关性质,并作进一步的引申和推广椭圆的焦点三角形指的是椭圆上一点与椭圆的两个焦点所连接成的三角形.椭圆的焦点三角形问题,可以将椭圆定义和性质、三角形的几何性质以及解三角形等进行有机结合.圆是平面几何中非常重要的研究对象,焦点三角形的内切圆问题对于问题转化能力、几何性质的应用能力、数形结合能力提出了更高维度的要求,是解析几何综合问题重点考察内容之一下面先看椭圆焦点三角形内切圆的三个性质:如图1,设21,F F 是椭圆C :)0(12222>>=+b a by a x 的左右焦点,点P 是椭圆上不同于左右顶点的任意一点,21F PF ∆的内切圆圆心为),(I I y x I ,且圆I 与21F PF ∆三边相切于点H E D ,,,设),(00y x P ,则有如下性质:性质1:ca PE PD -==证明:由切线长定理得PE PD =,H F D F 11=,EF PE 2=ca H F H F E F PE D F PD c a F F PF PF 222221212121-=--+++⇒-=-+所以ca PE PD -==性质2:0ex x I =,eey y I +=10,其中e 的椭圆的离心率证法1:⇒-=+-+⇒-==-c a c x ex a c a PD H F PF I )(0110ex x I =eeyc a cy y y c a y c S I I F PF +=+=⇒+==∆1)(00021证法2:设),(00y x P ,则0101,ex a PF ex a PF -=+=由内心的坐标公式得000022)()()(2ex c a c ex a c ex a cx x I =+-⨯-+⨯++=,eeyc a cy y I +=+=122200性质3:椭圆焦点三角形21F PF ∆的旁切圆与x 轴相切于顶点(当点P 点位于y 轴左侧时,切于左顶点,当点P 点位于y 轴右侧时,切于右顶点)证明:设旁切圆与x 轴切于点T ,则由切线长定理得PN PM =,T F N F 22=,TF M F 11=所以TF F F PM PF T F M F 221111+=+⇒=TF c PN PF a 2222+=+-⇒=-⇒N F a 22T F c 22+c a N F T F -==⇒22,所以点T 的横坐标为a ,所以T 为右顶点,即21F PF ∆的旁切圆与x 轴相切于顶点双曲线焦点三角形内切圆的重要性质性质1:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上不同于左右顶点的任何一点,则21F PF ∆的内切圆与x 轴切于双曲线的顶点(当点P 在双曲线的右支上时,切点为右顶点,当点P 在双曲线的左支上时,切点为左顶点)证明:由切线长定理得C F A F B F A F PC PB 2211,,===所以a A F A F B F PB C F PC PF PF 2211221=-=--+=-又cA F A F 221=+两式相加得c a A F +=2,所以c a OA O F +=+2,所以a OA =,所以点A 是双曲线的右顶点性质2:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,点),(00y x P 是双曲线上不同于左右顶点的任何一点,),(I I y x I 是21F PF ∆的内切圆圆心为,且圆I 与21F PF ∆的三边切于点H E D ,,,则c a H F D F +==11,a x I =证明:由性质1可知内切圆与x 轴切于右顶点,所以a x I =由切线长定理得ca H F D F +==11性质3:已知21,F F 是双曲线C :)0,0(12222>>=-b a by a x 的左右焦点,过右焦点2F 作倾斜角为θ的直线l 交双曲线于B A ,两点,若2121,F BF F AF ∆∆的内切圆圆心为21,I I ,半径分别为21,r r ,则(1)21,I I 在直线a x =上;(2)221)(a c r r -=;(3)2cot 221θ=r r 证明:由性质1可知21,I I 在直线a x =上因为21,I I 分别为2121,F BF F AF ∆∆的内心,所以2212,I F I F 分别平分1212,F BF F AF ∠∠,所以022190=∠I F I 所以2122θ=∠F F I ,221θ=∠F HI ,又a c H F -=2所以⎪⎩⎪⎨⎧=-=⇒⎪⎪⎩⎪⎪⎨⎧-=-=2cot )(2tan )(2cot )(22122121θθθr r a c r r a c r a c r 从以上性质的证明过程中可以看出,这些性质的背后隐含着椭圆的定义、双曲线的定义、内切圆的定义、三角形全等、切线长定理、中位线定理等基础知识;性质的证明需要具有一定的数学抽象、逻辑推理与数学运算能力,可以考查学生对应核心素养维度的发展水平.另外证明过程中用到了数形结合、转化与化归、类比等数学思想方法.这些都是学生应该掌握的基础知识、基本技能、基本思想与基本活动经验,说明该考点不超纲,可以作为命题的出发点典型例题(一)定值问题例1.已知椭圆1162522=+y x 的左右焦点分别为21,F F ,P 为椭圆上异于长轴端点的动点,21F PF ∆的内心为I =PF PI 解析:设21F PF ∆内切圆切2PF 于M ,则=PF PI 235=-=-=c a PM 例2.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,P 为椭圆上不同于左右顶点任意一点,点G I ,分别为21F PF ∆的内心、重心.当IG 恒与x 轴垂直时,椭圆的离心率是解析:设点),(00y x P ,则)3,3(00y x G ,)1,(00e ey ex I +,因为当IG 恒与x 轴垂直,所以300xex =解得31=e 注:若IG 恒与y 轴垂直,则3100y e ey =+,解得21=e 例3.已知椭圆1162522=+y x 左、右焦点分别为21,F F ,P 为椭圆上一点,21F PF ∆的内心为I ,若内切圆半径为1,则=PI 解析:由题知53=e ,设),(00y x P ,则381831000=⇒==+y y e ey ,代入椭圆方程得3550=x 即点)38,355(P ,所以50==ex x I ,即)1,5(I ,所以=PI 22)138()5355(-+-5=(二)轨迹问题例4.已知椭圆)0(12222>>=+b a by a x 左、右焦点分别为21,F F ,P 为椭圆上不同于左右顶点的动点,21F PF ∆的内心为I ,则点I 的轨迹方程为解析:设点),(),,(00y x P y x I ,则⎪⎪⎩⎪⎪⎨⎧+==⇒⎪⎩⎪⎨⎧+==y c c a y x ca x e ey y ex x 00001,因为点P 在椭圆上,所以1)(1)(22222222222222=++⇒=++bc y c a c x b c y c a a c x a ,所以点I 的轨迹方程为1)(222222=++b c y c a c x )0(≠y 例5.双曲线191622=-y x 的左、右焦点分别21,F F ,P 为双曲线右支上的点,21F PF ∆内切圆与x 轴相切于点C ,则圆心I 到y 轴的距离为()A.1B.2C.3D.4解析:因为4==a x I ,所以圆心I 到y 轴的距离为4,故选D例6.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,e 为双曲线的离心率,P 是双曲线右支上的点,21F PF ∆的内切圆的圆心为I ,过2F 作直线PI 的垂线,垂足为B ,则点B 的轨迹是()A.椭圆B.圆C.抛物线D.双曲线解析:延长B F 2交1PF 于点M ,因为PI 平分21PF F ∠的角平分线,所以2PF PM =又a PF PF 221=-,所以a MF 21=,又B 为2MF 的中点,O 为21F F 的中点,所以a MF OB ==121,所以点B 的轨迹是以原点为圆心,a 为半径的圆,故选B 例7.已知)5,22(P 在双曲线14222=-by x 上,其左、右焦点分别为21,F F ,21F PF ∆的内切圆切x 轴于点M ,则2MF MP ⋅的值为()A.122- B.122+ C.222- D.222+解析:将)5,22(P 代入双曲线方程得5=b ,所以3=c ,)0,3(2F ,21F PF ∆的内切圆切x 轴于点M ,所以M 为双曲线的右顶点,所以)0,2(M ,所以)5,222(-=MP ,)0,1(2=MF ,所以=⋅2MF MP 222-,故选C例8.点P 是双曲线)0,0(12222>>=-b a by a x 右支上一点,21,F F 分别为左、右焦点,21F PF ∆的内切圆与x 轴相切于点N ,若点N 为线段2OF 中点,则双曲线离心率为()A.12+ B.2C.2D.3解析:易知点N 为右顶点,又点N 为线段2OF 中点,所以22=⇒=e a c ,故选B 提升训练1.已知21,F F 分别为椭圆)0(12222>>=+b a by a x 的左、右两个焦点,P 是以21F F 为直径的圆与该椭圆的一个交点,且12212F PF F PF ∠=∠,则这个椭圆的离心率为()A.13- B.13+ C.213- D.213+解析:易知02190=∠PF F ,又12212F PF F PF ∠=∠,所以01202130,60=∠=∠F PF F PF 所以1330sin 60sin 90sin 000-=+=e ,故选A2.(2022·重庆一中高一期末)已知B A ,为椭圆E 的左,右焦点,点M 在E 上,ABM ∆为等腰三角形,且顶角为0120,则E 的离心率为()A.23 B.36 C.23或36 D.23或313-解析:若0120=∠AMB ,则2360sin 0==e 若0120=∠ABM ,则c MA c MB 32,2==,所以213322222-=+==c c c a c e 故选D3.(2022·贵州遵义·高二期末)椭圆C :)0(12222>>=+b a by a x 左右焦点分别为21,F F ,P为C 上除左右端点外一点,若21cos 21=∠F PF ,31cos 12=∠F PF ,则椭圆C 的离心率为A.634- B.7325- C.5337- D.5627-解析:由21cos 21=∠F PF ,31cos 12=∠F PF 得23sin 21=∠F PF ,322sin 12=∠F PF 所以6223322213123)sin(sin 122121+=⨯+⨯=∠+∠=∠F PF F PF PF F 所以5627322236223sin sin sin 122121-=++=∠+∠∠=F PF F PF PF F e ,故选D4.(2022·天津市西青区杨柳青第一中学高二期末)已知21,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,则椭圆和双曲线离心率倒数之和的最大值为A.34 B.334 C.4D.364解析:因为130cos 30sin 22022102=+e e 即4312221=+e e ,所以由柯西不等式得31643431311()33111(11(2221221221=⨯=++≤⋅+⋅=+e e e e e e ⇒3341121≤+e e ,故选B 5.(2022·四川成都·模拟预测)椭圆)0(12222>>=+b a by a x 的左右焦点分别为21,F F ,右顶点为B ,点A 在椭圆上,满足022160=∠=∠ABF AF F ,则椭圆的离心率为()A.23 B.313- C.332- D.13-解析:因为221ABF AF F ∠=∠,所以21AF F ∆∽BA F 1∆,所以=⇒=2112111AF AF F F BF AF )(2121c a c BF F F +=⋅,所以)(21c a c AF +=,所以)(222c a c a AF +-=所以02030tan 60sin ))(22()(22121b c a c a c a c S F PF =⨯+-⨯+⨯=∆)1(4))1(2)1(22(3)(33))(2)(22(43222e e e e e c a c a c c a c a -=+-+⇒-=+-+⇒0410523=+-+⇒e e e 0)46)(1(2=-+-⇒e e e =⇒e 313-,故选B6.(2022·江西上饶·高二期末)已知21,F F 是椭圆C :)0(12222>>=+b a b y a x 的两个焦点,P 为C 上一点,且02160=∠PF F ,213PF PF =,则C 的离心率为()A.22 B.621 C.47 D.32解析:因为213PF PF =,又a PF PF 221=+,所以2,2321a PF a PF ==所以16930tan 60sin 223212202021=⇒=⨯⨯⨯=∆a b b a a S F PF ,所以47)(12=-=a b e ,故选C 7.(2022·甘肃·永昌县第一高级中学高二期末)已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,上顶点为B ,2BF 的延长线交C 于Q ,Q F BQ 1=,则C 的离心率=e ()A.21 B.32 C.22 D.33解析:不妨设221===a BF BF ,t QF =2,θ221=∠BF F ,则t QF -=41,又Q F BQ 1=,所以12242=⇒=-=t t BF ,所以31==QF BQ ,所以312cos =θ所以33sin 31sin 212=⇒=-θθ,所以==θsin e 33,故选D 8.已知椭圆1422=+y x 上一动点P 到两个焦点21,F F 的距离之积取最大值时,21F PF ∆的面积为()A.1B.3C.2D.32解析:4)2(22121=+≤⋅PF PF PF PF ,当且仅当21PF PF =即点P 为短轴端点时等号成立,此时321==∆bc S F PF ,故选B9.已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则=21PF PF ()A.2B.4C.6D.8解法1:434330cot 60sin 2121210202121=⋅⇒=⋅⇒=⋅=∆PF PF PF PF b PF PF S F PF ,选B 解法2:4211260cos 120221=-=-=b PF PF ,故选B 10.(2019·新课标Ⅲ)已知F 是双曲线C :15422=-y x 的一个焦点,点P 在C 上,O 为坐标原点,若OF OP =,则OPF ∆的面积为()A.23B.25 C.27 D.29解析:OF OP =,所以02190=∠PF F ,所以2545cot 52121021=⨯⨯==∆∆F PF OPF S S ,选B 11.设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上,且满足02190=∠PF F ,则21F PF ∆的面积为()A.5B.2C.25 D.1解析:145cot 0221==∆b S F PF ,故选D12.已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则P 到x 轴的距离为()A.23 B.26 C.3 D.6解析:26230cot 100021=⇒⨯=⨯=∆y y S F PF ,故选B13.(2022攀枝花市第十五中学校高二期中(理))设21,F F 为椭圆1422=+y x 的两个焦点,点P 在此椭圆上,且221-=⋅PF PF ,则21F PF ∆的面积为()A.1B.2C.3D.2解析:设θ=∠21PF F ,则21cos 2cos cos 12cos 221-=⇒-=+==⋅θθθθb PF PF 0120=⇒θ,所以36tan 12tan0221=⨯==∆θb S F PF ,故选C 14.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解析:516545cot 0221=⇒⨯==∆P P F PF y y b S ,所以点P 到x 轴的距离为51615.如图,21,F F 分别为椭圆)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆上,2OPF ∆是面积为3的正三角形,则=2b 解析:由题意知02190=∠PF F 且3221=∆F PF S ,所以323245tan 22=⇒=b b 16.已知点P 是椭圆)0(12222>>=+b a b y a x 上的一点,21,F F 为椭圆的左、右焦点,若21PF F ∠060=,且21F PF ∆的面积为243a ,则椭圆的离心率是解析:434330tan 2220221=⇒==∆a b a b S F PF ,所以21)(12=-=a b e 17.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,点O 为双曲线的中心,点P 在双曲线右支上,21F PF ∆内切圆的圆心为Q ,圆Q 与x 轴相切于点A ,过2F 作直线PQ 的垂线,垂足为B ,则下列结论成立的是()A.OBOA > B.OBOA < C.OBOA = D.OB OA ,大小关系不确定解析:延长B F 2交1PF 于点M ,因为PQ 平分21PF F ∠的角平分线,所以2PF PM =又a PF PF 221=-,所以a MF 21=,又B 为2MF 的中点,O 为21F F 的中点,所以a MF OB ==121,而A 为双曲线的顶点,所以a OA =,所以OB OA =,故选C 18.已知点P 是双曲线)0,0(12222>>=-b a by a x 左支上除顶点外的一点,21,F F 分别是双曲线的左、右焦点,,,1221βα=∠=∠F PF F PF ,双曲线离心率为e ,则=2tan2tanβα()A.11+-e e B.11-+e e C.1122-+e e D.1122+-e e 解法1:2cos 2sin 2cos 2sin 2cos2sin 2cos 2sin 2sin 2sin 2sin 2cos 22cos 2sin2sin sin )sin(βαβαβαβαβαβαβαβαβαβαβαβα+-=-+=-+++=-+=e 2tan 2tan 2tan 2tan βαβα+-=⇒=2tan2tanβα11-+e e ,故选B 解法2:易知21F PF ∆的内切圆切x 轴于点)0,(a A -,设内切圆半径为r ,则ac r-=2tan αa c r +=2tan β,所以=2tan 2tanβα11-+=-+e e a c a c ,故选B 18.已知点P 为椭圆)0(12222>>=+b a by a x 上异于左、右顶点的任意一点,21,F F 是左、右焦点,连接21,PF PF ,作21F PF ∆的旁切圆(与线段P F PF 12,延长线及21F F 延长线均相切),其圆心为'O ,则动圆圆心'O 的轨迹所在曲线是()A.直线B.圆C.椭圆D.双曲线解析:因为21F PF ∆的旁切圆与x 轴切于椭圆的右顶点,即圆心'O 在x 轴上射影为椭圆的右顶点,所以圆心'O 的轨迹为直线a x =,故选B19.(2022·陕西·西北工业大学附属中学模拟预测)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,经过1F 的直线交椭圆于B A ,,2ABF ∆的内切圆的圆心为I ,若05432=++IF IA IB ,则该椭圆的离心率是()A.55 B.32 C.43 D.21解析:由05432=++IF IA IB 及奔驰定理可知,不妨设5,4,322===AB BF AF ,则3125434=⇒=++=a a ,所以点A 为椭圆的短轴的端点,设θ221=∠AF F ,则=⇒=-⇒=θθθsin 53sin 21532cos 255,所以=e =θsin 55,故选A 20.(2022·江苏苏州·模拟预测)已知21,F F 是椭圆)1(1122>=-+m m y m x 的左、右焦点,点A 是椭圆上的一个动点,若21F AF ∆的内切圆半径的最大值是33,则椭圆的离心率为A.12- B.21 C.22 D.13-解析:设),(00y x A ,则ey e r +=10,可知当点A 在短轴端点时21F AF ∆的内切圆半径最大,此时433113311=⇒=+-⇒=+-⨯m m m e m e ,所以21=e ,故选B21.(2022·江西·景德镇一中高一期末)已知双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,P 是双曲线上一点,且0)(22=⋅+P F OF OP (O 为坐标原点),若21F PF ∆内切圆的半径为2a,则C 的离心率是()A.13+ B.213+ C.216+ D.16+解析:由0)(22=⋅+P F OF OP 可知21PF PF ⊥,又21F PF ∆内切圆的半径为2a,所以2321a c a a c PF +=++=,222ac a a c PF -=+-=,由勾股定理得=⇒=--⇒-++=e e e ac a c c 0544)2()23(42222216+,故选C 22.(2022·江西·上高二中模拟预测)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,P 为双曲线上的一点,I 为21F PF ∆的内心,且PI IF IF 2221=+,则双曲线的离心率为()A.31B.52 C.33 D.2解析:022222121=++⇒=+IP IF IF PI IF IF ,结合奔驰定理不妨设12=PF ,21=PF ,221=F F ,所以212222=-==a c e ,故选D 23.(2022·湖北·高二月考)已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若21F AF ∆的内切圆半径为4b,则双曲线的离心率为A.2B.3C.35 D.47解析:由题意知21F AF ∆的内切圆圆心)4,(b a I ,设渐近线的倾斜角为θ2,则ab =θ2tan 且)(4tan a c b -=θ,所以350583))(4(1)(4222=⇒=+-⇒=---e e e a b a c b a c b,故选C 24.椭圆1C :)0(1222>=+a y a x 与双曲线2C :)0(1222>=-m y mx 有公共焦点,左、右焦点分别为21,F F ,曲线1C ,2C 在第一象限交于点P ,I 是21F PF ∆内切圆圆心,O 为坐标原点,H F 2垂直射线PI 于H 点,2=OH ,则I 点坐标是解析:由题意知2==m OH ,所以3=c ,2=a ,点I 的横坐标为2,设θ=∠21PF F由0902cot 12tan121=⇒⨯=⨯=∆θθθF PF S ,所以3232(45tan 1021-=⇒+=⨯=∆r r S F PF 所以I 点坐标是)32,2(-25.已知21,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,点P 在双曲线上且不与顶点重合,满足2tan22tan1221F PF F PF ∠=∠,该双曲线的离心率为解析:设21F PF ∆内切圆半径为r ,易知内切圆与x 轴切于点)0,(a -,所以32tan 2tan 2tan 22tan12211221=⇒+⨯=-⇒∠=∠⇒∠=∠e ac ra c r F IF F IF F PF F PF 26.(2022·四川达州·高二期末)已知点)0,3(),0,3(21F F -分别是双曲线C :12222=-b y a x )0,0(>>b a 的左、右焦点,M 是C 右支上的一点,1MF 与y 轴交于点P ,2MPF ∆的内切圆在边2PF 上的切点为Q ,若2=PQ ,则C 的离心率为解析:设2MPF ∆的内切圆分别与21,MF MF 切于点B A ,,则由切线长定理得MBMA =Q F B F 22=,PQ P A =,所以P A MA MF PF MP MF MF a +=-+=-=2221224222=⇒==--++a PQ Q F MB Q F PQ ,又3=c ,所以23=e 27.已知21,F F 是双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,P 为曲线上一点,02160=∠PF F ,21F PF ∆的外接圆半径是内切圆半径的4倍.若该双曲线的离心率为e ,则=2e 解析:设21F PF ∆的外接圆半径为R ,内切圆半径为r ,则3260sin 220cR c R ===,所以32c r =,设βα=∠=∠1221,F IF F IF ,则0601806022=+⇒=++βαβα所以)(32)(321)(32)(32tan tan 1tan tan )tan(3a c c a c c a c ca c c -⋅+--++=-+=+=βαβαβα7122=⇒e 28.(2022·河南·开封市东信学校模拟预测)已知双曲线C :)0,0(18222>>=-b a y a x 的左、右焦点为21,F F ,若点P 在双曲线的右支上,且21F PF ∆的内切圆圆心的横坐标为1,则该双曲线的离心率为解析:易知1=a ,所以3=e 综合训练1.(2022·福建漳州·高二期末)已知椭圆1162522=+y x 的左、右焦点分别为21,F F ,点P 在椭圆上,若61=PF ,则21F PF ∆的面积为()A.8B.28 C.16D.216解析:由题知42=PF ,621=F F ,所以211F F PF =,所以2843642121=-⨯⨯=∆F PF S 故选B2.(2022·福建南平·高二期末)椭圆两焦点分别为)0,3(),0,3(21F F -,动点P 在椭圆上,若21F PF ∆的面积的最大值为12,则此椭圆上使得21PF F ∠为直角的点P 有()A.0个B.1个C.2个D.4个解析:由题意知3412=>=⇒=c b bc ,所以当点P 在短轴端点处时0245<∠OPF ,所以02190<∠PF F ,所以椭圆上使得21PF F ∠为直角的点P 有0个,故选A3.(2022·江西鹰潭·高二期末)椭圆C :1244922=+y x 的焦点为21,F F ,点P 在椭圆上,若81=PF ,则21F PF ∆的面积为()A.48B.40C.28D.24解析:由题知62=PF ,1021=F F ,所以21PF PF ⊥,所以24862121=⨯⨯=∆F PF S ,选D 4.(2022·安徽省亳州市第一中学高二期末)设21,F F 是椭圆1241222=+y x 的两个焦点,P 是椭圆上一点,且31cos 21=∠PF F ,则21F PF ∆的面积为()A.6B.26 C.8D.28解析:设θ221=∠PF F ,则22tan 36cos 311cos 2cos 221=⇒=⇒=-=∠θθθPF F 所以26tan 1221==∆θF PF S ,故选B5.(2022北京市第五十七中学高月考)已知椭圆C :192522=+y x 的左右焦点为21,F F ,BA ,分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中错误的是()A.离心率54=e B.若02190=∠PF F ,则21F PF ∆的面积为8C.21F PF ∆的周长为18D.直线P A 与直线PB 斜率乘积为定值259-解析:4,3,5===c b a ,离心率54=e ,A 正确;若02190=∠PF F ,则945tan 9021==∆F PF S B 错;21F PF ∆的周长为1822=+c a ,C 正确;由第三定义知259-=⋅PB P A k k ,D 正确,选B6.(2022黑龙江·大庆中学高二期末)已知21,F F 分别为椭圆C :)0(12222>>=+b a by a x 的左右焦点,O 为坐标原点,椭圆上存在一点P ,使得212F F OP =,设21F PF ∆的面积为S ,若221)(PF PF S -=,则该椭圆的离心率为()A.31 B.21 C.23 D.35解析:由212F F OP =知21PF PF ⊥,所以2121PF PF S =,所以221)(PF PF S -=9445tan 94844)(22022221221=⇒==⇒-=-+a b b a S S a PF PF PF PF 所以=-=2)(1abe 35,故选D 7.(2022·山西运城·高二期末)已知点21,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,以线段21F F 为直径的圆与双曲线在第一象限的交点为P ,若213PF PF =,则A.1PF 与双曲线的实轴长相等 B.21F PF ∆的面积为223a C.双曲线的离心率为23D.直线023=+y x 是双曲线的一条渐近线解析:由题意21PF PF ⊥,又213PF PF =,所以a PF a PF ==21,3,所以A 错;23321221a a a S F PF =⨯=∆,B 正确;由勾股定理得21094222=⇒+=e a a c ,所以C 错;2612=-=e a b ,所以渐近线方程为x y 26±=即026=±y x ,D 错;故选B 8.(2022·内蒙古赤峰·高三期末)已知双曲线116922=-y x 的两个焦点为21,F F ,P 为双曲线上一点,211F F PF ⊥,21F PF ∆的内切圆的圆心为I ,则=PI ()A.3342 B.334 C.3343 D.234解析:设内切圆切1PF 于点M ,则31621==a b PF ,334612=+=PF PF ,所以内切圆半径222211=-+=PF F F PF r ,所以3101=-=r PF PM ,所以在PMI ∆中由勾股定理得=+=+=4910022r PM PI 33429.(2022·广东·执信中学高三阶段练习)已知双曲线C 的离心率为3,21,F F 是C 的两个焦点,P 为C 上一点,213PF PF =,若21F PF ∆的面积为2,则双曲线C 的实轴长为A.1B.2C.3D.4解析:因为213PF PF =,所以a PF a PF ==21,3,又a c ace 33=⇒==所以3132129cos 22221-=⨯⨯-+=∠a a a a a PF F 322sin 21=∠⇒PF F ,所以1232232121=⇒=⨯⨯⨯=∆a a a S F PF ,所以双曲线C 的实轴长为2,故选B 10.(2022·广西玉林·模拟预测)已知双曲线C :1222=-y x 的左、右焦点为21,F F ,P为双曲线右支上的一点,02130=∠F PF ,I 是21F PF ∆的内心,则下列结论错误的是A.21F PF ∆是直角三角形B.点I 的横坐标为1C.232-=PI D.21F PF ∆的内切圆的面积为π解析:设t PF =2,则t PF +=21,由余弦定理得2)2(32212)2(30cos 220=⇒+⨯⨯-++=t t t t 所以22=PF ,41=PF ,3221=F F ,所以02290=∠F PF ,A 正确;P 在右支上,所以点I 的横坐标为1=a ,B 正确;内切圆半径1321212-=-+=PF F F PF r ,D 错;所以232)13())13(2(22-=-+--=PI ,C 正确;故选D11.(2022·全国·高三专题练习)P 是双曲线M :15422=-y x 右支上的一点,21,F F 是左、右焦点,42=PF ,则21F PF ∆的内切圆半径为()A.9154 B.3152 C.9152 D.315解析:42=PF ,81=PF ,621=F F ,所以1611842366416cos 21=⨯⨯-+=∠PF F ,所以16153sin 21=∠PF F ,所以=⇒⨯⨯⨯=++=∆r r S F PF 161538421)684(2121315,故选D 12.设P 是双曲线)0,0(12222>>=-b a by a x 上的点,21,F F 是焦点,双曲线的离心率是34,且02190=∠PF F ,21F PF ∆的面积是7,则=+b a ()A.73+ B.79+ C.10D.16解析:7745cot 0221=⇒==∆b b S F PF ,又33471)(122=⇒=+=+=a a a b e 所以=+b a 73+,故选A13.在直角坐标系xOy 中,)0,(),0,(21c F c F -分别是双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点,位于第一象限上的点),(00y x P 是双曲线C 上的一点,21F PF ∆的外心M 的坐标为)33,0(c ,21F PF ∆的面积为232a ,则双曲线C 的渐近线方程为()A.xy ±= B.x y 22±= C.x y 21±= D.xy 2±=解析:21F PF ∆的外心M 的坐标为)33,0(c ,所以33tan tan 1221=∠=∠F MF F MF 0122130=∠=∠⇒F MF F MF ,所以021********1,120=∠=∠=∠MF F PF F MF F 所以23230cot 2221=⇒==∆aba b S F PF ,所以渐近线方程为x y 2±=,故选D 二、多选题14.已知P 为双曲线)0,0(12222>>=-b a by a x 右支上一点,21,F F 分别为双曲线的左、右焦点,I 是21F PF ∆的内心,双曲线的离心率为e ,2121,,F IF IPF IPF ∆∆∆的面积分别为,,21S S 3S ,且321kS S S +=,下列结论正确的为()A.ek = B.ek 1=C.I 在定直线a x =上D.若m PF =1,则a m PF 22-=或am PF 22+=解析:321kS S S +=ke kc a r c k r PF r PF 1221212121=⇒=⇒⋅⋅⋅+=⇒,A 错;B 正确;点P 在右支上,所以21F PF ∆的内切圆与x 轴切于点)0,(a A ,所以I 在定直线a x =上,C 正确;因为点P 在右支上,所以a m a PF PF 2212-=-=,D 错;故选BC15.(2022福建福州·高三)已知P 是双曲线E :15422=-y x 在第一象限上一点,21,F F 分别是E 的左、右焦点,21F PF ∆的面积为215.则以下结论正确的是()A.点P 的横坐标为25B.2321ππ<∠<PF F C.21F PF ∆的内切圆半径为1 D.21PF F ∠平分线所在的直线方程为0423=--y x 解析:设),(00y x P ,3,5,2===c b a ,2521530021=⇒=⨯=∆y y S F PF ,代入双曲线方程得30=x ,A 错;232tan 2152cot 5212121=∠⇒=∠=∆PF F PF F S F PF =∠⇒21tan PF F35122tan 12tan221221>=∠-∠=PF F PF F ,所以2321ππ<∠<PF F ,B 正确;13225200=+⨯=+=x a ay y I 所以21F PF ∆的内切圆半径为1,C 正确;内心)1,2(I ,)25,3(P ,所以21PF F ∠平分线所在的直线方程为)2(231-=-x y ,即0423=--y x ,D 正确;故选BCD16.(2022江苏省天一中学高三)已知点P 是双曲线E :191622=-y x 的右支上一点,21,F F 为双曲线E 的左、右焦点,21F PF ∆的面积为20,则下列说法正确的是()A.点P 的横坐标为320 B.21F PF ∆的周长为380C.21PF F ∠大于3πD.21F PF ∆的内切圆半径为23解析:42050021=⇒==∆y y S F PF ,代入双曲线方程得3200=x ,A 正确;21F PF ∆的周长为38052320452200=⨯+⨯⨯=+-++c a ex a ex ,B 正确;202cot 92121=∠=∆PF F S F PF 2092tan 21=∠⇒PF F 3319360)209(12092tan 221<=-⨯=∠⇒PF F ,所以321π<∠PF F ,C 错;23203802121=⇒=⨯⨯=∆r r S F PF ,D 正确;故选ABD三、填空题17.设21,F F 是椭圆C :)20(14222<<=+m m y x 的两个焦点,),(00y x P 是C 上一点,且满足21F PF ∆的面积为3,则0x 的取值范围是解析:由340221=-=∆y m S F PF 22043m y -=⇒,所以1)4(342220=-+m m x )4(1242220m m x --=⇒,又20<<m ,所以]4,0()4(22∈-m m ,所以]1,0[]1,0[020∈⇒∈⇒x x 18.设21,F F 为椭圆C :1422=+y x 的两个焦点.M 为C 上点,21F MF ∆的内心I 的纵坐标为32-,则21PF F ∠的余弦值为解析:02121902tan132)(32(21=∠⇒∠⨯=-+=∆PF F PF F S F PF ,所以0cos 21=∠PF F 19.双曲线C :1322=-y x 的左、右焦点分别为21,F F ,点P 在C 上且34tan 21=∠PF F ,O 为坐标原点,则=OP 解析:71cos 34tan 2121=∠⇒=∠PF F PF F ,所以771132cos 1221221=-⨯=∠-=PF F b PF PF 又2221==-a PF PF ,所以182221=+PF PF,由平行四边形的性质得536164)(2)2(222212212=⇒=+⇒+=+OP OP PF PF F F OP 20.已知椭圆C 的焦点为)0,(),0,(21c F c F -,过点2F 与x 轴垂直的直线交椭圆于第一象限的A 点,点A 关于坐标原点的对称点为B ,且01120=∠B AF ,3321=∆AB F S ,则此椭圆的标准方程为解析:由题意知四边形21BF AF 为平行四边形,且02130=∠F AF ,02160=∠AF F ,所以233230tan 202211=⇒===∆∆b b S S F AF AB F ,133232211=⇒=⨯==∆∆c c c S S F AF AB F 所以32=a ,所以椭圆的方程为12322=+y x。
圆锥曲线中焦点三角形和内切圆的解法技巧总结与赏析
圆锥曲线中焦点三角形和内切圆的解法技巧总结与赏析圆锥曲线中焦点三角形和内切圆的解法技巧1.已知椭圆x^2/a^2+y^2/b^2=1的左、右焦点为F1和F2,点M为椭圆上一点。
如果△MF1F2的内切圆周长等于3π,求a^2的值。
解析:根据椭圆的性质,椭圆上到两焦点的距离之和等于长轴的长度,即2a=F1F2.又因为内切圆的周长等于3π,所以其半径为r=3a/2π。
根据△MF1F2的内切圆半径公式r=S/(p-a-b),其中S为△MF1F2的面积,p为△MF1F2的半周长,可得到S=9a^2/4,p=3a,代入公式可得到a^2=16.2.已知椭圆x^2/25+y^2/16=1,F1、F2为其左、右焦点。
如果△MF1F2的内切圆周长等于3π,求满足条件的点M的个数。
解析:根据椭圆的性质,椭圆上到两焦点的距离之和等于长轴的长度,即2a=10.又因为内切圆的周长等于3π,所以其半径为r=3a/2π=9/5.根据△MF1F2的内切圆半径公式r=S/(p-a-b),其中S为△MF1F2的面积,p为△MF1F2的半周长,可得到S=27/5,p=15/2.代入公式可得到MF1+MF2=8或12,即点M恰好有2个。
3.已知椭圆C的中心在原点,焦点在x轴上,离心率为e=√3/2,右焦点到右顶点的距离为3-2,求椭圆C的标准方程;设F1、F2为椭圆的左、右焦点,过F2作直线交椭圆C于P、Q两点,求△PQF1的内切圆半径r的最大值。
解析:由椭圆的性质,可得到椭圆的长轴为2a=2(3-2)=2,离心率为e=√3/2,所以短轴为b=a√3/2=√3.因此,椭圆C的标准方程为x^2+y^2/3=1.设P(x1,y1)、Q(x2,y2),则F2到直线PQ的距离为2b/3=2√3/3,即y1+y2=4√3/3.根据△PQF1的内切圆半径公式r=S/(p-a-b),其中S为△PQF1的面积,p为△PQF1的半周长,可得到r=2S/(2p-2a-b)。
专题(20)圆锥曲线焦点三角形求解策略
高三第二轮专题复习专题(20)——圆锥曲线焦点三角形 一、椭圆的焦点三角形1、椭圆焦点三角形的一般性质(1)判断椭圆焦点三角形的形状例1、椭圆1121622=+y x 上一点P 到焦点21,F F 的距离之差为2,试判断21F PF ∆的形状. 解:由椭圆定义:3||,5||.2||||,8|||212121==∴=-=+PF PF PF PF PF PF . 又4||21=F F ,故满足:,||||||2122122PF F F PF =+故21F PF∆为直角三角形. (2)椭圆焦点三角形的面积例2、已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆.解:θc os 2)2(2122212212PF PF PF PF F F c -+==)cos 1(2)(21221θ+-+=PF PF PF PF ,θθθcos 12)cos 1(244)cos 1(24)(222222121+=+-=+-+=∴b c a c PF PF PF PF , 2tan cos 1sin 21222121θθθb b PF PF S PF F =+==∴∆. 变式:已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点, 212121=,则12F PF ∆的面积为( ). A.33 B.32 C.3 D.33 解:设θ=∠21PF F ,则21cos 2121==θ,.60︒=∴θ122tan9tan 302F PF S b θ∆∴==︒= A.(3)椭圆焦点三角形顶角的最大值.例3、已知椭圆方程为),0(12222>>=+b a by a x 左右两焦点分别为,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点.证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:222222212121212121212()2422cos 122r r F F r r rr c a c rr rr rr θ+-+---===-22222221222221112()2a c a c e r r a --≥-=-=-+(当且仅当12r r =时取“=”,此时点P 为短轴端点). 变式:已知椭圆)0(12222>>=+b a by a x 的两焦点分别为,,21F F 若椭圆上存在一点,P 使得,120021=∠PF F 求椭圆的离心率e 的取值范围。
圆锥曲线中的三角形
第15讲圆锥曲线中的三角形高屋建瓴1.阿基米德三角形定义圆锥曲线弦的两个端点和在这两端点处的切线的交点所构成的三角形叫作阿基米德三角形,这条弦叫作阿基米德三角形的底,两切线的交点叫作阿基米德三角形的顶点.特别地,我们把底边过焦点的阿基米德三角形称为阿基米德焦点三角形.阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的23.以抛物线22(0)x py p =>为例,如图151-所示,抛物线上两个不同的点A ,B 的坐标分别为()11,A x y ,()22,B x y ,以A ,B 为切点的切线PA ,PB 相交于点P ,我们称弦AB 为阿基米德PAB ∆的底边.2.阿基米德三角形性质性质1:阿基米德三角形底边上的中线平行于抛物线的轴且点P 的坐标为1212,22x x x x p ⎛⎫+ ⎪⎝⎭.证明:如图15-2所示,设()11,A x y ,()22,B x y ,M 为弦AB 的中点,则过A 的切线方程为()11x x p y y =+,过B 的切线方程为()22x x p y y =+,联立方程组得,()()221121122222x x p y y x x p y y x py x py ⎧=+⎪=+⎪⎨=⎪⎪=⎩,解得两切线交点1212,22x x x x P p ⎛⎫+ ⎪⎝⎭,进而可知//PM y 轴.性质2:PM 的中点Q 在抛物线上,且Q 处的切线与AB 平行.【证明】:如图15-3,由性质1知,1212,22x x x x P p ⎛⎫+ ⎪⎝⎭,1212,22x x y y M ++⎛⎫ ⎪⎝⎭,易得Q 点的坐标为()21212,28x x x x p ⎛⎫++ ⎪ ⎪⎝⎭,此点显然在抛物线上.过Q 的切线的斜率为121222x x x x x k y p +=+='=,而221212121212222AB x x y y x x p p k x x x x p --+===--,结论得证.性质3:若阿基米德三角形的底边AB 过抛物线内定点C ,则另一顶点P 的轨迹一条直线.【证明】如图154-,设(),P x y ,()00,C x y ,()11,A x y ,()22,B x y ,由性质1,122x x x +=,122x x y p =,所以122x x x +=,122x x py =.由A ,B ,C 点共线知2222211011222x x x y p p px x x x --=--,即()0121202x x x x x py +=+,将122x x x +=,122x x py =代入得()00x x p y y =+,即为P 点的轨迹方程.推论:若阿基米德三角形的底边(即弦)AB 过抛物线内一定点()0,(0)C m m >,那么:①另一顶点P 的轨迹方程为y m =-;②2AP BP mk k p⋅=-(定值).性质4:抛物线以C 点为中点的弦平行于P 点的轨迹.证明:如图15-5,设(),P x y ,()00,C x y ,()11,A x y ,()22,B x y ,由性质3得P 点轨迹方程为()00x x p y y =+,它的斜率为0x p .由2112222,2,x py x py ⎧=⎪⎨=⎪⎩两式相减得()2212122x x p y y -=-,即1212122x x y y p x x +-=-,有0AB x k p =.因此该弦与P 点的轨迹直线l 平行.性质5:若直线l 与抛物线没有公共点,以l 上点为顶点的阿基米德三角形底边过定点.【证明】:如图15-5,设l 的方程为0ax by c ++=,且()11,A x y ,()22,B x y ,弦AB 过点()00,C x y ,由性质3可知P 点的轨迹方程()00x x p y y =+,该方程与0ax by c ++=表示同一条直线,对照000x x y y p -++=,0a cx y b b++=可得0ap x b =-,0c y b =,即弦AB 过定点,ap c C b b ⎛⎫- ⎪⎝⎭.性质6:底边长为a 的阿基米德三角形的面积的最大值为38a p.【证明】:如图15-6所示,AB a =,设P 到AB 的距离为d ,由性质1知()2221212121212222444x x y y x x x x x x d PM p p p p-++=-=-= .设直线AB 方程为y mx n =+,则21a x =-=,所以()2221x x a - ,24a d p ,即3128a S ad p= .推论:PAB ∆的面积3128PABx x S p∆-=.【证明】:因为1212,22x x x x P p ⎛⎫+ ⎪⎝⎭,1212,22x x y y M ++⎛⎫⎪⎝⎭,所以()222121212121222424x x y y x x x x x x PM p p p p -++=-=-=,所以31212128PAB x x S PM x x p∆-=-=.性质7:(1)若阿基米德三角形的底边过焦点,则顶点P 的轨迹为准线;反之,若阿基米德三角形的顶点P 在准线上,则底边过焦点.(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且阿基米德三角形的面积的最小值为2p .【证明】:(2)若底边过焦点,则00x =,02p y =,点P 的轨迹方程为2py =-,即为准线,易验证1PA PB k k ⋅=-,即PA PB ⊥,故阿基米德三角形为直角三角形,且P 为直角顶点,所以221212224y y x x p PM p ++=+=+2122224242x x p p p p p p p +=+= .而()212121122PAB S PM x x PM x x PM p ∆=-=+- .特别地,若阿基米德三角形的弦AB 过抛物线的焦点,那么:①另一顶点P 的轨迹为准线2py =-;②PA PB ⊥;③PF AB ⊥;④PAB ∆的面积的最小值为2p .性质8:在阿基米德三角形ABP 中,若F 为抛物线的焦点,则2||PF AF BF =⋅.【证明】:()21212122224p p p p AF BF y y y y y y ⎛⎫⎛⎫⋅=++=+++⎪⎪⎝⎭⎝⎭22221212244x x x x p p ⎛⎫+=++ ⎪⎝⎭,222222212121212||222244x x x x x x x x p p PF p p ⎛⎫⎛⎫++⎛⎫=+-=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2||PF AF BF =⋅.参考答案解析试题再现1.【解析】(1)设1,2D t ⎛⎫- ⎪⎝⎭,()11,A x y ,则2112x y =,由于y x '=,所以切线DA 的斜率为1x ,故11112y x x t +=-,整理得112210tx y -+=.设()22,B x y ,同理可得222210tx y -+=.故直线AB 的方程为2210tx y -+=,所以直线AB 过定点10,2⎛⎫⎪⎝⎭.(2)由(1)得直线AB 的方程为12y tx =+.由21,2,2y tx x y ⎧⎪⎪⎨⎪⎪=⎩+=.可得2210x tx --=.于是122,x x t +=()21212121y y t x x t +=++=+,121x x =-,因此()212||21AB x t =-==+.设1d ,2d 分别为点D ,E 到直线AB 的距离,则1d =2d =因此,四边形ADBE的面积21||(32S AB t =+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭,由于EM AB ⊥ ,而()2,2EM t t =- ,AB 与向量(1,)t 平行,所以2(2)0t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时,S =因此,四边形ADBE的面积为3或评注:第(1)问的背景就是阿基米德三角形性质5的应用,设01,2D x ⎛⎫- ⎪⎝⎭,则AB 的方程可写为:012x x y =-,所以必过定点10,2⎛⎫⎪⎝⎭.2.【解析】(1)由题意设211,2x A x p ⎛⎫ ⎪⎝⎭,222,2x B x p ⎛⎫ ⎪⎝⎭,12x x <,)0(,2M x p -.由22x py =得22x y p =,则x y p '=,所以1MA x k p =,2MB x k p =.因此直线MA 的方程为()102x y p x x p +=-,直线MB 的方程为()202xy p x x p +=-.所以()2111022x x p x x p p +=-①,()0222222x p x x px +=-)②,由①②得121202x x x x x -=+-,因此1202x x x +=,即0122x x x =+,所以A ,M ,B 三点的横坐标成等差数列.(2)由(1)知,当02x =时,将其代入①②并整理得2211440x x p --=,2222440x x p --=,所以1x ,2x 是方程22440x x p --=的两根,因此124x x +=,2124x x p =-,又,222112210222AB x x x x p p k x px x P -+===-所以2AB k p =由弦长公式得|AB ==又||AB =,所以1p =或2p =,因此所求抛物线方程为22x y =或24x y=(3)设()33,D x y ,由题意得()1212,C x x y y ++,则CD 的中点坐标为123123,22x x x x x x Q ++++⎛⎫⎝⎭,由阿基米德三角形性质可知直线AB 的方程为0(2)x x p y p =-,由点Q 在直线AB 上,并注意到点1212,22x x y y ++⎛⎫⎪⎝⎭也在直线AB 上,代入得033x y x p =.若()33,D x y 在抛物线上,则2330322x py x x ==,因此30x =或302x x =,即(0,0)D 或20022,x D x p ⎛⎫ ⎪⎝⎭.①当00x =时,12020x x x +==,此时,点(0,2)M p -适合题意.②当00x ≠时,对于(0,0)D ,此时221202,2x x C x p ⎛⎫+ ⎪⎝⎭,2212221200224CDx x x x pk x px ++==,又0AB x k p =,AB CD ⊥,所以22012214AB CD x x x k k p p +⋅=⋅=-,即222124x x p +=-,矛盾.对于20022,x D x p ⎛⎫ ⎪⎝⎭,因为221202,2x x C x p ⎛⎫+ ⎪⎝⎭,此时直线CD 平行于y 轴,又00ABx k p =≠,所以直线AB 与直线CD 不垂直,与题设矛盾.所以当00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点(0,2)M p -适合题意.评注:第(1)问背景就是阿基米德三角形性质1的应用.3.【解析】(1)依题意2d ==,解得1c =(负值舍去),所以抛物线C 的方程为24x y =.(2)设点()11,A x y ,()22,B x y ,()00,P x y ,由24x y =,即214y x =,得12y x '=.所以抛物线C 在点A 处的切线PA 的方程为()1112x y y x x -=-,即2111122x y x y x =+-.因为21114y x =,所以1112x y x y =-.因为点()00,P x y 在切线1l 上,所以10012x y x y =-①.同理,20022xy x y =-②.综合①②得,点()11,A x y ,()22,B x y 的坐标都满足方程002xy x y =-.因为经过()11,A x y ,()22,B x y 两点的直线是唯一的,所以直线AB 的方程为002xy x y =-,即02x x y --020y =.(3)由抛物线的定义可知1||1AF y =+,2||1BF y =+,所以()()121212||||111AF BF y y y y y y ⋅=++=+++,联立2004,220,x y x x y y ⎧⎪⎨⎪=-=⎩-.消去x 得()22200020y y x y y +-+=,所以212002y y x y +=-,2120y y y =.因为0020x y --=,所以()222222000000019||||21221225222AF BF y y x y y y y y y ⎛⎫⋅=-++=-+++=++=++⎪⎝⎭因此当012y =-时,||||AF BF ⋅取得最小值92.评注:第(2)问的背景就是阿基米德三角形性质5的应用,因为()00,P x y 为直线l 上的定点,所以AB 的方程为()002x x y y =+.4.【解析】(1)因为抛物线21:4C x y =上任意一点(,)x y 的切线斜率为2x y '=,且切线MA 的斜率为12-,所以A 点坐标为11,4⎛⎫- ⎪⎝⎭,故切线MA 的方程为11(1)24y x =-++.因为点()01M y -在切线MA 及抛物线2C 上,于是0113(2244y -=-+=-①,20(12)32222y p p-=-=-②.由①②得2p =.(2)设(,)N x y ,211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,12x x ≠.由N 为线段AB 中点知122x x x +=③,22128x x y +=④,切线MA ,MB 的方程为()211124x x y x x =-+⑤,()222224x x y x x =-+⑥.由⑤⑥得MA ,MB 的交点()00,M x y 的坐标为1202x x x +=,1204x x y =.因为点()00,M x y 在2C 上,即2004x y =-,所以2212126x x x x +=-⑦.由③④⑦得243x y =,0x ≠,当12x x =时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足243x y =,因此AB 中点N 的轨迹方程为243x y =.练习巩固1.【解析】(1)设过点C 的直线方程为y kx c =+,所以2(0)x kx c c =+>,即20x kx c --=,设()11,A x y ,()22,B x y ,则有12x x k +=,12x x c =-,()11,OA x y = ,()22,OB x y = .因为2OA OB ⋅=,所以12122x x y y +=,即()()12122x x kx c kx c +++=,)22121212(2x x k x x kc x x c ++++=,所以222c k c kc k c --+⋅+=,即220c c --=,解得2c =(舍去1c =-).(2)设过A 的切线为()111y y k x x -=-,2y x '=,所以112k x =,即2211111222y x x x y x x x =-+=-,它与y c =-的交点为11,22x c M c x ⎛⎫-- ⎪⎝⎭.又21212,,2222x x y y k k P c ⎛⎫++⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以,2k Q c ⎛⎫- ⎪⎝⎭,为12x x c =-,所以21c x x -=.则12,,222x x k M c c ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭,即点M 和点Q 重合,因此QA 为此抛物线的切线.(3)(2)的逆命题成立,因为若QA 为此抛物线的切线,则其方程为()21112y x x x x -=-,2112y x x x =-,与y c =-联立,可得点Q 横坐标为2211121211222x c x x x x x x x x -++===.由于PQ 与x 轴垂直,故点P 的横坐标也是为122x x +,即P 为线段AB 的中点.评注:第(2)问的背景就是设过点A ,B 的切线交于点M ,则ABM △为阿基米德三角形,由性质1可知点M的横坐标为122x x +,又弦AB 过定点(0,)C c ,点M 在直线y c =-上,故点M 的坐标为12,2x x c +⎛⎫- ⎪⎝⎭,所以点M 与点Q 重合,即QA 为此抛物线的切线.2.【解析】(1)设点A ,B 的坐标分别为()11,x y ,()22,x y ,因为1l ,2l 分别是抛物线C 在点A ,B 处的切线,所以直线1l 的斜率111x x x k y p ='==,直线2l 的斜率222x x xk y p='==.因为12l l ⊥,所以121k k =-,得212x x p =-(1).因为A ,B 是抛物线C 上的点,所以2112x y p =,2222x y p =,故直线1l 的方程为()21112x x y x x p p-=-,直线2l 的方程为()22222x x y x x p p -=-.由()()21112222,2,2x x y x x p p x x y x x p p ⎪-=⎧⎪⎪⎨=--⎪⎩-.计算得出12,2,2x x x p y ⎧⎪⎪⎨⎪⎪+=⎩=-.所以点D 的纵坐标为2p -.(2)因为F 为抛物线C 的焦点,所以0,2p F ⎛⎫ ⎪⎝⎭,则直线AF 的斜率为21221111122202AF x p p y x p p k x x px ---===-,直线BF 的斜率为22222222222202BF x p p y x p p k x x px ---===-.因为()()222222222112121212222AF BF x x p x x p x p x p k k px px px x ------=-=()()()()22212121212121212022x x x x p x x p x x p x x px x px x -+---+-===所以AF BF k k =,即A ,B ,F ,(3)不存在,证明如下.假设存在与题意相符的圆,设该圆的圆心为M ,根据题意得MA AD ⊥,MB BD ⊥,且||||MA MB =,由12l l ⊥,得AD BD ⊥,所以四边形MADB 是正方形,有||AD BD =.因为点D 的坐标为3,12⎛⎫- ⎪⎝⎭,所以12p -=-,得2p =,把点3,12D ⎛⎫- ⎪⎝⎭的坐标代入直线1l ,得211131422x x x ⎛⎫--=⨯- ⎪⎝⎭,解得(4,4)或11,4⎛⎫- ⎪⎝⎭.同理可求得点B 的坐标为(4,4)或11,4⎛⎫- ⎪⎝⎭.因为A ,B 是抛物线C 上的不同两点,不妨令11,4A ⎛⎫- ⎪⎝⎭,(4,4)B ,则||AD =||BD =可得||||AD BD ≠,这与||||AD BD =矛盾,所以经过A ,B 两点且与1l ,2l 都相切的圆不存在.3.【解析】(1)依题意,圆心的轨迹是以(0,2)N 为焦点,:2l y =-为准线的抛物线,因为抛物线焦点到准线距离等于4,所以圆心的轨迹是28x y =.(2)由已知(0,2)N ,设()11,A x y ,()22,B x y ,由AN = NB λ,得()()1122,2,2x y x y λ--=-,故()1212 22 x x y y λλ⎧⎪⎨⎪--=-⎩=①②,将①式两边平方并把2118x y =,2228x y =代入得212y y λ=③,解②③式得12y λ=,22y λ=,且有21222816x x x y λλ=-=-=-,抛物线方程为218y x =,求导得14y x '=,所以过抛物线上A ,B 两点的切线方程分别是()11114y x x x y =-+,()22214y x x x y =-+,即2111148y x x x =-,2221148y x x x =-,解出两条切线的交点Q 的坐标为121212,,2282x x x x x x ++⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.所以()()22221221212121111,4,402288x x NQ AB x x y y x x x x +⎛⎫⎛⎫⋅=-⋅--=---= ⎪ ⎪⎝⎭⎝⎭,因此NQ AB ⋅ 为定值,其值为0.评注:第(2)问的背景就是阿基米德三角形性质7的(2)的应用.4.【解析】(1)设椭圆E 的方程为22221x y a b+=,半焦距为c ,由已知条件,(0,1)F ,所以1b =,32c a =,222a b c =+,解得2a =,1b =,所以椭圆E 的方程为2214x y +=.(2)显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不合题意,故可设直线l 的方程为1y kx =+,()11,A x y ,()()2212,B x y x x ≠,与抛物线方程联立,消去y ,并整理得2440x kx --=,所以124x x =-.因为抛物线的方程为214y x =,求导得12y x '=,所以过抛物线上A ,B 两点的切线方程分别是()11112y y x x x -=-,222)1(2y y x x x -=-,即2111124y x x x =-,2221124y x x x =-,解得两条切线的交点M 的坐标为12,12x x +⎛⎫- ⎪⎝⎭.()2221212121,,4x x AB x x y y x x ⎛⎫-=--=- ⎪⎝⎭,21,22x x MF +⎛⎫=- ⎪⎝⎭,22222121022x x x x AB MF --⋅=-+= ,0AB MF ⋅= ,所以AB MF⊥(3)假设存在点M '满足题意,由(2)知点M '必在直线1y =-上,又直线1y =-与椭圆有唯一交点,故M '的坐标为(0,1)-.设过点M '且与抛物线C 相切的直线方程为()00012y y x x x -=-,其中点()00,x y 为切点,令0x =,1y =-,得()2000111042x x x --=-,解得02x =或02x =-,故不妨取(2,1)A '-,(2,1)B ',即直线A B ''过点F .综上所述,椭圆E 上存在一点(0,1)M '-,经过点M '作抛物线C 的两条切线M A '',M B ''(A ',B '为切点),能使直线A B ''过点F ,此时,两切线的方程分别为1y x =--和1y x =-.评注:第(2)问的背景就是阿基米德三角形性质7的(2)的应用.。
圆锥曲线二级结论的应用:直观理解与数学技能的提升
圆锥曲线二级结论的应用:直观理解与数学技能的提升在数学中应用圆锥曲线的二级结论,可以帮助我们更高效地解决问题、减少计算量,并增强对几何图形的直观理解。
以下是几种在数学中应用圆锥曲线二级结论的实例:1.2.焦点与准线性质的应用:3.在解决与焦点和准线相关的问题时,这些性质可以直接使用。
例如,在求椭圆上的点到两焦点距离之和时,可以直接应用这一性质,而不必每次都从头开始计算。
4.5.6.弦长公式的应用:7.对于圆锥曲线上的弦长问题,利用相应的弦长公式可以迅速得出答案。
在解决几何问题时,如果知道某些特定条件下的弦长公式,可以大大减少计算复杂度。
8.9.10.切线性质的应用:11.切线的性质在求导数和曲线的几何特征时非常有用。
通过计算导数来找出切线的斜率,进而利用切线方程研究曲线的局部性质。
12.13.14.面积与周长公式的应用:15.当需要计算圆锥曲线围成的图形的面积或周长时,直接使用相应的公式可以迅速得出答案。
这在几何和微积分问题中特别常见。
16.17.18.离心率与半轴长的应用:19.在解决与圆锥曲线的形状和尺寸有关的问题时,离心率和半轴长是两个关键参数。
它们可以帮助我们理解曲线的“扁平”程度或“张开”程度,从而更容易地识别和分析几何图形。
20.21.22.渐近线与包络线的应用:23.在涉及渐近线和包络线的问题中,利用这些性质可以帮助我们更好地理解曲线的长期行为,特别是在处理无穷大或无穷小时的行为。
24.25.26.对称性与极值点的应用:27.在解决与对称性和极值点相关的问题时,这些性质可以用来验证解的正确性或找到潜在的解。
28.29.30.焦点三角形性质的应用:31.在处理涉及焦点和弦的问题时,焦点三角形的性质可以用来简化计算,特别是当弦经过圆锥曲线的焦点时。
32.在数学中,圆锥曲线的二级结论不仅帮助我们解决实际问题,还提供了直观理解几何图形和性质的工具。
通过不断练习和应用这些结论,可以加深对圆锥曲线理论的理解,并提升数学技能。
有关圆锥曲线的焦点三角形面积公式的证明及其应用
圆锥曲线的焦点三角形面积问题比较常见,这类题目常以选择题、填空题、解答题的形式出现.圆锥曲线主要包括抛物线、椭圆、双曲线,每一种曲线的焦点三角形面积公式也有所不同,其适用情形和应用方法均不相同.在本文中,笔者对圆锥曲线的焦点三角形面积公式及其应用技巧进行了归纳总结,希望对读者有所帮助.1.椭圆的焦点三角形面积公式:S ΔPF 1F 2=b 2tan θ2若椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∠F 1PF 2=θ,则三角形ΔF 1PF 2的面积为:S ΔPF 1F 2=b 2tan θ2.对该公式进行证明的过程如下:如图1,由椭圆的定义知||F 1F 2=2c ,||PF 1+||PF 2=2a ,图1可得||PF 12+2||PF 1||PF 2+||PF 22=4a 2,①由余弦定理可得||PF 12+||PF 22-2||PF 1||PF 2cos θ=4c 2,②①-②可得:2||PF 1||PF 2(1+cos θ)=4b 2,所以||PF 1||PF 2=2b 21+cos θ,则S ΔPF 1F2=12|PF 1||PF 2|sin θ=12×2b 21+cos θsin θ,=b 22sin θ2cos 2θ22cos 2θ2=b 2tan θ2.若已知椭圆的标准方程、短轴长、两焦点弦的夹角,则可运用椭圆的焦点三角形面积公式S ΔPF 1F 2=b 2tan θ2来求椭圆的焦点三角形面积.例1.(2021年数学高考全国甲卷理科)已知F 1,F 2是椭圆C :x 216+y 24=1的两个焦点,P ,Q 为椭圆C 上关于坐标原点对称的两点,且||PQ =||F 1F 2,则四边形PF 1QF 2的面积为________.解析:若采用常规方法解答本题,需根据椭圆的对称性、定义以及矩形的性质来建立关于||PF 1、||PF 2的方程,通过解方程求得四边形PF 1QF 2的面积.而仔细分析题意可发现四边形PF 1QF 2是一个矩形,且该矩形由两个焦点三角形构成,可利用椭圆的焦点三角形面积公式求解.解:S 四边形PF 1QF 2=2S ΔPF 1F 2=b 2tan θ2=2×4×tan π2=8.利用椭圆的焦点三角形面积公式,能有效地简化解题的过程,有助于我们快速求得问题的答案.例2.已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1()a >b >0的两个焦点,P 为曲线C 上一点,O 为平面直角坐标系的原点.若PF 1⊥PF 2,且ΔF 1PF 2的面积等于16,求b的值.解:由PF 1⊥PF 2可得∠F 1PF 2=π2,因为ΔF 1PF 2的面积等于16,所以S ΔPF 1F 2=b 2tan θ2=b 2tan π2=16,解得b =4.有关圆锥曲线的焦点三角形面积公式的思路探寻48的面积,2.则ΔF 1PF 如|||PF 1-|得:|||PF 2cos θ即|由②所以则S Δ夹角、例3.双曲线C 是().A.72且)设双曲F 1,F 2,离△PF 1F 2=1.本题.运用该=p 22sin θ,且与抛S ΔAOB =图3下转76页)思路探寻49考点剖析abroad.解析:本句用了“S+Vt+动名词”结构,能用于此结构的及物动词或词组有mind ,enjoy ,finish ,advise ,consider ,practice ,admit ,imagine ,permit ,insist on ,get down to ,look forward to ,put off ,give up 等。
焦点三角形内心和旁心的若干性质
=
南
一
, 故 所 求 的 角 平 分 线 方 程 为 y 一 0
c +
0.
e
2
=
( 2 )由( 1 ) 的证 明得 = B A = e故 由
,
I PE l
—
: I PF l 一 2a
: e l PF I: 一 ‘ 。 ‘一
÷ ( 一 c — ) = 一 口 一 警 .
程 为 + 一。 z:0 ;
另一方面, 由双 曲线的左 焦半径公式知
I P F I =一e 一。 . 比较 两 式 得 一 一
= 一 e x p 一 。 . 从 而 也 得 警= e . 所 以 , =
不
设 旁 心 A 是 设
:
2
如 图 3所 示 . 由三 角形 内外 角 平分 线 性 质 定
理 知
矗 . 故 所 求 的 方 程 为y — y z =
c 一 麦 + 一 e = 0 .
旦
I AP l
一 !
—
! 一 !
—
!
一
I - P I
J EP I
1 4 -
y z-
e
0 ) , 如图 1 , 由 三 角
形 内角平分线 性质
- y2
=
.
图1
:
—
—
7 A 2
定 理 知 } =
l E I I FB I I EB l +I FB I 2c I P I— I FP l— I PE l +I PF l 一 2a —
定 比 分 点 公 式 知 = 皆
= e , =
=
等= .
焦点三角形问题(解析版)
第一篇圆锥曲线专题01焦点三角形问题焦点三角形的边角关系如下:三条边:122F F c =122PF PF a+==22a c +三角形周长ce a=222a b c =+三个角:随着动点P 的移动,三个角都在变化,可能为锐角,直角和钝角,这里我们只研究顶角P ∠,利用余弦定理,P ∠又和三边a,b,c 的大小有关系三角形的面积:12S ah =底为定值,面积最大时高最大1sin 2S ab c =面积和三边长有关系一、与焦点三角形边长有关的问题焦点三角形中三边长涉及a,c ,因此最直观的是可以根据三边关系求出离心率的值或取值范围,前提是三边之间存在可以转化的关系。
若单独分析三角形的两个腰长,则若能够构成三角形,则需满足1a c PF a c-≤≤+例1椭圆22221x y a b+=的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在一点P ,满足线段AP 的垂直平分线过点F ,则椭圆的离心率的取值范围是________.例2.已知12,F F 是椭圆22221x y a b+=的左右焦点,若在其右准线上存在点P ,使得线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是________.【解析】求离心率的范围问题,需要根据条件列出不等式,在含有动点的题目中,需要找出动态的量和常量之间的大小关系。
题目中:2122PF F F c==因为点P 在右准线上下移动,2PF 虽然是常量,但由于不知道a,b,c 的关系,因此还是相对的变量。
本题的定值为22a F H c c=-在2RT PHF 中,222,2a PF F H c c c >≥-解得:313e ≤<例3.设12,F F 是双曲线2214x y -=的左右焦点,点P 在双曲线上,且满足1290F PF ︒∠=,则12PF F ∆的面积是________.方法一:方法二:此题目有更简单的做法,方法一只是为了巩固焦半径的知识,设12,PF x PF y ==则有:4x y -=,又因为2220x y +=解得:2xy =,因此面积等于1.上面两题都是关于焦点三角形中两条腰长的问题,在焦点三角形中两腰长之和为2a ,底边为2c ,因此三边之间暗含离心率的关系,因此在一些出现焦点三角形求离心率的问题中一般腰长和底边之间都存在一个可以互相转化的关系,通过这个关系可以求出离心率。
圆锥曲线焦点三角形面积问题
圆锥曲线焦点三角形面积问题
圆锥曲线焦点三角形面积问题指的是在一个圆锥曲线上,给定焦点和一个点P 的坐标,求得由焦点和该点P构成的三角形的面积。
首先,我们需要了解圆锥曲线和焦点的概念。
圆锥曲线是指在三维空间中一个由直线与一个射线共用一个端点且直线在射线上方的几何图形。
常见的圆锥曲线有椭圆、双曲线和抛物线。
焦点是指在一个几何图形或曲线上与该图形或曲线中的点有特殊关系的点。
要计算由焦点和点P构成的三角形的面积,我们可以利用三角形的面积公式。
三角形的面积可以用其底边和高来计算。
在这个问题中,底边是焦点和点P之间的距离,高是点P到焦点所在的直线的垂直距离。
首先,我们可以使用两点间距离公式计算焦点和点P之间的距离。
假设焦点的坐标为F(x1, y1, z1),点P的坐标为P(x2, y2, z2),则焦点和点P之间的距离为
√((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。
然后,我们需要计算点P到焦点所在的直线的垂直距离。
这个垂直距离也可以被称为焦距。
焦距可以通过焦点到点P之间的线段与焦点所在的直线的垂直距离来计算。
最后,我们可以利用三角形的面积公式:面积 = 1/2 * 底边 * 高,来计算出由焦点和点P构成的三角形的面积。
需要注意的是,在计算过程中,我们要保证点P在圆锥曲线上,以确保三角形的存在。
综上所述,通过给定焦点和点P的坐标,我们可以计算出由这两 points 构成的三角形的面积。
这个问题涉及到了圆锥曲线的性质和三角形面积的计算方法,通过运用相关的几何知识,我们可以解决这个问题。
高中数学之圆锥曲线之焦点三角形面积知识点
高中数学之圆锥曲线之焦点三角形面积知识点
什么是焦点三角形?
定义:
椭圆(双曲线)上任意一点与两个焦点所组成的三角形叫做焦点三角形,它是由焦距和焦半径构成的特别的三角形。
其中焦点三角形的面积也是一个非常重要的几何量。
怎么求焦点三角形的面积呢?先看一道例题
公式推导:
同样的方法可以也可以证明得到双曲线的焦点三角形面积公式。
公式如下:
接下来在给出关于焦点三角形顶角的一个结论:
这个结论可以借助焦点三角形面积公式的推导过程来继续说明:
实战演练:。
焦点三角形的美妙性质
焦点三角形的美妙性质焦点三角形的性质,都和焦点三角形的内外角平分线有着紧密联系,同时,又都和圆锥曲线的定义密切相关。
由椭圆和双曲线的定义的相似,我们看出,他们的性质也异常相似!在焦点三角形的统一下,他们的性质和谐地完美着!1 定义椭圆或双曲线上任意一点和两个焦点的连线所形成的三角形,叫做焦点三角形。
2 性质焦点三角形有以下一系列美妙性质:2.1 椭圆x 2 a 2 + y 2 b 2 =1的焦点三角形的面积S= b2tan θ 2 ,双曲线x 2 a 2 - y 2 b 2 =1的焦点三角形的面积S=b2cot θ 2 ,其中,θ=∠F1PF2,P是椭圆或双曲线上任意一点,F1、F2是对应曲线的焦点。
以下同证明:由椭圆定义可知:|PF1|+|PF2|=2a,|F1F2|=2c,a2=b2+c2,由余弦定理有:4c2=(2c)2=|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ=(|PF1|+|PF2|) 2 -2|PF1||PF2|-2|PF1||PF2|cosθ∴2|PF1||PF2|(1+cosθ)=4a2-4c2= 4(a2-c2)=4b 2∴|PF1||PF2|= 2b 2 1+cosθ ,∴焦点三角形的面积S= 1 2 |PF1||PF2|sinθ= b 2 sinθ 1+cosθ =b2tan θ2 (∵sinθ1+cosθ =tan θ 2 )对双曲线,则有:|PF1|-|PF2|=±2a,|F1F 2 |=2c,a2+b2=c2,由余弦定理有:4c 2 =(2c)2= |F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ= (|PF1|-|PF2|) 2 +2|PF1||PF2|-2|PF1||PF2|cosθ= (±2a) 2 +2|PF1||PF2|(1-cosθ)=4a2+2|PF1||PF2|(1-cosθ)∴2|PF1||PF2|(1-cosθ)=4c2-4a2=4(c2-a2)=4b 2∴|PF1||PF2|= 2b 2 1-cosθ ,∴焦点三角形的面积S=1 2 |PF1||PF2|sinθ=b 2 sinθ 1-cosθ =b2cot θ 2 (∵sinθ 1+cosθ =cot θ 2 )2.2 对椭圆x 2 a 2 +y 2 b 2 =1 ,设l是其焦点三角形的过点P的外角平分线,过F1或F2作l的垂线,则垂足的轨迹是以原点为圆心,a为半径的圆;对双曲线x 2 a 2 - y 2 b 2 =1,设l是其焦点三角形的过点P的内角平分线,过F1或F2作l的垂线,则垂足的轨迹是以原点为圆心,a为半径的圆。
焦点三角形公式推导
焦点三角形公式推导在我们学习圆锥曲线的时候,焦点三角形可是个经常出现的“家伙”。
今天咱们就来好好推导一下焦点三角形的公式,瞧瞧它背后的小秘密。
先来说说啥是焦点三角形。
在圆锥曲线中,比如椭圆或者双曲线,以两个焦点和曲线上一点构成的三角形就叫焦点三角形。
咱以椭圆为例来推导这个公式。
假设椭圆的标准方程是$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$($a>b>0$),两个焦点分别是$F_1$,$F_2$,椭圆上一点是$P$。
在推导之前,咱们先回忆一下椭圆的定义:椭圆上任意一点到两个焦点的距离之和等于长轴$2a$。
那在焦点三角形$PF_1F_2$中,根据余弦定理可得:$|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1||PF_2|\cos\theta$其中,$\theta$是$\angle F_1PF_2$。
因为$|PF_1| + |PF_2| = 2a$,所以$|PF_1|^2 + |PF_2|^2 + 2|PF_1||PF_2| = 4a^2$将其变形可得:$|PF_1|^2 + |PF_2|^2 = 4a^2 - 2|PF_1||PF_2|$把这个式子代入上面的余弦定理式子中:$4c^2 = 4a^2 - 2|PF_1||PF_2| - 2|PF_1||PF_2|\cos\theta$整理一下就得到:$|PF_1||PF_2| = \frac{2b^2}{1 + \cos\theta}$这就是焦点三角形在椭圆中的一个重要公式啦。
那双曲线中的焦点三角形公式又是咋样的呢?其实推导过程和椭圆有点类似。
假设双曲线的标准方程是$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,两个焦点还是$F_1$,$F_2$,双曲线上一点是$P$。
同样根据双曲线的定义,双曲线上任意一点到两个焦点的距离之差的绝对值等于实轴$2a$,即$||PF_1| - |PF_2|| = 2a$。
圆锥曲线重要结论
双曲线的焦点弦的两个焦半径倒数之和为常数圆锥曲线中的重要性质经典精讲上性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆 双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b )2 21已知动点P 在椭圆—L 4 3 1上,F i , F 2为椭圆之左右焦点,点 G F 1PF 2内心,试求点G 的轨迹方程 x 2 2 •已知动点P 在双曲线一 4 3 仝 1上,F 1, F 2为双曲线之左右焦点,圆G 是厶F 1PF 2的内切圆,探究圆G 是否过定点,并证明之• 性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。
椭圆的焦点弦的两个焦半径倒数之和为常数 IAF 1 | |BF 1 |ep|AF | |BF | epAB 在同支时I AR | | BF 1 | ep—AB 在异支时ep性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数此求四边形ABCD 面积的最小值•性质四:椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值X 2 y 25.已知椭圆-冷1,点F 1为椭圆之左焦点,过点F 1的直线11分别交椭圆于A , B 两点,II设直线AB 与 y 轴于点M , MA AFtMB BF 1,试求性质五:椭圆、双曲线的焦半径向量模的比之和为定值过椭圆或双曲线上任点 A 作两焦点的焦点弦AB AC 其共线向量比之和为定值. 即AF 1 F 1 B AF 2 F 2C12 1F A?FB 恒成立•并由此求I ABI 的最小值•椭圆互相垂直的焦点弦倒数之和为常数2 e 2双曲线互相垂直的焦点弦倒数之和为常数抛物线互相垂直的焦点弦倒数之和为常数|AB||CD|2ep|AB||CD ||2 e 2|2ep2 e 2|AB||CD|2ep24.已知椭圆—4 2红 1 , F 1为椭圆之左焦点,过点 F 1的直线11,12分别交椭圆于 A, B 两3点和C, D 两点,且 I 112 ,是否存在实常数,使的值.实常数 ,恒成立•并由⑴求椭圆C 的方程;⑵设E 为椭圆C 上任一点,过焦点 F i , F 2的弦分别为ES, ET ,设圆锥曲线中的重要性质经典精讲中2性质一:过圆锥曲线焦点所在轴上任意一点N( t,0 )的一条弦端点与对应点Y ,0的连线所成角被对称轴平分。
高考数学总复习考点知识专题讲解16 圆锥曲线光学性质
高考数学总复习考点知识专题讲解专题16 圆锥曲线光学性质知识点一:光学性质概念椭圆的光学性质:从一个焦点发出的照射到椭圆上其反射光线会经过另一个焦点。
双曲线有一个光学性质:从一个焦点发出的照射到双曲线上其反射光线的反向延长线会经过另一个焦点。
抛物线有一个光学性质:从焦点发出的照射到抛物线上其反射光线平行于抛物线开口方向。
知识点二:光学性质定理定理1点P 为椭圆上任一点,1F 、2F 为椭圆的两焦点,则椭圆在P 点处的切线与12F PF ∠的平分线垂直.由于本题证明方法很多,如果是解决小题,我们按照小题小作来解读,根据物理学的反射原理,反射光线等于入射光线,即把椭圆上的点P 处切线看成镜面,那么法线就是12F PF ∠的平分线,所以它们垂直就自然而然了,同理也能推导双曲线.推论1:设椭圆22221x y a b+=(0a >,0b >)的两焦点为1F ,2F ,00(,)P x y (0x ,00y ≠)为椭圆上一点,则12F PF ∠的角平分线所在直线l 的方程为22220000(0)a y x b x y a b x y ---=.根据光学性质可知00(,)P x y 处切线方程为12020=+b yy a xx ,由于P 点处的切线与12F PF ∠的平分线垂直,故12F PF ∠的角平分线所在直线l 的方程为000022()a y b x y y x x =--,即22220000(0)a y x b x ya b x y ---=.【例1】已知点P 为椭圆上任一点,1F 、2F 为椭圆的两焦点,求证椭圆在P 点处的切线与12F PF ∠的平分线垂直.定理2点P 为双曲线上任一点.1F 、2F 为双曲线的两焦点,则双曲线在P 点处的切线与12F PF ∠的平分线重合.推论2 设双曲线22221x y a b-=±(0a >,0b >)的两焦点为1F ,2F ,00(,)P x y (0x ,00y ≠)为双曲线上一点,则12F PF ∠的角平分线所在直线l 的方程.为222200b x x a y y a b -=±. 【例2】已知点P 为双曲线上任一点,1F 、2F 为椭圆的两焦点,求证双曲线在P 点处的切线与12F PF ∠的平分线重合.定理3点P 为抛物线上任一点,F 为拋物线的焦点,过P 作拋物线的准线的垂线,垂足为P ',则拋物线在点P 处的切线与FPP ∠'的平分线重合.证明:设拋物线的方程为22y px =,200(,)2y P y p.利用导数知识易得抛物线在P 点处的切线斜率存在时为0PQ P k y =.又(,0)2pF ,则02202PP py k y p'=-,0PP k '=.由夹角公式可得:0tan ||||1PP PQ PP PQk k PQPP k k y ∠''-=+'=,0220002202tan ||||121PP PQ PP PQ py pk k y y p FPQ py p k k y y p ''---∠==++⋅-2222232000022222220000021||||()2py p py y p p py y y y p y p p y p -----=⋅=⋅--++22022000()1||||p p y p y y y p -+=⋅=+. 即有tan tan QPP FPQ ∠∠'=,所以PQ 为FPP ∠'的平分线.【例3】(2011年高考全国卷II 理15)已知1F 、2F 分别为双曲线C :221927x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线.则2||AF =________.【例4】(2023•东莞市期末)如图,从椭圆的一个焦点1F 发出的光线射到椭圆上的点P ,反射后光线经过椭圆的另一个焦点2F ,事实上,点0(P x ,0)y 处的切线00221xx yy a b+=垂直于12F PF ∠的角平分线.已知椭圆22:143x y C +=的两个焦点是1F ,2F ,点P 是椭圆上除长轴端点外的任意一点,12F PF ∠的角平分线PT 交椭圆C 的长轴于点(,0)T t ,则t 的取值范围是.【例5】(2023•老唐说题教师群探讨)如图,椭圆焦点三角形的1290F AF ∠=︒,AB 为12F AF ∠的角平分线且2AB BD =,则椭圆离心率为.【例6】(2023•广东期末)我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:1F 、2F 是双曲线的左、右焦点,从2F 发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过1F ;当P 异于双曲线顶点时,双曲线在点P 处的切线平分12F PF ∠.若双曲线C 的方程为221916x y -=,则下列结论不正确的是()A .射线n 所在直线的斜率为k ,则44(,)33k ∈-B .当m n ⊥时,12||||32PF PF ⋅= C .当n 过点(7,5)Q 时,光线由2F 到P 再到Q 所经过的路程为13 D .若点T 坐标为(1,0),直线PT 与C 相切,则2||12PF =【例7】(2023•阳信期末)已知椭圆22143x y +=上一点P 位于第一象限,左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,12F PF ∠的角平分线与x 轴交于点G ,与y 轴交于点1(0,)2H -,则()A .四边形12HF PF 的周长为4+.直线1A P ,2A P 的斜率之积为34- C .12||:||3:2FG F G =D .四边形12HF PF 的面积为2【例8】(2023•天河区期末)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线2:C y x =,O 为坐标原点.一束平行于x 轴的光线1l 从点(P m ,1)(1)m >射入,经过C 上的点1(A x ,1)y 反射后,再经C 上另一点2(B x ,2)y 反射后,沿直线2l 射出,经过点Q ,则()A .121y y =-B .延长AO 交直线14x =-于点D ,则D ,B ,Q 三点共线 C .25||16AB =D .若PB 平分ABQ ∠,则4116m =知识点三:光学定理与内心旁心 定理一:椭圆焦点三角形内心如图,I 为12PF F △内切圆的圆心,PI 和12F F 相交于点N (区分切点M ),则①INe IP=.②121212IF F PF F IF F S e S S =-△△△证明:法一(利用角平分线定理+等比定理):1212121222F N F N F N F N IN c e IP F P F P F P F P a+=====+. 法二:(光学定理+中垂线)PI 是)(00y x P ,处切线(切点弦)的中垂线(考虑极限情况,切点看为两个交点的中点),根据中垂线截距定理202ax c x N =,再根据角平分线定理可知e ex a c a x c P F N F IP IN =++==020211,根据等面积法,121212IF F N N P NP NPF F IF F S y c y IN IPy y c y y S S ===---△△△.中垂线截距定理:若B A 、关于直线PQ 对称,可以知道线段AB 被直线PQ 垂直平分,其中(0)P n ,,(0)Q m ,则能得出以下定理(不妨设焦点在x 轴上): 202y c m b =-(椭圆),202y c m b =(双曲线);202x c n a =(椭圆),202x c n a=(双曲线).因为22AB OM b k ak =-⋅(点差法),1AB PQ k k =-⋅,所以22OMPQb a k k =,故220000b a y x y m x =-,即202y c m b =-;同理220000b a y x y x n=-,即202x c n a =.定理二:双曲线焦点三角形旁心旁心定理:I 是12PF F △的旁心,1F I 、2F I 分别是1PF D ∠、2PF D ∠的角平分线.如图,则:ID e IP =,11IF D PF IS e S =△△.证明:法一:(利用外角平分线定理+等比定理):111212121222DIF PIF S ID DF F D DF F D ce S PIPF PF PF PF a -======-△△,法二:(光学定理+中垂线)PD 是)(00y x P ,处切线(切点弦)的中垂线,根据中垂线截距定理202ax c x D =,再根据角平分线定理可知,e a ex c a x c PF DF IP ID =--==020222 【例9】(2023•思明区期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1(,0)F c -和2(,0)F c,1(M x 为C 上一点,且△12MF F 的内心为2(I x ,1),则椭圆C 的离心率为()A .35B .25C .13D .12【例10】(2023哈三中高三一模16题)如图,椭圆)0(12222>>=+b a by a x与双曲线)00(12222>>=-n m ny m x ,有公共焦点)0(1,c F -,)0(2,c F ,椭圆的离心率为1e ,双曲线的离心率为2e ,点P 为两曲线的一个公共点,︒=∠6021PF F ,则=+222131e e ;I 为21F PF ∆的内心,G I F 、、1三点共线,且0=⋅IP GP ,x 轴上点A 、B 满足IP AI λ=,GP BG μ=,则22μλ+的最小值为.知识点四:光学定理与大圆小圆问题1. 椭圆的大圆焦点作椭圆切线的垂线,垂足轨迹是以长轴为直径的圆.这个圆我们称之为大圆.如图,已知椭圆()222210x y a b a b+=>>上点P 处的切线为l ,则过焦点12F F 、作直线l 的垂线,垂足H 的轨迹是以长轴为直径的圆,即为222x y a +=.证明: 如图,作2F H l ⊥,1F H l '⊥.当点P 不在长轴的两个端点时,延长1F P 交2F H 于点Q ,根据椭圆的光学性质可知:切线l 平分2F PQ ∠,故2PQF △是等腰三角形,点H是线段2F Q 的中点.因此,在12F F Q 中,1112222FQ F P PQF P PF OH a ++====,故点H 的轨迹是222()x y a x a +=≠±,同理,H`的轨迹也符合此轨迹方程,当点P 在长轴的两个端点时,此时的射影点(,0)a ±亦满足上述方程.【例11】(2023•连城县月考)如图所示,已知1F ,2F 是椭圆2222:1(0)x y a b a bΓ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A .直线B .圆C .椭圆D .双曲线2.大圆性质拓展如图,已知椭圆()222210x y C a b a b+=>>:上点P 处的切线为l ,且焦点12F F 、在直线l 上的垂足分别为G 、H ,设12F PF θ∠=,椭圆的上顶点为B ,左右顶点分别为1A 、2A ,则:(1) 212FG F H b =; (2)直角梯形12F F GH 的面积的为2sin S a θ=,又12F BF θ≤∠,故212max12,22,02a F BF S bc F BF ⎧π⎛⎫∠≥ ⎪⎪⎪⎝⎭=⎨π⎛⎫⎪<∠< ⎪⎪⎝⎭⎩;证明(1) 法一:设1F P m =,2F P n =,则2cos 11θPF G F =,2cos 22θPF H F =222222212411cos ()42cos 2224m n c m n c mn FG F H mn mn mn b θθ+-+++-=====.法二延长1MF 交大圆222x y a +=于点I ,根据对称性,有21F H F I =,再利用相交弦定理,则212111112()()FG F H FG F I A F F A a c a c b ===-+=.(2) 利用椭圆的光学性质,如图所示,延长1F P 交2F H 于点N ,过点N 作//GH MN 交G F 1延长线于点M,因此,2121111111()()sin cos 222222S FG F H MN FG MG MN F M MN F N θθ=+=+==,又1122F N F P PF a =+=,则2214sin cos sin 222S a a θθθ==. 注意:大题在证明光学性质时比较麻烦,建议参考例题方式书写大题,那样其实也不难.【例12】已知椭圆22143x y +=,圆224x y +=,直线2y x =与椭圆交于点A ,过A 作椭圆的切线交圆于M 、N 两点(M 在N 的左侧),则12MF NF =.【例13】(2023•南充模拟)设点1(,0)F c -,2(,0)F c 分别是椭圆222:1(1)x C y a a+=>的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅的最小值为0. (1)求椭圆C 的方程;(2)如图,动直线:l y kx m =+与椭圆C 有且仅有一个公共点,点M ,N 是直线l 上的两点,且1F M l ⊥,2F N l ⊥,求四边形12F MNF 面积S 的最大值.3.双曲线的小圆焦点在双曲线切线上的垂足轨迹是以实轴为直径的圆,我们称之为小圆.如图,已知双曲线()222210,0x y a b a b-=>>上点P 处的切线为l ,则焦点12F F 、在直线l上的射影点H 的轨迹是以实轴为直径的圆,即为222x y a +=.【例14】已知双曲线221916x y -=的两焦点分别为12F F 、,P 为双曲线上一动点,过点1F 作12F PF ∠平分线所在直线的垂线,则垂足M 的轨迹方程为( ).A .229x y +=B .2216x y +=C .229x y -=D .2216x y -=【例15】(多选)设双曲线22:14x C y -=左右焦点分别为1F ,2F ,设右支上一点P 与2F 所连接的线段为直径的圆为圆1O ,以实轴为直径的圆为圆2O ,则下列结论正确的有() A .圆1O 与圆2O 始终外切B .若2F P 与渐近线垂直,则2F P 与圆2O 相切 C .12F PF ∠的角平分线与圆1O 相切D .三角形12F PF 的内心和外心最短距离为2【例16】(2023•江苏模拟)已知椭圆22:143y x C +=,点0(P x ,0)y 为椭圆C 在第一象限的点,12F F 为椭圆的左、右焦点,点P 关于原点的对称点为Q . (1)设点Q 到直线1PF ,2PF 的距离分别为1d ,2d ,求12d d 取值范围; (2)已知椭圆在0(P x ,0)y 处的切线l 的方程为:00143x x y y+=,射线1QF 交l 于点R .求证:11F RP RPF ∠=∠.【例17】(2022•湖北21校)平面直角坐标系xOy 中,已知点(2,0)M -,(2,0)N 点A 满足||||AM AN -=A 的轨迹C . (1)求C 的方程;(2)设点T 与点A 关于原点O 对称,MTN ∠的角平分线为直线l ,过点A 作l 的垂线,垂足为H ,交C 于另一点B ,求:||||AH BH 的最大值.【例18】(2023•闵行区期中)如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于该椭圆的另一个焦点2F 上.椭圆有光学性质:从一个焦点出发的光线,经过椭圆面反射后经过另一个焦点,即椭圆上任意一点P 处的切线与直线1PF 、2PF 的夹角相等.已知12BC F F ⊥,垂足为1F ,1||3F B m =,12||4F F cm =,以12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立如图的平面直角坐标系. (1)求截口BAC 所在椭圆C 的方程;(2)点P 为椭圆C 上除长轴端点和短轴端点外的任意一点.①是否存在m ,使得P 到2F 和P 到直线x m =的距离之比为定值,如果存在,求出的m 值,如果不存在,请说明理由;②若12F PF ∠的角平分线PQ 交y 轴于点Q ,设直线PQ 的斜率为k ,直线1PF 、2PF 的斜率分别为1k ,2k ,请问21k kk k +是否为定值,若是,求出这个定值,若不是,请说明理由.【例19】(2023•上海模拟)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是点1F ,2F ,过点1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1,点2F 与短轴两个顶点构成等边三角形.(1)求椭圆C 的方程;(2)已知过椭圆上点0(M x ,0)y 的椭圆的切线方程为00221xx yy a b+=.求证:过椭圆C 上任一点0(M x ,0)y 的切线与直线1MF 和2MF 所成角都相等;(3)点P 是椭圆C 上除长轴端点外的任一点连接1PF ,2PF ,设12F PF ∠的角平分线PQ 交C 的长轴于点(,0)Q q ,求q 的取值范围.同步训练1.(2022•怀化二模)若点P 是椭圆22221(0)4x y b b b+=>上的点,且点I 是焦点三角形△12PF F 的内心,12F PF ∠的角平分线交线段12F F 于点M ,则||PIIM等于()A C .122.(2023•贵州模拟)根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,若从点2F 发出的光线经双曲线右支上的点0(A x ,2)反射后,反射光线为射线AM ,则2F AM ∠的角平分线所在的直线的斜率为() A..CD3.(2022•南昌三模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,P 是椭圆上的动点,I 和G 分别是△12PF F 的内心和重心,若IG 与x 轴平行,则椭圆的离心率为() A .12B3.(2022•焦作一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,M 为C 上一点,且△12MF F 的内心为0(I x ,2),若△12MF F 的面积为4b ,则1212||||(||MF MF F F +=) A .32B .53C.434.(2023•建邺区期中)已知抛物线24y x =的焦点为F ,直线l 过点F 且与抛物线交于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,MAF ∠的角平分线与抛物线的准线交于点P ,线段AB 的中点为Q .若||16AB =,则||(PQ =) A .2B .4C .6D .85.(2022•衡阳二模)圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点、由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角、请解决下面问题:已知1F ,2F 分别是双曲线22:12y C x -=的左、右焦点,点P 为C 在第一象限上的点,点M 在1F P 延长线上,点Q的坐标为,且PQ 为12F PF ∠的平分线,则下列正确的是() A .12||2||PF PF =B .12||23PF PF +=C .点P到x .2F PM ∠的角平分线所在直线的倾斜角为150︒6.(2023•阳信县期末)已知椭圆22143x y +=上一点P 位于第一象限,左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,12F PF ∠的角平分线与x 轴交于点G ,与y 轴交于点1(0,)2H -,则()A .四边形12HFPF 的周长为4+.直线1A P ,2A P 的斜率之积为34- C .12||:||3:2FG F G =D .四边形12HF PF 的面积为2 7.(2023•佛山期末)圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线过椭圆的另一个焦点.如图,胶片电影放映机的聚光灯有一个反射镜.它的形状是旋转椭圆.为了使影片门(电影胶片通过的地方)处获得最强的光线,灯丝2F ,与影片门1F 应位于椭圆的两个焦点处.已知椭圆22:143x y C +=,椭圆的左右焦点分别为1F ,2F ,一束光线从2F 发出,射向椭圆位于第一象限上的P 点后反射光线经过点1F ,且124tan 3F PF ∠=,则12F PF ∠的角平分线所在直线方程为.8.(2023•诸暨市期末)圆锥曲线有着令人惊奇的光学性质,这些性质均与它们的焦点有关.如:从椭圆的一个焦点处出发的光线照射到椭圆上,经过反射后通过椭圆的另一个焦点;从抛物线的焦点处出发的光线照射到抛物线上,经反射后的光线平行于抛物线的轴.某次科技展览中某展品的一个截面由抛物线的一部分1C 和一个“双孔”的椭圆2C 构成(小孔在椭圆的右上方).如图,椭圆22212:1,,43x y C F F +=为2C 的焦点,B 为下顶点,2F 也为1C 的焦点,若由1F 发出一条光线经过点B 反射后穿过一个小孔再经抛物线上的点D 反射后平行于x 轴射出,由1F 发出的另一条光线经由椭圆2C 上的点P 反射后穿过另一个小孔再经抛物线上的点E 反射后平行于x轴射出,若两条平行光线间隔,则1cos BF P ∠=.11.已知P是双曲线221168x y -=右支上一点,12F F 、分别是双曲线的左、右焦点,O 为坐标原点,1(0)F P PM λλ=>,22PF PM PN PM PF μ⎛⎫⎪=+⎪⎝⎭,20PN F N =.若22PF =,则ON =.12.已知双曲线22221x y a b-=的左右焦点分别为12F F 、,O 为双曲线的中心,P 是双曲线右支上的点,12PF F △的内切圆的圆心为I ,且圆I 与x 轴相切于点A ,过2F 作直线PI 的垂线,垂足为B ,若e 为双曲线的离心率,则( ).A .OB e OA =B .OA e OB=C .OA OB =D .OA 与OB 关系不确定。
圆锥曲线焦点三角形问题常见类型解析
圆锥曲线焦点三角形问题常见类型解析圆锥曲线中的三角形问题(特别是与焦半径相关的三角形问题)是解析几何中的一个综合性较强的重点内容。
下举例谈谈圆锥曲线焦点三角形问题常见类型。
一、定值问题例 1. 椭圆x a y ba b 222210+=>>()上一点P ,两个焦点)0,()0,(21c F c F ,-, 12F PF ∆的内切圆记为M ,求证:点P 到M 的切线长为定值。
证明:设⊙M 与△PF 1F 2的切点为A 、B 、C ,如图1,因⊙M 是△PF 1F 2的内切圆,所以|F 1A|=|F 1C|、|F 2C|=|F 2B|,|PA|=|PB|; ∵ |F 1C|+|F 2C|=2c ,∴ |F 1A|+|F 2B|=2c ,由椭圆第一定义知 |PF 1|+|PF 2|=2a ,∴ |PA|+|F 1A|+|PB|+|F 2B|=2a , ∴ 2|PA|=2a -2c 即 |PA|=a -c 为定值.证毕. #点评:圆锥曲线定义不仅是推导圆锥曲线方程及性质的基础, 而且也是解题的重要工具.对于有些解析几何问题,若从圆锥曲线的定义上去思考,往往会收到避繁就简,捷足先登的解题效果。
二、动点轨迹问题例2、已知椭圆x a y ba b 222210+=>>()上一动点P ,两个焦点)0,()0,(21c F c F ,-, 12F PF ∆的内切圆记为M ,试求圆心M 的轨迹方程 。
解析: 如图1,设∠PF 1F 2=α、∠PF 2F 1=β,M(x ,y)则在△PF 1F 2中由正弦定理及椭圆的定义有||sin ||sin ||sin[()]PF PF F F 1212180βααβ==-+°,由等比定理有即1212||||||22sin sin sin()sin sin sin()PF PF F F a cαβαβαβαβ+=⇒=++++,又由合分比定理知tan tan 22a c a c αβ-⋅=+。
盘点圆锥曲线中的焦点三角形
盘点圆锥曲线中的焦点三角形圆锥曲线是平面上的重要几何图形,分为椭圆、双曲线和抛物线三种类型。
在这三种曲线中,存在一些共有的性质,比如焦点三角形。
本文将对圆锥曲线中的焦点三角形做一个详细盘点。
椭圆是一种被圆锥截得的曲线,其定义可以表述为:平面上一点到两个给定点(称为焦点)的距离之和等于常数。
对于任意一条椭圆,都可以找到一个形态类似于三角形的图形,称为椭圆焦点三角形。
椭圆焦点三角形有一些独特的性质。
首先,它的三角形内角之和等于180度。
其次,焦点三角形的重心和椭圆中心重合。
最后,椭圆的离心率(定义为焦距与长轴长度之比)等于焦点三角形的离心率(定义为外接圆半径与内切圆半径之比)。
虽然双曲线焦点三角形与椭圆焦点三角形有一些相似之处,但也有一些明显的不同。
首先,与椭圆焦点三角形不同,双曲线焦点三角形的三角形内角之和不等于180度。
其次,双曲线焦点三角形的三边长度不一定相等。
最后,双曲线的离心率等于1/cosh(A),其中A是双曲线焦点三角形的一个角度。
抛物线焦点三角形的最大特点是其三角形内角之和与另外两种曲线不同,没有相关数学公式可表述,但是三角形与其它图形一样,有着重心和其他特征。
抛物线的离心率等于1,因此抛物线焦点三角形的离心率也等于1。
总结无论是椭圆、双曲线还是抛物线,它们都有一个焦点三角形形态,且每种曲线的焦点三角形都有其独特的性质和特征。
这些性质和特征在数学研究和实际应用中都有着重要的意义和价值。
理解圆锥曲线中的焦点三角形是进一步学习和应用曲线相关知识的重要基础。
盘点圆锥曲线中的焦点三角形
盘点圆锥曲线中的焦点三角形
圆锥曲线是数学中的重要概念之一,包括椭圆、双曲线和抛物线。
在圆锥曲线中,有一个有趣的性质,即任意一条直线与椭圆、双曲线或抛物线的交点构成一个三角形。
这个三角形被称为焦点三角形。
在本文中,我将盘点一下圆锥曲线中的焦点三角形。
1. 椭圆的焦点三角形:
椭圆是一个闭合曲线,它的焦点在椭圆的两个焦点上。
设椭圆的焦点为F1和F2,直线L与椭圆交于A和B两点,那么焦点三角形的顶点就是F1、F2和交点C,即三角形的顶点是椭圆的焦点和交点。
对于不同的直线L,焦点三角形的形状和大小都不一样,但是它们都可以包含在椭圆的内部。
在圆锥曲线中,焦点三角形有着丰富的性质和应用。
它们的形状和大小取决于直线和曲线的位置关系,可以通过解析几何和向量几何的方法进行计算。
焦点三角形的顶点是曲线的焦点和交点,元素之间的关系非常特殊,可以用于证明一些定理和性质。
焦点三角形也有一些实际应用,比如在天体力学中研究行星轨道的形状和运动等。