平行线的概念及三线八角

合集下载

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。

2. 平行线定义:两条永不相交的直线的位置关系是平行线。

3. 平行线性质:①两直线平行,同位角相等。

②两直线平行,内错角相等。

③两直线平行,同旁内角互补。

④同一平面内,过直线外一点有且只有一条直线与已知直线平行。

⑤平行于同一直线的两直线平行。

即c b b a ∥,∥,则c a ∥。

4. 平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角相等,两直线平行。

④垂直于同一直线的两直线平行。

即若c a b a ⊥⊥,,则c a ∥。

⑤平行于同一直线的两直线平行。

即若c b b a ∥,∥,则c a ∥。

5. 平行线间的距离:平行线间的距离处处相等。

练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

初一平行线的判定及性质

初一平行线的判定及性质

平行线的判定及性质一、知识概述1、在“三线八角”中,同位角、内错角、同旁内角的识别角的名称位置特征图形结构特征同位角在截线同侧在被截线同一方形如字母“F”(或倒置)内错角在截线两侧(交错)夹在两条被截线之间形如字母“Z”(或反置)同旁内角在截线同侧夹在两条被截线之间形如字母“U”2、平行线的判定方法平行线的判定定理:定理1:同位角相等,两直线平行.定理2:内错角相等,两直线平行.定理3:同旁内角互补,两直线平行.另外:1、平行于同一直线的两条直线相互平行(平行线的传递性)2、在同一平面内,垂直于同一直线的两条直线相互平行(经常出现在图中有3条平行线的题目中)3、平行线的性质性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等性质3:两直线平行,同旁内角互补二、例题讲解例1、如图,直线AB、CD、EF相交,①指出∠3与其它角(带标号的),是什么关系的角;②图中共有多少对同位角、内错角和同旁内角.变式:如图,AB、CD被EF、EG所截,在∠1~∠6的6个角中,同位角、内错角、同旁内角的对数分别是()A.8、12、8B.8、2、8 C.3、3、2D.12、12、8例2、已知平面内四条直线共有三个交点,则这四条直线中有几条平行?例3、如图,CD⊥AB,EF⊥AB,∠1=∠2,则∠AGD与∠ACB相等吗?请说明理由.解: ∠AGD= ∠ACB.理由如下:∵CD⊥AB,EF⊥AB(已知),∴∠EFB=∠CDF=90°(垂直的意义),∴CD//EF( )∴∠2=( ) ( )∵∠1= ∠2(已知).∴∠1= ∠BCD( )∴DG//BC( )∴∠AGD= ∠ACB( )例4、如图,已知∠B=110°∠BCG=110°∠BCD=150°∠D=100°,求证:DE∥AB 证明:∵∠B=∠BCG=110°()∴AB∥FG()∴∠BCF+ ∠B =180°()即∠BCF= 180°—∠B = 180°—110°= 70°∵∠BCD=150°∴∠FCD= ∠BCD—∠BCF= 150°—70°= 80°又∵∠D=100°∴(∠+∠)=100°+80°=180°∴FG∥ED()∴AB∥ED()变式1:如图,已知∠1+∠2=∠APC,试说明AB∥CD的理由.变式2:如下图,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.课外拓展:例1、如图,B 处在A 处的南偏西450方向,C 处在B 处的北偏东800方向.(1)求∠ABC.(2)要使CD ∥AB ,D 处应在C 处的什么方向?例2、在小学我们就知道“三角形三个内角的和等于1800”,现在你能用学过的知识说明理由吗?例3、如图(1),线段AB//CD ,点P 是AB 、CD 间的-个点. (1)试判断∠A 、∠C 与∠APC 的数量关系;(2)如果点P 移动到线段AC 的左侧,那你发现的上述结论还成立吗?说明理由;(3)如果点P 移到两平行线的同侧,那么你发现的上述结论还成立吗?说明理由.12ACB FG E DAB 北 南DABC练习:1、如图1,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.2、如图2,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.3、如图3,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.图1 图2 图34、如图,AB∥CD,AD∥BC,则图中与∠A相等的角有_____个.5、如图,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角.6、下列结论中,正确的个数是多少个()(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交.A.1 B.2 C.3 D.4 7、如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A、1B、2C、3D、48、下列四个图中若∠1=∠2,能够判定AB∥CD的是()A .B .C .D .9、如图15,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.10、如图已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试证AB∥EF.。

平行线概念、基本事实及三线八角课件.

平行线概念、基本事实及三线八角课件.

平行线概念、基本事实及三线八角课件.一、教学内容本节课将深入探讨平行线的概念、基本事实以及三线八角的关系。

教学内容主要基于教材第3章“几何图形与证明”的第2节“平行线与相交线”。

详细内容包括:1. 平行线的定义与性质;2. 判断两条直线是否平行的方法;3. 三线八角的概念及其应用;4. 平行线的判定与性质的应用。

二、教学目标1. 让学生掌握平行线的定义,理解平行线的性质;2. 使学生学会判断两条直线是否平行的基本方法;3. 培养学生运用三线八角关系解决实际问题的能力。

三、教学难点与重点教学难点:判断两条直线是否平行的方法,三线八角的关系。

教学重点:平行线的定义与性质,平行线判定方法的运用。

四、教具与学具准备1. 教师准备:多媒体课件、几何画板、直尺、量角器;2. 学生准备:直尺、量角器、练习本。

五、教学过程1. 导入:通过展示实际生活中的平行线实例,引导学生发现平行线的特点,激发学生的学习兴趣。

2. 基本概念讲解:(1)平行线的定义:在同一平面内,永不相交的两条直线称为平行线。

(2)平行线的性质:同位角相等,内错角相等,同旁内角互补。

3. 判断两条直线是否平行的方法:(1)同位角相等法;(2)内错角相等法;(3)同旁内角互补法。

4. 三线八角关系:(1)两条平行线与第三条直线交于两点,所形成的八个角中,同位角相等,内错角相等,同旁内角互补;(2)运用三线八角关系解决实际问题。

5. 例题讲解:选取具有代表性的例题,结合平行线的定义、性质和判定方法进行讲解。

6. 随堂练习:布置一些有关平行线与三线八角关系的练习题,让学生独立完成,并及时给予反馈。

六、板书设计1. 平行线的定义与性质;2. 判断两条直线是否平行的方法;3. 三线八角关系;4. 例题解析;5. 随堂练习。

七、作业设计1. 作业题目:(1)判断下列各题中,哪些直线是平行线,并说明理由;(2)已知直线a、b平行,求证:∠1=∠2,∠3=∠4;(3)运用三线八角关系,求出图中所有未知角的度数。

有关三线八角的几何证明

有关三线八角的几何证明

第一讲有关三线八角的几何证明一.三线八角模型两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线 EF的两旁(即位置交错),这样的一对角叫做内错角;同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线 EF的同旁,这样的一对角叫做同旁内角;二.平行线判定定理:如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1 :同位角相等,两直线平行如图所示,只要满足 1 = 2 (或者 3 ==8),就可以说AB//CD平行线判定定理2 :内错角相等,两直线平行如图所示,只要满足 6 = 2 (或者 5 = 平行线判定定理4),就可以说AB//CD3 :同旁内角互补,两直线平行如图所示,只要满足5+ 2 = 180 (或者 6+ 4 = 180 ),就可以说 AB//CD是内错角 平行线判定定理4 :两条直线同时平行于第三条直线,两条直线平行 三•平行线的性质定理 两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系: 两直线平行,被第三条直线所截,同位角相等;两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。

概念巩固1.如图,下面结论正确的是( )A.是同位角 B.C.是同位角D. 是内错角2.如图,图中同旁内角的对数是()4.如图,图中的内错角的对数是()A. 2对B. 3对C. 4对D. 5对3.如图,能与 构成同位角的有( A. 1个B. 2个C. 3个D. 4个A. 2对B. 3对C. 4对D. 5对⑴ ⑵5.如图(1)所示,同位角共有()6 .下图中,/ 1和/2是同位角的是C.定理应用 7 •一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是()A .第一次向右拐40。

平面图形的认识知识点

平面图形的认识知识点

平面图形的认识(二)平行一、平行:1、在同一平而内,不相交的两条直线叫做平行线.2、平行线的定义包含三层意思:①“在同一平而内”是前提条件;②“不相交”是指两条直线没有交点:③平行线指的是”两条直线S而不是两条射线或两条线段.3、平行公理:经过一条直线外一点有一条并且只有一条直线与已知直线平行・4、推论:(平行线的传递性):设罕b、c是三条直线,如果&二、三线八角:两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD彼直线EF所截,直线EF为截线•两条宜线AB、CD被直线EF所截可得8个角,即所谓“三线八角J(一).这八个角中有:1、对顶角:Z1 与Z3, Z2 与Z4, Z5 与Z7, Z6 与Z8.2、邻补角有:Z1 与Z2, Z2 与Z3, Z3 与Z4, Z4 与Zl, Z5 与Z6, Z6 与Z7,(二)、同位角,内错角,同旁内角:K同位角:两条直线被第三条直线所截,任二条直线的同侧,且在第三条直线的同旁的二个角叫同位角.如图中的Z1与Z5分别在直线AB、CD的上侧,又在第三条直线EF的右侧,所以Z1与Z5 是同位角,它们的位置相同,在图中还有Z2与Z6, Z4与Z8, Z3与Z7也是同位角.2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二个角叫内错角.如上图中Z2与Z8在直线AB. CD的内侧(即AB、CD之间),且在EF的两旁,所以Z2与Z8是内错角•同理,Z3与Z5也是内错角.3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条宜线的同旁的两个角叫同旁内角.如上图中的Z2与Z5在直线AB、CD内侧又在EF的同旁,所以Z2与Z5是同旁内角,同理, Z3与Z8也是同旁内角.4、因此,两条直线被第三条宜线所截,共得4对同位角,2对内错角,2对同旁内角.三、直线平行的条件(判定):1、两条直线被第三条直线所截,如果同位角相等,那么这两条宜线平行,简记为:同位角相等,两直线平行2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为:内错角相等,两直线平行3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为:同旁内角互补,两直线平行四.平行线的性质:1、两条平行线被第三条直线所截,同位角相等.简记为:两直线平行,同位角相等2、两条平行线被第三条宜线所截,内错角相等.简记为:两直线平行,内错角相等3、两条平行线被第三条直线所截.同旁内角互补,简记为:两直线平行,同旁内角互补平移一.平移的概念:把图形上所有点都按同一方向移动相同的距离叫作平移。

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最长。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。

②内错角成正比,两直线平行。

③同旁内角互补,两直线平行。

11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。

(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、正数整数,泛称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

平行线的概念、基本性质及三线八角

平行线的概念、基本性质及三线八角

课题:平行线的概念、基本性质及三线八角班级:姓名:编号:主备人:学习目标:1、了解同位角、内错角、同旁内角的意义。

2、会在简单的图形中辨认同位角、内错角、同旁内角。

3、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。

感悟新知一、认真阅读教材内容,完成下列各题:1.填空:经过直线外一点,______ __与这条直线平行.2.画图:已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD∥AB.3.反思:在用直尺和三角尺画平行线过程中,三角尺起着什么样的作用?二、“三线八角”:如图:直线a1,a2被直线a3所截,构成了八个角。

1. 观察∠1与∠5的位置:它们都在第三条直线a3的同旁,并且分别位于直线a1,a2的相同一侧,这样的一对角叫做“同位角”。

类似位置关系的角在图中还有吗?如果有,请找出来?2. 观察∠3与∠5的位置:它们都在第三条直线 a3的异侧,并且都位于两条直线a1,a2之间,这样的一对角叫做“内错角”。

类似位置关系的角在图中还有吗?如果有,请找出来?3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3的同旁,并且都位于两条直线a1,a2之间,这样的一对角叫做“同旁内角”。

a2a387654321练习1.看图填空:(1)若ED ,BC 被AB 所截,则∠1与 是同位角。

(2)若ED ,BC 被AF 所截,则∠3与 是内错角。

(3)∠1与∠3是AB 和AF 被 所截构成的 角。

(4)∠2与∠4是 和 被BC 所截构成的 角。

2.如图:直线AB 、CD 被直线AC 所截,所产生的内错角是 。

如图:直线AD 、BC 被直线DC 所截,产生了 角,它们是 。

3.如图:直线DE 交∠ABC 的边BA 于F 。

如果内错角∠1与∠2相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由。

课后反思:1. 如何确定“三线”构成的“八角”。

(注意“一个前提”)2. 如何根据“关系角”确定“三线”。

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。

(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。

立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。

(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。

(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。

(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。

2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。

(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。

2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。

5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。

考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。

平行线概念基本事实及三线八角

平行线概念基本事实及三线八角

变式图形:图中的∠1与∠2都是同旁内角.
1
1
2
2
12
12
图形特征:在形如“U”的图形中有同旁内角.
总结归纳
截线 被截线
同位角 同旁 内错角 两旁 同旁内角 同旁
同侧 之间 之间
结构 特征
F Z U
当堂练习
1.如图,∠DAB和∠ABC是
(C)
A.同位角 C.内错角
B.同旁内角
DA
E
D.以上结论都不对
导入新课
回顾与思考 问题 前面我们一直学的两条直线怎样位置关系? 两条直线相交(其中垂直是相交的特殊情形) 生活中两条直线除了相交以外,我们还可以见到下面情况 的两条直线.
观察:图1, 2中的两回直顾线与平行思吗考?你是怎么判断的?
的两直线叫做平行线. 在同一平面内,不相交
1、在同 一平面内
2、不相交
1条
结论:经过直线外一点,有且只有
·C
a
· · A
B
·D
b
一条直线与已知直线平行.
(4)过点D画一条直线与直线AB平行,与(3)中所画的直线平行吗?
平行
平行线的传递性:如果两条直线都与第三条直 线平行,那么这两条直线平行
总结归纳 经过直线外一点,有且只有一条直线与已知直线平行.
平行线的传递性: 如果两条直线都与第三条直a
b
读作: “ a平行于b ” 在同一平面内,两直线的位置关系有平行与相交两种.
二 平行于同一条直线的两条直线平行
平行线的画法: (1)放 (2)靠
(3)推 (4)画
(1)经过点C能画出几条直线? 无数条
(2)与直线AB平行的直线有几条?
无数条 (3)经过点C能画出几条直线与直线AB

平行线的判定及性质

平行线的判定及性质

平行线的判定及性质 Prepared on 22 November 2020平行线的判定及性质(一)【知识要点】一.余角和补角:1、如果两个角的和是直角,称这两个角互余. ∵αβ+= 90o ∴αβ与互为余2、如果两个角的和是平角,称这两个角互补. ∵αβ+= 180o ∴αβ与互为补角 二.余角和补角的性质: 同角或等角的余角相等 同角或等角的补角相等. 三.对顶角的性质: 对角相等.四.“三线八角” :1、同位角 2、内错角 3、同旁内角 五.平行线的判定: 1、同位角相等, 两直线平行.2、内错角相等, 两直线平行.3、同旁内角互补, 两直线平行.4、同平行于一条条直线平行.5、同垂直一条直线的两条直线平行. 六.平行线的性质:1. 两直线平行,同位角相等;2. 两直线平行, 内错角相等;3. 两直线平行, 同旁内角互补.【典型例题】一、余角和补角例1. 如图所示,互余角有_________________________________; 互补角有_________________________________;变式训练:1. 一个角的余角比它的的13还少20o ,则这个角为_____________。

2. 如图所示,已知∠AOB 与∠COB 为补角,OD是∠AOB 的角平分线,OE 在∠BOC 内,∠BO=12∠EOC, ∠DOE=72o, 求∠EOC 的度数。

二、“三线八角”例2 (1) 如图,哪些是同位角内错角同旁内角(2) 如图,下列说法错误的是( )A. ∠1和∠3是同位角B. ∠1∠5是同角C. ∠1和∠2是内角D. ∠5和∠6是内错角(3)如图,⊿ABC 中,DE 分别交B 、A 于D 和E,则图中共有ED CB A O AB C DE F1 2 3 4 567 8 2 3 4 5 6 11 23同位角 对,内错角 对,同旁内角 。

三、平行线的判定例3如右图 ① ∵ ∠1=∠2∴ _____∥_____, ( ) ② ∵ ∠2=_____∴ ____∥____, (同位角相等,两直线平行) ③ ∵∠3+∠4=180o∴ ____∥_____, ( ) ∴ AC ∥FG , ( )变式训练:1.如图, ∵ ∠1=∠B∴ ∥_____, ( ) ∵ ∠1/∠2∴ _____∥_____, ( ) ∵ ∠B +_____=180o ,∴ AB ∥EF ( )例4. 如图,已知AE 、CE 分别平分∠BAC 和∠ACD, ∠1和∠2互余,求AB ∥CD ,变式训练:如图,已知直线a 、b 、e ,且∠1=∠2,∠3+∠4=180o, 则a ∥c 平行吗五、平行线的性质例5 如图所示,AB ∥EF ,若∠ABE=32°,∠ECD=160°,求 ∠BEC 的度数。

10.2.1 平行线的概念、三线八角

10.2.1 平行线的概念、三线八角

4
B
E
C
1 A
3
6
2
7
5
8 F
D
10.2.1 平行线的概念、三线八角
同位角的概念和识别

1、都在被截直线AB、
有 公
A
E

2
CD 同一方(上方) 的_______________. 2、在截线EF的
顶 点
34
B _同__旁__(右__侧__)__.
的 角 的 位 置 关
C
5 6
78 F
∠2和∠6 D ∠3和∠7
DE被直线AB所截形成的.
∠C与∠CAE是内错角,∠C与∠CAD是同旁内角,B它们都是直线BC,C
DE被直线AC所截形成的.
另外,∠B与∠C是同旁内角,它们是直线AB,AC被直线BC所截形成的.
∠B与∠BAC是同旁内角,它们是直线AC,BC被直线AB所截形成的 .
∠C与∠BAC是同旁内角,它们是直线AB,BC被直线AC所截形成的.
10.2.1 平行线的概念、三线八角
课堂小结
平行线 的概念
在同一平面内,不相交的两 条直线叫做平行线
平行线 及三线 八角
平行线 的性质
1.经过直线外一点,有且只有一条 直线与已知直线平行.
2.如果两条直线都与第三条直线平 行,那么这两条直线互相平行.
三线八角
同位角、内错角、同旁内角
5. 如图,两只手的食指和大拇指在同一个平面 内,它们构成的一对角可看成是_内__错__角___.
10.2.1 平行线的概念、三线八角
6. 如图,直线DE截AB ,AC,构成8个角,指出所有 的同位角,内错角,同旁内角.
解:两条直线是AB,AC,截线DE,所以8个角

【沪科版】初一七年级数学下册《10.2 第1课时 平行线的概念、基本性质及三线八角》教学设计教案

【沪科版】初一七年级数学下册《10.2 第1课时 平行线的概念、基本性质及三线八角》教学设计教案

10.2平行线的判定第1课时平行线的概念、基本事实及三线八角1.理解并掌握平行线的概念及基本事实,同位角、内错角和同旁内角的概念及性质;2.能够运用平行线及三线八角解决实际问题.(重点、难点)一、情境导入观察下列图片,想一想如果手扶式电梯左右扶手之间的宽度不相等会怎样,如果铁轨两条轨道之间的距离不相等会怎样?二、合作探究探究点一:平行线的概念、画法及基本事实【类型一】平行线的概念同一平面内,两条不重合的直线的位置关系是()A.平行或垂直B.平行或相交C.平行、相交或垂直D.相交解析:在同一平面内两条不重合的直线的位置关系是平行或相交.故选B.方法总结:本题考查了对平行线和相交线的理解和掌握,能熟练地运用性质进行说理是解此题的关键.【类型二】平行线的画法如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB.解:如图所示.方法总结:运用三角板作平行线注意直尺的使用,以确保作出的两条直线为平行线.【类型三】平行线的基本事实如图,如果CD∥AB,CE∥AB,那么C、D、E三点是否共线?解析:可假设C、D、E三点不共线,则过点C就有两条直线与第三条直线平行,与平行的基本事实矛盾.解:C、D、E三点共线.理由如下:因为CD∥AB,CE∥AB,根据平行的基本事实,过直线外一点,有且只有一条直线与这条直线平行知CD与CE是同一条直线,所以C、D、E三点共线.探究点二:同位角、内错角、同旁内角【类型一】同位角、内错角、同旁内角的判断如图,下列说法错误的()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成U型,是同旁内角;B中∠3与∠1形成U型是同旁内角;C中∠2与∠3形成Z型,是内错角;D 中∠1与∠2是邻补角,题设说法错误.故选D.【类型二】同位角、内错角、同旁内角的识别如图,找出图中∠DEA,∠ADE的同位角、内错角和同旁内角.解析:结合图形,找出“三线八角”.解:图中∠DEA的同位角为∠C、内错角为∠BDE、同旁内角为∠A和∠ADE;∠ADE 的同位角为∠B、内错角为∠CED、同旁内角为∠AED和∠A.方法总结:两个角的公共边所在直线为截线,其余两边所在直线是被截的两直线,在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.变式【类型三】答案不唯一的图形问题如图所示,直线DE与∠O的两边相交,则∠O的同位角是________,∠8的同旁内角是________.解析:直线DE与∠O的两边相交,则∠O的同位角是∠5和∠2,∠8的同旁内角是∠1和∠O.故答案为∠5和∠2,∠1和∠O.易错点拨:找某角的同位角,同旁内角时,应从各个方位观察,避免漏数.三、板书设计1.平行线的概念和基本事实在同一平面内不相交的两条直线叫做平行线.经过直线外一点,有且只有一条直线平行于这条直线.如果两条直线都和第三条直线平行,那么这两条直线平行.本节课学习了两个内容:平行线的概念及基本事实和认识同位角、内错角、同旁内角.教学中可让学生自己画平行线,结合图形说出平行线的基本事实.“三线八角”中的同位角、内错角、同旁内角的识别是难点也是易错点,让学生在学习中不断纠错,不断进步。

沪教版七年级数学下册10.2.1 平行线的概念、基本事实及三线八角((同步练习)

沪教版七年级数学下册10.2.1 平行线的概念、基本事实及三线八角((同步练习)

10.2.1 平行线的概念、基本事实及三线八角一、选择:1. 如果直线a∥b,b∥c,那么()A.a∥c B.a⊥c C.a=c D.以上都不对2.如图,过B点画直线a的平行线能画()A.1条 B.2条 C.3条 D.4条第1题图第2题图3.如图,直线a,b被直线c所截,∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角第3题第4题4.如图,属于内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠4二、填空:5.给下面的图形归类.两条直线相交的有 __________,两条直线互相平行的有 _____________.6.指出图中各对角的位置关系:(1)∠C和∠D是 ___________角;(2)∠B和∠GEF是 _____________角;(3)∠A和∠D是 _____________角;(4)∠AGE和∠BGE是 ___________角;(5)∠CFD和∠AFB是____________角.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

它要是给你讲起道理来,那可满满的都是人生啊。

1.人生的痛苦在于追求错误的东西。

所谓追求错误的东西,就是你在无限趋近于它的时候,便无限远离了原点,却永远无法和它产生交点。

2.人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在无理的隔阂。

3.人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。

但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。

4.零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。

5.有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。

至于那些在你能力范围之外的事情,就随他去吧。

6.幸福是可积的,有限的间断点并不影响它的积累。

所以,乐观地面对人生吧!。

《平行线》全章复习与巩固(基础)知识讲解

《平行线》全章复习与巩固(基础)知识讲解

《平行线》全章复习与巩固(基础)知识讲解【学习目标】1. 熟练找出“同位角、内错角、同旁内角”;2. 区别平行线的判定与性质,能用性质和判定解决综合问题;3. 通过具体实例认识平移,理解平移的性质;4. 会运用平行线和平移的知识解决有关的简单问题.【知识网络】【要点梳理】要点一、平行线的定义及三线八角1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.要点诠释:(1)平行线定义中包含三层含义:在同一平面内、不相交、两条直线.(2)基本事实:经过直线外一点,有且只有一条直线与这条直线平行.2.三线八角:要点二、平行线的判定和性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线互相平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线间的距离处处相等.(2)初中阶级学习了三种距离:两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同. 要点三、图形的平移定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.要点诠释:平移的性质:(1)平移不改变图形的形状与大小,只改变图形的位置.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.【典型例题】类型一、平行线的定义及三线八角1. (乌兰察布校级期中)a、b、c是平面上任意三条直线,交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对举一反三:【变式】如图,在正方体中:(1)找出与线段AB平行的线段:_________;(2)找出与线段AB相交的线段:______.2.如图,已知直线a、b被直线c所截. 图中八个角共有组同位角,组内错角,组同旁内角.举一反三:【变式】观察下图并填空:(1) ∠1 与是同位角;(2) ∠5 与是同旁内角;(3) ∠1 与是内错角.类型二、平行线的判定和性质3.如图,已知∠ADE = ∠B,∠1 =∠2,那么CD∥FG吗?并说明理由.举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( ).A.180°B.270°C.360°D.540°举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.类型三、图形的平移5.如图(1),线段AB经过平移有一端点到达点C,画出线段AB平移后的线段CD.举一反三:【变式】(福州自主招生)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()A. B. C. D..类型四、综合应用6.如图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.(春•鄂城区月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4 B.3 C.2 D.14.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完合重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.(盐津县校级月考)平行用符号 表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (大庆校级自主招生)如图,点E 在AC 的延长线上,对于给出的四个条件: (1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE ;(4)∠D+∠ABD=180°. 能判断AB ∥CD 的有 个.13.如图,已知AB ∥CD ,CE ,AE 分别平分∠ACD ,∠CAB ,则∠1+∠2=________.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.三、解答题17.(滨湖区校级期末)把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC 平分∠DAB ,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a 米,宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.北 北 甲 乙20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?。

平行线的判定和性质

平行线的判定和性质

直线平行条件知识精点通过本节学习,要了解两条直线被第三条直线所截形成同位角、内错角、同旁内角定义,掌握平行线识别方法,理解由角关系得到两条直线平行关系.本节主要概念:1.同位角、内错角、同旁内角概念——两条直线被第三条直线所截,构成八个角,俗称“三线八角”.其中分别在两条直线同一侧,并且在第三条直线同旁一对角叫同位角;在两条直线之间.但分别在第三条直线两旁一对角叫内错角.在两条直线之间,并且在第三条直线同旁一对角,叫同旁内角.2.平行线判定方法:方法1:同位角相等,两直线平行; 方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.重、难、疑点:重点:同位角、内错角、同旁内角定义及平行线判定方法. 难点:1.同位角、内错角、同旁内角正确识别; 2.平行线判定方法运用.疑点:1.在不同图形中,识别同位角、内错角、同旁内角容易出现混淆; 2.平行线判定及性质在运用过程中易出现错误.典例精讲例1 根据右图,回答下列问题:(1)由∠C=∠1,可以判断哪两条直线平行?说明理由? (2)由∠1=∠2,可以判断哪两条直线平行?说明理由?(3)由∠D+∠C=180°,可以判断哪两条直线平行?说明理由?举一反三 (贵阳市中考题)如图,已知同一平面内直线1l 、2l 、3l ,如果3221,l l l l ⊥⊥,那么1l 及3l 位置关系是 ( ) A .平行 B .相交 C .垂直 D .以上全不对例2 如图,写出所有能够推得直线AB ∥CD 条件.举一反三 如图,直线c 及a 、b 相交,形成∠1、∠2、…、∠8,请你填上适合一个条件:____________,使得a ∥b .例3 (黄冈市中考题)如图,已知∠1=∠2,问:再添加什么条件可使AB ∥CD ?举一反三 如图,已知∠C=100°,若增加一个条件,使得AB ∥CD ,试写出所有符合要求条件.例4 如图,已知点O在直线AB上,OF平分∠BOC,OE平分∠AOC,CF⊥OF于点F,求证:FC∥OE.举一反三如图,已知CD⊥DA,DA⊥AB,∠1=∠2,求证:DF∥AE.例5 一个裁缝师傅随意地剪了一块六边形布料,如图所示,经测量他发现∠ABC、∠BCD、∠CDE三角之和等于360°,他然后就说布料两个边AB和ED是平行.你知道为什么吗?举一反三如图,已知∠B+∠E+∠D=360°,求证:AB∥CD.知识网络学法点津1.识别同位角、内错角、同旁内角是本节重点之一,掌握这项技能,首先要牢记“三线八角”基本特征,抓住同位角、内错角、同旁内角特征,找出哪条直线是截线,哪两条直线是被截直线,再得出正确判断.同时,要善于用比较法来理解三种角特征,培养自己在较复杂图形中识别三种角能力.2.在学习平行线三种判定方法时,要结合实际条件,观察图形,通过同学间合作、交流,将方法1、2、3融合贯通,培养自己会根据实际情况灵活选用判定方法能力.强化练习1.具有下列关系两角中,一定有公共顶点是().A.互为余角B.同位角C.邻补角D.内错角2.已知a,b,c是同一平面内三条直线,下列说法不正确是().A.若a⊥b,b⊥c,则a⊥cB.若a⊥b,b∥c,则a⊥cC.若a∥b,b∥c,则a∥cD.若a⊥b,b⊥c,则a∥c3.如图5-2-11,由A测B方向是().A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°4.一辆汽车在公路上行驶,两次拐弯后,仍按原来方向行驶,那么两次拐弯角度可能是().A.先右转50°,再右转40°B.先左转50°,再左转40°C.先右转50°,再左转130°D.先右转50°,再左转50°5.如图5-2-12,直线l截直线a,b,得到8个角,其中(1)对顶角有__________对,它们是___________;(2)邻补角有______________对,它们是_____________;(3)同位角有______________对,它们是_____________;(4)内错角有______________对,它们是______________;(5)同旁内角有______________对,它们是_____________.6.在同一平面内,及已知直线a平行直线有___________条,而经过直线a外一点P,及已知直线a平行直线有且只有_____________条.7.如图5-2-13所示,长方体ABCD—A′B′C′D′中及棱AB平行棱有____________条,它们是___________.8.如图5-2-14,若∠1=∠2,则_________∥____________;若∠3=∠4,则________∥_________;若∠5=∠6,则__________∥____________;若∠7=∠8,则___________∥_____________;若∠BAD+∠ABC=180°,则___________∥__________;若∠ABC+∠BCD=180°,则_________∥___________.9.如图5-2-15,因为∠1=∠3,∠2=∠3(已知),所以∠1=∠2(),所以AB∥__________().10.如图5-2-16,(1)如果∠B=∠1,那么根据______________,可得AD∥BC;(2)如果∠D=∠1,那么根据____________,可得AB∥CD.11.图5-2-17所示6个角中,有多少对同位角?写出每对这样角.有多少对内错角?写出每对这样角.有多少对同旁内角?写出每对这样角.12.如图5-2-18,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC及BD平行吗?AE及BF平行吗?为什么?13.读下列语句,并在图5-2-19上画出图形. (1)过△ABC 顶点C ,画MN ∥AB ;(2)过△ABC 边AB 中点D ,画平行于AC 直线,交BC 于点E .14.如图5-2-20,(1)要判定AB ∥CD ,只需知道什么条件? (2)要判定AD ∥BC ,只需知道什么条件? (3)要判定AE ∥CF ,只需知道什么条件?15.如图5-2-21,已知∠1=∠2,∠3=∠4,说明AB ∥EF .16.图5-2-22所示为一条街道两个拐角∠ABC 和∠BCD ,若已知∠ABC=150°,要使街道AB 及CD 平行,∠BCD 应为多少度?为什么?17.如图5-2-23,已知∠BED=∠B+∠D .试问:AB 及CD 平行吗?若平行,请说明理由.探索直线平行性质一、学习目标1.掌握平行线三个性质,并能解决一些问题. 2.理解平行线判定及性质区别及应用二、学习重点会用“两直线平行,同位角相等”、“ 两直线平行,内错角相等”和“两直线平行,同旁内角互补”来解决问题.三、学习难点探索平行线性质和平行线性质运用四、学习过程交流合作、探索发现合作交流一:如图,猜一猜∠1和∠2相等吗?为什么?图中还有其它同位角吗?它们大小有什么关系?是不是任意一条直线去截平行线a 、b 所得同位角都相等呢? [结论] 两条平行线被第三条直线所截,___________________. 简单说成:_____________________.11 3 2abc 1234d符号语言:_________________________. 合作交流二:如图:已知a//b,那么∠2及∠ 3相等吗?为什么?[结论]两条平行线被第三条直线所截,____________________. 简单说成:________________________. 符号语言:_______________________________. 合作交流三:如图,已知a//b , 那么 ∠2及∠4有什么关系呢?[结论]两条平行线被第三条直线所截,______________________. 简单说成:_________________________________. 符号语言:______________________________. 五、例题讲解例1.如图1,已知直线a ∥b,∠1 = 500,求∠2度数. 变式1.已知条件不变,求∠3,∠4度数?变式2.如图2,已知∠3 =∠4, ∠1=47°, 求∠2度数?例2如图3,AD ∥BC ,∠A =∠C.试说明AB ∥CD.例3.如图4,在四边形ABCD 中,已知AB ∥CD ,∠B = 600。

七年级数学下册-相交线与平行线

七年级数学下册-相交线与平行线

第2讲相交线与平行线知识导航1.三线八角.2.平行线与平行公理.3.平行线的判定.4.平行线的性质.5.平移.【板块一】平行线的判定◆题型一三线八角方法技巧1.两条直线被第三条直线所截形成的8个角中共有4对同位角,2对内错角,2对同旁内角.2.同位角形如字母“F"(或倒置、反置);内错角形如字母“Z”(或反置);同旁内角形如字母“U”(或倒置、反置).3.三种角讲的都是位置关系,而不是大小关系,通常情况下,其大小是不确定的.【例1】在∠1至∠8这8个角中,同位角、内错角、同旁内角各有几对,请分别写出来.87654321◆题型二平行公理及其推论方法技巧(1)平行公理体现了平行线的存在性和唯一性,平行公理的推论体现了平行线的传递性,它们都可以作为以后推理的依据.(2)平行公理中强调“经过直线外一点”,而垂线性质中只要求“经过一点”,不限定点是否在直线上.【例2】下列说法中正确的是(B).A.过一点有且只有一条直线与已知直线平行B.平面内,过一点有且只有一条直线与已知直线垂直C.因为a∥b,c∥d,所以a∥dD.一条直线的平行线只有一条◆题型三平行线的判定——两步导角证平行方法技巧1.已知角相等导角证平行.2.通过角的数量关系证平行.3.通过同角(等角)的余角相等,对顶角相等,角平分线得等角,再证平行.【例3】如图,已知CD平分∠ACB,∠1=∠2,试判断AC与DE的位置关系,并说明理由.E DC BA21◆题型四 平行线的判定方法+平行公理推论证平行 【例4】如图,∠A +∠B =180°,∠EFC =∠DCG ,试说明:AD ∥EF .GF ED CBA◆题型五 作辅助线证折线中的平行关系 方法技巧有些平行线的证明,无法直接导出相等角,此时考虑连线或作平行线转化角.【例5】如图,在长方形ABCD 中,点E 在BA 的延长线上,点F 在BC 的延长线上,AM 平分∠EAD ,CN 平分∠DCF .(1)直接写出图中∠ABC 的所有同位角;(2)求证:AM ∥CN .ABCDE FMN针对练习11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的方向与角度可能是( ) A.第一次向左拐30°,第二次向右拐30° B.第一次向右拐50°,第二次向左拐130° C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°2.平面上有2018条直线,若a 1⊥a 2,a 2⊥a 3,a 3∥a 4,a 4∥a 5,a 5⊥a 6,a 6⊥a 7,…,那么a 1和a 2018的位置关系是_________.3.如图,直线AB ,CD 被直线EF 所截,∠1=∠2,∠CNF =∠BME ,那么AB ∥CD ,MP ∥NQ ,请说明理由.QP N MFEDCB A124.如图,直线EF 与直线AB ,CD 分别相交于点M ,N ,直线PT 经过点M ,∠MQN =∠BMQ +∠QND ,∠AMT =∠QN D. (1)求证:МР∥NQ ;(2)АВ∥СD.Q P N MT FEDCBA5.在长方形ABCD 中.(1)如图1,若CD =3,BD =5,BC =4,AE ⊥BD 于点E ,P 是BD 上一动点,连接CP ,当CP 为何值时,CP ∥AE ?说明理由; (2)如图2,若∠ADB =20°,P 为BC 上一动点,将三角形ABP 沿AP 翻折到三角形AEP 位置,当∠BAP 等于多少度时AE ∥BD ?说明理由.图1图2P EDCBAABCDEP【板块二】平行线的性质◆题型一 利用平行线性质导角 方法技巧1.在两直线平行的前提下才存在同位角相等、内错角相等、同旁内错互补的结论,这是平行线特有的性质.2.利用平行线的性质构建等角链.【例1】如图,AF ∥CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠CBE +∠D =90°;④∠DEB =2∠ABC ,其中结论正确的个数有哪些?说明理由.F EDCB A◆题型二 利用角平分线的性质与判定进行计算与证明 方法技巧利用已知得可知,思考结论看需知.【例2】如图,DC ∥FP ,∠1=∠2,∠FED =30°,∠AGF =80°,FH 平分∠EFG . (1)说明:DC ∥AB ;(2)求∠PFH 的度数.PH GFED C BA 312◆题型三 平行线间的距离 方法技巧1.平行线间的距离处处相等.2.夹在两条平行线间的线段必须是和这两条平行线垂直,否则其长度不是两条平行线间的距离.3.夹在两平行线间的图形的等积变换.【例3】已知在梯形ABCD 中,AD ∥BC ,连接AC ,BD 相交于点O . (1)图中有几对面积相等的三角形?(2)若AD 与BC 之间的距离为a ,AC =4,BD =5,求AD +BC 的最大值.(用a 表示)ODCB A◆题型四 命题 方法技巧(1)命题必须是一个完整的句子,而且这个句子必须对某件事情作出肯定或否定的判断,二者缺一不可.(2)命题的内容可以是几何的,也可以是代数的,还可以是生活中的事情,如“如果a =b ,那么a 2=b 2”,“末位数字是0或5的数能被5整除”,“这支粉笔是红色的”等都是命题. (3)命题是判断句,而判断句可对可错,因而命题所描述的关系可真可假,如“相等的角都是对顶角”,这个判断虽是错的,但仍然是命题.(4)疑问句、具体操作都不是命题,如“今天是星期天吗?”就不是命题.【例4】判断下列语句是不是命题,如果是命题,写成“如果…,那么…”的形式,指出题设和结论,并指出是真命题还是假命题: (1)画直线AB ;(2)两直线相交,有几个交点? (3)等角的补角相等; (4)两点确定一条直线.针对练习21.如图,AD 与BC 交于点O ,点E 在AD 上,∠C =∠3,∠2=80°,∠1+∠3=140°,∠A =∠D ,求∠B 的度数.OF E DC BA 3122.如图,点E 在AB 上,点F 在CD 上,EC 交AD 于点G ,BF 交AD 于点H ,已知∠A =∠AGE ,∠D =∠DG C. (1)试说明AB ∥CD ; (2)若∠1+∠2=180°,且∠BEC =2∠B +60°,求∠C 的度数.HG F E DC A 123.如图,点F 在CA 的延长线上,点E 在CD 的延长线上,已知AB ∥CD ,∠C =35°,AB 是∠F AD 的平分线,∠ADB =110°,求∠BDE 的度数.AB CD EF4.直线a 上有一点A ,直线b 上有一点B ,且a ∥b .点P 在直线a ,b 之间,若P A =3,PB =4,则直线a ,b 之间的距离( )A.等于7B.小于7C.不小于7D.不大于75.如图,在△ABC 中,AC ⊥BC ,CD ⊥AB ,垂足分别为C ,D 两点,∠1=∠2,下列结论:①∠3=∠EDB ;②∠A =∠3;③AC ∥DE ;④∠2与∠3互补;⑤∠1=∠EDB ,其中正确的有( )A.2个B.3个C.4个D.5个ED CBA 3126.如图,在长方形内画了一些直线,已知其中有3块面积分别是12,32,52的三角形、三角形、四边形,那么图中阴影部分的面积是( ) A.108 B.96 C.84 D.727.如图1,将线段AB 平移至CD ,使点A 与点D 对应,点B 与点C 对应,连接AD ,B C. (1)填空:AB 与CD 的位置关系为_________,BC 与AD 的位置关系为___________; (2)点G ,E 都在直线DC 上,∠AGE =∠GAE ,AF 平分∠DAE 交直线CD 于点F . ①如图2,若G ,E 为射线DC 上的点,∠F AG =30°,求∠B 的度数;②如图3,若G ,E 为射线CD 上的点,∠F AG =α,求∠C 的度数(结果用含α的式子表示).DCBAG F E DCB图3图1图2ABC D EF G【板块三】阅读理解填空、解答题◆题型一 阅读理解填理由题 方法技巧看图,联系上下文,运用有关定理进行合理填空. 【例1】完成下列推理过程如图,M ,F 两点在直线CD 上,AB ∥CD ,CB ∥DE ,BM 、DN 分别是∠ABC 、∠EDF 的平分线,求证:BM ∥DN .NMFEDC BA312证明:∵BM 、DN 分别是∠ABC 、∠EDF 的平分线,∴∠1=12∠ABC ,∠3=__________(角平分线定义). ∵AB ∥CD ,∴∠1=∠2,∠ABC =________(____________) ∵CB ∥DE ,∴∠BCD =________(____________). ∴∠ABC =∠EDF ,∴∠1=∠3, ∴∠2=________(____________) ∴BM ∥DN (____________)◆题型二阅读理解和运用【例2】如果一个角的两边与另一个角的两边分别平行,某同学为了探究这两个角之间的关系,画出了以下两个不同的图形,请你根据图形完成以下问题:图2图1MFEDC BAM FE DCB A213312(1)如图1,如果AB ∥CD ,BE ∥DF ,那么∠1与∠2的关系是_________; 如图2,如果AB ∥CD ,BE ∥DF ,那么∠1与∠2的关系是_________;(2)根据(1)的探究过程,我们可得出结论:如果一个角的两边与另一个角的两边分别平行,那么这两个角____________;(3)利用结论解决问题:如果有两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?针对练习31.完成下面的证明:如图,点D 、E 、F 分别在线段AB 、BC 、AC 上,连接DE 、EF ,DM 平分∠ADE 交EF 于点M ,∠1+∠2=180°,求证:∠B =∠BE D.ME DCBA12证明:∵∠1+∠2=180°(已知), 又∵∠1+∠BEM =180°(平角定义), ∴∠2=∠BEM (___________),∴DM ∥_________(_________________) ∴∠ADM =∠B (_________________) ∠MDE =∠BED (_________________) 又∵DM 平分∠ADE (已知),∴∠ADM =∠MDE (角平分线定义), ∴∠B =∠BED (_________________).2.探究:如图1,直线AB ,BC ,AC 两两相交,交点分别为点A ,B ,C ,点D 在线段AB 上,过点D 作DE ∥BC ,交AC 于点E ,过点E 作EF ∥AB ,交BC 于点F .若∠ABC =40°,求∠DEF 的度数.图1FE D CBA请将下面的解答过程补充完整.解:∵DE ∥BC (已知),∴_________________(两直线平行,内错角相等) ∵EF ∥AB (已知),∴∠ABC =∠EFC (_____________), ∴∠DEF =∠ABC =40°(等量代换).应用:如图2,四边形BDEF 中,BF ∥DE ,DB ∥EF ,∠F =2∠D -50°,点C 在线段BF 上,若∠FCE =∠CEF +10°,求∠CEF 的度数.图2FEDCB【板块四】运用“中间等角”导角证两线平行◆题型一 利用同角或等角的余角(或补角)相等导角 方法技巧在已知条件为a +b =90°或a +b =180°的题目中,寻找第二对a +c =90°或a +c =180°,得出b =c .【例1】如图,已知直线AB ∥DF ,点G 在射线BC 上,射线DE 分别交AB 、AG 于点H 、M ,∠D +∠B =180°. (1)求证:DE ∥BC ; (2)如果∠AMD =80°,∠AHE =70°,∠EHB 与∠MGC 的平分线交于点P ,求∠HPG 的度数.ABCDEFGHMP◆题型二 运用等式的性质证角相等 方法技巧1.若a =b ,b =c ,则a =c ;2.若a =b ,则a +c =b +c .【例2】如图,点B 在AC 上,AB ∥EF ,∠1=∠2,∠3=∠4,AF 与BE 平行吗?为什么?3412FEDCB A◆题型三 反复运用平行线的判定与性质导角【例3】如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证:AB ∥C D.3412ABC DE F◆题型四 作适当的辅助线构造中间等角 方法技巧有些题目给出的等角的位置不是三线八角中的基本角,这时作适当的辅助线(连线,延长线或作平行线)来转化角.【例4】如图是一个汉字“互”字,其中点M 在AB 上,点N 在CD 上,点G 在ME 上,点F 在NH 上,GH ∥EF ,∠1=∠2,∠MEF =∠GHN . 求证:(1)∠MGH =∠GHN ;(2)AB ∥C D.12A B C DEFG H MN题型三设两个未知数,列关系式求解 方法技巧题目中有两个独立未知角,一个已知方程不能求出未知角时,需列两个方程求解. 【例3】如图1,在五边形ABCDE 中,AE ∥BC ,∠A =∠C . (1)猜想AB 与CD 之间的位置关系,并说明理由; (2)如图2,延长DE 至点F ,连接BE ,若∠1=∠3,∠AEF =2∠2,∠AED =2∠C -140°,求∠C 的度数.图2图1ABCDE321FED BA题型四设两个未知数列一个方程巧解角的度数题目中有两个独立未知角,只有一个等戏,这时设两个未知数,列一个方程,巧解所求角. 【例4】已知AB ∥CD ,M ,N 分别是直线AB ,CD 上两点,点G 在AB ,CD 之间,连接MG ,NG ,点E 是AB 上方一点,连接EM ,EN ,且GM 的延长线平分∠AME ,NE 平分∠CNG ,2∠MEN +∠MGN =105°,求∠AME 的度数.NMGF E DCB A针对练习71.如图,AB ∥CD ,点E 在直线AB 上,点N ,F 在直线CD 上,PE 平分∠AEN ,FH ∥EN ,延长PF 到点G ,FG 平分∠DFH ,若∠PFC =∠AEP +10°,求∠BEN 的度数.HNPFE DCBA2.如图1,AC 平分∠DAB ,∠1=∠2.(1)试说明AB 与CD 的位置关系,并予以证明;(2)如图2,延长AD ,BC 交于点G ,过点D 作DH ∥BC 交AC 于点H ,若AC ⊥BC ,问当∠CDH 多少度时,∠GDC =∠ADH ?图2图12121H GBD ACDCBA3.如图,已知AB ∥CD ,∠EBF =2∠ABF ,CF 平分∠DCE ,若2∠F -∠E =10°,求∠ABE 的度数.KFEACBD【板块八】分类讨论思想求角题型一 按照点的不同位置关系分类讨论求角 方法技巧点在运动过程中,由于点在线上的不同位置,产生不同的图形,需分类讨论. 【例1】已知AB ∥CD ,∠BAD =50°,点P 在直线AD 上,E 为UD 上一点 (1)如图1,当点P 在线段AD 延长线上时,求证:∠PEC -∠APE =130°;图1PE DCBA(2)如图2,当点P 在直线AD 上运动时(不与点A ,D 重合),求∠APE 与∠PEC 之间 的数量关系.题型二 按照线的不同位置关系分类讨论求角 方法技巧按照动线的不同位置来分类讨论求角.【例2】一个角为60°,另一个角的两边分别与这个角的两边平行,则这个角的度数为 .题型三分类讨论求角之间的关系 方法技巧点在运动时,两个动角之间具有某种确定的数量关系,此时设未知数,探求它们之间的关系 【例3】如图,已知AB /CD 、BE 平分ABD ,DE 平分/BDC (1)求证:BE ⊥DE ;(2)H 是直线CD 上一动点(不与点D 重合),BI 平分∠HBD 交CD 于点I ,在图2或备用图中,请你画出图形,并猜想∠EBI 与∠BHD 的数量关系,且说明理由.图3图2图1ABCD EABCDEE DCBA针对练习81.如果两个角的两边分别平行,且一个角比另一个角的两倍少80°,则这两个角的度数分别是 .2.如图,AB ∥CD ,直线EF 与直线AB ,CD 分别交于点E ,F ,∠BEF <150°,点P 为直线EF 左侧平面上一点,且∠BEP =150°,∠EPF =50°,则∠DFP 的度数是 .FEDC BA3.(1)如图1,F 是OC 边上一点,求证:∠AFC =∠AOC +∠OAF ;(2)如图2,∠AOB =40°,OC 平分∠AOB ,点D ,E 在射线OA ,OC 上,点P 是射线OB 上的一个动点,连接DP 交射线OC 于点F ,设∠ODP =x °,若DE ⊥OA ,是否存在这样的x 的值,使得∠EFD =4∠EDF ?若存在,求出x 的值;若不存在,说明理由.备用图图2图1DBEC AAC EBDCF OA【板块九】平移题型一平移定义 方法技巧1.图形的平移必须具备两个要素:平移的方向与平移的距离.其中,平移的方向是平移前图形上的某一点到其对应点所指的方向;平移的距离是平移前图形上的某一点到其对应点之间的距离.2.平移只改变位置,形状与大小都不改变。

(2021年整理)第四讲平行线及三线八角

(2021年整理)第四讲平行线及三线八角

(完整)第四讲平行线及三线八角编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)第四讲平行线及三线八角)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)第四讲平行线及三线八角的全部内容。

第四讲 平行线及三线八角一,【基础知识点】1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

2、两条直线的位置关系(1)在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行.(2)因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)(3)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行 4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥a∴b ∥c 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。

a b c二,知识巩固1.下列说法中,错误的有( ).①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c,那么a ∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、•相交、垂线三种 A .3个 B .2个 C .1个 D .0个 2.判断题(1)不相交的两条直线叫做平行线.( )(2)在同一平面内,不相交的两条射线是平行线.( )(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行。

三线八角及平行线的判定

三线八角及平行线的判定

同位角、内错角、同旁内角(三线八角) 若直线a ,b 被直线l 所截:(1)同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做 同位角.(如15∠∠和)(2)内错角:两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角 叫做内错角.(如35∠∠和)(3)同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.(如36∠∠和) 注意:三线八角是位置关系,数量上没有确定的关系.a【例1】填空如图,∠2与∠3是_______角.∠2与∠4是_______角.∠2与∠5是_______角.∠1与∠5是_______角.∠3与∠5是_______角.∠3与∠7是_______角.∠3与∠8是_______角.∠2与∠8是_______角.【例2】看图填空(1)∠B和∠1是两条直线________和_______被第三条直线_______所截构成的_______角.(2)∠ACB与∠7是两条直线________和______被第三条直线______所截构成的_______角.(3)∠3与∠5是两条直线________和______被第三条直线______所截构成的_______角.(4)∠3与∠B是两条直线________和______被第三条直线______所截构成的_______角.(5)∠2与∠7是两条直线________和______被第三条直线______所截构成的_______角.【例3】如图,同旁内角有( )对.A.4对B.3对C.2对D.1对【例4】如图,同位角共有( )对.A.1对B.2对C.3对D.4对【例5】如图,是同位角关系的是( ).A.∠3和∠4 B.∠1和∠4B.C.∠2和∠4 D.不存在【例6】如图,内错角共有( )对.A.1对B.2对C.3对D.4对【例7】如图,同旁内角共有( )对.A.10对B.8对C.6对D.4对【例8】如图,∠1与∠2是是两条直线____和____被第三条直线______所截构成的_____角.∠3与∠4是两条直线________和______被第三条直线______所截构成的_______角.【例9】如图,∠C的同位角有_____________________,同旁内角是_____________________,∠1与∠2是___________角.直线AB和CD被AD所截,∠A∠A与∠ADC是_______角.【例10】如图,∠1的同位角是∠______,∠1的内错角是∠______,∠1的同旁内角是∠_____,∠1的对顶角是∠______,∠1的邻补角是∠______.【例11】如图,DC垂直于AE,已知∠DCE的同位角是它的一半,∠B=2∠ACB,试判断△ABC的形状.1、平行线的定义同一平面内,不相交的两条直线叫平行线. 2、平行线的基本性质(1)经过直线外一点,有且只有一条直线与已知直线平行; (2)平行线之间的距离处处相等;(3)平行于同一条直线的两直线平行(平行的传递性). (4)同一平面内,垂直于同一条直线的两直线平行.(5)两条平行线中,任意一条直线上的所有点到另一条直线的距离是一个定值,这个定值叫做这两条平行线间的距离,平行线间的距离处处相等.【例12】已知直线a //b ,b //c ,那么a ________c .【例13】a 、b 、c 是直线,且a //b ,b ⊥c ,则a 与c 的位置关系是________. 【例14】下列说法中,正确的是(). A .两直线不相交则平行B .两直线不平行则相交C .若两线段平行,那么它们不相交D .两条线段不相交,那么它们平行【例15】在同一平面内,有三条直线,其中只有两条是平行的,那么交点有().A .0个B .1个C .2个D .3个【例16】下列说法中,错误的有().①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b ,b ∥c ,那么a ∥c ;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种 A .3个B .2个C .1个D .0个【例17】如图,按要求画平行线.(1)过P 点画AB 的平行线EF ; (2)过P 点画CD 的平行线MN .【例18】如图,点A ,B 分别在直线1l ,2l 上,(1)过点A画到l的垂线段;2(2)过点B画直线CD∥l.1平行线的三种判定方法:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说,同位角相等,两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说,内错角相等,两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单地说,同旁内角互补,两直线平行.【例19】如图,请写出能判定CE∥AB的一个条件______________.【例20】如图,AB∥CD,AC⊥BC,∠BAC =65°,则∠BCD =_______度.【例21】如图,下列说法错误的是().A.∠1和∠3是同位角;B.∠1和∠5是同位角;C.∠1和∠2是同旁内角;D.∠5和∠6是内错角.【例22】已知,△ABC中DE垂直于AC与E,∠ACB=90°,试说明DE∥BC的理由.【例23】如图,∠5=∠CDA =∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:∵∠5=∠CDA(已知)∴_______//_______(内错角相等,两直线平行)∵∠5=∠ABC(已知)∴_______//_______(同位角相等,两直线平行)∵∠2=∠3(已知)∴_______//_______(内错角相等,两直线平行)∵∠BAD+∠CDA=180°(已知)∴_______//_______(同旁内角互补,两直线平行)∵∠5=∠CDA(已知),又∵∠5与∠BCD互补,∠CDA与_______互补(邻补角定义)∴∠BCD=∠6(等角的补角相等)∴_______//_______(同位角相等,两直线平行)【例24】如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,那么BE与DF平行吗?为什么?【例25】如图,∠2=3∠1,且∠1+∠3=90°,试说明//AB CD.【例26】已知∠1=∠2,DE平分∠BDC,DE交AB于点E,试说明AB//CD.【例27】已知AC、BC分别平分∠QAB、∠ABN,且∠1与∠2互余,试说明PQ//MN.【例28】如图,直线AB分别与直线CD、EF交于点O、点E,GO⊥OH,OH平分∠AOC,且∠EDO与∠GOB互余,试说明OH//EF.【例29】如图,∠ABE=∠E+∠D,试说明AB//CD的理由.【习题1】观察图,下列说法中,正确的是().A.3∠是内错角∠和4B.1∠和4∠是同位角C.5∠是内错角∠和2D.4∠和6∠是同旁内角【习题2】如图,能使AB∥CD的条件是( ).A.∠1=∠B B.∠3=∠AC.∠1+∠2+∠B=180°D.∠1=∠A【习题3】一学员在广场上练习驾车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度是( )F E21DCBA53486721A .第一次向左拐,第二次向右拐B .第一次向右拐,第二次向左拐C .第一次向右拐,第二次向右拐D .第一次向左拐,第二次向左拐【习题4】如图,在下列条件中,能判定AB //CD 的是()A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠4【习题5】如图,图中所标号的8个角,是∠1的同位角的是_________;∠3的内错角是 _________;∠7的同旁内角是_________;∠4的同位角是_________;∠6的内错角是 _________;∠2的同旁内角是_________.【习题6】如图,已知直线b ⊥a ,c ⊥a .那么直线b 与c 平行吗?如果平行,请给出证明; 如果不平行,举出反例.【习题7】如图,已知AC ⊥AE ,BD ⊥BF ,∠1=35°,∠2=35°,AC 与BD 平行吗?AE 与BF平行吗?为什么?【习题8】如图,∠1+∠2=180°.AE 与FC 会平行吗? 说明理由.30o 30o 50o 130o 50o 130o 50o 130o ab c12【习题9】根据图完成下列填空(括号内填写定理或公理) (1)∵∠1=∠4(已知)∴_________∥_________()(2)∵∠ABC +∠_________=180°(已知)∴AB ∥CD ()(3)∵∠_________=∠_________(已知)∴AD ∥BC ()(4)∵∠5=∠_________(已知)∴AB ∥CD ()【习题10】已知DE ⊥BC ,FG ⊥BC ,∠DEH =∠GFC ,试说明EH ∥FC 的理由.【习题11】 已知∠EDC +∠B =180°,∠EDC =∠A ,试说明AE //BC 的理由.【习题12】已知:∠ABC =∠ADC ,BF 和DE 分别平分∠ABC 和∠ADC ,12∠=∠.试说明DE ∥BF 的理由.【习题13】已知直线a ,b ,c 被直线d 所截,01334180∠=∠∠+∠=,,试说明a ∥c .2431E DCB Aα【作业1】下列说法中正确的是( )A .经过一点,有且只有一条直线与已知直线平行B .两条直线被第三条直线所截,同位角相等C .垂直于同一条直线的两条直线互相垂直D .两条直线被第三条直线所截,内错角相等,则两条直线平行【作业2】在同一平面内,若a ⊥b ,c ⊥b 则a 与c 的关系是()A .平行B .垂直C .相交D .以上都不对【作业3】如图,∠ADE 和∠CED 是( )A .同位角B .内错角C .同旁内角D .互为补角【作业4】如图,属于内错角的是()A .∠1和∠2B .∠2和∠3C .∠1和∠4D .∠3和∠4【作业5】下列有关垂直相交的说法:①同一平面内,垂直于同一条直线的两条直线互相平行;②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直; ③同一平面内, 一条直线不可能与两条相交直线都垂直; 其中说法正确个数有( )A .3个B .2个C .1个D .0个【作业6】下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题B .②、③是正确命题C .①、③是正确命题D .以上结论皆错【作业7】如图,能与α∠构成同旁内角的角有()A .5个B .4个C .3个D .2个N M F E D C B A H G N M F E DC B A 【作业8】如图,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA .(1)判断CD 与AB 的位置关系;(2)BE 与DF 平行吗?为什么?【作业9】 如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,试说明DG //BC 的理由.【作业10】如图,AB 、CD 被EF 所截,MG 平分∠BMN ,NH 平分∠DNM ,已知∠GMN +∠HNM =90°,试问:AB ∥CD 吗?请说明理由.【作业11】 如图, ∠B =∠C ,∠A =∠D ,试说明AE //DF .【作业12】如图,已知:∠B+∠D=∠BED.AB与CD平行吗,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.2平行线的判定
第1课时平行线的概念、基本事实及三线八角
1.理解并掌握平行线的概念及基本事实,同位角、内错角和同旁内角的概念及性质;
2.能够运用平行线及三线八角解决实际问题.(重点、难点)
一、情境导入
观察下列图片,想一想如果手扶式电梯左右扶手之间的宽度不相等会怎样,如果铁轨两条轨道之间的距离不相等会怎样?
二、合作探究
探究点一:平行线的概念、画法及基本事实
【类型一】平行线的概念
同一平面内,两条不重合的直线的位置关系是()
A.平行或垂直B.平行或相交
C.平行、相交或垂直D.相交
解析:在同一平面内两条不重合的直线的位置关系是平行或相交.故选B.
方法总结:本题考查了对平行线和相交线的理解和掌握,能熟练地运用性质进行说理是解此题的关键.
【类型二】平行线的画法
如图所示,在∠AOB内有一点P.
(1)过P画l1∥OA;
(2)过P画l2∥OB.
解:如图所示.
方法总结:运用三角板作平行线注意直尺的使用,以确保作出的两条直线为平行线.
探究点二:同位角、内错角、同旁内角
【类型一】同位角、内错角、同旁内角的判断
例3如图,下列说法错误的()
A.∠A与∠B是同旁内角
B.∠3与∠1是同旁内角
C.∠2与∠3是内错角
D.∠1与∠2是同位角
解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成U型,是同旁内角;B中∠3与∠1形成U型是同旁内角;C中∠2与∠3形成Z型,是内错角;D中∠1与∠2是邻补角,题设说法错误.故选D.
【类型二】同位角、内错角、同旁内角的识别
例4如图,找出图中∠DEA,∠ADE的同位角、内错角和同旁内角.
解析:结合图形,找出“三线八角”.
解:图中∠DEA的同位角为∠C、内错角为∠BDE、同旁内角为∠A和∠ADE;∠ADE 的同位角为∠B、内错角为∠CED、同旁内角为∠AED和∠A.
方法总结:两个角的公共边所在直线为截线,其余两边所在直线是被截的两直线,在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.
【类型三】答案不唯一的图形问题
如图所示,直线DE与∠O的两边相交,则∠O的同位角是________,∠8的同旁
内角是________.
解析:直线DE与∠O的两边相交,则∠O的同位角是∠5和∠2,∠8的同旁内角是∠1和∠O.故答案为∠5和∠2,∠1和∠O.
易错点拨:找某角的同位角,同旁内角时,应从各个方位观察,避免漏数.
三、板书设计
1.平行线的概念和基本事实
在同一平面内不相交的两条直线叫做平行线.
经过直线外一点,有且只有一条直线平行于这条直线.
如果两条直线都和第三条直线平行,那么这两条直线平行.
本节课学习了两个内容:平行线的概念及基本事实和认识同位角、内错角、同旁内角.教学中可让学生自己画平行线,结合图形说出平行线的基本事实.“三线八角”中的同位角、内错角、同旁内角的识别是难点也是易错点,让学生在学习中不断纠错,不断进步。

相关文档
最新文档