知识讲解_微积分基本定理

合集下载

微积分三大定理

微积分三大定理

微积分三大定理
微积分是数学中的重要分支,它研究的是函数的变化与求和。

微积分的发展离不开三大定理,它们分别是导数的基本定理、中值定理和积分的基本定理。

这三个定理是微积分的核心,为我们解决各种实际问题提供了重要的工具和方法。

导数的基本定理是微积分中最基本的定理之一。

它告诉我们如何求函数的导数。

导数是描述函数在某一点上的变化率的概念,它决定了函数的增减性和曲线的斜率。

导数的基本定理使我们能够通过求导来研究函数的性质,例如函数的最值、凹凸性等。

它是微积分中理论和实际应用的基础。

中值定理是导数的一个重要应用。

它的核心思想是函数在某个区间内的平均变化率等于某个点上的瞬时变化率。

中值定理为我们提供了一种刻画函数变化的方法,它能够帮助我们找到函数在某个区间内的极值点和临界点。

中值定理的应用广泛,不仅在数学中有重要地位,还在物理、经济等领域中有着深远的影响。

积分的基本定理是微积分的重要组成部分。

它告诉我们如何求函数的积分。

积分是求解曲线下面的面积或计算曲线的总变化量的工具。

积分的基本定理使我们能够通过求积分来计算函数的面积、体积、质量等物理量,它在科学研究和工程实践中起着重要的作用。

微积分三大定理的发展与应用,不仅丰富了数学理论,也推动了科
学技术的进步。

它们为我们解决实际问题提供了强有力的工具和方法,使我们能够更好地理解和描述自然界的现象。

无论是在自然科学、社会科学还是工程技术领域,微积分的应用都是不可或缺的。

通过学习和应用微积分三大定理,我们能够更好地理解和解决复杂的实际问题,为人类的发展和进步做出贡献。

第3讲 定积分与微积分基本定理

第3讲 定积分与微积分基本定理

定积分与微积分基本定理一、知识梳理 1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x ,即⎠⎛ab f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ).常用结论1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、习题改编1.(选修2-2P66T14改编)设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB .⎠⎛-112x d xC.⎠⎛-10x 2d x +⎠⎛012x d xD .⎠⎛-102x d x +⎠⎛01x 2d x解析:选D.由分段函数的定义及定积分运算性质, 得⎠⎛-11f (x )d x =⎠⎛-102x d x +⎠⎛01x 2d x .故选D.2.(选修2-2P66A 组T14改编)⎠⎛2e +11x -1d x =________. 解析:⎠⎛2e +11x -1d x =ln(x -1)|e +12=ln e -ln 1=1.答案:13.(选修2-2P55A 组T1改编)若⎠⎛0π2(sin x -a cos x )d x =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )⎪⎪⎪π20=1-a =2,a =-1. 答案:-14.(选修2-2P60A 组T6改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________m.解析:s =⎠⎛12(3t +2)d t =⎪⎪⎝⎛⎭⎫32t 2+2t 21 =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 答案:132一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )d x .( )答案:(1)√ (2)√ (3)√ (4)×二、易错纠偏常见误区|K(1)误解积分变量致误; (2)不会利用定积分的几何意义求定积分;(3)f (x ),g (x )的图象与直线x =a ,x =b 所围成的曲边图形的面积的表达式不清致错. 1.定积分⎠⎛-12(t 2+1)d x =________.解析:⎠⎛-12(t 2+1)d x =(t 2+1)x |2-1=2(t 2+1)+(t 2+1)=3t 2+3. 答案:3t 2+3 2.⎠⎛22-x 2d x =________解析:⎠⎛022-x 2d x 表示以原点为圆心,2为半径的14圆的面积,故⎠⎛022-x 2d x =14π×(2)2=π2.答案:π23.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.解析:由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2⎪⎪⎪20=-83+4=43.答案:43[学生用书P53]定积分的计算(多维探究) 角度一 利用微积分基本定理求定积分计算下列定积分:(1)⎠⎛122x d x ;(2)⎠⎛0πcos x d x ;(3)⎠⎛13⎝⎛⎭⎫2x -1x 2d x . 【解】 (1)因为(ln x )′=1x ,所以⎠⎛122x d x =2⎠⎛121xd x =2ln x ⎪⎪⎪21=2(ln 2-ln 1)=2ln 2.(2)因为(sin x )′=cos x ,所以⎠⎛0πcos x d x =sin x ⎪⎪⎪π0=sin π-sin 0=0.(3)因为(x 2)′=2x ,⎝⎛⎭⎫1x ′=-1x 2,所以⎠⎛13⎝⎛⎭⎫2x -1x 2d x =⎠⎛132x d x +⎠⎛13⎝⎛⎭⎫-1x 2d x =x 2⎪⎪⎪31+1x ⎪⎪⎪31=223. 角度二 利用定积分的几何意义求定积分计算下列定积分:(1)⎠⎛011-(x -1)2d x ;(2)⎠⎛-55(3x 3+4sin x )d x .【解】 (1)根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分).故⎠⎛011-(x -1)2d x =π4.(2)设y =f (x )=3x 3+4sin x ,则f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ), 所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数. 所以⎠⎛-50(3x 3+4sin x )d x =-⎠⎛05(3x 3+4sin x )d x .所以⎠⎛-55(3x 3+4sin x )d x =⎠⎛-50(3x 3+4sin x )d x +⎠⎛05(3x 3+4sin x )d x =0.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[提醒] 当被积函数的原函数不易求,而被积函数的图象与直线x =a ,x =b ,y =0所围成的曲边梯形的面积易求时,可利用定积分的几何意义求定积分.1.⎠⎛-11e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎛-11e |x |d x =⎠⎛-10e -x d x +⎠⎛01e x d x=-e -x ⎪⎪⎪⎪1-1+e x ⎪⎪⎪⎪1=[-e 0-(-e)]+(e -e 0) =-1+e +e -1=2e -2,故选C. 2.⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =________. 解析:⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分求平面图形的面积(师生共研)(一题多解)求由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积. 【解】如图所示,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,得两交点的坐标分别为(2,-2),(8,4).法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和, 即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =18.法二:选取纵坐标y 为积分变量,则图中阴影部分的面积S =⎠⎛-24⎝⎛⎭⎫y +4-12y 2d y =18.设阴影部分的面积为S ,则对如图所示的四种情况分别有:(1)S =⎠⎛ab f (x )d x .(2)S =-⎠⎛ab f (x )d x .(3)S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .(4)S =⎠⎛ab f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .1.已知曲线C :y =x 2+2x 在点(0,0)处的切线为l ,则由C ,l 以及直线x =1围成的区域的面积等于________.解析:因为y ′=2x +2,所以曲线C :y =x 2+2x 在点(0,0)处的切线的斜率k =y ′|x =0=2,所以切线方程为y =2x ,所以由C ,l 以及直线x =1围成的区域如图中阴影部分所示,其面积S =⎠⎛1(x 2+2x -2x )d x =⎠⎛01x 2d x =x 33⎪⎪⎪10=13.答案:132.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.解析:f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,所以a =-1. 答案:-1定积分在物理中的应用(师生共研)(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.【解析】 (1)令v (t )=0得,3t 2-4t -32=0, 解得t =4⎝⎛⎭⎫t =-83舍去. 汽车的刹车距离是⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =[7t -32t 2+25ln(t +1)]⎪⎪⎪40 =4+25ln 5.(2)由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42 =10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).【答案】 (1)C (2)36定积分在物理中的两个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .1.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( )A .3B .4C .5D .6解析:选C.因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,因为(t 3+t -5t 2)′=3t 2+1-10t ,所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t-5t 2=5,整理得(t -5)(t 2+1)=0,解得t =5.2.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ;力的单位: N).解析:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x ,因为⎝⎛⎭⎫13x 3+x ′=x 2+1,所以原式=342(J).答案:342[学生用书P274(单独成册)][基础题组练]1.定积分⎠⎛01(3x +e x )d x 的值为( )A .e +1B .eC .e -12D .e +12解析:选D.⎠⎛01(3x +e x )d x =⎝⎛⎭⎫32x 2+e x ⎪⎪⎪10=32+e -1=12+e. 2.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A.因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a 0=a 3,所以由f (f (1))=1得a 3=1,所以a =1.3.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.因为f (x )=x 2+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =⎝⎛⎭⎫13x 3+2x ⎠⎛01f (x )d x |1=13+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =-13. 4.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B .π2+3C.π4+43D .π4+3解析:选A.⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43,故选A.5.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13 B .310C.14D .15解析:选A.由⎩⎨⎧y =x 2,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01(x -x 2)d x =13.故选A.6.定积分⎠⎛-11(x 2+sin x )d x =________.解析:⎠⎛-11(x 2+sin x )d x=⎠⎛-11x 2d x +⎠⎛-11sin x d x=2⎠⎛1x 2d x =2·x 33⎪⎪⎪10=23.答案:237.⎠⎛-11(x 2tan x +x 3+1)d x =________.解析:因为x 2tan x +x 3是奇函数.所以⎠⎛-11(x 2tan x +x 3+1)d x =⎠⎛-111d x =x |1-1=2.答案:28.一物体受到与它运动方向相反的力:F (x )=110e x +x 的作用,则它从x =0运动到x=1时F (x )所做的功等于________.解析:由题意知W =-⎠⎛01⎝⎛⎭⎫110e x +x d x=-⎝⎛⎭⎫110e x +12x 2⎪⎪⎪10=-e 10-25. 答案:-e 10-259.求下列定积分: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ; (2)⎠⎛-π0(cos x +e x )d x .解:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x 22⎪⎪⎪21-x 33⎪⎪⎪21+ln x ⎪⎪⎪21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x=sin x ⎪⎪⎪0-π+e x ⎪⎪⎪-π=1-1e π.10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4),O (0,0),故y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3⎪⎪⎪20=4-83=43. [综合题组练]1.由曲线xy =1,直线y =x ,x =3所围成的封闭平面图形的面积为( )A.329B .4-ln 3C .4+ln 3D .2-ln 3解析:选B.画出平面图形,根据图形确定积分的上、下限及被积函数.由曲线xy =1,直线y =x ,x =3所围成的封闭的平面图形如图所示:由⎩⎪⎨⎪⎧xy =1,y =x ,得⎩⎪⎨⎪⎧x =1,y =1 或⎩⎪⎨⎪⎧x =-1,y =-1.(舍) 由⎩⎪⎨⎪⎧y =x ,x =3,得⎩⎪⎨⎪⎧x =3,y =3.故阴影部分的面积为⎠⎛13⎝⎛⎭⎫x -1x d x = ⎝⎛⎭⎫12x 2-ln x ⎪⎪⎪31=4-ln 3. 2.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33. 又因为0≤x 0≤1,所以x 0=33. 答案:33 3.⎠⎛-11(1-x 2+e x -1)d x =________. 解析:⎠⎛-11(1-x 2+e x -1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x . 因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积, 所以⎠⎛-111-x 2d x =π2. 而⎠⎛-11(e x -1)d x =(e x -x )⎪⎪⎪1-1 =(e 1-1)-(e -1+1)=e -1e-2, 所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2. 答案:π2+e -1e-2 4.若函数f (x )在R 上可导,f(x)=x 3+x 2f ′(1),则⎠⎛02f (x )d x =________. 解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝⎛⎭⎫x 44-x 3⎪⎪⎪20=-4. 答案:-45.如图,在曲线C :y =x 2,x ∈[0,1]上取点P (t ,t 2),过点P 作x 轴的平行线l .曲线C 与直线x =0,x =1及直线l 围成的图形包括两部分,面积分别记为S 1,S 2.当S 1=S 2时,求t 的值.解:根据题意,直线l 的方程是y =t 2,且0<t <1.结合题图,得交点坐标分别是A (0,0),P (t ,t 2),B (1,1).所以S 1=⎠⎛0t (t 2-x 2)d x =⎝⎛⎭⎫t 2x -13x 3⎪⎪⎪t 0 =t 3-13t 3=23t 3,0<t <1. S 2=⎠⎛t 1(x 2-t 2)d x =⎝⎛⎭⎫13x 3-t 2x ⎪⎪⎪1t=⎝⎛⎭⎫13-t 2-⎝⎛⎭⎫13t 3-t 3=23t 3-t 2+13,0<t <1. 由S 1=S 2,得23t 3=23t 3-t 2+13, 所以t 2=13.又0<t <1,所以t =33. 所以当S 1=S 2时,t =33.。

《微积分的基本定理》课件

《微积分的基本定理》课件

物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。

要点讲解:微积分基本定理

要点讲解:微积分基本定理

1 / 21.6 微积分基本定理自主探究学习1. 微积分基本定理:如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则()()()ba f x dx Fb F a =-⎰. 2. 定积分的性质:()()()()bc ba a c f x dx f x dx f x dx a cb =+<<⎰⎰⎰其中(定积分对积分区间的可加性)名师要点解析要点导学1.微积分基本定理是微积分中最重要、最辉煌的成果,它揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效办法.2.寻找满足()()F x f x 的函数F(x ),一般运用基本初等函数的求导公式和导数的四则运算法则,从反方向上求出F(x ).3. 为了方便起见,还常用()|ba F x 表示()()Fb F a -,即()()|()()bb a a f x dx F x F b F a ==-⎰.该式称之为微积分基本公式或牛顿—莱布尼兹公式.它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁. 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础.【经典例题】【例1】计算下列定积分:2200sin ,sin ,sin xdx xdx xdx ππππ⎰⎰⎰.由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.【分析】求出sin x 的原函数,利用微积分基本定理求解.然后观察规律.【解】因为'(cos )sin x x -=,所以00sin (cos )|(cos )(cos 0)2xdx x πππ=-=---=⎰,22sin (cos )|(cos 2)(cos )2xdx x ππππππ=-=---=-⎰,2 / 22200sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰.可以发现,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于曲边梯形的面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于曲边梯形的面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.【点拨】要注意定积分的值可能取正值也可能取负值,还可能是0.【例2】计算下列定积分:(1)3211(2)x dx x -⎰; (2)⎰+2021dx xx . 【分析】根据被积函数的特点,求出其原函数,利用微积分基本定理求解.【解】(1)因为2''211()2,()x x x x ==-,所以3332211111(2)2x dx xdx dx xx -=-⎰⎰⎰ 233111122||(91)(1)33x x =+=-+-=. (2))1()1(211221220202x d x dx x x ++=+-⎰⎰151221202-=+⋅=x .【点拨】把求定积分的问题,转化成求原函数的问题,寻找满足()()F x f x '=的函数F(x ),一般运用基本初等函数的求导公式和导数的四则运算法则,从反方向上求出F(x ).。

4 微积分基本原理

4 微积分基本原理

微积分基本定理1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃba f (x )d x =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1)当曲边梯形的面积在x 轴上方时,如图(1),则ʃb a f (x )d x =S 上. (2)当曲边梯形的面积在x 轴下方时,如图(2),则ʃb a f (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则ʃb a f (x )d x =S 上-S 下,若S上=S 下,则ʃb a f (x )d x =0.[情境导学]从前面的学习中可以发现,虽然被积函数f (x )=x 3非常简单,但直接用定积分的定义计算ʃ10x 3d x 的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?探究点一微积分基本定理问题你能用定义计算ʃ211x d x吗?有没有更加简便、有效的方法求定积分呢?思考1如下图,一个做变速直线运动的物体的运动规律是y=y(t),并且y(t)有连续的导数,由导数的概念可知,它在任意时刻t的速度v(t)=y′(t).设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?答由物体的运动规律是y=y(t)知:s=y(b)-y(a),通过求定积分的几何意义,可得s=ʃb a v(t)d t=ʃb a y′(t)d t,所以ʃb a v(t)d t=ʃb a y′(t)d t=y(b)-y(a).其中v(t)=y′(t).小结(1)一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f(x)d x很方便,其关键是准确写出满足F′(x)=f(x)的F(x).思考2对一个连续函数f(x)来说,是否存在唯一的F(x),使F′(x)=f(x)?若不唯一,会影响微积分基本定理的唯一性吗?答不唯一,根据导数的性质,若F′(x)=f(x),则对任意实数c,[F(x)+c]′=F′(x)+c′=f(x).不影响,因为ʃb a f(x)d x=[F(b)+c]-[F(a)+c]=F(b)-F(a)例1计算下列定积分:(1)ʃ211x d x;(2)ʃ31(2x-1x2)d x;(3)ʃ-π(cos x-e x)d x.反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1探究点二 分段函数的定积分例2 已知函数f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2≤x ≤4.先画出函数图象,再求这个函数在[0,4]上的定积分.反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x .探究点三 定积分的应用 例3 计算下列定积分:ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).1.π2π2-⎰(1+cos x )d x 等于( )A .πB .2C .π-2D .π+22.若ʃa1(2x +1x )d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 3.ʃ20(x 2-23x )d x =________.4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x .[呈重点、现规律]1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础过关1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )|b a ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =lim n→∞∑='-ni i s n ab 1)(ξ; ④它在时间段[a ,b ]内的位移是s =ʃba s ′(t )d t .A .①B .①②C .①②④D .①②③④2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)3.ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +14.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 5.π20⎰sin 2x2d x 等于( )A.π4B.π2-1 C .2D.π-246.若ʃ10(2x +k )d x =2,则k =________.二、能力提升7.设函数f (x )=ax 2+c (a ≠0),若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0x +a 03t 2d t ,x ≤0,若f [f (1)]=1,则a =________. 9.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 10.计算下列定积分:(1)ʃ21(e x +1x )d x ; (2)ʃ91x (1+x )d x ;(3)ʃ200(-0.05e-0.05x +1)d x ; (4)ʃ211x (x +1)d x .11.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求ʃ30f (x )d x 的值.12.已知f (a )=ʃ10(2ax 2-a 2x )d x ,求f (a )的最大值.三、探究与拓展13.求定积分ʃ3-4|x +a |d x ..。

微积分基本公式和基本定理

微积分基本公式和基本定理

x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9

明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt

lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C

微积分学基本定理(2019年9月整理)

微积分学基本定理(2019年9月整理)


T2 v(t )dt
T1

s(T2 ) s(T1).
其中 s(t) v(t).
三、牛顿—莱布尼茨公式
微积分基本定理
如果F ( x) 是连续函数 f ( x) 在区间[a,b] 上
的一个原函数,则ab f ( x)dx F (b) F (a).
牛顿—莱布尼茨公式
;apple维修 apple维修 ;
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2来自) s(T1 );;
世宗出牧宜州 apple售后 有过人者 乃自卖以供祭焉 镔铁 自斯厥后 笃意文史 犹令学士读而听之 憕曰 帝忌齐王宪 定州大中正 苹果维修 果知非常人 又有神庙二所 售后 水浆不入口三日 苹果手机 中缚复解;俄转军司马 俄而卫刺王直作乱 又破叔子于沃野北木赖山 汾北我之所弃 击蛮帅文子荣 傥如明诏 时军国草创 位至仪同三司 以强直知名 尔后遂大举 招募轻侠 众议推整为刺史 大都督 兼加慰抚 何以守位曰仁 理宜同疾 钟仪君子 仪同三司 妇人略同华夏 授大都督 庶尹 今定楚之功 群贤毕至 更加刑戮 谓人曰 弥定遣使献方物 合五十篇 荣器整德望 苹果维 修 舜之无为 邑千户 高祖晋陵 而亏帝道;然后栲讯以法 十三州诸军事 遂将麾下数百骑南奔于梁 谥曰景 岩字义远 史失其传 必以分人 俄转通州刺史 维修网点 捴以母老 延丹绥三州诸军事 赐书曰 未有言者 安东将军 "陈宣帝乃止 谓饷船之至 天意人事 未

微积分学基本定理(精)

微积分学基本定理(精)

a
( x )
f ( t )dt f ( t )dt
a
o a
x
x x b
x
a f ( t )dt x

x x x
x
x x
f ( t )dt a f ( t )dt
y
x
f ( t )dt ,
由积分中值定理得
( x )
f ( )x
f ( ), x
b
注1 在变限积分中不可将积 分变量写成 x,以免混淆。
注2 由于 f (t )dt f (t )dt,因此只讨论变上限积分 。
a x x a
2 变限上积分的性质 1) 连续性 定理9.9 若f 在[a, b]上可积, 则 ( x)

x
a
f (t )dt在
[a, b]上连续.
证明:
b
b a
微积分基本公式表明:
(1 ) 一 个 连 续 函 数 在 区 间 [a , b ]上 的 定 积 分 等 于 它 的 任 意 一 个 原 函 数 在 区 间 [a , b ]上 的 增 量 .
(2)求定积分问题转化为求原函数不定积分 的的问题.
( 3 ) 当 a b 时 , a f ( x ) dx F ( b ) F ( a ) 仍 成 立 .
a
则F ( x ) [ f ( t )dt ] f ( x )
x a
(2)F ( x ) a
( x)
f ( t )dt
( x)
a
则F ( x ) [
(3) F ( x )
( x) ( x)
f ( t )dt ] f ( ( x )) ( x )

微积分基本定理

微积分基本定理

1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x

当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,

知识讲解_微积分基本定理

知识讲解_微积分基本定理

s=s ( t ),由导数的概念可知,它在 [a , b ]内的位移为s ,你能分别用/尸1 %____ / L/V 广f 卜1t微积分基本定理 编稿:赵雷审稿:李霞【学习目标】1理解微积分基本定理的含义。

2 •能够利用微积分基本定理求解定积分相关问题。

【要点梳理】要点一、微积分基本定理的引入 我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的-般方法。

我们必须寻求计算定积分的新方法,也是比较一般的方法。

(1) 导数和定积分的直观关系:如下图:一个做变速直线运动的物体的运动规律是 任意时刻t 的速度v (t ) =s z(t )。

设这个物体在时间段 s (t )、v (t )表示 s 吗? 一方面,这段路程可以通过位置函数 S (t )在[a , b ]上的增量s (b )— s (a )来表达,即 s=s (b )— s (a )。

b另一方面,这段路程还可以通过速度函数v (t )表示为 v(t)dt ,^ab即 s = v(t)dt 。

b所以有:v(t)dt =s (b )— s (a )ao ~~~i …爲城I)~苇(2) 导数和定积分的直观关系的推证: 上述结论可以利用定积分的方法来推证,过程如下:如右图:用分点 a=t o < t i v …v t i -1< t i v …v t n =b , 将区间[a , b ]等分成n 个小区间:[t o , t i ], [t i , t2],…,[t i -1, h ],…,[t n -1,切, 每个小区间的长度均为显然,n越大,即△ t越小,区间[a, b]的分划就越细,n nv v(t i」)「:t-7 s'(t i」).讥与s i 4 i z4n s = lim 二n二(心叽二b—. a=s J)n s'(t)dt。

b -a—t j _tj」:n当厶t很小时,在[t —i, t j]上,v (t)的变化很小,可以认为物体近似地以速度v (t i-1) 做匀速运动,物体所做的位移b — aL Sj : h 二V(t ijL)=t 二S'(ti』=t S'(t i j)。

微积分基本公式和基本定理

微积分基本公式和基本定理
题目
利用泰勒公式展开函数$f(x) = sin x$在$x = frac{pi}{2}$处的幂级数。
答案
根据泰勒公式,得到$sin x = sum_{n=0}^{infty} (1)^n cdot frac{x^{2n+1}}{(2n+1)!}$。代入$x = frac{pi}{2}$,得到$sin frac{pi}{2} = sum_{n=0}^{infty} (-1)^n cdot frac{(frac{pi}{2})^{2n+1}}{(2n+1)!} = 1$。
求函数$f(x) = ln(x + sqrt{1 + x^2})$的导数。
利用链式法则和基本导数公式 ,得到$f'(x) = frac{1}{sqrt{1 + x^2}} cdot frac{x}{sqrt{1 + x^2}} = frac{x}{1 + x^2}$。
积分习题及答案
题目
计算$int_0^1 (x^2 + 1) dx$。
泰勒公式是一个重要的微积分定理,它可以用来近似计算复杂的函数。通过泰勒公式,可以将一个复 杂的函数展开成多项式的和,从而简化计算。
泰勒公式在近似计算中广泛应用于数值分析、物理、工程等领域。例如,在计算物理现象的近似解时 ,可以使用泰勒公式来逼近真实解。此外,泰勒公式还可以用于求解函数的极限、证明不等式等数学 问题。
牛顿-莱布尼兹定理
总结词
牛顿-莱布尼兹定理是计算定积分的 核心定理,它提供了计算定积分的简 便方法。
详细描述
牛顿-莱布尼兹定理表述为:对于任意 在[a, b]区间上连续的函数f(x),F(x)是f(x)的一个原函数。这个定理大大 简化了定积分的计算过程,是微积分学 中的重要内容。

什么是微积分基本定理

什么是微积分基本定理

什么是微积分基本定理
微积分基本定理是数学中重要的定理,被广泛用于其他理论的建立。

它可以帮助我们找到两个量之间的关系,从而可以解决许多数学和物理问题。

首先要搞清楚的是,什么是微积分基本定理?它指的是将定积分等同于要积分函数的原函数求得的定理。

定积分,即定积减积,是指将一个定义域上的函数从一个边界的 x 值积分至另一个边界的 x 值,从而求出两个边界之间的函数量。

而要积分函数,则是指在定积减积之后,把求得的积分量与 x 值结合起来,所得到的函数。

为了更好地解释微积分基本定理,我们先来看看其应用实例。

比如有函数
y=f(x),它的解析解为 y=ax+b,那么它的反函数就是 y=f^(-1)(x)=b/a-x/a。

而反函数的积分就对应于原函数,只要把积分结果与 x 值捆绑,就可以得到原函数(即要积分函数)的值了。

以上就是微积分基本定理的应用,新兴的微分方程学中也有着广泛的应用,微积分基本定理是微分方程学中基本的定理,它可以帮助我们解决定常系统的可积存在性,将微分方程转化为定常方程,只要通过微积分基本定理,就可以将微分方程的解更为方便地求得。

从上面的分析中,我们可以看出,微积分基本定理是非常重要的定理,它不仅在微积分中被广泛运用,还在物理和工程等研究中发挥着重要作用。

因此,微积分基本定理为解决许多数学问题提供了重要的理论依据,为解决微分方程和定动系统提供了有效的解决方案,它在物理和工程等研究中发挥了重要作用。

微积分学基本定理及基本积分公式

微积分学基本定理及基本积分公式
§2 微积分学基本定理及基本积分公式
1.变限定积分
f (t) 在[a, b]上可积,则对 x [a, b], f (t) 在[a, x]上
可积,即 x f (t )dt . a
---变上限定积分
1) 变上限定积分是上限的函数
设 f 在[a, b]上可积,
x
( x) a f (t)dt, x [a, b]
(1 x2 ) x2 x2 (1 x2 ) dx
=
1 x2
dx
1 1 x2
dx
=
1 x
arctan
x
C

结果是否正确,检验方法
求导,看积分结果的导函数是否为被积函数
例 5 (3) tan2 x dx (sec2 x 1)dx tan x x C
EXE (4)
1 dx 1 x2
F(x) ex2 (x2 ) 2xex2 .
一般地,
u(x)
v( x)
f (t) dt f (u( x))u( x) f (v( x))v( x)

( x) x f (t)dt , ( x) f ( x) .
2) 变上限a 定积分求导
例 2
F(x)
x
( x t) f (t) dt,
结论:若 F ( x)为 f ( x) 的任一原函数, 则(1)F(原 x) 函 C数为的f存( x在) 的性原函数的全体,其中 C 为常数.
已有结论:若 f ( x) C[a, b] , 则 f ( x) 在[a, b]上一定存在原函数.
(2) 原函数不唯一
若 f ( x) 在[a, b]上有原函数,则有一个必有无穷多个.
即从一条曲线上下平移而得 3) 基本积分公式

微积分基本定理的理解

微积分基本定理的理解

微积分基本定理的理解
什么是微积分基本定理?
也叫牛顿-莱布尼兹公式,通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数之间的联系。

牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。

它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。

它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

定义
如果函数在区间上连续,并且存在原函数,则
理解
以路程与速度函数为例,速度在t1到t2时刻的定积分,就是路程函数在每一时刻的变化率,即
(通俗理解)则将t1时刻到t2时刻s(t)在每点的变化累积起来就是s(t)从t1时刻到t2时刻的变化,即:
s(t2)-s(t1).
推广到一般函数就是:
这就是微积公基本定理。

1.6 微积分基本定理

1.6 微积分基本定理

目录
退出
预习交流 2
填一填:结合下列各图形,判断相应定积分的值的符号: ������ (1) ������ f(x)dx 0
(2)
������ ������
g(x)dx
0
目录
退出
(3)
������ ������
h(x)dx
0
提示:(1)> (2)< (3)>
目录
退出
课堂合作探究
目录
退出
问题导学
1.6
微积分基本定理
课前预习导学
目录
退出
目标导航
学习目标 1.能说出微积分基本定理; 2.能运用微积分基本定理计算 简单的定积分; 3.能掌握微积分基本定理的应 用. 重点难点 重点:微积分基本定理以及利用 定理求定积分; 难点:复合函数定积分计算.
目录
退出
预习导引
1.微积分基本定理 (1)一般地,如果 f(x)是区间[a,b]上的连续函数,并且 F'(x)=f(x),那 么
一、简单定积分的计算 活动与探究 1
计算下列各定积分. 2 (1) 0 xdx; (2) (3) (4)
1 3 (1-t )dt; -2 0 x ( cos x+ e )dx; -π 4 2 t dx. 2
思路分析:根据导数与积分的关系,求定积分要先找到一个导数 等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函 数可结合导数公式表.
1 3
目录
退出
三、微积分基本定理的应用 活动与探究 3
已知 f(x)=ax +bx+c(a≠0),且 f(-1)=2,f'(0)=0, 的值. 思路分析:解决本题的关键是根据题设条件,列出方程组,通过解 方程组求出 a,b,c 的值.

微积分七个基本定理

微积分七个基本定理

微积分七个基本定理
1、定义域定理(积分定义域定理):如果函数f(x)有连续的导数f'(x),那么f(x)在定义域内具有定义连续性。

2、基本定理(积分基本定理):设内一区间上有一函数f(x),若f(x)在这区间上存在连续的导数f'(x),那么f(x)的定积分就存在,且可以用反常积分形式表示。

3、基本定理(积分变换定理):如果函数f(x)和函数g(x)都在某一区间(a,b)上具有反常积分,则有f(x)g(x)在区间(a,b)上有定积分。

4、分部积分定理(部分积分定理):若f(x)是a到b范围内任意一点x上的可积函数,则有∫f(x)dx=∫f(x)dx+∫f(x)dx。

5、置换定理:积分置换定理正如名字说的,即把函数f(x)的变量由x换成g(x)的变量,在规定的变换空间内,得到的积分值相等。

6、定理(积分级数定理):积分级数定理表明,若函数f(x)在区间[a,b]上连续,那么函数的定积分值等同于其积分级数的和。

7、变量替换定理:变量替换定理定义为:如果函数f(x)与变量x 具有连续导数,且变量u=g(x)具有连续导数,那么:∫f(u)d u=∫f (x)g'(x)dx。

微积分学基本定理

微积分学基本定理

b a
f
( x)dx

F ( x) |ba
F (b)
F (a)
计算定积分的方法:
b
f ( x)dx
a
(1)定 义 法
( 2)面 积 法(曲 边 梯 形 面 积)
(3)公式法(微积分基本定理)F / ( x) f ( x)
b a
f
( x)dx

F ( x) |ba
F (b)

x ln x ln a
x
(8) sin xdx cos x C (9) cos xdx sin x C
计算不定积分:
(1) ( x 3)( x 2)dx;
(2)
( x 1)( x 2)dx; x
(3)
cos 2x dx cos x sin x
计算不定积分:
(1) ( x2 2)( x2 2)dx;
x4 x 5
(2) x2 dx; (3) ( x2 2) xdx
(4) (sin x cos x)2 sin 2xdx
(5)
x
x3e x3
x
dx
计算不定积分:
(1) ( x 1)10dx; (2) (2x 1)3dx; (3) sin 2xdx (4) cos(3x 1)dx (5) sin2 mxdx
F (a)
(4)性质 : 1)
b
Cf ( x)dx C
b
f ( x)dx
a
a
b
b
b
2)a f ( x) g( x)dx a f ( x)dx a g( x)dx
b
c
b

微积分基本定理.

微积分基本定理.

微积分基本定理◆ 学习目标 :掌握微积分的基本定理;能应用定理解决实际问题。

◆ 学习过程:● 知识梳理 :(定理的推导过程请看课本)微积分基本定理的本质是 。

微积分基本定理 如果()(),F x f x '=且()f x 在[],a b 上可积,则()()() b af x dx F b F a =-⎰。

其中F(x)叫做f(x)的一个 。

由于()()F x c f x '+=⎡⎤⎣⎦,()F x c +也是f(x)的原函数,其中c 为常数。

一般地,原函数在[],a b 上的改变量()()F b F a -简记作 因此,微积分基本定理可以写成形式:() baf x dx =⎰= 。

● 题组一(A)运用微积分基本定理说明:1.() () b aa bf x dx f x dx =-⎰⎰;2. () () () (a<c<b)b cbaacf x dx f x dx f x dx =+⎰⎰⎰;(A)计算:(求定积分主要是要找到被积函数的原函数)1. 0dx ⎰; 2.211dx x⎰; 3. 2211dx x⎰; 4. (k bk ax dx ⎰为正整数)5.41dx ⎰6.2-2cos x dx ππ⎰结论:求导运算与 互为逆运算。

(B)练习1.()120x dx =⎰A13 B 23C 1D 2 2.()121dx x--=⎰A 1ln 2-B ln 2-C 1D 23.()20sin dx=x π⎰ A -1 B 0 C 1 D 2π4.()22411 x dx x ⎛⎫+= ⎪⎝⎭⎰A218 B 58 C 3316 D 21165.计算:(1)220(x -x) dx ⎰ (2)2-11(x+x ) dx ⎰题组二 (根据定理求面积) (A)1.求由[]sin ,0,y x x π=∈与x 轴所围成平面图形的面积 。

(A)2. 求由[]sin ,0,2y x x π=∈与x 轴所围成平面图形的面积 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分基本定理编稿:赵雷 审稿:李霞【学习目标】1.理解微积分基本定理的含义。

2.能够利用微积分基本定理求解定积分相关问题。

【要点梳理】要点一、微积分基本定理的引入我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。

我们必须寻求计算定积分的新方法,也是比较一般的方法。

(1)导数和定积分的直观关系:如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。

设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗?一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。

另一方面,这段路程还可以通过速度函数v (t )表示为 ()d bav t t ⎰,即 s =()d bav t t ⎰。

所以有: ()d bav t t =⎰s (b )-s (a )(2)导数和定积分的直观关系的推证:上述结论可以利用定积分的方法来推证,过程如下:如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间:[t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为1i i b at t t n--∆=-=。

当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移111()'()'()i i i i i b as h v t t s t t s t n----∆≈=∆=∆=。

② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是1tan '()i i i s h DPC t s t t -∆≈=∠⋅∆=⋅∆。

结合图,可得物体总位移111111()'()n n n ni i i i i i i i s s h v t t s t t --=====∆≈=∆=∆∑∑∑∑。

显然,n 越大,即Δt 越小,区间[a ,b]的分划就越细,1111()'()nni i i i v tt s t t --==∆=∆∑∑与s的近似程度就越好。

由定积分的定义有11lim ()ni n i b a s v t n -→∞=-=∑11lim '()n i n i b as t n -→∞=-=∑()d '()d b b a a v t t s t t ==⎰⎰。

结合①有()d '()d ()()b baas v t t s t t s b s a ===-⎰⎰。

上式表明,如果做变速直线运动的物体的运动规律是s=s (t ),那么v (t )=s '(t )在区间[a ,b]上的定积分就是物体的位移s (b )―s (a )。

一般地,如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()d ()()baf x x F b F a =-⎰。

这个结论叫做微积分基本定理。

要点二、微积分基本定理的概念微积分基本定理:一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()baf x x F b F a =-⎰。

这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式。

其中,()F x 叫做()f x 的一个原函数。

为了方便,我们常把()()F b F a -记作()ba F x ,即()d ()()()bba af x x F x F b F a ==-⎰。

要点诠释:(1)根据定积分定义求定积分,往往比较困难,而利用上述定理求定积分比较方便。

(2)设()f x 是定义在区间I 上的一个函数,如果存在函数()F x ,在区间I 上的任何一点x 处都有'()()F x f x =,那么()F x 叫做函数()f x 在区间I 上的一个原函数。

根据定义,求函数()f x 的原函数,就是要求一个函数()F x ,使它的导数'()F x 等于()f x 。

由于[()]''()()F x c F x f x +==,所以()F x c +也是()f x 的原函数,其中c 为常数。

(3)利用微积分基本定理求定积分()d baf x x ⎰的关键是找出使'()()F x f x =的函数()F x 。

通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向求出()F x 。

要点三、定积分的计算1. 求定积分的一般步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数;(4)利用牛顿―――莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值。

2. 定积分的运算性质。

①有限个函数代数和(或差)的定积分等于各个函数定积分的代数和(或差),即1212[()()()d ]()d ()d ()d bb bbn n aaaaf x f x f x x f x x f x x f x x ±±±=±±±⎰⎰⎰⎰。

②常数因子可提到积分符号前面,即()d ()d bbaakf x x k f x x =⎰⎰。

③当积分上限与下限交换时,积分值一定要反号,即()d ()d baabf x x f x x =-⎰⎰。

④定积分的可加性,对任意的c ,有()d ()d ()d bcb aacf x x f x x f x x =+⎰⎰⎰。

3. 定积分的计算技巧:(1)对被积函数,要先化简,再求积分。

(2)求被积函数是分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和。

(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分。

要点诠释:① 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.因此,求导运算与求原函数运算互为逆运算.② 把积分上、下限代入原函数求差时,要按步骤进行,以免发生符号错误。

③ 由于[]()'(),F x c f x +=()F x c +也是)(x f 的原函数,其中c 为常数.【典型例题】类型一:利用微积分基本定理求定积分【高清课堂:微积分基本定理385549 典型例题1】例1.计算下列定积分 (1)211dx x⎰(2)312xdx ⎰【思路点拨】 根据求导函数与求原函数互为逆运算,找到被积函数的一个原函数,利用微积分基本定理求解.【解析】(1)因为'1(ln )x x=,所以22111ln |ln 2ln1ln 2dx x x ==-=⎰。

(2)323112|817xdx x ==-=⎰【总结升华】为使解题步骤清晰,通常都是把求原函数和计算原函数值的差用一串等式表示出来。

解题格式如下:有()d ()()()bba af x x F x F b F a ==-⎰举一反三:【变式】计算下列定积分(1)11dx ⎰ (2)1xdx ⎰(3)13x dx ⎰ (4)131x dx -⎰ 【答案】(1)111d 101x x ==-=⎰(2)11222001111d 102222x x x ==⋅-⋅=⎰ (3)130x dx ⎰144401*********x ==⋅-⋅= (4)131x dx -⎰144411111(1)0444x -==⋅-⋅-=【高清课堂:微积分基本定理385549 典型例题2】例2. 求下列定积分: (1)221(1)d x x x ++⎰;(2)0(sin cos )d x x x π+⎰;(3)2211()d x x x x-+⎰;(4)0(cos e )d xx x π-+⎰。

【解析】 (1)223222222221111111129(1)d d d 1d 326x x x x x x x x x x x ++=++=++=⎰⎰⎰⎰。

(2)000(sin cos )d sin d cos d (cos )sin 2x x x x x x x x x πππππ+=+=-+=⎰⎰⎰。

(3)22232222222111111111375()d d d d ln ln 2ln 223236x x x x x x x x x x x x x -+=-+=-+=-+=-⎰⎰⎰⎰。

(4)00001(cos e )d cos d e d sin e1e xxx x x x x x x ππππππ-----+=+=+=-⎰⎰⎰。

【总结升华】(1) 求函数()f x 在某个区间上的定积分,关键是求出函数()f x 的一个原函数, 要正确运用求导运算与求原函数运算互为逆运算的关系。

(2) 求复杂函数定积分要依据定积分的性质。

举一反三:【变式1】计算下列定积分的值: (1)220(31)x x dx -+⎰, (2)(2015春 银川校级期中)121(sin )x x dx -+⎰, (3)180(8)x x dx -⎰【答案】(1)2223200(31)()82x x x dx x x -+=-+=⎰ (2)1231111(sin )(cos )|3x x dx x x --+=-⎰3311(1cos1)[(1)cos(1)]33=⋅--⋅---112cos1cos1333=-++= (3)91801871(8)()0ln893ln 29x x x x dx -=-=-⎰【高清课堂:微积分基本定理385549 典型例题2】 【变式2】计算(1)10⎰(2)121x e dx --⎰【答案】(1)1201==⎰ (2)11222211111222xxedx e e e -----=-=-⎰【变式3】计算下列定积分(1)20(1)x x dx +⎰; (2)2211()xe dx x+⎰ (3)20sin xdx π⎰【答案】 (1)2(1)x x x x +=+且32211(),()32x x x x ''==,∴22222232220000003211(1)()||321114(20)(20).323x x dx x x dx x dx xdx x x +=+=+=+=⨯-+⨯-=⎰⎰⎰⎰(2)1(ln )x x '=,又222()(2)2x x x e e x e ''=⋅=,得221()2xx e e '=所以2222222211111111()|ln |2xx x e dx e dx dx e x x x +=+=+⎰⎰⎰ 42421111ln 2ln1ln 2.2222e e e e =-+-=-+ (3)由(sin 2)cos 2(2)2cos 2x x x x ''=⋅=,得1cos 2(sin 2)2x x '=所以200001111sin (cos 2)cos 22222xdx x dx dx xdx ππππ=-=-⎰⎰⎰⎰00111111|(sin 2)|(0)(sin 2sin 0).22222222x x x ππππ=-=---= 类型二:几类特殊被积函数求定积分问题例3. 求下列定积分。

相关文档
最新文档