2018山东省高中数学竞赛初赛答案

合集下载

【高中数学竞赛专题大全】 竞赛专题4 平面向量(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题4 平面向量(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题4 平面向量 (50题竞赛真题强化训练)一、单选题1.(2018·全国·高三竞赛)已知ABC ∆的外接圆圆心为O ,BC CA AB >>.则( ). A .OA OB ⋅>OA OC ⋅>OB OC ⋅. B .OA OB ⋅>OB OC ⋅>OA OC ⋅. C .OB OC ⋅>OA OC ⋅>OA OB ⋅ D .OA OC ⋅>OB OC ⋅>OA OB ⋅ 【答案】A 【解析】 【详解】设ABC ∆的外接圆半径为R .则2cos2O R A OB C ⋅=,2cos2O R B OC A ⋅=,2cos2O R A OC B ⋅=.又由BC CA AB >>,可知sin sin sin 0A B C >>>.故22212sin 12sin 12sin A B C -<-<-,即cos2cos2cos2A B C <<.所以OA OB ⋅>OA OC ⋅>OB OC ⋅.2.(2019·全国·高三竞赛)设P 为ABC ∆所在平面内一动点.则使得PA PB PB PC PC PA ⋅+⋅+⋅取得最小值的点P 是ABC ∆的( ). A .外心 B .内心 C .重心 D .垂心【答案】C 【解析】 【详解】 注意到()()()()PA PB PB PC PC PA PA PA AB PA AB PA AC PA AC PA⋅+⋅+⋅=⋅+++⋅+++⋅222()32()3()33AB AC AB AC PA AB AC PA AB AC PA AB AC ++=++⋅+⋅=+-+⋅①当3AB ACPA +=,即P 为ABC ∆的重心时,式①取得最小值2()3AB AC AB AC +-+⋅.故答案为C3.(2018·全国·高三竞赛)设H 是ABC ∆所在平面上的一点,用a 、b 、c 、h 分别表示向量OA 、OB 、OC 、OH .若⋅+⋅=⋅+⋅=⋅+⋅a b c h b c a h c a b h ,则H 是ABC ∆的.A .内心B .外心C .重心D .垂心【答案】D 【解析】 【详解】由⋅+⋅=⋅+⋅a b c h b c a h ,得0⋅+⋅-⋅-⋅=a b c h b c a h ,即()()0-⋅-=a c b h . 所以0CA HB ⋅=,则HB CA ⊥.同理,HA BC ⊥.4.(2019·全国·高三竞赛)如图,在ABC ∆的边上做匀速运动的三个点P 、S 、R ,当0=t 时,分别从A 、B 、C 出发,当1t s =时,恰好同时到达B 、C 、A .那么,这个运动过程中的定点是PQR ∆的( )A .内心B .外心C .垂心D .重心【答案】D 【解析】 【详解】 依题意知AP BS CR AB BC CA λ===,设G 为PSR ∆的重心,则1(),3AG AP AS AR =++ 11[1)]()33AB AB BC AC AB AC λλλ+++-=+(. 所以,G 为ABC ∆的重心. 故答案为D5.(2018·全国·高三竞赛)如图,在凸四边形ABCD 中,4AB =,3BC =,52CD =,且90ADC ABC ∠=∠=︒.则BC AD→⋅→等于( ).A .25334+B .27334+C .338+D .29334+【答案】B 【解析】 【详解】如图由勾股定理得225435222AC CD =+==⨯=,且90ADC ∠=︒,则30CAD ∠=︒. 又因90ADC ABC ∠=∠=︒,所以,A 、B 、C 、D 四点共圆. 联结BD ,则903060ABD ACD ∠=∠=︒-︒=︒. 设BAC α∠=(α为锐角),则3sin 5α=,()4cos 0605αα=︒<<︒. 作矩形CBAF ,则AF BC =,()903060FAD αα∠=︒-+︒=︒-.故()cos 3sin cos 60sin BC AD AF AD AF ADAB FAD ABD ADB α⎡⎤→⋅→=→⋅→=→⋅→∠=⋅∠︒-⎢⎥∠⎣⎦()413273sin60cos sin 33sin 90224ααα⎡⎤=⨯⋅︒+=+⎢⎥︒-⎣⎦.选B.编者注:此题用复数法解答比较简洁.6.(2018·全国·高三竞赛)已知P 为△ABC 内一点,且满足2PA+3PB+4PC=0,那么,::PBC PCA PAB S S S ∆∆∆等于.A .1:2:3B .2:3:4C .3:4:2D .4:3:2【解析】 【详解】如图,延长PA 至D ,使PD=2PA ;延长PB 至E ,使PE=3PB ;延长PC 至F ,使PF=4PC.则PD+PE+PF=0.从而,P 为△DEF 的重心.于是,有 11113433436PBC PEF DEF DEF S S S S ∆∆∆∆==⨯=⨯⨯, 11114234224PCA PFD DEF DEF S S S S ∆∆∆∆==⨯=⨯⨯, 11112332318PAB PDE DEF DEF S S S S ∆∆∆∆==⨯=⨯⨯. 故111::::2:3:4362418PBC PCA PAB S S S ∆∆∆==.7.(2020·浙江温州·高一竞赛)已知单位向量1e ,2e 的夹角为60°,向量12a xe ye =+,且12x ≤≤,12y ≤≤,设向量a 与1e 的夹角为α,则cos α的最大值为( ).A 6B 6C 57D 27【答案】C 【解析】 【详解】 由题意有2212cos x y x xy y α+=++ 则22222221344cos 11x xy yx xy y x x y y α++==-++⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭. 又因为1,22x y ⎡⎤∈⎢⎥⎣⎦,所以2425cos ,728α⎡⎤⎢⎥⎣⎦,所以max 517cos α=8.(2018·全国·高三竞赛)平面上的两个向量OA 、OB 满足OA a =,OB b =,且224a b +=,0⋅=OA OB .若向量(),OC OA OB λμλμ=+∈R ,且222211122a b λμ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.则OC 的最大值是( ) A .12 B .1 C .2 D .4【答案】C 【解析】 【详解】因为OA a =,OB b =,且224a b +=,OA OB ⊥,所以,O 、A 、B 三点在以AB 的中点M 为圆心、1为半径的圆上. 又()12OM OA OB =+,OC OA OB λμ=+,则 11=22MC OC OM OA OBλμ⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭. 故21112222MC OA λλμ⎛⎫⎛⎫⎛⎫=-+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.22221111222OA OB OB a b μλμ⎛⎫⎛⎫⎛⎫⋅+-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.从而,点C 也在以M 为圆心,1为半径的圆上. 因此,O 、A 、B 、C 四点共圆,其圆心为M .当O 、M 、C 三点共线,即OC 为M 的一条直径时,max 2OC =.9.(2018·陕西·高三竞赛)在边长为8的正方形ABCD 中,M 是BC 的中点,N 是AD 边上一点,且3DN NA =,若对于常数m ,在正方形ABCD 的标上恰有6个不同的点P ,使PM PN m ⋅=,则实数m 的取值范围是A .()8,8-B .()1,24-C .()1,8-D .()0,8【答案】C 【解析】如图建立直角坐标系,()()()()0,0,8,4,0,2,,A M N P x y .由题意得:()()228,4,2868PM PN x y x y x x y y m ⋅=--⋅--=-+-+= ()()224317x y m ⇔-+-=+.即以()4,3为圆心,17m +为半径的圆与正方形四边有且仅有6个不同的交点,易由图形知()41751,0m m <+<⇒∈-.二、填空题10.(2018·吉林·高三竞赛)如图,在直角三角形ABC 中,2ACB π∠=,2AC BC ==,点P是斜边AB 上一点,且2BP PA =,那么CP CA CP CB ⋅+⋅=__________.【答案】4 【解析】 【详解】解法一:因为()11213333CP CA AP CA AB CA AC CB CA CB =+=+=++=+,所以CP CA CP CB ⋅+⋅=22218443333CA CB +=+=. 解法二:以C 为原点,CA 、CB 分别为x 轴、y 轴建立平面直角坐标系,则A (2,0), B (0,2),P (43,23),有()2,0CA =,()0,2CB =,42,33CP ⎛⎫= ⎪⎝⎭.所以CP CA CP CB ⋅+⋅= 84433+=. 故答案为411.(2019·全国·高三竞赛)设ABC ∆的面积为1,边AB 、AC 的中点分别为E 、F ,P 为线段EF 上的动点,则2f PB PC BC =⋅+的最小值为__________. 【答案】3 【解析】 【详解】作PD BC ⊥于点D.设BC a =.如下左图,当点D 位于线段BC 或CB 的延长线上时, ()()f PD DB PD DC =+⋅++2BC 22PD DB DC a =+⋅+ 221234a a h a ah ≥+>=>. 如下右图,当点D 位于边BC 上时, ()()f PD DB PD DC =+⋅++ 2BC 22PD DB DC a =+⋅+ 2214a h DB DC a ≥-+ 2222231334442a a a a h a h a ah +≥-+=≥= 当D 为线段BC 的中点以及23a =时,上式等号成立. 综上,min 3f =. 故答案为312.(2019·全国·高三竞赛)设P 是ABC 所在平面上一点,满足2PA PB PC AB ++=.若ABC S ∆1=,则PAB S ∆=______. 【答案】13【解析】 【详解】设O 为原点.则()()()OA OP OB OP OC OP PA PB PC -+-+-=++ ()22AB OB OA ==-,即()3OA OP OB OC -=-. 故3PA CB =.得PA BC ,且3BC PA =. 所以,PABS=11=33ABC S ∆. 故答案为1313.(2019·全国·高三竞赛)在△ABC 中,已知2,3,4AB AC BC ===,设0为△ABC 的内心,且AO AB BC λμ=+.则λ+μ=________. 【答案】79【解析】 【详解】设AO 与BC 交于点D. 由角平分线定理知23BD AB DC AC ==. 于是,3255AD AB AC =+. 又54AO AB AC AB AC OD BD CD BD CD ===+=,则 512939AO AD AB AC ==+ ()1239AB AB BC =++ 5299AB BC =+. 因此,79λμ+=. 故答案为7914.(2021·全国·高三竞赛)已知向量(cos ,sin ),(2,7)a b αα==,则|2|a b +的最大值是___________. 【答案】5【解析】 【详解】|2|2||||235a b a b +≤+≤+=,当14tan 2α=时等号成立 故答案为:5.15.(2019·全国·高三竞赛)在正四面体ABCD 中,设14AE AB =,14CF CD =,记DE 和BF 所成的角为θ.则cos θ=______. 【答案】413- 【解析】 【详解】设正四面体棱长为4.则()()224cos43BF DE BC CF DA AE CF DA BC AE π⋅=+⋅+=⋅+⋅=⨯=-.而222cos133BF DE BC CF BC CF π==+-=,则4cos 13BF DE BF DEθ⋅==-⋅.16.(2019·全国·高三竞赛)如图,已知G 是ABO 的重心,若PQ 过点G ,且,,,OA a OB b OP ma OQ nb ====,则11m n+=_____.【答案】3 【解析】 【详解】由1()2OM a b =+,可知21()33OG OM a b ==+.由P 、G 、Q 三点共线有PG GQ λ=.而111()()333PG OG OP a b ma m a b =-=+-=-+,111()(),333GQ OQ OG nb a b a n b =-=-+=-+-故11113333m n λ⎡⎤⎛⎫⎛⎫-+=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为、a b 不共线,所以,11331133m n λλ⎧-=-⎪⎪⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩. 解得3mn m n =+.故113m n+=. 故答案为317.(2021·全国·高三竞赛)ABC 中,A 、B 、C 的对边分别为a 、b 、c ,O 是ABC 的外心,点P 满足OP OA OB OC =++,若3B π=,且4BP BC ⋅=,则ABC 的面积为_________.【答案】【解析】 【分析】 【详解】由OP OA OB OC =++,得OP OA OB OC -=+,即AP OB OC =+. 注意到()OB OC BC +⊥,所以AP BC ⊥. 同理,BP AC ⊥,所以P 是ABC 的垂心, ()BP BC BA AP BC BA BC ⋅=+⋅=⋅,所以cos 4ac B =,8ac =,所以1sin 2ABC S ac B ==△故答案为:18.(2021·全国·高三竞赛)已知平面单位向量a b c x 、、、,且0a b c ++=,记||||||y x a x b x c =-+-+-,则y 的最大值为________.【答案】4 【解析】 【分析】 【详解】单位向量a b c 、、满足0a b c ++=,则有2,,,3a b b c c a π===,不妨设四个向量如图所示,分别为OA OB OC OX 、、、,X 在单位圆O 的AB 上.设||,||AX m BX n ==,则有223m n mn ++=,故有22()()334m n m n mn ++=+≤+,即有2m n +≤,故||||||||224y x a x b x c m n x c =-+-+-=++-≤+=. 故答案为:4.19.(2021·全国·高三竞赛)已知点A 满足1||2OA =,B 、C 是单位圆O 上的任意两点,则AC BC ⋅的取值范围是__________. 【答案】1,38⎡⎤-⎢⎥⎣⎦【解析】 【分析】 【详解】(221()()()2AC BC OC OA OC OB OC OA OB OC ⋅=-⋅-=++--)222211()28OA OB OCOA CB --=+-. 又150||||||222OA CB OA CB ≤+≤+≤+=,取等可以保证, 故所求范围为1,38⎡⎤-⎢⎥⎣⎦.故答案为:1,38⎡⎤-⎢⎥⎣⎦.20.(2020·浙江·高三竞赛)已知a ,b 为非零向量,且1a a b =+=,则2a b b ++的最大值为__________. 【答案】22【解析】解法一 设()1,0a =,()cos 1,sin b θθ=-,则(cos 2cos sin222a b b θθ⎛⎫==+≤ ⎝++⎪⎭解法二 设m an a b =⎧⎨=+⎩,则2a b n m a n m⎧+=+⎨=-⎩,且1n m ==,所以()()222222422a b b n m n m n m n mn m++=++-≤++-=+=故答案为:21.(2021·全国·高三竞赛)已知两个非零向量,m n 满足2,22m m n =+=,则2m n n ++的最大值是_____.【解析】 【分析】 【详解】设()()2,0,22cos ,2sin m m n x x =+=,则()cos 1,sin n x x =-.则:|2|||(cos m n n x ++===.当且仅当102cos 3(22cos )3x x +=-,即1cos 3x =.. 22.(2021·全国·高三竞赛)设P 是ABC 所在平面内一点,满足3PA PB PC AB ++=,若PAC △的面积为1,则PAB △的面积为__________.【答案】12【分析】 【详解】因为3PA PB PC AB ++=,所以33PA AB AC AB ++=,即1322()2PA AB AC AB AC =-=-, 记AC 的中点为M ,于是23PA MB =,因此1122PAB PAM PAC S S S ===.故答案为:12.23.(2021·全国·高三竞赛)已知、、A B C 为ABC 三内角,向量cos,3sin ,||222A B A B αα-+⎛⎫== ⎪⎝⎭.如果当C 最大时,存在动点M ,使得|||||MA AB MB 、、∣成等差数列,则||||MC AB 最大值为________.【解析】 【分析】 【详解】 2213||2cos 3sin 2cos()cos()22222A B A B A B A B α-+=⇔+=+--+= 1cos()3cos()2sin sin cos cos tan tan 2A B A B A B A B A B ⇔-=+⇔=⇔=, tan tantan tan()2(tan tan )tan tan 1A BC A B A B A B +=-+==-+≤---,等号成立仅当tan tan 2A B ==. 令||2AB c =,因||||4MA MB c +=,所以M 是椭圆2222143x y c c +=上的动点.故点C ⎛⎫⎪ ⎪⎝⎭,设(,)M x y ,则: 22222224||432c MC x y c y y ⎛⎫=+=-++ ⎪ ⎪⎝⎭221932c y =-+,||y ≤.当3y c =-时,22max max 72661||,||22MC c MC c ++==. 即max||2324||MC AB +=.故答案为:2324+. 24.(2021·全国·高三竞赛)如图,在ABC 中,32,5,cos ,5CAB AB AC D ===∠是边BC 上一点,且2BD DC =.若点P 满足BP 与AD 共线,PA PC ⊥,则||||BP AD 的值为_________.【答案】34或316【解析】 【分析】 【详解】因为2BD DC =,所以2()AD AB AC AD -=-,即1233AD AB AC =+. 因为BP 与AD 共线,所以存在实数λ,使得BP AD λ=.因为1233AD AB AC =+,所以233BP AB AC λλ=+, 从而2213333PA PB BA AB AC AB AB AC λλλλ⎛⎫=+=---=-+- ⎪⎝⎭21133PC PA AC AB AC λλ⎛⎫⎛⎫=+=-++- ⎪ ⎪⎝⎭⎝⎭,所以222422111133333PA PC AB AB AC AC λλλλλ⎛⎫⎛⎫⎛⎫⎛⎫⋅=+++-⋅-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为32,5,cos 5AB AC CAB ==∠=, 所以2234,25,2565AB AC AB AC ==⋅=⨯⨯=,所以24221411612533333PA PC λλλλλ⎛⎫⎛⎫⎛⎫⎛⎫⋅=+⨯++-⨯--⨯ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2128829λλ=--. 因为PA PC ⊥,所以0PC PA ⋅=,即21288209λλ--=,解得34λ=或316λ=-.因此||3||4||BP AD λ==或316.故答案为:34或316.25.(2021·全国·高三竞赛)若平面向量a b a b +、、的模均在区间[]2,4内,则a b ⋅的取值范围是_________. 【答案】[]14,4- 【解析】 【分析】 【详解】222222()||||2441422a b a b a b +----⋅=≥=-.等号成立当且仅当||||4,||2a b a b ==+=时成立. 取边长为4、4、2的等腰OAB ,其中2AB =. 令,OA a BO b ==即可.又222()()4444a b a b a b +--⋅=≤=.取(2,0)a b ==,等号成立. 故答案为:[]14,4-.26.(2019·广西·高三竞赛)已知点P (-2,5)在圆22:220C x y x y F +--+=上,直线l :3480x y ++=与圆C 相交于A 、B 两点,则AB BC →→⋅=____________ .【答案】32- 【解析】 【详解】由已知求得圆C :(x -1)2+(y -1)2=52到直线l 的距离为3, 从而4||5,||8,cos 5BC AB ABC ==∠=. 所以||||cos()32AB BC AB BC ABC π⋅=-∠=-. 故答案为:32-.27.(2019·甘肃·高三竞赛)△ABC 的三边分别为a 、b 、c ,点O 为△ABC 的外心,已知2220b b c -+=,那么BC AO ⋅的取值范围是____________ .【答案】1,24⎛⎫- ⎪⎝⎭【解析】 【详解】延长AO 交△ABC 的外接圆于D ,得到 BC AO AO AC AO AB ⋅=⋅-⋅1122AD AC AD AB =⋅-⋅ ()2212b c =-21124b ⎛⎫=-- ⎪⎝⎭. 因为2220c b b =-+>,所以b ∈(0,2),故1,24BC AO ⎛⎫⋅∈- ⎪⎝⎭.故答案为:1,24⎛⎫- ⎪⎝⎭.28.(2019·四川·高三竞赛)设正六边形ABCDEF 的边长为1,则()()AB DC AD BE +⋅+=______ .【答案】-3 【解析】 【详解】如图所示,建立平面直角坐标系设C (1,0),则1313,,,2222B A ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1313,,,2222D E ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 于是13(1,0),22AB DC ⎛⎫+=+ ⎪ ⎪⎝⎭33,22⎛⎫= ⎪ ⎪⎝⎭,(1,3)(1,3)(0,23)AD BE +=-+--=-,于是33()()(0,23)32AB DC AD BE ⎛+⋅+=⋅-=- ⎝⎭.故答案为:3-.29.(2019·重庆·高三竞赛)已知向量,,a b c 满足()||:||:||1::3a b c k k +=∈Z ,且b a -=2()c b -,若α为,a c 的夹角,则cos α=_______ .【答案】112- 【解析】 【详解】因为2()b a c b -=-,所以1233b a c =+,所以222144999b a c a c =++⋅.因为||||:||1::3a b c k ==,所以2144cos (2,6)93k α=++∈. 又因为k ∈Z +,所以k =2,所以1cos 12α=-.故答案为:112-.30.(2018·山东·高三竞赛)在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 交BC 于D ,且有14AD AC t AB =+.若8AB =,则AD =______. 【答案】63 【解析】 【详解】过点D 作DE AB 交AC 于点E ,DF AC 交AB 于点F ,由题设14AD AC t AB AE AF =+=+,所以14AE AC =,13AE EC =,AF t AB =. 因此13AE BD BF AB EC CD FA AC ====,所以24AC =,334FA BF AB ==,因此34t =. 所以22131313444444AD AC AB AC AB AC AB ⎛⎫⎛⎫=+=+⋅+ ⎪ ⎪⎝⎭⎝⎭22196108161616AC AB AC AB =++⋅=. 由此得63AD =31.(2018·河北·高三竞赛)设点O 为三角形ABC 内一点,且满足关系式: 23=AOBBOC COAABCSS SS++_____.【答案】116【解析】 【详解】将OA 2OB 3OC 32CA AB BC ++=++化为3OA OB 2OC 0++=,()()OA OB 2OA OC 0+++=.设M 、N 分别是AB 、AC 的中点,则OM 2ON =-. 设△ABC 的面积为S ,由几何关系知12BOCS S =,13AOHS S =,16AOCS S =, 所以23116AOBBOC COAABCSS SS++=.32.(2018·全国·高三竞赛)在等腰△ABC中,已知AC BC ==D 、E 、F 分别在边AB 、BC 、CA 上,且AD =DB=EF=1.若25·16DE DF ≤,则·EF BA 的取值范围是_______. 【答案】423⎡⎤⎢⎥⎣⎦, 【解析】 【详解】以D 为原点、射线DB 和DC 分别为x 和y 轴正方向建立平面直角坐标系.则 A(-1,0),B(1,0),C(0,2).设点()()1122,,,E x y F x y ,其中,112222,22y x y x =-+=+.设线段EF 的中点为()00,M x y .则()121201212024,22.2y y x x x y y x x y ⎧-=-+=-⎪⎨+-==-⎪⎩ 由EF=1,得()()2200421x y -+-=. ①故()()2200041201 3.x y y -=--≥⇒≤≤ ②又()()222221125·4416DE DF DE DF DE DF DM EF DM ⎡⎤=+-+=-=-≤⎢⎥⎣⎦ 222002929.1616DM x y ⇒≤⇒+≤ ③ 将式①代入式③,消去0x ,整理得220002984154321653y y y --≤⇒-≤≤. ④ 综合式②、④得041.3y ≤≤于是,12312x x ≤-≤. 故()()()2121124·,?1,02,23EF BA x x y y x x ⎡⎤=---=-∈⎢⎥⎣⎦. 33.(2018·全国·高三竞赛)在平面直角坐标系中,已知O 为原点,点()1,0A -,(B ,动点C 在圆()2234x y -+=上运动,则OA OB OC ++的最大值为_________.2 【解析】 【详解】令()[)()32cos ,2sin 0,2C θθθπ+∈,则(2OA OB OC ++=()()()2222232cos 2sin 72θθ≤+++=+.当且仅当点()3,2与()2cos ,2sin θθ的连线过原点O 时,上式等号成立.这显然是可以取得的.34.(2019·全国·高三竞赛)如图,在ABC 中,已知O 为BC 的中点,点M 、N 分别在边AB 、AC 上,且6AM =,4MB =,4AN =,3NC =,90MON ∠=︒.则cos A =______.【答案】38【解析】 【详解】令AB a =,AC b =.则10a =,7b =. 因为O 为BC 的中点,所以,1122AO a b =+. 由题意知35AM a =,47AN b =.故31111522102OM AM AO a a b a b ⎛⎫=-=-+=- ⎪⎝⎭,41111722214ON AN AO b a b a b ⎛⎫=-=-+=-+ ⎪⎝⎭.由90MON ∠=︒,知11110102214OM ON a b a b ⎛⎫⎛⎫⋅=-⋅-+= ⎪ ⎪⎝⎭⎝⎭221910203528a a b b ⇒-+⋅-=191100107cos 490203528A ⇒-⨯+⨯⨯-⨯= 3cos 8A ⇒=.故答案为3835.(2018·全国·高三竞赛)已知D 为ABC 边AB 上的一点, P 为ABC 内一点,且满足3D 4A AB =,25AP AD BC =+.则APD ABCS S =△△ ______. 【答案】310【解析】【详解】注意到, 1sin 23232154510sin 2APD ABC AD DP ADP S DP BC DP BC ADP B S AB BC B ∠=⇒⇒∠=∠⇒==⨯= 36.(2018·全国·高三竞赛)已知O 是ABC 的外心.若AB AC =,30CAB ∠=︒,且12CO CA CB λλ=+,则12λλ=______.【答案】12【解析】【详解】不妨设2AB =.以A 为原点、AB 所在直线为x 轴建立平面直角坐标系.则()())0,0,2,0,A BC . 设外心为()O 1,y .由C OA O =,得())()222111y y+=+-.解得2y =则(()()12121121CO CA CB λλλλ==+=-+-.解得13,λ= 22λ=.故1212λλ=.37.(2018·全国·高三竞赛)在△ABC 中,已知∠A=120︒,记向量,cos cos BABCBA A BC C α=+.cos cos CACBCA A CB B β=+则α与β的夹角等于________.【答案】60︒【解析】 【详解】注意到1221IG F F IG PF IG PF ⋅=⋅-⋅,即,CA BA αβ⊥⊥.从而,α与β的夹角与∠A 相等或互补.又11.cos ?cos cos cos cos cos ?cos BA CBBC CBB C ABA CB A B BC CB B C αβ⋅⋅⋅=+=--⋅⋅⋅ 显然,cos cos cos 0.B C A ⋅>->则0.αβ⋅>因此,α与β的夹角等于60.︒38.(2018·全国·高三竞赛)如图,设G H 、分别为ABC ∆的重心、垂心,F 为线段GH 的中点,ABC ∆外接圆的半径1R =.则222AF BF CF ++ =_______.【答案】3【解析】【详解】 以ABC ∆的外心O 为原点建立平面直角坐标系.于是, O H OA OB OC =++,()1 3OG OA OB OC =++. 则()()1223OF OG OH OA OB OC =+=++. 故222AF BF CF ++()()()()()()OA OF OA OF OB OF OB OF OC OF OC OF =-⋅-+-⋅-+-⋅- ()22223OA OB OC OA OB OC OF OF OF =++-++⋅+⋅2223OA OB OC =++=39.(2019·全国·高三竞赛)如图,M ,N 分别是正六边形ABCDEF 的对角线AC 、CE 的内分点,且AM CN AC CE λ==,若B 、M 、N 三点共线,则λ=______.3【解析】【详解】 延长EA 、CB 交于点P ,设正六边形边长为1,易知2PB =,A 为EP 的中点,3EA AP ==,由AM AC λ=,可得(1)CM CA λ=-,又3CP CB =,CA 是PCE ∆边PE 上的中线,CN CE λ=, 则有1()2CA CE CP =+,即113122λλ=+-, 整理得CM ()31122λλλ--=+, 因为当B 、M 、N 三点共线时,存在实数t 使得(1)CM t CN tCB =-+, 故()311122λλλ--+=,解得λ=40.(2019·全国·高三竞赛)设实常数k 使得方程222250x y xy x y k +-+++=在平面直角坐标系xOy 中表示两条相交的直线,交点为P.若点A 、B 分别在这两条直线上,且||1PA PB ==,则PA PB ⋅=_____.【答案】45± 【解析】【详解】由题设知,关于x y 、的二次多项式222250x y xy x y k +-+++=可以分解为两个一次因式的乘积.因()()2222522x y xy x y x y +-=-+-+,所以,()()2222522x y xy x y k x y a x y b +-+++=-++-++,其中,a b 、为待定的常数.将上式展开后比较对应项的系数得,21,21ab k a b b a =--=+= .解得1,1,1a b k ==-=-.再由210,210,x y x y -++=⎧⎨-+-=⎩得两直线斜率为121,22k k ==,交点()1,1P . 设两直线的夹角为θ(θ为锐角).则212134tan ,cos 145k k k k θθ-===+.故PA PB ⋅cos PA PB θ=⋅ 或()4cos 180cos 5PA PB PA PB θθ⋅︒-=±⋅=±. 故答案为45± 41.(2018·全国·高三竞赛)在Rt ABC ∆中,90C ∠=︒,AB c =.沿向量AB 的方向,点121,,,n M M M -将线段AB 分成了n 等份.设0A M =,n B M =.则()11211lim n n CA CM CM CM CM CB n -→+∞⋅+⋅++⋅=______. 【答案】23c【解析】【详解】设CB a =,CA b =.则222a b c +=.故i n i iCM CA CB n n -=+.由0CA CB ⋅=,得111lim ni in i CM CM n -→∞=⎛⎫⋅ ⎪⎝⎭∑()()()22221111lim n n i i i ni n i ab n n n →∞=⎡⎤---+=+⎢⎥⎣⎦∑()()222111lim n n i ii b a n n→∞=-=-∑()222223211lim lim33nn n i c n c i i c n n →∞→∞=-=-==∑.42.(2019·全国·高三竞赛)设点O 在ABC 的外部,且230OA OB OC --=.则:ABC OBC S S =______.【答案】4【解析】【详解】如图,设D ,E 分别是边AB 、BC 的中点,联结CD .则2OA OB OD += ① 2OB OC OE += ②3-⨯①②得2326OA OB OC OD OE →=--=-. 则3OD OE =.因此,OD 与OE 共线,且3OD OE =. 于是,2DE OE =.故221BCD OBC S S ==,24ABCBCD OBC OBCS S S S ==. 43.(2018·全国·高三竞赛)已知向量a 、b 满足·2a b a b ===,且()()·0a c b c --=.则2b c -的最小值为______.71【解析】【详解】注意到,·1cos ,,=23a b a b a b a b π==⇒. 由此可设()(2,0,3b a == .设(),c m n = . 由()()()()())2233·01203012a c b c m m n n m n ⎛⎛⎫--=⇒--+-=⇒-+= ⎪ ⎝⎭⎝⎭. 设33cos ,sin 2m n αα=+=. 又()24,b c m n -=--,则()()2252485cos 3sin 827sin arctan 3b c m n ααα⎛⎫-=-+=--=--+ ⎪⎝⎭ 82771≥-=-.因此,min 271b c -=-.44.(2018·江苏·高三竞赛)在ABC ∆中,5AB =,4AC =,且12AB AC ⋅=,设P 为平面ABC 上的一点,则()PA PB PC ⋅+的最小值是________.【答案】658-【解析】【详解】由5AB =,4AC =,且12AB AC ⋅=得3cos 5A =.如图,以A 为坐标原点,AC 为x 轴建立直角坐标系,则()4,0C ,()3,4B ,设(),P x y ,则()()()22,72,422724PA PB PC x y x y x x y y ⋅+=--⋅--=-+-()2276522148x y ⎛⎫=-+-- ⎪⎝⎭.即()PA PB PC ⋅+的最小值是658-.故答案为658-45.(2018·贵州·高三竞赛)已知O 为△ABC 所在平面上一定点,动点P 满足AB AC OP OA AB AC λ⎛⎫⎪=++ ⎪⎝⎭,其[]0λ∈+∞,,则P 点的轨迹为________.【答案】∠BAC 的角平分线【解析】【详解】 AB AC AB AC OP OA AB AC AB AC λλ⎛⎫⎛⎫ ⎪ ⎪=++⇒=+ ⎪ ⎪⎝⎭⎝⎭, 而AB AC AB AC ⎛⎫ ⎪+ ⎪⎝⎭,且[]0λ∈+∞,, 所以AB AC AB AC λ⎛⎫ ⎪+ ⎪⎝⎭表示∠BAC 的角平分线上的一个向量. 因此,P 点的轨迹为∠BAC 的角平分线.故答案为∠BAC 的角平分线46.(2021·全国·高三竞赛)已知平面向量a 、b 、c ,满足||2,||||5,01a b c λ===<<,若0b c ⋅=,那么2|()|(1)()5a b b c c b c λλ-+-++--的最小值为___________.2##2-【解析】【分析】设(,),(5,0),(0,5)a x y b c ===,则2|()|(1)()5a b b c c b c λλ-+-++--即为点(55,5)P λλ-到点(,)A x y (圆224x y +=上的动点)的距离与到点(0,3)D 的距离,利用对称可求其最小值.【详解】解析:建立直角坐标系.设(,),(5,0),(0,5)a x y b c ===,则2|()|(1)()5a b b c c b c λλ-+-++-- 2222[(55)](5)(550)(53)x y λλλλ=--+---+-问题转化为点(55,5)P λλ-到点(,)A x y 的距离与到点(0,3)D 的距离之和最小,其中点(55,5)P λλ-在直线5(05)x y x +=<<上运动,点(,)A x y 在圆224x y +=上运动,所以||||||||||||2PD PA PD PO r PD PO +≥+-=+-.点O 关于直线5x y +=对称的点为(5,5)G ,所以22|||||5229PD PO DG +≥+=∣ 所以||||292PD PA +≥292.292.【点睛】 思路点睛:向量的模的最值问题,可建立平面直角坐标系,将问题转化为动点到几何对象的距离和最值的问题.47.(2019·贵州·高三竞赛)在△ABC 中,0,0GA GB GC GA GB ++=⋅=.则(tan tan )tan tan tan A B C A B+⋅=____________ .【答案】12【解析】【详解】设△ABC 中角A 、B 、C 所对的边分别为a 、b 、c . 由0,0GA GB GC GA GB ++=⋅=,知G 为△ABC 的重心.又GA ⊥GB ,所以22222222211221122GA GB c GA GB a GB GA b ⎧⎪+=⎪⎪⎪⎛⎫⎛⎫+=⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎝⎭⎩. 得到2225a b c +=.故:(tan tan )tan (sin cos cos sin )sin tan tan sin sin cos A B C A B A B C A B A B C++=⋅ 2sin sin sin cos C A B C =()22222abc ab a b c =+-2222212c a b c ==+-. 故答案为:12.48.(2021·全国·高三竞赛)已知三个非零向量a 、b 、c ,满足||a b c a b b c c a t λ++=⋅+⋅+⋅=(其中λ为给定的正常数).则实数t 的最小值为___________.【答案】23λ【解析】【分析】应用()()222211||||cos ,||||||||22a b a b a b a b a b a b ⋅=⋅<>≤⋅≤+=+及求和的轮换关系得到2222cyc cyc||23t a b c a a b t λ=++=+⋅≥∑∑,再分类讨论即可得解.【详解】 ()()222211||||cos ,||||||||22a b a b a b a b a b a b ⋅=⋅<>≤⋅≤+=+, 所以2cyc cyc a b a ⋅≤∑∑.故2222cyc cyc||23t a b c a a b t λ=++=+⋅≥∑∑. 假设0=t ,则0,()0a b c a b a b c ++=⋅++⋅=. 故2222()2a b c a b a b c a b a b +=-⋅=-+⋅-⋅=-⋅, 所以22||||||||||2||||a b a b a b a b ⋅≥⋅=+≥⋅,这与a 、b 为非零向量矛盾.从而0t >.又223t t λ≥,所以23t λ≥,当,,a b c 两两同向且模均为λ时等号成立.故2min 3t λ=. 故答案为:23λ三、解答题49.(2020·浙江温州·高一竞赛)若平面上的点111222333()(),,,,,(),2)1(,A x y A x y A x y C -满足1235CA CA CA ===.(1)求12CA CA -的最大值;(2)设向量(,)m a b =,(,)n c d =,定义运算m n ac bd ⊗=-.若21230A A A A ⋅=,求122331OA OA OA OA OA OA ⊗+⊗+⊗的取值范围.(其中О为坐标原点)【答案】(1)(2)[]24,6-.【解析】【详解】 (1)因为121225CA CA CA CA -≤+=等号当且仅当向量1CA 与2CA 反向共线时成立,所以12CA CA -的最大值为(2)由于1235CA CA CA ===所以点123,,A A A 在以C 为圆心 又因为21230A A A A ⋅=,所以13A A 为圆的直径,则点C 为A 1A 3的中点.所以122331OA OA OA OA OA OA ⊗+⊗+⊗121223233131x x y y x x y y x x y y =-+-+-① 因为点C 为13A A 的中点,所以132x x +=,134y y +=-,代入式①可得原式=2213132211112424(2)(4)x y x x y y x y x x y y ++-=++----222211112424x y x x y y =+-+++②因为125CA CA ==所以()()()()22112222125125x y x y ⎧-++=⎪⎨-++=⎪⎩, 可得221111244x x y y -+=+≥-,再代入式②可化简为:22211242(2)x y x x ++-+,且21182(2)2x x -≤-+≤.设21x α=,22y α=-,则22246x y αα+=-++4[]16,∈-.故122331OA OA OA OA OA OA ⊗+⊗+⊗22211242(2)x y x x =++-+6[]24,∈-.50.(2021·全国·高三竞赛)已知点(2cos ,sin ),(2cos ,sin ),(2cos ,sin )A B C ααββγγ,其中,,[0,2)αβγπ∈,且坐标原点O 恰好为ABC 的重心,判断ABCS是否为定值,若是,求出该定值;若不是,请说明理由.【答案】三角形ABC 【解析】 【分析】 【详解】先证明一个引理:若()()1122,,,,(0,0)A x y B x y C ,则122112ABCS x y x y =-. 因为()()1122,,,CA x y CB x y ==, 所以21cos CA CB C CA CBx⋅==⨯所以sin C ==所以:1sin 2ABCSCA CB C =⋅⋅12211122x y x y==-回到原题,连结OA、OB、OC,则:ABC OAB OBC OACS S S S=++112cos sin2sin cos2cos sin2sin cos22αβαββγβγ=-+-12cos sin2sin cos2αγαγ+-sin()sin()sin()αββγαγ=-+-+-.由三角形的重心为原点得sin sin sin0,2cos2cos2cos0.αβγαβγ++=⎧⎨++=⎩即sin sin sin,cos cos cos.αβγαβγ+=-⎧⎨+=-⎩所以两式平方相加可得1cos()2αβ-=-,所以sin()αβ-=,同理sin()sin()βγαγ-=-=,所以sin()sin()sin()3ABCSαββγαγ=-+-+-==故三角形ABC【高中数学竞赛专题大全】 竞赛专题4 平面向量 (50题竞赛真题强化训练)一、单选题1.(2018·全国·高三竞赛)已知ABC ∆的外接圆圆心为O ,BC CA AB >>.则( ). A .OA OB ⋅>OA OC ⋅>OB OC ⋅. B .OA OB ⋅>OB OC ⋅>OA OC ⋅. C .OB OC ⋅>OA OC ⋅>OA OB ⋅ D .OA OC ⋅>OB OC ⋅>OA OB ⋅2.(2019·全国·高三竞赛)设P 为ABC ∆所在平面内一动点.则使得PA PB PB PC PC PA ⋅+⋅+⋅取得最小值的点P 是ABC ∆的( ). A .外心B .内心C .重心D .垂心3.(2018·全国·高三竞赛)设H 是ABC ∆所在平面上的一点,用a 、b 、c 、h 分别表示向量OA 、OB 、OC 、OH .若⋅+⋅=⋅+⋅=⋅+⋅a b c h b c a h c a b h ,则H 是ABC ∆的.A .内心B .外心C .重心D .垂心4.(2019·全国·高三竞赛)如图,在ABC ∆的边上做匀速运动的三个点P 、S 、R ,当0=t 时,分别从A 、B 、C 出发,当1t s =时,恰好同时到达B 、C 、A .那么,这个运动过程中的定点是PQR ∆的( )A .内心B .外心C .垂心D .重心5.(2018·全国·高三竞赛)如图,在凸四边形ABCD 中,4AB =,3BC =,52CD =,且90ADC ABC ∠=∠=︒.则BC AD→⋅→等于( ).A .25334B .27334C .338D .293346.(2018·全国·高三竞赛)已知P 为△ABC 内一点,且满足2PA+3PB+4PC=0,那么,::PBC PCA PAB S S S ∆∆∆等于.A .1:2:3B .2:3:4C .3:4:2D .4:3:27.(2020·浙江温州·高一竞赛)已知单位向量1e ,2e 的夹角为60°,向量12a xe ye =+,且12x ≤≤,12y ≤≤,设向量a 与1e 的夹角为α,则cos α的最大值为( ).A 6B 6C 57D 278.(2018·全国·高三竞赛)平面上的两个向量OA 、OB 满足OA a =,OB b =,且224a b +=,0⋅=OA OB .若向量(),OC OA OB λμλμ=+∈R ,且222211122a b λμ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.则OC 的最大值是( ) A .12B .1C .2D .49.(2018·陕西·高三竞赛)在边长为8的正方形ABCD 中,M 是BC 的中点,N 是AD 边上一点,且3DN NA =,若对于常数m ,在正方形ABCD 的标上恰有6个不同的点P ,使PM PN m ⋅=,则实数m 的取值范围是A .()8,8-B .()1,24-C .()1,8-D .()0,8二、填空题10.(2018·吉林·高三竞赛)如图,在直角三角形ABC 中,2ACB π∠=,2AC BC ==,点P是斜边AB 上一点,且2BP PA =,那么CP CA CP CB ⋅+⋅=__________.11.(2019·全国·高三竞赛)设ABC ∆的面积为1,边AB 、AC 的中点分别为E 、F ,P 为线段EF 上的动点,则2f PB PC BC =⋅+的最小值为__________.12.(2019·全国·高三竞赛)设P 是ABC 所在平面上一点,满足2PA PB PC AB ++=.若ABC S ∆1=,则PAB S ∆=______.13.(2019·全国·高三竞赛)在△ABC 中,已知2,3,4AB AC BC ===,设0为△ABC 的内心,且AO AB BC λμ=+.则λ+μ=________.14.(2021·全国·高三竞赛)已知向量(cos ,sin ),(2,7)a b αα==,则|2|a b +的最大值是___________.15.(2019·全国·高三竞赛)在正四面体ABCD 中,设14AE AB =,14CF CD =,记DE 和BF 所成的角为θ.则cos θ=______.16.(2019·全国·高三竞赛)如图,已知G 是ABO 的重心,若PQ 过点G ,且,,,OA a OB b OP ma OQ nb ====,则11m n+=_____.17.(2021·全国·高三竞赛)ABC 中,A 、B 、C 的对边分别为a 、b 、c ,O 是ABC 的外心,点P 满足OP OA OB OC =++,若3B π=,且4BP BC ⋅=,则ABC 的面积为_________.18.(2021·全国·高三竞赛)已知平面单位向量a b c x 、、、,且0a b c ++=,记||||||y x a x b x c =-+-+-,则y 的最大值为________.19.(2021·全国·高三竞赛)已知点A 满足1||2OA =,B 、C 是单位圆O 上的任意两点,则AC BC ⋅的取值范围是__________.20.(2020·浙江·高三竞赛)已知a ,b 为非零向量,且1a a b =+=,则2a b b ++的最大值为__________.21.(2021·全国·高三竞赛)已知两个非零向量,m n 满足2,22m m n =+=,则2m n n ++的最大值是_____.22.(2021·全国·高三竞赛)设P 是ABC 所在平面内一点,满足3PA PB PC AB ++=,若PAC △的面积为1,则PAB △的面积为__________.23.(2021·全国·高三竞赛)已知、、A B C 为ABC 三内角,向量cos,3sin ,||222A B A B αα-+⎛⎫== ⎪⎝⎭.如果当C 最大时,存在动点M ,使得|||||MA AB MB 、、∣成等差数列,则||||MC AB 最大值为________.24.(2021·全国·高三竞赛)如图,在ABC 中,32,5,cos ,5CAB AB AC D ===∠是边BC 上一点,且2BD DC =.若点P 满足BP 与AD 共线,PA PC ⊥,则||||BP AD 的值为_________.25.(2021·全国·高三竞赛)若平面向量a b a b +、、的模均在区间[]2,4内,则a b ⋅的取值范围是_________.26.(2019·广西·高三竞赛)已知点P (-2,5)在圆22:220C x y x y F +--+=上,直线l :3480x y ++=与圆C 相交于A 、B 两点,则AB BC →→⋅=____________ .27.(2019·甘肃·高三竞赛)△ABC 的三边分别为a 、b 、c ,点O 为△ABC 的外心,已知2220b b c -+=,那么BC AO ⋅的取值范围是____________ . 28.(2019·四川·高三竞赛)设正六边形ABCDEF 的边长为1,则()()AB DC AD BE +⋅+=______ .29.(2019·重庆·高三竞赛)已知向量,,a b c 满足()||:||:||1::3a b c k k +=∈Z ,且b a -=2()c b -,若α为,a c 的夹角,则cos α=_______ .30.(2018·山东·高三竞赛)在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 交BC 于D ,且有14AD AC t AB =+.若8AB =,则AD =______. 31.(2018·河北·高三竞赛)设点O 为三角形ABC 内一点,且满足关系式:23=AOBBOC COAABCSS SS++_____.32.(2018·全国·高三竞赛)在等腰△ABC 中,已知5AC BC ==,点D 、E 、F 分别在边AB 、BC 、CA 上,且AD =DB=EF=1.若25·16DE DF ≤,则·EF BA 的取值范围是_______. 33.(2018·全国·高三竞赛)在平面直角坐标系中,已知O 为原点,点()1,0A -,()0,3B ,动点C 在圆()2234x y -+=上运动,则OA OB OC ++的最大值为_________.34.(2019·全国·高三竞赛)如图,在ABC 中,已知O 为BC 的中点,点M 、N 分别在边AB 、AC 上,且6AM =,4MB =,4AN =,3NC =,90MON ∠=︒.则cos A =______.35.(2018·全国·高三竞赛)已知D 为ABC 边AB 上的一点, P 为ABC 内一点,且满足3D 4A AB =,25AP AD BC =+.则APD ABCS S =△△ ______. 36.(2018·全国·高三竞赛)已知O 是ABC 的外心.若AB AC =,30CAB ∠=︒,且12CO CA CB λλ=+,则12λλ=______.37.(2018·全国·高三竞赛)在△ABC 中,已知∠A=120︒,记向量,cos cos BA BC BA ABC Cα=+.cos cos CA CB CA ACB Bβ=+则α与β的夹角等于________.38.(2018·全国·高三竞赛)如图,设G H 、分别为ABC ∆的重心、垂心,F 为线段GH 的中点,ABC ∆外接圆的半径1R =.则222AF BF CF ++ =_______.39.(2019·全国·高三竞赛)如图,M ,N 分别是正六边形ABCDEF 的对角线AC 、CE 的内分点,且AM CNAC CEλ==,若B 、M 、N 三点共线,则λ=______.40.(2019·全国·高三竞赛)设实常数k 使得方程222250x y xy x y k +-+++=在平面直角坐标系xOy 中表示两条相交的直线,交点为P.若点A 、B 分别在这两条直线上,且||1PA PB ==,则PA PB ⋅=_____.41.(2018·全国·高三竞赛)在Rt ABC ∆中,90C ∠=︒,AB c =.沿向量AB 的方向,点121,,,n M M M -将线段AB 分成了n 等份.设0A M =,n B M =.则()11211limn n CA CM CM CM CM CB n -→+∞⋅+⋅++⋅=______.42.(2019·全国·高三竞赛)设点O 在ABC 的外部,且230OA OB OC --=.则:ABCOBCSS=______.43.(2018·全国·高三竞赛)已知向量a 、b 满足·2a b a b ===,且()()·0a c b c --=.则2b c -的最小值为______.44.(2018·江苏·高三竞赛)在ABC ∆中,5AB =,4AC =,且12AB AC ⋅=,设P 为平面ABC 上的一点,则()PA PB PC ⋅+的最小值是________.45.(2018·贵州·高三竞赛)已知O 为△ABC 所在平面上一定点,动点P 满足AB AC OP OA AB AC λ⎛⎫⎪=++ ⎪⎝⎭,其[]0λ∈+∞,,则P 点的轨迹为________.46.(2021·全国·高三竞赛)已知平面向量a 、b 、c ,满足||2,||||5,01a b c λ===<<,若0b c ⋅=,那么2|()|(1)()5a b b c c b c λλ-+-++--的最小值为___________. 47.(2019·贵州·高三竞赛)在△ABC 中,0,0GA GB GC GA GB ++=⋅=.则(tan tan )tan tan tan A B CA B+⋅=____________ .48.(2021·全国·高三竞赛)已知三个非零向量a 、b 、c ,满足||a b c a b b c c a t λ++=⋅+⋅+⋅=(其中λ为给定的正常数).则实数t 的最小值为___________. 三、解答题49.(2020·浙江温州·高一竞赛)若平面上的点111222333()(),,,,,(),2)1(,A x y A x y A x y C -满足1235CA CA CA ===.(1)求12CA CA -的最大值;。

高中数学竞赛分类:集合-1981-2018年历年数学联赛48套真题分类汇编含详细答案

高中数学竞赛分类:集合-1981-2018年历年数学联赛48套真题分类汇编含详细答案

1981年--2018年全国高中数学联赛一试试题分类汇编1、集合部分2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。

2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是◆答案:31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 三、(本题满分50分)设集合{}n A ,,2,1 =,Y X ,均为A 的非空子集(允许Y X =).X 中的最大元与Y 中的最小元分别记为Y X min ,max .求满足Y X min max >的有序集合对),(Y X 的数目。

★解析:先计算满足Y X min max ≤的有序集合对),(Y X 的数目.对给定的X m max =,集合X 是集合{}1,,2,1-m 的任意一个子集与{}m 的并,故共有12-m 种取法.又Y m min ≤,故Y 是{}n m m m ,,2,1, ++的任意一个非空子集,共有121--+m n 种取法.因此,满足Y X min max ≤的有序集合对),(Y X 的数目是:()[]()12122122111111+⋅-=-=-∑∑∑=-==-+-n nm m n m n nm mn m n 由于有序集合对),(Y X 有()()()2121212-=--nnn个,于是满足Y X min max >的有序集合对),(Y X 的数目是()()124122122+-=-+⋅--n n n n n n n 2017B 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集+N 分拆为k 个互不相交的子集k A A A ,,,21 ,每个子集i A 中均不存在4个数d c b a ,,,(可以相同),满足m cd ab =-.★证明:取1k m =+,令{(mod 1),}i A x x i m x N +=≡+∈,1,2,,1i m =+ 设,,,i a b c d A ∈,则0(mod 1)ab cd i i i i m -≡∙-∙=+,故1m ab cd +-,而1m m +,所以在i A 中不存在4个数,,,a b c d ,满足ab cd m-=2017B 四、(本题满分50分)。

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。

则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。

若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

【高中数学竞赛专题大全】 竞赛专题17 其它综合类竞赛题(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题17 其它综合类竞赛题(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题17 其它综合类竞赛题 (50题竞赛真题强化训练)一、填空题1.(2019·全国·高三竞赛)计算:10112k k nn k C k +=⎡⎤⎛⎫⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦∑=_______.【答案】113112n n +⎡⎤⎛⎫-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦【解析】 【详解】注意到,()01nnk kn k C x x ==+∑.两边积分得()01112200nn k kn k C x dx x dx ==+∑ 11011311212k n k nn k C k n ++=⎡⎤⎡⎤⎛⎫⎛⎫⇒=-⎢⎥⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦∑. 故答案为113112n n +⎡⎤⎛⎫-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦2.(2019·全国·高三竞赛)设1234123,241,1,5,4,13P P P k P k +(,,)(,,)(,)(,)是空间中体积为1的一个四面体的四个顶点.则k =_______. 【答案】-2或1. 【解析】 【详解】四面体体积为()()62276k k ⇒---=1k ⇒=+1805n n a a n n N ∈=,)或-2. 故答案为-2或1.3.(2019·全国·高三竞赛)给定函数())1f x x ≤.则函数()f x 与反函数()1f x -交点的坐标为______.【答案】()1,0,()0,1,⎝⎭. 【解析】 【详解】())1f x x ≤的反函数为()()1210f x x x -=-≥.联立方程21,y y x ⎧⎪⎨=-⎪⎩①② 由式①得()()42212211y x x x x =-+=---.把式①、②代入上式,得422y y y =-,即()()4220y y y y ---=,于是,()()2110y y y y -+-=.解得10y =,11x =;21y =,20x =;3y =(舍去负值),3x =. 故答案为()1,0,()0,1,⎝⎭. 4.(2019·全国·高三竞赛)把函数()ax bf x cx d+=+的系数按其自然位置排成两行两列,记为二阶矩阵A a b c d ⎛⎫= ⎪⎝⎭.其中,每一个数字称为二阶矩阵的元素.又记()()()()af x b f f x cf x d+=+()()()()22abc x ab bd ac cd x bc d +++=+++的系数所组成的二阶矩阵22a ab ab bd ac cd bc d ⎛⎫++ ⎪++⎝⎭为A 的平方,即222A A A a bc ab bd ac cd bc d ⎛⎫++=⨯= ⎪++⎝⎭.观察二阶矩阵乘法的规律,写出1112322122A A A aa a a ⎛⎫=⨯= ⎪⎝⎭中的元素21a =________.【答案】222a c acd bc cd +++ 【解析】【详解】根据二阶矩阵乘法的规律,知111232122a a A a a ⎛⎫= ⎪⎝⎭中的ij a 应是2A 中第i 行的元素分别乘以A 中第j 列对应元素的代数和,则()()222221a ac cd a bc d c a c acd bccd =+++=+++.故答案为222a c acd bc cd +++5.(2018·江西·高三竞赛)a 、b 为正整数,满足1112018a b -=,则所有正整数对(),a b 的个数为______. 【答案】4 【解析】 【详解】 由1112018a b -=,知12018a ≤<,且201820180ab a b +-=, 于是()()22220182018201821009a b -+==⋅,而020182018a <-<,20182018b +>. 因1009为质数,数2221009⋅所有可能的分解式为212018⨯,()2221009⨯⨯,241009⨯,()100941009⨯⨯.其中每一个分解式对应于(),a b 的一个解,故其解的个数为4. 故答案为46.(2018·湖南·高三竞赛)如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.设A n 是第n 次挖去的小三角形面积之和(如1A 是第1次挖去的中间小三角形面积,2A 是第2次挖去的三个小三角形面积之和),则前n 次挖去的所有小三角形面积之和的值为____________________.3314n⎤⎛⎫-⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】 【详解】3而第k 次一共挖去13k -个小三角形,1334k k A -⎫=⎪⎝⎭.因此,可以采用等比级数求和公式,得到答案为1111333334134414nk n n n k k k A -==⎛⎫- ⎪⎤⎛⎫⎛⎫⎝⎭===-⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-∑. 3314n⎤⎛⎫-⎥ ⎪⎝⎭⎢⎥⎣⎦7.(2018·湖南·高三竞赛)已知n 为正整数,若22310616n n n n +-+-是一个既约分数,那么这个分数的值等于_____. 【答案】811【解析】 【详解】因为()()()()225231061682n n n n n n n n +-+-=--+-,当21n -=±时,若()()8,55,31n n n ++=+=,则22310616n n n n +---是一个既约分数,故当3n =时,该分数是既约分数. 所以这个分数为811. 故答案为8118.(2019·全国·高三竞赛)设k 为常数.若对一切()0,1x y ∈、,有111k k k k k k k k x y x y x y x y+-≤+-,则实数k 的取值范围是____. 【答案】](,0.-∞ 【解析】 【详解】注意到()()111111111k k k kk kk k k k k k x y x y x y x y x y x y ⎛⎫⎛⎫+-≤+-⇔--≥-- ⎪ ⎪⎝⎭⎝⎭10.k k x y k ⇔≥⇔≤故答案为](,0-∞9.(2019·全国·高三竞赛)定义数列{}n a :()34n a n n N +=+∈,令()1,n n n d a a +=.则n d 的最大值为_________. 【答案】433. 【解析】 【详解】由()()334,14n d n n +++,知()324,331n d n n n +++.则()()3234331n d n n n n ⎡⎤-++++⎣⎦,且()()222331312,331n n d n n d n n n n ++⇒+-++()()2213,331213,332n n d n n n d n n ⇒+++⇒+- ()()233233213433n n d n n d ⎡⎤⇒--++⇒⎣⎦.所以,()max 433n d ≤. 易知,()210211,433a a =. 从而,()max 433n d =. 故答案为43310.(2019·全国·高三竞赛)如图,设圆台的轴截面为等腰梯形ABCD ,其中,18AB =,6CD =.若圆台的高为8,PQ 是下底面与AB 夹角为60︒的直径,则异面直线PC 、DQ 所成角的余弦值为________.【答案】1127【解析】 【详解】如图,设异面直线PC 、QD 所成角为α,向量PC 、DQ 的夹角为θ,以下底面中心O 为原点、AB 所在直线为x 轴建立空间直角坐标系.则()3,0,8C 、()3,0,8D -、993,,022P ⎛⎫ ⎪ ⎪⎝⎭、993,,022Q ⎛⎫-- ⎪ ⎪⎝⎭. 于是393,,822PC ⎛⎫=-- ⎪ ⎪⎝⎭,393,,822QD ⎛⎫= ⎪ ⎪⎝⎭. 因此1PC QD ⋅=.而127PC =,127QD =, 故1cos 127θ=. 从而,1cos cos 127αθ==. 故答案为112711.(2018·甘肃·高三竞赛)设,x y 满足24,1,2 2.x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩若z ax y =+只在点()2,0A 处取得最小值,则实数a 的取值范围是______.【答案】122a -<<【解析】 【详解】画出平面区域如下:由数形结合可得122a -<-<,即122a -<<.12.(2018·全国·高三竞赛)若函数()1y f x =+的反函数为()11y f x -=+,且()13999f =,则满足()f n n =的最小正整数n =______. 【答案】2000 【解析】 【详解】由条件得()()1111f x f x --+-=-,()113999f -=.从而,()()11399939981ff ---=-,()()11399839971f f ---=-,…,()()1111f k f k --+-=-. 相加得()()()111399940004000f k k f k k f k k ---=-⇒=-⇒-=.令40000k -=.则2000k =.13.(2018·全国·高三竞赛)方程()4sin 1cos 33x x +=______. 【答案】()π2π3x k k =+∈Z 【解析】 【详解】原方程两边平方得()()()22222716sin 1cos 161cos 12cos cos x x x x x =+=-++4316cos 32cos 32cos 110x x x ⇒+-+=()()222cos 14cos 12cos 110x x x ⇒-++=()1πcos 2π23x x k k Z ⇒=⇒=+∈. 14.(2018·全国·高三竞赛)已知,42ππθ⎛⎫∈ ⎪⎝⎭,一元二次方程()()22222tansec 2tan sin cos 20x x θθθθθ++--=有重根.则cos θ的值是______.【解析】 【详解】由于方程有重根,故0∆=,即()()22222tan sin cos2tan sec 0θθθθθ-++=. 设2cos d θ=.则()21111210d d d d d dd --⎛⎫⎛⎫+-+-+= ⎪⎪⎝⎭⎝⎭. 故()22310d d -+=,解得d =因此,cos θ. 15.(2018·全国·高三竞赛)设()f x 定义在+N 上,其值域B +⊆N ,且对任意n +∈N ,都有()()1f n f n +>,及()()3f f n n =.则()()1011f f +=________.【答案】39 【解析】 【详解】由()()13f f =,知()()()()13f f f f =. 若()11f =,则()()()3111f f f ===,矛盾. 因此,()()()()21213f f f f ≤<≤=.则()23f =,()12f =,()()()326f f f ==,()()()639f f f ==.又()()()()634569f f f f =<<<=,故()47f =,()58f =,()()()7412f f f ==,()()()12721f f f ==.因为()()()9618f f f ==,()()()()189********f f f f =<<<=,所以,()1019f =,()1120f =.因此,()()101139f f +=.16.(2018·全国·高三竞赛)已知()221f x x x =++,存在实数t ,使得当[]1,x m ∈时,()f x t x +≤恒成立.则m 的最大值是______. 【答案】4 【解析】 【详解】把()f x 的图像向右平移t -个单位,数形结合得m 的最大值是(),y x y f x t =⎧⎨=+⎩两个交点横坐标的较大者.由()11f t +=,解得1,3t t =-=-.再由()3f x x -=,得1x =(舍去),4x =. 故m 的最大值是4.17.(2018·全国·高三竞赛)直角坐标平面上两曲线3y x =与3x y =围成的图形的面积为______. 【答案】1. 【解析】 【详解】因为两曲线分别关于原点对称,从而,只需计算两曲线在第一象限围成的图形的面积A .当1x >时,3x >;当01x <<时,3x <. 所以,两曲线在第一象限有唯一的交点()1,1.又)13A x dx =⎰441303311|44442x x ⎛⎫=-=-= ⎪⎝⎭,所以,两曲线围成的图形的面积为21A =.18.(2019·全国·高三竞赛)已知关于x 的方程()()2201000x a x a a +-+=≠的两根均为整数.则实数a 的值为______. 【答案】4024 【解析】 【详解】设方程的根为1x 、()212x x x ≤.由韦达定理得()122010x x a +=--,12x x a =.则12122010x x x x ++=,即()()12112011x x ++=.又因为2011为质数,所以,120,2010x x =⎧⎨=⎩或122012,2.x x =-⎧⎨=-⎩故0a =(舍)或4024a =.19.(2021·全国·高三竞赛)若65432()2f x x x x x =--+-+f 的值为_______.【解析】 【分析】 【详解】研究二次方程210x --=和210x -+=,即(0x x =和(0x x =.因此0x422()(1)(1)(f x x x x x x =--+-++故f =20.(2019·全国·高三竞赛)不等式()332211x x+-≥的解集为________.【答案】{}0,1 【解析】【详解】y =,则不等式化为221x y +=,331x y +≥. 故330x y ≤+()()2211x x y y =-+-()()()()221111y x x y =--+--()()()()221111y x x y =------()()()112x y x y =---++.因为2221x y x =+≥,所以1x ≤. 同理,1y ≤.故10x ±≥,10y ±≥,20x y ++≥.若20x y ++=,110x y +=+=,不满足221x y +=.因此,20x y ++>. 于是,不等式化为()()110x y --≤. 但10x -≥,10y -≥, 故()()110x y --=. 解得()()(),1,0,0,1x y =.经检验,0x =或1都是原不等式的解. 故原不等式的解集为{}0,1. 故答案为{}0,121.(2019·全国·高三竞赛)已知函数26y x ax a =+-与x 轴有两个不同的交点()()12,0,0x x 、,并且()()()()121238311+1616aa x x a x a x -=-+----,则a 的值是______.【答案】12 【解析】 【详解】由23640a a ∆+>,得0a >或19a <-,根据题意知()()2126y x ax a x x x x =+-=--则()()()1211117x x f a -+=-=-,()()121616a x a x ---- ()1617f a a =-=-于是,38317a a a-=-- 解得12a =或0a =(舍去). 22.(2019·全国·高三竞赛)设实常数k 使得方程222250x y xy x y k +-+++=在平面直角坐标系xOy 中表示两条相交的直线,交点为P.若点A 、B 分别在这两条直线上,且||1PA PB ==,则PA PB ⋅=_____. 【答案】45±【解析】 【详解】由题设知,关于x y 、的二次多项式222250x y xy x y k +-+++=可以分解为两个一次因式的乘积.因()()2222522x y xy x y x y +-=-+-+,所以,()()2222522x y xy x y k x y a x y b +-+++=-++-++,其中,a b 、为待定的常数. 将上式展开后比较对应项的系数得 ,21,21ab k a b b a =--=+= .解得1,1,1a b k ==-=-.再由210,210,x y x y -++=⎧⎨-+-=⎩得两直线斜率为121,22k k ==,交点()1,1P .设两直线的夹角为θ(θ为锐角).则 212134tan ,cos 145k k k k θθ-===+.故PA PB ⋅cos PA PB θ=⋅或()4cos 180cos 5PA PB PA PB θθ⋅︒-=±⋅=±.故答案为45±23.(2019·全国·高三竞赛)已知a 、b 、c 是一个直角三角形三边之长,且对大于2的自然数n ,成立()()22222n n n n n n a b c a b c ++=++.则n =______. 【答案】4 【解析】 【详解】设2nx a =,2n y b =,2nz c =,有 ()()()()22222444222022n n n n n na b c a b c x y z x y z =++-++=++-++444222222222x y z x y x z y z =++---()()()()x y z x y z y z x z x y =-+++-+-+-. (*)不妨设c 为斜边,则z x >,z y >.可知0x y z ++>,0y z x +->,0z x y +->. ∴(*)式等价于z x y =+,即221nna b c c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.另一方面,222a b c +=成立,或221a b c c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.因为01a c <<,01b c <<,x xa b y c c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭为单调减函数,仅在一个x 点处取1y =,因此,22n=,4n =. 故答案为424.(2018·山东·高三竞赛)已知a ,b ∈Z ,且a b +为方程20x ax b ++=的一个根,则b 的最大可能值为______. 【答案】9 【解析】 【详解】由题设()()20a b a a b b ++++=,则22230a ab b b +++=.因为a ,b Z ∈,则()222988b b b b b ∆=-+=-必为完全平方数.设()228b b m m N -=∈,则()22416b m --=,()()4416b m b m -+--=.所以4842b m b m -+=⎧⎨--=⎩或4444b m b m -+=⎧⎨--=⎩或4248b m b m -+=-⎧⎨--=-⎩或4444b m b m -+=-⎧⎨--=-⎩.解得9b =,8,1-,0.所以b 的最大可能值为9.25.(2018·贵州·高三竞赛)方程组()33266x y xy x y ⎧+=⎪⎨+=-⎪⎩的实数解为___________.【答案】13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩ 【解析】 【详解】因为()33266x y xy x y ⎧+=⎪⎨+=-⎪⎩,所以()()333326188x y x y xy x y +=+++=-=,即2x y +=,代入()6xy x y +=-,得3xy =-.由23x y xy +=⎧⎨=-⎩ ⇒ 13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩. 26.(2018·全国·高三竞赛)已知αβγ、、为方程3256780x x x -+-=的三个不同的根,则()()()222222ααββββγγγγαα++++++的值为_________.【答案】1679-625【解析】 【详解】注意到,()()()()()()()()()3333332222225-5-5-++++++=5-5-5-αββγγαααββββγγγγαααββγγα⋅⋅()()()()()()()()()2222226--7-6--7-6--7-=5-5-5-αβαββγβγγαγααββγγα⋅⋅()()()36+-76+-76+-7=5αββγγα⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦36666--76--76--7555=5γαβ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 3111-6-6-6555=5αβγ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 336111=---5303030αβγ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 记()()()()5f x x x x αβγ=--- 则()()()32222224611679530625f ααββββγγγγαα⎛⎫++++++==-⎪⎝⎭. 27.(2018·全国·高三竞赛)使得方程280x ax a ++=①只有整数解的实数a 的个数为______. 【答案】8 【解析】 【详解】设方程①有整数解()m n m n ≤、.则,8m n a mn a +=-=. 于是,()()8864m n ++=.解得,()()()()()()()()(),72,9,40,10,24,12,16,16,7,56,6,24,4,8,0,0m n =-----------. 对应的()81,50,36,32,49,18,4,0,a m n =-+=---共8个.28.(2018·全国·高三竞赛)某人排版一个三角形,该三角形有一个内角为60°,该角的两边边长分别为x 和9.这个人排版时错把长x 的边排成长1x +,但发现其他两边的长度没变.则x =______.【答案】4 【解析】 【详解】 由12cos609x +=︒,得4x =.29.(2018·全国·高三竞赛)已知()3233f x x x x =-+在区间[],a b ()b a >上的值域为[],a b .则满足条件的区间[],a b 为________. 【答案】[]0,1,[]0,2,[]1,2 【解析】 【详解】有()()2236331f x x x x =-+=-,知除1x =外,()0f x '>.故()f x 在(),-∞+∞上为增函数.依题意函数在x a =取最小值a ,在x b =取最大值b ,则()f a a =,()f b b =, 这表明a 、b 是方程()f x x =的两个根.注意到3233x x x x -+= ⇔ ()()120x x x --=.解得10x =,21x =,32x =. 故所求的区间为[]0,1,[]0,2,[]1,2.30.(2018·全国·高三竞赛)30 !末尾最后一个不为零的数字为________. 【答案】8 【解析】 【详解】注意到2614742230!2357111317192329=⨯⨯⨯⨯⨯⨯⨯⨯⨯ 则1914422730!23711131719232910=⨯⨯⨯⨯⨯⨯⨯⨯ ()1914422237137939mod10≡⨯⨯⨯⨯⨯⨯⨯⨯.因为4437、模10均余1,且42n 模10余6,所以,()3730! 28mod1010≡≡31.(2018·全国·高三竞赛)平面区域()223,0,,sin sin sin sin 24S x y x y x x y y π⎧⎫⎡⎤=∈+⋅+≤⎨⎬⎢⎥⎣⎦⎩⎭、的面积等于______. 【答案】26π【解析】 【详解】由()()()()()222sin sin sin sin 22cos cos cos cos x x y y x y x y x y x y -⋅+=-+⋅-++--()()31132cos cos 2222x y x y ⎡⎤⎡⎤=-++⋅--≤⎢⎥⎢⎥⎣⎦⎣⎦, 得()()11cos cos 022x y x y ⎡⎤⎡⎤++⋅--≥⎢⎥⎢⎥⎣⎦⎣⎦,即2,33x y x y ππ⎧+≤⎪⎪⎨⎪-≤⎪⎩或2,3.3x y x y ππ⎧+≥⎪⎪⎨⎪-≥⎪⎩结合x 、0,2y π⎡⎤∈⎢⎥⎣⎦,可得到如图的平面区域,其面积为2222126236ππππ⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.32.(2018·上海·高二竞赛)分解因式:()()()111xy x y xy ++++=_______. 【答案】(xy+x+1)(xy+y+1) 【解析】 【详解】xy =(xy+1)(xy+x+y+1)+xy=(xy+1)((xy+1)+(x+y))+xy=(xy+1)^2+(x+y)(xy+1)+xy =((xy+1)+x)((xy+1)+y)=(xy+x+1)(xy+y+1)33.(2021·全国·高三竞赛)若一个分数ab(a ,b 均为正整数)化为小数后,小数部分出现了连续的“2020”,例如20.02020299=,就称它为“好数”.则“好数”的分母的第二小的可能值为________. 【答案】193 【解析】 【分析】 【详解】我们总可以将一个“好数”适当乘一个10的方幂并减去其整数部分后使之成为一个小数点后前四位是“2020”的真分数,于是0.20200.2021ab≤<, 进而1115005476a b ≤-<,即1515005476a b b -≤<. 若51a b -=,则4765500b <≤且()4mod5b ≡,所以99b =.若52a b -=,则95251000b <≤且()3mod5b ≡,所以193,198b =. 若53a b -≥,则51428,286b b >≥. 另一方面,390.20207193≈是“好数”,因此b 的第二小的可能值为193. 故答案为:193. 二、双空题(共0分)34.(2018·全国·高三竞赛)阅读下面一道题目的证明,指出其中的一处错误.题目:平面上有六个点,任何三点都是三边互不相等三角形的顶点,则这些三角形中有一个的最短边又是另一个三角形的最长边.证明:第一步,对已知的六个点作两两连线,可以得出15条边,记为1a ,2a ,…,15a .第二步,由于任何三点组成的都是“三边互不相等的三角形”,因此,15条边互不相等不妨设1215a a a <<<.第三步,由于“任何三点都是三边互不相等三角形的顶点”,因此,任取三条边都可以组成三角形,则1a 、2a 、3a 组成的三角形的最长边3a ,也是3a 、4a 、5a 组成的三角形的最短边,命题得证.这三步中,第______步有错误,理由是______. 【答案】 二或三 第三步有错误,理由是:不能推出“任取三条边都可以组成三角形”或第二步有错误,理由是:不能推出1215a a a <<<.【解析】 【详解】不能推出“任取三条边都可以组成三角形”,比如,从六个点1A 、2A 、3A 、4A 、5A 、6A 中,记1A 、2A 的连线为i a ,记3A 、4A 的连线为j a ,记5A 、6A 的连线为k a (i 、j 、k 互不相等),则i a 、j a 、k a 未必能组成三角形,即使组成三角形也不是本题所说的“三点两两连线”所成的三角形.第二步也有错误,理由是三点组成的“单个三角形”内部边长互不相等, 不能推出“多个三角形”之间边长互不相等,因而,“1215a a a <<<”中的“<”也可能有“≤”.说明:虽然证明有错误,但结论是成立的,可把六个点“两两连线”的每个三角形最长边染成红色,剩下的边染成蓝色,然后证明必有同色三角形,又因为每个三角形都有红边,所以,同色三角形必有三边同红色的三角形,这个三角形的最短边便又是另一个三角形的最长边. 三、解答题(共0分)35.(2019·全国·高三竞赛)在直角坐标系中,有三只青蛙A 、B 、C ,其起始位置分别为()()(0004,62,3,6A B C 、,首先,A 以B 为中心跳到其对称点上,然后,B 以C 为中心跳到其对称点上,接着,C 以A 为中心跳到其对称点上,……依此类推.设A 、B 、C 第n 次跳到的位置分别为n n n A B C 、、,201120112011A B C ∆的三边长分别为a 、b 、c ,面积为S .证明:222201730017a b c S ++>⨯ 【答案】见解析 【解析】 【详解】设n n n A B C ∆的三边长分别为,,n n n a b c .则由題意知1n n 1n n 1n n+1222n n n A A B B B C C C A++++=⎧⎪+=⎨⎪+=⎩ ①②③ 由式①得 ()n 1n 12n B A A +=+ ④ 将式④代入式②得 ()n 2n+1124n n C A A A +=++ ⑤ 将式⑤代人式③并整理得 3n+21350n n n A A A A +++++=.其特征方程为323510λλλ+-+=,即()()21410λλλ-+-=.解得0121,22λλλ==-=-则n nn 12A D E F λλ=++ ⑥在式④、⑤、⑥中令n=0,得()()(12124,6112,32211622D E F D E F D E F λλλλ⎧⎪++=⎪++⎪+⋅+⋅=⎨⎪--⎪+⋅+⋅=+⎪⎩24 解得()()()0,0,1,2,3,4D E F ===.故222n n n a b c ++222n n n n n n B C C A A B =-+-+-()()()222n+2n+21n+111123442n n n n A A A A A A A +=-+-+- ()()222n+1n+1n+111=22n n A A A A A +++- ()222n+1n+11=2n A A A ++又每只青蛙跳后,三只青蛙所组成的三角形面积不变,即000A B C S S =∆=. 而()22n n 212225221nn n A EE F λλλ=+>+-,故 22222201*********a b c A A ++=+()40222514222>++)4022142S >+()(20111509S =+201130017S >⨯36.(2019·全国·高三竞赛)设异面直线a 、b 成60︒角,它们的公垂线段为EF ,且2EF =,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.【答案】2219x y +=【解析】 【详解】易知点P 在过EF 的中点O ,且与a 、b 平行的平面α内.如图所示,设a 、b 在α内的射影分别为a '、b ',点A 、B 在α内的射影分别为A '、B ',则60A OB ∠=''︒,且A B ''的中点即为AB 的中点P .又4AB =,2EF =,则23A B ''=.于是,问题转化为求定线段A B ''的两个端点分别在a '、b '上移动时,其中点P 的轨迹. 如图所示,以A OB ∠''的平分线为x 轴,O 为原点,建立直角坐标系.不失一般性,令OB n '=,OA m '=.在A OB ∆''中,22 12m n mn +-=. ①设A B ''的中点P 的坐标为(),x y ,则()()232,2,32212.232m x y x m n n x y y m n ⎧⎧=+=+⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=-⎪⎪⎩⎩代入式①,化简整理得2219x y +=. ②这里得到的是椭圆②夹在A OB ∠''内的弧.在另外3种情形中,同样可得到椭圆②的另3段弧.综合得点P 的轨迹是椭圆2219x y +=.37.(2018·全国·高三竞赛)求所有三次多项式()P x ,使得对一切0x y ≥、,均有()()()P x y P x P y +≥+.【答案】见解析【解析】 【详解】设()()320P x ax bx cx d a =+++≠.则原不等式等价于()32axy x y bxy d ++≥(任意的x 、y 0≥) ① 令x 、y 充分大,得0a >. 令x=y=0,得0d ≤. 在这样的条件下,式①又可写成()()22332ax y axy d b xy ++-≥-(任意的x 、y 0≥) ②当2b -,即328243b a d ≥时,由基本不等式得式②成立.反之,当2b -时.若0d <,则取x 、y 使2233ax y axy d ==-,即知式②不成立;若d=0时,则要求对任意整数x 、y ,有()32a x y b +≥-,故0b ≥,矛盾.综上,所求三项多项式为()32P x ax bx cx d =+++.其中,0a >,0d ≤,328243b a d ≥ 38.(2018·全国·高三竞赛)已知多项式()()()()4322275311735f x ax a x a x a x a =+-+-+-+-,其中,a 为实数.证明:对任意的实数a ,方程()0f x =总有一个相同的实数根. 【答案】见解析 【解析】 【详解】注意到,()()()432322757323115f x a x x x x x x x =-+-++-+-()()()32221335x a x x x x x ⎡⎤=--+-+-+⎣⎦ ()()()()2221315x a x x x x ⎡⎤=--++-+⎣⎦.从而,对任意的实数a ,方程()0f x =总有根0.5x =.39.(2018·全国·高三竞赛)给定正整数n ,求1122nk k n =⎡⎤-⎢⎥⎣⎦∑,其中,[]x 表示不超过实数x 的最大整数. 【答案】0 【解析】 【详解】令11110222m m m m n a a a a --=++++.其中,0m a ≠.此时,122m m n +≤< ,所以,[]2log n m =.若2k m ≥+,则1212102222m k m n ++-<-=,此时1122k n ⎡⎤-=-⎢⎥⎣⎦.若1k m =+,则11110,22222k m n n +⎡⎫-=-∈⎪⎢⎣⎭,此时1022k n ⎡⎤-=⎢⎥⎣⎦.若k m =,则110111222222m m t m m m k t t a a n a a ---=⎡⎤⎡⎤⎡⎤-=-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑.若1k m ≤+,则1011221222m m m k tt k m t t k k t t k n a a a -----==⎡⎤⎡⎤-=-=+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑. 则[]2log 11111111111121222222n m m m m t k m m t k k k k k k k k t k n n n a a a a ------=====⎛⎫⎡⎤⎡⎤⎡⎤-=-=-+=++- ⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎝⎭∑∑∑∑∑ 1111111121mtm m t km m t k t k k k a a a a -----=====-++-∑∑∑∑()()()111122211m mmtm t k t k a a a m --===-+-+--∑∑m211t t t a m n m ==--=--∑.故1112111122222222nm nk k m k k k k m n n n n +===+⎡⎤⎡⎤⎡⎤⎡⎤-=-+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦∑∑∑()()()()2101110nk m n m n m n m =+=--++-=-----=∑40.(2018·全国·高三竞赛)试求所有的正整数n 及实数,22x x ππ⎛⎫⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭,使得tan n xcot x +.【答案】见解析 【解析】 【详解】由tan n xcot x((()tan cot tan cot n x x n x x Q +=++,①((tan cot tan cot 3n x x n n x x Q =++∈.②由式①知存有理数q,使得tan cot n x x q +=-由式②知(tan cot n x x Q +,即(0q Q Q q -⇒⇒=.故tan cot n x x +=-设tan x y =.则1ny y +=-210ny ⇒++=y ⇒=由ny Q +=,知2n =或3. 当2n =时,y =此时,x =或. 当3n =时,y =此时,arctan 6x π⎛==- ⎝⎭. 41.(2018·全国·高三竞赛)实数333111111i i i i i y x y x ======∑∑∑满足3211123ii y x x x x =+∑,试求()11,2,3ii y a i x ==的值. 【答案】0 【解析】 【详解】令331111i i i i a a x ====∑∑.于时,()()()()()()1111111211231123231213122331y y x a a a x x x x x x x x x x x x x x x x x x x x x -===+++++++++.故()()()222222123122331y a a x x x x x x x x x x x -=++++. 同理,()()()333323123122331y a a x x x x x x x x x x x -=++++,()()()333111112111231223310i i i i a a x y x x x x x x x x x x ===-==++++∑∑∑. 则211,)2y y p.42.(2018·全国·高三竞赛)已知非零实数a 、b 、c 、t 满足()2,1.a tb c b c t t =+⎧⎪⎨=++⎪⎩(1)求证:二次方程()()()22220cx c b c x b c b c +--+-=①必有实根,且2c b a --是方程的一个实根;(2)当15a =,7b =时,求c 、t . 【答案】(1)见解析;(2)1,2c t == 【解析】 【详解】(1)解法1:由()21b c t t =++,有()22441bc c t t =++ ()22223123c c t c =++≥,得二次方程的判别式()()()222224c b c c b c b c ∆=-++- ()22430b bc c =-≥.所以,二次方程①必有实根,把2x c b a =--代入方程①有左边()()222c c b a c b c =--+-⋅ ()()()222c b a b c b c ---+-()()()222c b a c c b a c b c ⎡⎤=----+-⎣⎦ ()()22b c b c ---()()()222ac c b a b c b c =----+- ()()()()22bt c c bt b c b c b c =++--+-()()()22222c b t b t b c c b c b c ⎡⎤=++--+-⎣⎦()()222b c t t b c c ⎡⎤=++-⎣⎦ ()()22b c b c -+-()()()()2222b b c b c c b c b c ⎡⎤=-+--+-⎣⎦()()()()22220b c b c b c b c =+--+-=.因此,2c b a --是方程①的一个实根.所以,二次方程①必有实根,且2c b a --是方程的一个实根.解法2:由()2,1a tb c b c t t =+⎧⎪⎨=++⎪⎩消去t 得21a c a c b c b b ⎡⎤--⎛⎫=++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 故()()232b c b b a c a c ⎡⎤=+-+-⎣⎦()22232ca c b c a b c bc c =+-+-+.则()()()22220ca c b c a b c b c +--+-=.②.这表明,二次方程①有实根a .由根与系数的关系得方程的另一根为()22c c b x a c b a c-=-=--.因此,二次方程①必有实根,且2c b a --是方程的一个实根.说明:当0∆=时,43b c =,12t =-,58a c =,确实有两根相等528c b a c a --==.(2)把15a =,7b =代入式②整理得32373793430c c c -+-=.观察知方程的系数和为0,故有分解式()()21363430c c c --+=,但()223634318190c c c -+=-+>,得1c =.代入a bt c =+得a ct b -=15127-==. 43.(2018·全国·高三竞赛)设a 、b 为复数,01p ≤≤.求证:pppa b a b +≤+. 【答案】见解析 【解析】 【详解】对于0p =,1p =,不等式显然成立. 对于01p <<: 若0a b +≠,则1111pppppa b a b a b a b a ba ba ba b----+++=≤=+++++. ①若{}max ,a b a b +≥,则1111ppa b a--≤+,1111ppa bb--≤+.利用式①有11pp pa b a b a ba b--+≤+++ 11p pppa b a b ab--≤+=+.不等式成立.若{}max ,a b a b +<,则{}()max ,pp ppa b a b a b +≥>+.不等式也成立.最后,若0a b +=,则0p p pa b a b +≥=+.不等式也成立. 44.(2019·全国·高三竞赛)已知非常数的整系数多项式()f x 满足()()()()32324432211xx x f x x x x f x +++=-+-+.①证明:对所有正整数()8n n ≥,()f n 至少有五个不同的质因数. 【答案】见解析 【解析】 【详解】 式①等价于()()()()()()2231111x x x f x x x x f x +++=--++. ②在式②中分别令3x =-1. 则()()210f f f f -====⎝⎭⎝⎭.再在式②中令2,0x =-.则()()100f f -==. 故2-、1-、0、1()0f x =的根.则 ()()()()()()22111f x x x x x x x g x =++--+, ③其中,()g x 为实系数多项式.由式③得()()()()()()2132111f x x x x x x x g x +=++++++. ④将式③、④代入式②得()()1g x g x =+. 设()0nkk k g x a x ==∑.则()01nnkkk k k k a x a x ===+∑∑.考虑两边1n -次项系数知110n n n n a na a na --=+⇒=. 所以,()g x 为常数c .故()()()()()22111f x c x x x x x x =++---,其中,常数{}\0c Z ∈.首先证明:()()()()2118n n n n n ++-≥至少有四个不同的质因数.否则,()()()211n n n n ++-至多有三个不同的质因数2、3、()2,3p p ≠.但1n -、n 、1n +、2n +两两之间的最大公因数为1、2、3,其中两个奇数互质,则为3a 、()bp a b N +∈、.从而,两个偶数为12c +、()23dc d N +⨯∈、.故231c d -=.解得()()(),2,1,3,2c d =.因此,这两个偶数为8、6或16、18.前者不符,后者得到另两个奇数为15、17或17、19,均导致矛盾.其次,假设存在某个正整数()8n n ≥,使得21n n -+的每个质因数都是()()()211n n n n ++-的质因数,且()()()211n n n n ++-恰有四个质因数,否则,结论成立.显然,()()21,11n n n n -+-=.由()()()()21123237n n n n n n -+=+-+=+-+,知()21,11n n n -++=或3,()21,21nn n -++=或7.故()2137a b n n a b N +-+=∈、.但9|21)n n -+(不能,故{}0,1a ∈,则0b >. 由假设知2n +、1n +、n 、1n -的质因数为2、3、7、()2,3,7p p ≠.则()72n +. 考虑其中两个偶数、两个奇数的质因数集合A 、B .显然,2A ∈,2B ≥,{}3A B ⋂⊆. 故2A =或3A =且3A ∈.若{}2,3A =或{}2,7,则两个偶数为12c +、23d ⨯或12c +、27d ⨯,得231c d -=或271c d-=.故这两个偶数为16、18或16、14.前者得7 |(n+2)不能;后者使()()()211n n n n ++-有质因数2、3、5、7及13(或17),矛盾. 若{}2,A p =,则2n +为奇数,1n -为偶数. 由33|A ∈⇒(1)3|n -⇒(2)n -.故()27c n +=,3d n =,且{}21,1en n ∈+- ()2,3c d e N c d e +∈≥≥、、、. 从而,()()321,2,3d ed e -=⇒=.于是,9n =.则2117c n +=≠,矛盾.若{}2,3,7A =,则{}3,B p =,且2n +为偶数,()2,13n n +-=. 故()2372n ⨯⨯+.从而,2c n =,13d n -=,1e n p += (),3,2c d e N c d +∈≥≥、、.于是,()()231,2,1c dc d -=⇒=,矛盾.若{}2,3,A p =,则{}3,7B =,且2n +为奇数,()2,13n n +-=.故()372n ⨯+. 但(),21n n +=,则n 的奇质因数不是3、7,矛盾.45.(2019·贵州·高三竞赛)我们知道,目前最常见的骰子是六面骰,它是一颗正立方体,上面分别有一到六个洞(或数字),其相对两面之数字和必为七.显然,掷一次六面骰,只能产生六个数之一(正上面).现欲要求你设计一个“十进制骰”,使其掷一次能产生0~9这十个数之一,而且每个数字产生的可能性一样.请问:你能设计出这样的骰子吗?若能,请写出你的设计方案;若不能,写出理由.【答案】能,方案见解析 【解析】 【详解】因为不存在正十面体,所以直接产生“十进制骰”是办不到的. 但要实现“十进制骰”的要求,这样的骰子也是能设计的.即把骰子做成正二十面体,使其相对两面标同一个数字,这样0~9这十个数字就均匀分布在骰子上,当掷一次骰子时,最上面出现的数字必然是0~9这十个数字之一, 显然,每个数字出现的可能性一样故“个位骰”即为“二十面骰”.46.(2019·全国·高三竞赛)设二元函数()22,236z f x y x y y ==+-的定义域是(){}22,327,,D x y xy xy x y R =+≤∈.(1)求(),z f x y =(点(),x y ∈D )的取值范围;(2)求所有的实数a ,使得在空间直角坐标系O xyz -中,曲面(),z f x y =(点(),x y ∈D )与另一个曲面()z xy a x y =+∈R 、相交. 【答案】(1) 81,29⎡⎫-+∞⎪⎢⎣⎭(2) 8126a -≥ 【解析】 【详解】(1)当0x =时,220,0y y ≤=,()(),0,00f x y f ==;当0x ≠时,22730y y x x x ⎛⎫-+≤ ⎪⎝⎭,即1302y y x x ⎛⎫⎛⎫--≤ ⎪⎪⎝⎭⎝⎭.解得132yx≤≤. 令y t x=,则3,yt y tx x ≤≤=,()222,326f x y t x x tx =+-()22326t x tx =+- ()2326x t x t ⎡⎤=+-⎣⎦先固定t ,让x 变化.显然,当x →-∞或+∞时,(),f x y →+∞. 当2332tx t =+时,(),f x y 取得最小值. ()22296,33232t f x y t t -=-+++ 368133229≥-+-+当且仅当239273,,322929t t x y tx t =====+时等号成立. 由以上讨论可知(),f x y 的取值范围是81,29⎡⎫-+∞⎪⎢⎣⎭.(2)曲面()()(),,z f x y x y D =∈与(),z xy a x y R =+∈相交⇔方程()()(),,f x y xy a x y D =+∈有实数解 ⇔ ()()22236,x y y xy a x y D +-=+∈有实数解(),x y2222236,132x t x tx tx a t ⎧+-=+⎪⇔⎨≤≤⎪⎩有实数解(),x t ()223260,132t t x tx a t ⎧-+--=⎪⇔⎨≤≤⎪⎩有实数解(),x t ()22364320,132t t t a t ⎧∆=+-+≥⎪⇔⎨≤≤⎪⎩有实数解t 229,32132t a t t t ⎧-≥⎪⎪-+⇔⎨⎪≤≤⎪⎩(显然2320t t -+>), 221333322t a t t t -⎛⎫⇔≥--⋅≤≤ ⎪-+⎝⎭.令()2213322t g t t t t -⎛⎫=≤≤ ⎪-+⎝⎭. 欲求()g t 的最大值,只须考虑23t <≤这一情形(否则()0g t ≤,不可能是最大值). 令2(01)t k k -=<≤,则()()()23222kg t k k =+-++211231112113kk k k k =-++⎛⎫++ ⎪⎝⎭ 211231112113kk k k k ==++⎛⎫++ ⎪⎝⎭21141131134k k ==⎛⎫⎡⎤++ ⎪⎢⎥++⎝⎭⎢⎥⎣⎦211261134≤=⎡⎤⎢⎥++⎢⎥⎣⎦0>,且关于k 严格递减). 当且仅当1k =时,上式等号成立.故()g t 的最大值为126. 从而,()813326a g t -≥--≥.所以,a 的取值范围是8126a -≥.47.(2019·全国·高三竞赛)设直线与函数42y x x x =-+的图像恰有两个不同的公共点.求出所有这样的直线方程.【答案】1112y x ⎛=+ ⎝⎭【解析】 【详解】显然,直线x a =与函数42y x x x =-+的图像只有一个公共点.于是, 设直线方程为y px q =+.将其代入42y x x x =-+,得()4210x x p x q -+--=. ①方程①恰有两个不同实根,有如下3种情形:(1)()()()()4221x x p x q x u x v x Cx D -+--=--++,其中,u 、v 、C 、D R ∈,u v ≠,且24C D <.(2)()()()22421x x p x q x u x v -+--=--,其中,u 、v R ∈,且u v ≠. (3)()()()3421x x p x q x u x v -+--=--,其中,u 、v R ∈,且u v ≠.对于(1),可设()()()42221x x p x q x Ax B x Cx D -+--=++++,其中,24A B >,24C D <.展开比较系数得0A C +=,1AC B D ++=-,1BC AD p +=-,BD q =-. 由前两个方程得C A =-,21D A B =--,代入24A B >,24C D <,得 22244444B A C D A B <=<=--.所以,2844B A <-.故22221,12min ,24,4A A A AB A A ⎧-≤⎪⎧⎫-⎪<=⎨⎬⎨⎩⎭⎪⎪⎩ 则3121p BC AD A AB A =--=++-,22q BD B B A B =-=+-.直线方程为()32221y A AB A x B B A B =++-++-,其中,实数A 、B 满足221min ,24A A B ⎧⎫-<⎨⎬⎩⎭. 比如,取0A =,则12B <-;取2B =-,则1p =,2q =.因此,直线方程为2y x =+.此时,方程①为()()22210x x -+=.对于(2),可设()()24221x x p x q x Ax B -+--=++,其中,24A B >.在(1)的方程组中令A C =,B D =,得20A =,221A B +=-,21AB p =-,2B q =-. 解得0A =,12B =-,1p =,14q =-.因此,直线方程为14y x =-.对于(3),展开比较系数得30u v +=,()231u uv +=-,3231u u v p +=-,2u v q =-.由前两个方程得3v u =-,()22331u u -=-.解得u =注意到,()()2141319163p u u v u u u =++=+-=-,341312q u v u =-==,于是,()1,112p q ⎛⎫= ⎪ ⎪⎝⎭.此时,直线方程为1112y x ⎛=+ ⎝⎭. 48.(2018·全国·高三竞赛)已知12,,n x x x 为实数,且1i x ≥,对{}1,2,,x n =的子集{}12t ,,,A i i i =,定义()12t i i i S A x x x =+++.其中,规定()0S ∅=,问:从n 个这样的和中至多可以选出多少个,使得其中任何两个的差的绝对值都小于1? 【答案】n 2nC ⎡⎤⎢⎥⎣⎦【解析】 【详解】不妨设所有的0i x >.事实上,若有某个0i x <,则将i x 换作i x -,并将集合A 换作:{}()A A i i A =⋃∉'或{}()\A A i i A ='∈.故“和()S A ”变为()()S A S A x '=-,这样所有2n 个和均增加了i x -,任何两个“和”的差不变. 从而, 1i x ≥. 设12,,k A A A 是选出来的集合X 的子集,满足()()1i j S A S A -<.从而,必有各i A 互不包含.否则,设i j A A ⊆故()()()\1i j i j S A S A S A A -=≥.导出矛盾.由斯波那定理,知可选出的集合数n 2n C k ⎡⎤⎢⎥⎣⎦≤.另外,取1i x =,则{}1,2,,X n =的全部n 2n C ⎡⎤⎢⎥⎣⎦个n 2⎡⎤⎢⎥⎣⎦元子集互不包含,且对每一个i A ,有()n 2i S A ⎡⎤=⎢⎥⎣⎦.于是,()()01i j S A S A -=<.所以,集合数的最大值为n 2n C ⎡⎤⎢⎥⎣⎦.49.(2018·全国·高三竞赛)(1)若正整数n 可以表示成(),2b a a b N a b 、、∈≥)的形式,则称n 为“好数”.试求与2的正整数次幂相邻的所有好数.(2) 试求不定方程2351x y z-⨯=的所有非负整数解(),,.x y z【答案】(1)9;(2)(1,0,0),(1,1,0),(2,1,0),(3,2,0),(4,l ,1),(2,0,1). 【解析】 【详解】(1)设所求的好数为n ,(),2,2.bn a a b N a b +=∈≥≥、于是,存在正整数t (t>1),使得2 1.t b a =±显然,a 为奇数.若b 为奇数,则()()12211.t b b a aa a --=±+⋯+ ① 而121b b a a a --+⋯+是奇数个奇数相加减的结果仍然是奇数,只可能是l ,代入 式①得b=l ,这与b≥2矛盾.若b 为偶数,则()1mod4.ba =若21t b a =+,则()212mod4.t ba =+=所以,t=1.矛盾若222111b b tba a a ⎛⎫⎛⎫=-=+- ⎪⎪⎝⎭⎝⎭,但221,12b ba a ⎛⎫+-= ⎪⎝⎭, 故2129.bb a a -=⇒=综上,所求的所有好数只有一个n=9.(2)显然,x ≥1.当z=0时,若y≤1,易得方程的三组解(1,0,0),(1,1,0),(2,l ,0); 若y≥2,由(1)的结论易知此时方程只有一组解(3,2,0). 当z≥l 时,显然,2x ≥.易知当且仅当2x =(mod 4)时,()21mod5x=-;当且仅当0x =(mod 4)时,()21mod5.x=若2351x y z -⨯= ②则()21mod5x≡,此时,()0mod4.x ≡设()4.x m m N +=∈对式②两边模4得()()111mod4.y +-≡于是,y 是奇数.设()21.y l l N =+∈ 则式②变为4212351m l z +-⨯=, 即()()2221212135.mm l z +-+=⨯。

【高中数学竞赛专题大全】 竞赛专题9 平面几何(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题9 平面几何(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题9 平面几何 (50题竞赛真题强化训练)一、填空题1.(2018·天津·高三竞赛)凸六边形ABCDEF 的6条边长相等,内角A 、B 、C 分别为134°、106°、134°.则内角E 是___________(用度数作答). 【答案】134° 【解析】 【详解】不妨设边长为1,设AC 、DF 的中点分别为M 、N ,且A 在DF 上的射影为K ,则37BAM ∠=︒,97MAF ∠=︒,83AFK ∠=︒,即cos83FK =︒,cos37KN AM ==︒.又设EFN x ∠=,则cos FN x =,利用FN FK KN =+, 我们有cos cos83cos372cos60cos23cos23x =︒+︒=︒︒=︒,因此23x =︒,即等腰△DEF 的底角为23°,可见其顶角E 为134°. 故答案为134°2.(2020·江苏·高三竞赛)在平面直角坐标系xOy 中,直线y kx =与圆C :()()2227365x y -+-=交于A ,B ,则OA OB ⋅=__________.【答案】2020 【解析】 【详解】解析:222020OA OB OC R ⋅=-=. 故答案为:2020.3.(2021·全国·高三竞赛)在ABC 中,ABC ∠所对的旁切圆与边AC 相切于点D ,ACB ∠所对的旁切圆与边AB 相切于点E .若||1,||2AB AC ==,则ADE 面积的最大值为_______.【解析】 【详解】设边BC 、CA 、AB 的长度分别为a 、b 、c ,则11||(),||()22AD a b c AE a c b =+-=+-,故1||||sin 2ADESAD AE A =⋅⋅ 221()sin 8a b c A ⎡⎤=--⋅⎣⎦ 22211sin 282a b c A bc bc ⎛⎫--=⋅+⋅⋅ ⎪⎝⎭2311(1cos )sin 42sin 2cos sin 2sin cos 8222222A A A A A A A =-⋅=⋅⋅=⋅⋅ 故()2222622sin sin sin 2224sin cos 427cos 223332ADEA A A A SAA==⨯⨯⨯⨯⨯, 42222sin sin sin 222+++cos 273332427464A A A A ⎛⎫ ⎪⎪≤⨯⨯= ⎪ ⎪⎪ ⎪⎝⎭, 故338ADES≤(等号在23A π=时取到).故答案为:338. 4.(2021·浙江·高三竞赛)在ABC 中,AB AC BC >>,在M ,N 为AB 上两点,且AN AC =,BM BC =,点P 为ABC 的内心.若75MPN ∠=°,则ACB =∠______.【答案】105 【解析】 【分析】 【详解】证明:连接P A 、PB 、PC 及PM 、PN . 由已知易证△APC ≌△APN ,△BPC ≌△BPM . 从而PC =PN ,PC =PM ,即PM =PN =PC . 故P 为△CMN 的外心,此时有∠MPN =2∠MCN .而∠ACN =90°12-∠A ,∠BCM =90°12-∠B , 故∠ACN +∠BCM =180°12-(∠A +∠B ), 即∠MCN +∠ACB =180°12-(∠A +∠B ), 则∠MCN =∠MCN +∠ACB -∠ACB =(180°-∠ACB )12-(∠A +∠B ) =()12A B ∠∠+-(∠A +∠B ) =12(∠A +∠B ). 故∠MPN =2∠MCN =∠A +∠B =180°-∠C 所以∠C =180°-∠MPN =180°75-︒=105°.故答案为:105°.5.(2021·全国·高三竞赛)设三个不同的正整数a b c 、、成等差数列,且以555a b c 、、为三边长可以构成一个三角形,则a 的最小可能值为________. 【答案】10 【解析】 【分析】 【详解】设,a b k c b k =-=+为正整数,由于以555 a b c 、、为三边长可以构成一个三角形, 则55554235()()10202b k b b k b b k b k k -+>+⇔>++, 所以5410,10b b k b k >>,于是9a b k k =->,即有9110a k ≥+≥. 故答案为:10.6.(2019·贵州·高三竞赛)如图,在△ABC 中,AB =30,AC =20,S △ABC =210,D 、E 分别为边AB 、AC 的中点,∠BAC 的平分线分别与DE 、BC 交于点F 、G ,则四边形BGFD 的面积为________.【答案】1892【解析】 【详解】如图,在△ABC 中,由AG 平分∠BAC 知23CG AC BG AB ==,故35ABG ABCS BG S BC ==.又S △ABC =210,则3321012655ABGABCSS ==⨯=. 由D 、E 分别为边AB 、AC 的中点知12DE BC ,所以△ADF ∽△ABG . 由14ADF ABGS S=,得到632ADFS =,故BGFD S 四边形6318912622=-=. 故答案为:1892. 7.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x y a b +=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______. 【答案】2212016x y += 【解析】 【详解】设()11,A x y ,()22,C x y ,由题意ABC 的重心为椭圆的右焦点2F ,整理得213x x c +=,21y y b +=-. 由()11,A x y ,()22,C x y 在直线65280x y --=上,得到212165y y x x -=-.由()11,A x y ,()22,C x y 在椭圆()222210x y a b a b +=>>上,得到2211221x y a b +=,2222221x y a b+=. 两式相减并整理得()()()()2212122121635y y y y b b a x x x x c +---==⋅+-, 整理得225a bc =. ①因为()11,A x y ,()22,C x y 在直线65280x y --=上, 所以有1165280x y --=,2265280x y --=.将123x x c +=,12y y b +=-代入得()635560c b ⨯---=, 整理得18556c b +=. ②联立①②,且注意到a 、b 为整数,解得2c =,4b =,220a =.故所求的椭圆方程为2212016x y +=.8.(2018·河北·高三竞赛)在△ABC 中,3AC =,sin sin (k 2)C k A =≥,则△ABC 的面积最大值为_____. 【答案】3 【解析】 【详解】由正弦定理将sin sin C k A =变形为c ka =,其中,c AB a BC ==.以线段AC 所在直线为x 轴,以AC 的中点O 为坐标原点建立平面直角坐标系,则33,0,,022A C ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,(),B x y ,由c ka ==两边平方整理得()()()()22222291133104k x k y k x k -+--++-= 因为2k ,所以上述方程可化为为()2222339014k x y x k ++-+=-由此可知点B 的轨迹是以()()2231,021k k ⎛⎫+ ⎪ ⎪-⎝⎭为圆心,以231k r k =-为半径的圆.所以当点B 在圆上运动时,点B 到x 轴的最大距离为半径231kr k =-,所以ABC 的面积()21391321212k S k k k k =⨯⨯=⨯--在2k 上单调递减,所以max 9131222S =⨯=-. 9.(2021·全国·高三竞赛)已知直角梯形ABCD 中,//AB CD ,对角线AC 、BD 相交于O ,90DAB ∠=︒,P 、Q 分别是腰AD 、BC 上的点,且,BPA DPC AQB DQC ∠=∠∠=∠,若23AB CD =,则OPOQ=_________. 【答案】1 【解析】 【分析】 【详解】如图所示,记P 为过O 点在AD 上的垂线的垂足,Q 为过P 点在BC 上的垂线的垂足,下证P 、Q 即为所求. 对P 点,在DP DO CDAP OB AB==,所以有CDP BAP ∽,从而CPD BPA ∠=∠. 对Q ,PQ BC ⊥,所以P 、Q 、C 、D ,P 、Q 、B 、A 均四点共圆, 所以有DQC CPD BPA AQB ∠=∠=∠=∠.设AD 、BC 交于T ,K 为TP 的中点.不妨设5AD =, 则10,2DT DP ==,3,12,6,4,6AP TP KP KD TK =====, 从而23DK DO KT OB ==,所以//OK BT ,所以OK PQ ⊥. 由KP KQ =,所以OP OQ =,从而有1OPOQ=.故答案为:1.10.(2019·山东·高三竞赛)△ABC 中,16,9AB BC CA ===.在△ABC 外部,到点B 、C 的距离小于6的点组成的集合,所覆盖平面区域的面积是______ .【答案】54π【解析】 【详解】分别以点B 、C 为圆心,6为半径作圆,交于三角形外一点D ,连结BD 、CD ; 有5353cos ,cos 7272A BDC =∠=-,故A 、B 、D 、C 四点共圆,所以∠ABD +∠ACD =π. 又易知AB 与圆C 相离,故所求的面积为2个圆的面积去掉半个圆的面积再加上△BCD 的面积等于54π+故答案为:54π 二、解答题11.(2021·全国·高三竞赛)已知ABC 满足60A ∠=︒,E 、F 分别为AB AC 、延长线上的点,且,BE CF BC ACE ==的外接圆与EF 交于不同于E 的点K .证明:点K 在BAC ∠的角平分线上.【答案】证明见解析 【解析】 【详解】设BF 与CE 相交于点T .连结BK 、CK .由BCE BEC ABC ∠+∠=∠,及BC BE =,得12BCE ABC ∠=∠, 类似可得12CBF ACB ∠=∠,故 1()602CTF BCE CBF ABC ACB ∠=∠+∠=∠+∠=︒,因此,A 、B 、T 、C 四点共圆.进而,,180180EBF ACE AKE ABF EBF AKE AKF ∠=∠=∠∠=︒-∠=︒-∠=∠, 所以A 、B 、K 、F 四点共圆.由,EBK CFK BEK FCK ∠=∠∠=∠,及BE FC =,得KBE KFC ≌. 于是KC KE =.因此,KC KE =,即AK 是BAC ∠的角平分线.12.(2021·全国·高三竞赛)如图,在平行四边形ABCD 中,1A 、1C 分别是边AB BC 、上的点,线段1AC 、1CA 交于点P ,1AA P 和1CC P △的外接圆的第二个交点Q 位于ACD △的内部.证明:PDA QBA ∠=∠.【答案】证明见解析 【解析】 【详解】对完全四边形11BC CPAA 用密克定理,知Q 、1A 、B 、C 四点共圆,所以1QCB AAQ APQ ∠=∠=∠. 又因为1PAQ PAQ CBQ ∠=∠=∠,所以PAQ CBQ ∽. 因此AP BC ADPQ QC QC==, 结合1PAD PC B PQC ∠=∠=∠知PAD PQC ∽. 因此PDA PCQ ABQ ∠=∠=∠.13.(2021·全国·高三竞赛)如图,设O 、H 分别为ABC 的外心与垂心,M 、N 分别为BH 、CH 的中点.BB '是ABC 的外接圆的一条直径,如果HONM 是一个圆的内接四边形,证明:12B N AC '=.【答案】证明见解析 【解析】 【分析】如图,设F 为AC 的中点,连接,,,,,,,AH AB B C AO FN OF OM OH '',可证F 、A 、O 、H 四点共圆,从而可证明四边形B FNC '为等腰梯形,故可证12B N AC '=. 【详解】如图,连接,,,AH AB B C AO '',则,AH BC B C BC '⊥⊥,故//AH B C ',同理//AB HC ',故四边形AHCB '为平行四边形设F 为AC 的中点,故B '、F 、H 共线,且F 为B H '的中点, 连接,FN OF ,结合N 为CH 的中点可知,//FN B C '.连接,OM OH ,则//OM B H ',故FHO HOM HNM HCB ππ∠=∠=-∠=-∠, 另一方面,容易得到2FAO ABC HCB π∠=-∠=∠,故FHO FAO π∠+∠=,从而F 、A 、O 、H 四点共圆,从而可知FB C FHA FOA ABC AB C NCB π∠=∠=∠=∠=-=∠'∠'', 从而四边形B FNC '为等腰梯形,进而12B N CF AC ='=,证毕. 【点睛】思路点睛:竞赛中的平面几何,大多数与四点共圆相关,因此需要结合三角形中各类角的性质进行大小关系的转化.14.(2021·全国·高三竞赛)如图,已知锐角ABC 的外接圆为Γ,过B 、C 分别作圆Γ的切线交于点P ,P 在直线BC 、AC 、AB 上的投影分别为D 、E 、F ,DEF 的外接圆与BC 交于点N (不同于点D ),A 在BC 上的投影为M .求证:BN CM =.【答案】证明见解析 【解析】 【分析】 【详解】连结AP 、EF 、DE 、FN .因为,PD BC PF AB ⊥⊥,所以DPF ABC ∠=∠.因为PB 、PC 与O 相切,所以BAC BCP CBP ∠=∠=∠.因此180180PCE ACB PCB ACB BAC ABC DPF ∠=︒-∠-∠=︒-∠-∠=∠=∠. 又因为,PD BC PE AC ⊥⊥,所以PCE PDE ∠=∠. 所以PF //DE ,因此PFE DEF ∠=∠.又因为F 、E 、D 、N 四点共圆,所以BNF DEF ∠=∠. 又因为P 、E 、A 、F 四点共圆,所以BNF PFE PAC ∠=∠=∠. 又因为PCE ABC ∠=∠,所以ACP MBF ∠=∠, 故BFN CPA ∽,所以BN ACBF CP=, 因此cos cos BF BFBN AC AC AC PBF AC ACB CM CP BP=⋅=⋅=⋅∠=⋅∠=. 15.(2021·全国·高三竞赛)如图,已知等腰三角形ABC 中,AB AC =,M 为BC 的中点.D 为线段BM 上一点,E 、F 分别为AC AB 、上的点,且四边形AEDF 为平行四边形.BO 交DE 于点P ,CO 的延长线交DF 的延长线于点Q ,ABC 的外接圆O 交ADM △的外接圆于A 、K 两点.求证:K 、Q 、P 、O 四点共圆. 【答案】证明见解析 【解析】 【分析】 【详解】因为,,OB OA AE FD BF OBA OAB EAO ===∠=∠=∠, 所以OAE OBF △≌△,所以BFO AEO ∠=∠, 所以A 、E 、F 、O 四点共圆,记该圆为ω.又OPE OBA OAE ∠=∠=∠,故有P 在圆ω上,同理Q 也在ω上.ADM △的外接圆圆心N 为AD 的中点,即EF 的中点.又OE OF =,故有ON EF ⊥,所以O 、N 与ω的圆心共线. 所以三圆关于直线ON 对称,故K 也在ω上. 所以K 、Q 、P 、O 四点共圆.16.(2021·全国·高三竞赛)如图,AE 、AF 为圆的两切线,ABC 为圆的一条割线,EF 为切点连线,D 为过C 、B 关于圆的切线的交点,证明:D 、E 、F 共线.【答案】证明见解析. 【解析】 【分析】 【详解】 法一:共圆证法. 作圆心O ,连结AOEF M =,连结MB 、OC .由于DC 、DB 为圆O 的切线,故O 、C 、D 、B 四点共圆. 对Rt AOF 用射影定理2AM AO AF ⇒⋅=.又2AF AB AC AM AO AB AC =⋅⇒⋅=⋅,即M 、O 、C 、B 四点共圆.⇒O 、C 、D 、B 、M 五点共圆,故D 、C 、M 、B 四点共圆.AMB OCB OBC OMC MF ⇒∠=∠=∠=∠⇒平分CMB ∠.又CD BD MF =⇒过D ,即D 、E 、F 共线. 法二:塞瓦定理. 对F 及CDB △用塞瓦定理,sin sin sin 1sin sin sin BDF FCD CBFCDF BCF FBD ∠∠∠⨯⨯=∠∠∠.对E 及CBD 用塞瓦定理,sin sin sin 1sin sin sin BDE DCE EBCCDE ECB EBD∠∠∠⨯⨯=∠∠∠.由于2sin sin ,sin sin BDF FBD FCD CBF BCF FBD CDF CBF ∠∠⎛⎫∠=∠∠=∠⇒= ⎪∠∠⎝⎭.由于2sin sin 180,180sin sin BDE EBC DCE EBC EBD ECB CDE ECB ∠∠⎛⎫∠=︒-∠∠=︒-∠⇒= ⎪∠∠⎝⎭.sin sin sin sin FBD EBC CF CECBF ECB BF BE∠∠=⇔=∠∠.由,CF AC AC CEABF AFC ABE AEC BF AF AE BE⇒===∽∽. 从而D 、E 、F 共线.17.(2021·全国·高三竞赛)如图,在Rt ABC 中,90ACB ∠=︒,G 为重心,P 为射线AG 上一点,满足CPA CAB ∠=∠,Q 为射线BG 上一点,满足CQB ABC ∠=∠,证明:AQG 、BPG 的外接圆的另一个交点在AB 上.【答案】证明见解析. 【解析】 【分析】 【详解】如图,延长CG 与AB 交于点J ,则J 为AB 的中点,故CPA CAB ACG ∠=∠=∠. 从而2ACG APC AG AP AC ⇒⋅=∽. 同理,2BG BQ BC ⋅=.设BPG 的外接圆圆M 与AB 的另一个交点为K , 由圆幂定理知:2AK AB AG AP AC ⋅=⋅=, 所以CK AB ⊥,于是2BK BA BC BG BQ ⋅==⋅.因此A 、K 、G 、Q 四点共圆,所以AQG 、BPG 的外接圆的另一个交点在AB 上. 18.(2021·全国·高三竞赛)如图,设圆内接四边形ABCD 的对角线AC 与BD 交于点P ,并且DA 与CB 交于Q .若PQ AC ⊥,且E 是AB 的中点.求证:PE BC ⊥.【答案】证明见解析 【解析】 【分析】 【详解】过B 作//BF PE 交AC 于F ,连结FQ .则有AP PF =,于是PQ 是AF 的中垂线,故,QA QF = 180180QFA QAF DAC DBC QBP ∠=∠=︒-∠=︒-∠=∠.因此Q 、P 、F 、B 共圆,再由QP PF ⊥,得BF BQ ⊥. 而//BF PE ,故PE BQ ⊥,即PE BC ⊥.19.(2021·全国·高三竞赛)如图,在ABC 中,BC 最短,D 、E 分别在AB AC 、上满足BD CE BC ==,设I 是ABC 内心,O 是ADE 外心,求证:OI BC ⊥.【答案】证明见解析 【解析】 【分析】 【详解】设ABC 的外接圆P ,M 、N 、Q 分别是弧AB AC BC 、、的中点. 如图连结线段,则由BC CE =得MB ME =. 又MA MB =,所以MA ME =,于是MO AE ⊥. 又PN AC ⊥,所以//MO PN .同理//NO PM , 再由PM PN =,即知四边形OMPN 是菱形, 所以MN OP ⊥,并且2sin2AOP PM QB QI =⋅==.另一方面,由鸡爪定理又有MN AI ⊥,所以//OP QI 且OP QI =, 即四边形OPQI 是平行四边形,所以//OI PQ ,所以OI BC ⊥.20.(2021·全国·高三竞赛)如图,锐角ABC 中,D 为边BC 中点,ABD △内切圆与边AB 切一点,E ACD 的内切圆与边AC 切于点F ,若四边形EDFG 为平行四边形,求证:G 在BAC ∠的平分线上.【答案】证明见解析. 【解析】【分析】 【详解】设ABD △的内切圆分别与BD AD 、切H I 于、两点;ACD △的内切圆分别与DC AD 、切于J K 、两点.作平行四边形AGFM ,连结DM ,交AC 于点L ,则FAG AFM ∠=∠, 且,AM GF ED AM GF ED ==∥∥, 所以AEDM 是平行四边形,所以AE DM ∥.又AG MF ∥,所以EAG DMF ∠=∠,所以要证明EAG FAG FML AFM LF LM ∠=∠⇔∠=∠⇔=. 因为D 是BC 的中点,AE DM ∥,所以L 是AC 的中点,且12DL AB =. 因此:2222LM DM DL AE AB =-=-AE EB AI BH =-=-AI BD HD =-+AI BD DK KI =-++.222222LF AF AL AK AL AK AC =-=-=- AK FC AI IK CF AI IK CJ =-=+-=+- AI IK CD DJ AI IK BD DK =+-+=+-+,所以LM LF =,所以AG 是BAC ∠的平分线.21.(2021·全国·高三竞赛)如图,已知圆O 是ABC 的外接圆,切线、BP CP 交于点P ,D 是BC 的中点,K 、L 分别在线段AB AC 、上,且满足KD LD ⊥,连结KP LP 、,求证:2BPC KPL ∠=∠.【答案】证明见解析. 【解析】 【分析】 【详解】如图,过P 作,PM AB PN AC ⊥⊥,垂足分别为M 、N .首先,由题意知PD BC ⊥,则B 、M 、P 、D 共圆,C 、N 、P 、D 共圆, 而90KMD BPD CPD LND A ∠=∠=∠=∠=-︒,则90MKD KDM A ∠+∠=︒+, 而90MKD NLD A ∠+∠=︒+,故NLD KDM ∠=∠,即KDM DLN ∽, 因此KM DNMD NL=. 又因为PMD PBD PCD PND ∠=∠=∠=∠,()18018090MPN A MKD KDM ︒∠=︒-=-∠+∠-︒ 36090LDN KDM MDN =-︒-∠-∠=∠︒.故四边形MPND 为平行四边形,即得KM PM KM PNPN NL MP NL=⇔=, 结合直角,故Rt KMP Rt PNL ∽,即90KPM LPN ∠+∠=︒, 则()901809090KPL MPN A A ∠=∠-︒=︒=︒-︒--. 而1802BPC A ∠=︒-,故2BPC KPL ∠=∠.22.(2021·全国·高三竞赛)点P 为椭圆22221(0)x y a b a b+=>>外一点,过P 作椭圆两条切线PA 、PB ,切点分别为A 、B ,连结AB ,点M 、N 分别为PA 、AB 中点,连结MN 并延长交椭圆于点C ,连结PC 交椭圆于另一点D ,连结ND 并延长交PB 于Q ,证明:Q 为PB 的中点. 【答案】证明见解析. 【解析】 【分析】 【详解】PC 与AB 交于点K .首先证明:P 、D 、K 、C 为调和点列,即||||||||PD KD PC KC =. 设()00,P x y ,则直线AB 方程为00221x x y ya b+=. 设P 、D 、K '、C 为调和点列,且||||K DPD PC K Cλ='='. 设()()()112233,,,,,A x y B x y K x y ',则12123121203,,11,.11x x x x x x y y y y y y λλλλλλλλ⎧-+⎧==⎪⎪⎪⎪-+⎨⎨-+⎪⎪==⎪⎪-+⎩⎩ 故()()()()1212121203032222211x x x x y y y y x x y y a b a b λλλλλ-+-+⎡⎤+=+⎢⎥-⎣⎦22222112222222111x y x y ab a b λλ⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦,所以K '在直线AB 上,即K '与K 重合,结论成立. 下面证明原题:由梅涅劳斯定理可知1CN MA PKNM AP KC⋅⋅=, 又由12AM AP =,可知2CN CK NM PK=, ① 由直线上托勒密定理可知,CD KP CK PD CP DK ⋅=⋅+⋅,由P 、D 、K 、C 四点调和可知,CK PD CP DK ⋅=⋅,故2CD KP CK PD ⋅=⋅,即2CD CKPD KP= ② 结合①、②可知,CN CD NM PD=.故//ND PM . 又N 为AB 的中点,所以Q 为PB 的中点.23.(2021·全国·高三竞赛)如图,在锐角ABC 中,AB AC >,D 、E 分别是AB 、AC 的中点,ADE 的外接圆与BCE 的外接圆交于点P (异于E ),ADE 的外接圆与BCD △的外接圆交于点Q (异于D ),证明:AP AQ =.【答案】证明见解析 【解析】 【分析】 【详解】连结BP 、DE 、QC 、PE 、DQ 、PD ,由于D 、E 分别是边AB 、AC 的中点可知//DE BC ,则180APD AED DAE ADE DAE DBC ∠=︒-∠=∠+∠=∠+∠180180DQE DQC EQC =︒-∠+︒-∠=∠,180BPD BPE DPE ACB DAE ∠=∠-∠=-∠-∠︒ ABC ADE APE AQE =∠=∠=∠=∠,APB APD BPD EQC EQA AQC ∠=∠+∠=∠+∠=∠,且:1sin sin 21sin sin 2PBD PADAP PB PD BPD AP AP SBPD BP BP SAPD BP PA PD APD ⎛⎫⋅⋅⋅∠ ⎪⋅∠⎝⎭===⋅∠⎛⎫⋅⋅⋅∠ ⎪⎝⎭1sin sin 21sin sin 2AQE CQECQ AQ AE AQE CQ S AQE CQCQE AQ SAQAQ CQ QE CQE ⎛⎫⋅⋅⋅∠ ⎪⋅∠⎝⎭====∠⋅⎛⎫⋅⋅⋅∠ ⎪⎝⎭, 所以APB CQA ∽,所以:AQP ADP PBD BPD QAE AQE QEC APQ ∠=∠=∠+∠=∠+∠=∠=∠,所以AP AQ =.24.(2019·江西·高三竞赛)如图所示,BE 、CF 分别是锐角三角形△ABC 的两条高,以AB 为直径的圆与直线CF 相交于点M 、N ,以AC 为直径的圆与直线BE 相交于点P 、Q .证明:M 、N 、P 、Q 四点共圆.【答案】见解析 【解析】 【详解】如图,设△ABC 的垂心为H ,则()()MH HN MF HF NF HF ⋅=-+ ()()MF HF MF HF =-+22MF HF =-()22AF FB AH AF =⋅--2AF AB AH =⋅- ①同理有2PH HQ AE AC AH ⋅=⋅-, ②因B 、C 、E 、F 四点共圆,知 AF AB AE AC ⋅=⋅ ③ 故由①、②、③式得MH HN PH HQ ⋅=⋅. 所以M 、N 、P 、Q 四点共圆.25.(2019·山东·高三竞赛)已知:正方形ABCD 的边长为1点M 是边AD 的中点以M 为圆心AD 为直径作圆,点E 在线段AB 上,且直线CE 与圆相切.求△CBE 的面积. 【答案】38【解析】 【详解】设直线CE 与圆Γ相切于点N ,连结ME 、MN 、MC .在Rt △MNC 和Rt △MDC 中,MC =MN ,m =MC ,所以△MNC ≌△MDC ,故∠NMC =∠DMC . 同理∠EMN =∠AME .所以∠EMC =90°. 故MN 是Rt △EMC 斜边上的高,所以EN MNNM NC =,故14EN =. 所以13,44AE BE ==.因此△CBE 的面积等于38.26.(2018·江西·高三竞赛)如图,ABC 的内心为I ,D 、E 、F 分别是边BC 、CA 、AB 的中点,证明:直线DI 平分DEF 的周长.【答案】见解析 【解析】 【详解】如图①,不妨设AB AC ≥,ABC 的内切圆切BC 、CA 、AB 于T 、1K 、2K .图①过T 作内切圆的直径TK ,过K 作I 的切线分别交AC 、AB 于M 、N ,则NM BC . 由于I 是AMN 的旁切圆,12AK AK =,因1MK MK =,2NK NK =, 所以有AM MK AN NK +=+.延长AK 交BC 于G ,则BG CT =,因此DT DG =, 故DI 是TGK 的中位线,所以DP AG ,因四边形BDEF 为平行四边形,所以DEP ∽ABG ,相似比为12DE AB =. 同理,DEP ∽ACG ,相似比为12DF AC =. 又注意AMK ∽ACG ,ANK ∽ABG ,相似比均为AKAG, 既然有AM MK AN NK +=+,所以AC CG AB BG +=+, 因此,DF FP DE EP +=+,即所证结论成立. 附注 在几何题中用到三角形内切圆的一个基本性质. 如图②,在ABC 中,内切圆I 切BC 于D ,设DH 是I 的直径,若AH 交BC 于M ,则BM CD =. 证明:过H 作EF BC ,点E 、F 分别在AB 、AC 上.设I 的半径为r ,HF x =,CD y =,EH z =,BM t =,MD d =,连结BI 、CI 、EI 、FI ,由于CI 、FI 分别平分一对互补角BCF ∠、EFC ∠, 所以90CIF ∠=︒,且CDI ∽IHF ,则y rr x=,2xy r =. 同理BDI ∽IHE ,则t d rr z +=,()2z t d r +=, 所以()xy z t d =+,则x t dz y+=. ①又由EF BC ,得x AH z y d AM t ==+,所以x y d z t +=, ② 根据①②式得,t d y dy t ++=,所以22t td y yd +=+,即()()0y t y t d -++=, 由此得,0y t -=,即t y =,也就是BM CD =.(同时也有CM BD =.)27.(2018·福建·高三竞赛)如图,在锐角ABC 中,E 、E 是边BC 上的点,ABC 、ABD △、ADC 的外心分别为O 、P 、Q .证明:(1)APQ ∽ABC ;(2)若EO PQ ⊥,则QO PE ⊥. 【答案】(1)见解析(2)见解析 【解析】 【详解】(1)如图,连结PD 、QD .因为P 、Q 分别为ABD 、ADC 的外心,所以PQ 为线段AD 的垂直平分线. 所以12APQ APD ABD ABC ∠=∠=∠=∠,12AQP AQD ACD ACB ∠=∠=∠=∠.故APQ ∽ABC .(2)如图,连结OA 、OB 、OP 、PB 、QC .延长OQ 与AC 相交于点F . 由O 、P 、Q 分别为ABC 、ABD 、ADC 的外心, 知OP 、OQ 、PQ 分别是线段AB 、AC 、AD 的垂直平分线. 所以()22APB APD BPD ABD BAD ADC AQC ∠=∠+∠=∠+∠=∠=∠. 又OBP OAP ∠=∠,1122AQF AQC APB APO ∠=∠=∠=∠.所以A 、P 、O 、Q 四点共圆,OAP OQP ∠=∠.又EO PQ ⊥,DQ PQ ⊥,所以EO DA ,12OEC ADC APB BPO ∠=∠=∠=∠.所以P 、B 、E 、O 四点共圆,OEP OBP ∠=∠. 设EO 、QO 的延长线分别与PQ 、PE 相交于M 、N ,则OEP OBP OAP OQP ∠=∠=∠=∠.故M 、N 、E 、Q 四点共圆. 又EO PQ ⊥,所以90QNE QME ∠=∠=︒.故QO PE ⊥.28.(2019·全国·高三竞赛)在ABC ∆中,设∠C=90°,CD AB ⊥,垂足为D ,P 、Q 分别为ADC ∆、BDC ∆的内心,PQ 与CD 交于点K ,记ABC ∆的面积为S.证明:22111CK CD S-=. 【答案】见解析 【解析】 【详解】如图,延长PQ ,分别与AC 、BC 交于点M 、N ,联结DP 、DQ 、CP. 分别过M 、N 作CD 的平行线与BC 、AC 的延长线交于点F 、E. 易知,Rt ADC Rt CDB ∆~∆.又P 、Q 分别为ADC ∆、BDC ∆的内心, 故AC DPRt ACB Rt PDQ QPD BAC BC DQ=⇒∆~∆⇒∠=∠ A D P M ⇒、、、四点共圆45CMN ADP CM CN ⇒∠=∠=︒⇒=.易证Rt CPM Rt CPD ∆≅∆. 于是,CM=CD=CN.由∠FMC=∠ACD ,CM=DC Rt FCM Rt ADC MF AC ⇒∆≅∆⇒=. 类似地,NE=BC. 根据三平行线定理得222111111121CK MF NE AC BC CK AC AC BC BC=+=+⇒=++⋅. 再由直角三角形恒等式得222111CD AC BC =+,12S AC BC=⋅. 故22111CK CD S-=.29.(2018·全国·高三竞赛)如图,1O 与2O 的半径相等,交于X 、Y 两点. ABC ∆内接于1O ,且其垂心H 在2O 上,点Z 使得四边形CXZY 为平行四边形.证明:AB 、XY 、HZ三线共点.【答案】见解析 【解析】 【详解】如图,设1O 、2O 的半径为R ,XY 的中点为M. 则点Z 与C 关于M 对称,点1O 与2O 关于M 对称. 因此,点Z 在2O 上.记ABH ∆的外接圆为3O ,其半径为1R .则()12sin 2sin 2sin AB AB ABR R AHB ACB ACBπ====∠-∠∠.接下来证明:Z 为2O 与3O 的交点(异于H ).由1O 、2O 、3O 的半径均为R ,知四边形12XO YO 、四边形31AO BO 均为菱形. 记AB 中点为N ,则N 也为13O O 的中点. 注意到,H 与1O 分别为ABC ∆的垂心与外心. 故1132CH O N OO ==,即13CO HO =. 因为,XZ CY =.所以,22O Z O X XZ =+ 113YO CY CO HO =+==. 又H 为2O 、3O 的一个交点,则Z 为两圆另一交点. 于是,AB 、XY 、HZ 恰为1O 、2O 、3O 两两的公共弦. 由根轴定理知AB 、XY 、HZ 三线共点.30.(2021·全国·高三竞赛)如图,以AB 为直径的圆上有C 、D 两点,AC 、BD 两点的中点为E 、F ,直线EF 与直线AD 、BC 分别交于G 、H ,求证:以FG 为直径的圆和以EH 为直径的圆有一交点在CD 上.【答案】证明见解析 【解析】 【详解】取D 关于AB 的对称点D ,延长D C '与BA 交于I 点,则IAC ID B IDB '.因为AC 、BD 两点的中点为E 、F ,所以IAE IDF ,而IACID B ',故ICB IEF IAD ,所以IBC IFE IDA ∠=∠=∠,所以I 、D 、G 、F 四点共圆.又ICB IEF ∠=∠,所以IEH ICH ∠=∠,所以I 、E 、C 、H 四点共圆,注意到90HDA GDF ∠=∠=︒, 故EH 、FG 为直径的圆过I .取I 关于HE 的对称点I ',则EH 、FG 为直径的圆交于I 、I ', 则I '、H 、I 、E 、C 五点共圆,所以I CH ICH BCD BCD ∠=∠==∠'∠'. 所以I '在CD 上,即以FG 为直径的圆和以EH 为直径的圆有一交点在CD 上.31.(2021·全国·高三竞赛)如图所示,在等腰ABC 中,AB AC =,设点D 是边AC 上一点,点E 是线段BD 的中点,延长AE 与底边BC 交于点F ,证明:若BF EF =,求证:2AE AB AD =⋅.【答案】证明见解析 【解析】 【详解】证法1:设ABD △的外接圆为Γ,其中弧BD 的中点为N , 如图1,连结BN ,DN ,AN 与BD 交于点M .易见AN 平分BAC ∠,从而AN BC ⊥.又由于ABM AND ∠=∠,故ABM AND ∽,进而得到 AM AN AB AD ⋅=⋅.另一方面,由垂径定理可知NE BD ⊥.因此909090()ANE EMN AMD ABM BAM ∠=︒-∠=-∠=︒-∠+∠()90BAM ABD ABC ABD EBF =︒-∠-∠=∠-∠=∠. 注意到AEM BEF EBF ∠=∠=∠,故ANE AEM ∠=∠. 这说明ANE AEM ∽,从而得到2AE AM AN AB AD =⋅=⋅.证法2:设BCE 的外接圆为Ω,圆心为O ;如图2,连结OB OC 、OE OF 、、;连结OA 与线段BC BD 、分别交于点N 、G ,取边AB 的中点M ,连结MN CE FG 、、.由条件及OB OE =可知,OF 垂直平分BE ,即OF BG ⊥. 同理BF OG ⊥,因此F 是OBG △的垂心,从而FG OB ⊥.另一方面,E 是BD 的中点,而MN 是ABC 的中位线,因此M 、E 、N 三点共线, 由塞瓦定理,我们有1AG NF BMGN FB MA⋅⋅=, 注意到BM MA =,因此AG BFGN FN=,从而//FG AB . 综上可知AB OB ⊥,因此Ω与边AB 相切于点B . 再由对称性,Ω必然与边AC 相切于点C ,因此 ACE CBE BEF AED ∠=∠=∠=∠,从而ACE AED ∽.故2AE AC AD AB AD =⋅=⋅.32.(2021·全国·高三竞赛)如图,在锐角ABC 中,已知点D 、E 、F 分别是点A 、B 、C 在边BC 、CA 、AB 上的投影,AEF 、BDF 的内心分别为1I 、2I ,1ACI 、2BCI 的外心分别为1O 、2O ,证明:1212//I I O O .【答案】证明见解析 【解析】 【详解】设,,CAB A ABC B BCA C ∠=∠=∠=,1AI 、2BI 的延长线交于点I . 由1AI 、2BI 分别为CAB ∠、ABC ∠的角平分线知I 为ABC 的内心.因为点E 、F 均在以BC 为直径的圆上,所以,AEF ABC AFE ACB ∠=∠∠=∠, 则AEF ABC ∽,相似比cos AEA AB=. 又因为1I 、I 分别为AEF 、ABC 的内心,所以1cos I A IA A =. 故211(1cos )2sin2A II IA I A IA A IA =-=-=,同理,222sin 2B II IB =.在ABI △中,由正弦定理知sinsin 22A BIA IB =,则 22122sin 2sin 22A B II IA IA IB II IB ⎛⎫⎛⎫⋅===⋅ ⎪ ⎪⎝⎭⎝⎭,故A 、B 、2I 、1I 四点共圆,且I 关于1O 、2O 等幂.于是,CI 是1O 与2O 的根轴.故12CI O O ⊥.设CI 与12I I 交于点Q ,则1112II Q I IQ II I ACI CAI ∠+∠=∠+∠+∠ 2ABI ACI CAI =∠+∠+∠90222B C A=++=︒. 因此12CI I I ⊥,从而1212//I I O O .33.(2021·全国·高三竞赛)如图,AB 是O 的一条弦,AB 的垂直平分线交O 于M N 、两点,交AB 于点D .P 为O 内一点,DMP 外接圆交PN 于点,E ABE 的外接圆交MP 于点F ,且点M P E F 、、、在直线AB 同侧.证明:EF PN ⊥.【答案】证明见解析 【解析】 【详解】延长MF 交O 于点G ,直线NG 交AB 于点H .因为90MDH MGH ∠=∠=︒,所以M D G H 、、、四点共圆. 又M D E P 、、、四点共圆,所以NG NH ND NM NE NP ⋅=⋅=⋅.于是P E G H 、、、四点共圆,所以90HEP ∠=︒.设HE 交MP 于点F ',则90HEN HGF ∠=∠'=︒,所以E N G F '、、、四点共圆. 又A B G N 、、、四点共圆,于是···HE HF HN NG HA HB '==, 所以A B F E '、、、四点共圆,于是F F =',故90FEP ∠=︒,即EF PN ⊥.34.(2021·全国·高三竞赛)如图,锐角ABC 的外接圆为Γ,D 是A 在BC 上的射影,假设AD BC =,点M 为DC 中点,ADC ∠的角平分线与AC 交于点N ,Γ上一点P 满足//BP AC .直线DN 与AM 交于点F ,直线PF 与圆Γ再交于点Q .直线AC 与PNQ 的外接圆再交于点E .证明:90DQE ∠=︒.【答案】证明见解析. 【解析】 【详解】先证明//QC AB .事实上设Q '在Γ上异于C ,//Q C PB '只要证Q '、F 、P 共线. 易知AP AQ BC AD ==='.设A 关于M 的对称点为,A AA ''另交Γ于T ,则 ,CTM ABM CTD ABA MTD MBA '⇒'∽∽∽.因为BC AD A C ==',故45A BC '∠=︒即45MTD FDA ∠=︒=∠, 因此222AF AT AD AP AQ '⋅===, 知Q '、F 、P 三点共线,故Q '、Q 重合. 再证A 、N 、D 、P 共圆,事实上由119090()22APD DAP CAP CAD ∠=︒-∠=︒-∠-∠()190901352C C C =︒-∠-︒+∠=︒-∠ CND =∠,即得.因此结合AP AD =知,NA 是DNP ∠的外角平分线,故设D 关于AC 的对称点为D ,则D 、N 、P 共线.设PQ 与AC 交于点K ,则22AK AC AP AD ⋅==, 故,,DD AC PQ '共点K .因为90AD C ADC ∠=∠='︒,故A 、D 、C 、D 共圆. 故KQ KP KC KA KD KD D ⋅=⋅=⋅⇒''、Q 、D 、P 共圆, 从而QEN QPN QDK ∠=∠=∠,于是Q 、K 、D 、E 共圆, 所以90EQD EKD ∠=∠=︒.35.(2021·浙江·高三竞赛)如图,O 是ABC 的外接圆,D 是弧BC (不含A )上一点,S 为弧BAC 的中点.P 为线段SD 上一点,过P 作DB 的平行线交AB 于点E ,过P 作DC 的平行线交AC 于点F ,过O 作SD 的平行线交弧BDC 于点T .已知O 上的点Q 满足QAP ∠被AT 平分.证明:QE QF =.【答案】证明见解析 【解析】 【分析】 【详解】设M 是弧BDC 的中点,OT ,SD 分别与BC 交于点K ,L .由πAEP AFP ABD ACD ∠+∠=∠+∠=知A ,E ,P ,F 共圆.由ASP ACD AFP ∠=∠=∠知S ,A ,P ,F 共圆,即S ,A ,E ,P ,F 五点共圆. 注意SEF SAF SBC ∠=∠=∠,同理πSFE SAE SCB ∠=-∠=∠可知SEF 与SBC △相似.因此SE SB SF SC=,即SE SF =. π22TAC TOC TKC KCO DLC A ⎛⎫∠=∠=∠-∠=∠--∠ ⎪⎝⎭πππ222A DBC BDS A DSC A -⎛⎫⎛⎫⎛⎫∠+∠--∠=∠+--∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12DSC A =∠+∠由AT 平分QAP ∠可知:11222QAC TAC PAC DSC A PSF A FSC ∠=∠-∠=∠+∠-∠=∠+∠因此1122QSF QSC FSC QAC FSC A ESF ∠=∠-∠=∠-∠=∠=∠.即QS 是ESF ∠的平分线,结合SE SF =可知SQ 是EF 的垂直平分线,故QE QF =. 36.(2021·全国·高三竞赛)在锐角ABC 中,D 为边BC 上一定点,P 为AD 边上一动点,直线CP 交AB 于点Q ,DQ 交BP 于点X .BCX 、CAX 、ABX 的三个外接圆分别交DQ 于X 外的另三点1Y 、2Y 、3Y ,过1Y 、2Y 、3Y 分别作DQ 垂线1l 、2l 、3l ,证明:1l 、2l 、3l 均过定点.【答案】证明见解析. 【解析】 【分析】 【详解】连结AX 并延长交BC 于E .对ABD △和点X ,由赛瓦定理得1BE DP AQED PA QB⋅⋅=. 对ABD △和截线CPQ ,由梅涅劳斯定理得1BC DP AQCD PA QB⋅⋅=. 结合两式有BE BCED CD=,所以E 为定点,延长BC 至1B 使得1CB CB =,这样有11,BE B C BD B DED CD ED CD==. 所以11XD DY BD CD B D ED ⋅=⋅=⋅,进而X 、E 、1Y 、1B 四点共圆.所以11DY B DEX DEA ∠=∠=∠为定角.又D 、1B 为定点,所以1Y 在过D 的定圆上运动,取该圆上D 的对径点1D (直径的另外一个端点),则1D 为定点,且1D 在直线1l 上.又2CY D CAX CAE ∠=∠=∠为定角,C 、D 为定点,所以2Y 在过D 的定圆上运动,取该圆上D 的对径点2D ,则2D 为定点,且2D 在直线2l 上,又33BY D BY X BAX BAE ∠=∠=∠=∠为定角,B 、D 为定点,所以3Y 在过D 的定圆上运动,取该圆上D 的对径点3D ,则3D 为定点,且3D 在直线3l 上. 命题得证.37.(2021·全国·高三竞赛)在ABC 中,点P 、Q 、R 分别位于边BC 、CA 、AB 上,A ω、B ω、C ω分别是AQR 、BRP △、CPQ 的外接圆,线段AP 与A ω、B ω、C ω分别相交于点X 、Y 、Z .证明:YX BPXZ PC=.【答案】证明见解析. 【解析】 【分析】 【详解】设圆A ω与B ω交于异于点R 的点N (三角形密克点),则P 、N 、Q 、C 共圆. 设直线AP 与直线RN 交于点K ,直线AP 与直线QN 交于点M ,设,NPX NRY NXA BRK αβ∠=∠=∠=∠=, 由于sin sin sin sin sin sin MNP MNXMP SNP MNP CMX S NX MNX PAQβα⋅∠===⋅∠∠,sin sin sin sin sin sin KRY ARKKY SRY KRY PAB AK SRA ARK B αβ∠∠===∠.我们有sin sin sin sin sin sin KY MP PAB C AB PAB BP AK MX B PAQ AC PAQ CP⋅∠⋅⋅∠===⋅⋅∠⋅∠.另一方面由PK KY KN KR AK KX ⋅=⋅=⋅得()AP KY AK KP KY AK KY AK XK AK XY ⋅=+=⋅+⋅=⋅.同理由MZ MP MN MQ MX MA ⋅=⋅=⋅得: ()MP XZ MP XM MZ MP XM MP MZ ⋅=⋅+=⋅+⋅MP XM MA XM MX AP =⋅+⋅=⋅因此XY KY MP XZ AK MX =,由此得到YX BPXZ PC=. 38.(2021·全国·高三竞赛)点O 是ABC 的外接圆圆心,含点A 的BC 的中点为S ,点T 在不包含点A 的BC 上.点M 在圆O 上且//SM OT .点P 在线段SM 上.过点P 作MB 的平行线交AB 于点F ,过点P 作MC 的平行线交AC 于点E .点Q 在圆O 上,使得AT 是PAQ ∠的角平分线.证明:QE QF =.【答案】证明见解析 【解析】 【分析】 【详解】因为,FP BM EP CM ∥∥,所以sin sin sin sin FB PMB PMC ECPM FBM ECM PM∠∠===∠∠,即FB EC =. 又SB SC =,且SBF SCE ∠=∠,故SBF SCE ≌,所以SF SE =.于是,要证QE QF =,只需证SQ EF ⊥.又由SBF SCE ≌知,SFA SEA ∠=∠,故S A F E 、、、四点共圆. 而180AFP AEP ABM ACE ∠+∠=∠+∠=︒,故A F P E 、、、四点共圆. 从而S A F P E 、、、、五点共圆.则:180ESQ SEF ESP PSQ SAF ∠+∠=∠+∠+︒-∠1902EAP MAQ BAC =∠+∠+︒-∠1902EAP MAT TAQ BAC =∠+∠+∠+︒-∠1902EAT MAT BAC =∠+∠+︒-∠190902CAT JAT BAC =∠+∠+-∠=︒︒.其中,S T 、关于QO 对径点分别为J K 、. 则JT KS TM ==,即SQ EF ⊥.故QE QF =. 证毕.39.(2021·全国·高三竞赛)如图,在ABC 中,A B C ∠≥∠≥∠,且AD 为BC 边上的高,BE 为AC 边上的中线,CF 为C ∠的平分线,AD 与CF BE 、分别交于P R 、两点,BE 与CF 交于Q 点,令PQR ABCS x S=.求证:16x <,且16是最好的界(即可以无限接近于16).【答案】证明见解析.【解析】 【分析】 【详解】由A B C ∠≥∠≥∠,知B C ∠∠、均为锐角,可知D 在边BC 上,且BD CD ≤. 连结AQ 并延长交BC 于S .由CF 平分C ∠,得AF ACFB BC=, 又A B ∠≥∠,从而知1AC BC ≤,得1AFFB ≤. 由塞瓦定理得1BS CE AF SC EA FB ⋅⋅=,可知1BS FB SC AF=≥,得BS SC ≥, 所以如图S 在BC 的中点的右边,而D 在BC 的中点左边,综上可得D 在线段BS 上.由D 在BS 上,知Q 在ADC 内,连DE 交CP 于O 点,由CP 平分C ∠,有,PD CD OD CDAP AC OE CE ==. 将1,2AC CD CE AC >=代入上式可得21,2PD OD CDAP OE AC<=<, 所以12,23PD OD AD DE <<,故13OPD ADES PD OD S AD DE ⋅=<⋅. 由AE EC =,可知16OPD ACDSS<. 又,OPDPQR ACDABC SSSS≥≤知16PQR OPD OPD ABCABCACDS S S x SSS=≤≤<. 若令1AC BC ==,则AF BF =,而AE CE =,得Q 为ABC 的重心, 16BFQ ABCS S=,16BFQ BFPR BFPR ABC ABCS S S x S S -==-. 令0C ∠→,则0ABD ABCSS→,知0BFPRABC S S →,故16x →,且x 可无限接近16. 40.(2021·全国·高三竞赛)设ABC 的内心为点I ,内切圆分别切BC CA AB 、、于D E F 、、.直线DF 与EI 交于点N .连结并延长BN ,交AC 于点M .求证:M 是AC 中点.【答案】证明见解析【解析】【分析】【详解】过N 作AC 平行线,分别交AB BC 、于P Q 、,连结ID IF IP IQ 、、、.由IN AC ⊥得IN PQ ⊥,又IF AB ⊥,因此F P N I 、、、四点共圆.因此IFN IPN ∠=∠,同理IDN IQN ∠-∠.又由ID IF =知IDN IFN ∠=∠,从而IPN IQN ∠=∠,即IP IQ =.再由IN PQ ⊥可得PN QN =.再由PQ AC ∥得PN BN QN AM BM CM==,因此,AM CM M =是AC 中点. 41.(2021·全国·高三竞赛)已知O 上依次四点A 、B 、C 、D ,射线AB DC 、交于点P .射线AD BC 、交于点Q ,弦AC BD 、交于点R ,点M 为线段PQ 的中点.过点O 作MR 的垂线,分别PQ MR 、于点U 、V .过点U 作O 的切线UK ,与O 切于点K .证明:(1)P 、Q 、V 、O 四点共圆;(2)K 、M 、R 三点共线.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】【详解】 首先证明一个引理:引理:已知O 上依次四点E 、F 、G 、H ,直线EF GH 、交于点X ,直线EH FG 、交于点Y ,直线EG 、FH 交于点Z ,则点O 为XYZ 的垂心.引理的证明:注意到X 、Y 、Z 分别是直线YZ ZX XY 、、关于O 的极点,从而OX YZ ⊥,,OY ZX OZ XY ⊥⊥,即O 是XYZ 的垂心. 回到原题,由引理知O 是PQR 的垂心.设OP QR ⊥于点0P ,OQ RP ⊥于点0,Q OR PQ ⊥于点0R ,直线00P Q 与PQ 交于点0U , 则P 、0P 、0Q 、Q 四点共圆,且圆心为M .由引理知M 为0OU R 的垂心,则0MR OU ⊥.由题意,MR OU ⊥知U 与0U 重合,从而V 、O 、0P 、R 、0Q 五点均在以OR 为直径的圆上. 故00UV UO UQ UP UQ UP P ⋅=⋅=⋅⇒、Q 、V 、O 四点共圆.由090RVU RR U ∠=∠=︒知U 、V 、R 、0R 四点共圆,推出002OV OU OR OR OP OP r ⋅⋅===⋅,其中r 为O 的半径,最后一步是由配极原理得到.在直线MR 上取点0K ,满足20VK VO VU =⋅.则090OK U ∠=︒,且220OK OU OV r ⋅==,即0UK 为O 的切线,故K 与0K 重合,K 、M 、R 三点共线.42.(2020·全国·高三竞赛)如图,在等腰ABC 中,AB BC =,I 为内心,M 为BI 的中点,P 为边AC 上一点,满足3AP PC =,PI 延长线上一点H 满足MH PH ⊥,Q 为ABC 的外接圆上劣弧AB 的中点.证明:BH QH ⊥.【答案】证明见解析.【解析】【分析】取AC 的中点N ,结合已知条件证得//QM CN ,再由三角形边之间的比例关系证得三角形相似,可得四点共圆,即得证.【详解】证明:取AC 的中点N .连接QB 、QM ,由3AP PC =,可知P 为NC 的中点.易知B ,I ,N 共线,90INC ∠=︒.由I 为ABC 的内心,可知CI 经过点Q ,且QIB IBC ICB ABI ACQ ABI ABQ QBI ∠=∠+∠=∠+∠=∠+∠=∠,又M 为BI 的中点,所以QM BI ⊥.进而//QM CN .。

2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)

2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)
I� f(x ) 三 2 钟 !(宵 - 2)三/(x)�/( 8-2 叶 ,
而I<π - 2 < 8-2r. < 2 , 故原不等式组成立当且仅当xE[肯 - 2, 8-2肯}. 6.设复数z满足l= I=I , 使得关于,y的方程 x' + 2:x+2 =0有实根 , 则这样

的复数z的和为 答案:
分别是F;、凡,椭l2ll c 的弦 ST 与 UV 分别 -'¥· 行于 x 剿l与y轴 , 且相交子点P. 己 知线段PU,PS ‘ PV 、 PT 的长分另lj为L 2. 3. 6 , 则 MF., 凡的朋积为 答案: -Jl5. 解: 由对称性 , 不妨设 P (,飞·,,, )'p )在第 一 象限,则由条件知
主.
解:设们在平面。上的射影为。白条件知, 立 = tanLOQP |丘♂ I ' OQ I 3
ε
i己为 a, b,c, d, e,f ,则。be ÷d吃f ;是偶数的
概率为 答案: 解:先考虑。 bc+def :为奇数的俏况,此时 abc、 d吃f 一 奇一 {间,若 abc 为奇敛,
10
则。 , b,c 为l, 3, 5 的排列 , 避而 d‘ e,f 为2,4,6的排列,这样有3!×31=36种情况, 由对称性可知 , 使 abc+def 为奇数的情况数为 36 × 2 =72 种.从而 abc+d,电f 为偶 72 72 9 =I-一一=一. 数的概率为I-一 ' 6 720 JO
1. 设织合 A= {I, 2, 3、
2018年全国高中数学联合竞赛一试(A卷) 参考答案及评分标准
,99}‘B={2xjxE A}, C={xl2xε斗 , 则B门C的元

2018年全国高中数学联合竞赛一试(含答案)

2018年全国高中数学联合竞赛一试(含答案)

则(������ + ������������)������2 + 2(������ − ������������)������ + 2 = 0,
整理得:(������������2 + 2������������ + 2) + (������������2 − 2������������)������ = 0
由图结合对称性得:
������1 = ������ − 2, ������2 = 2������ − [4 + 2(2������ − 6)] = 8 − 2������ 所以,由函数单调性,不等式1 ≤ ������(������) ≤ 2在[1,2]内
分析:������������������ + ������������������为偶数,则������������������与������������������奇偶性相同,
故当������ ≥ 2 时,
������������ = √������ ± √������ − 1 ≤ √������ + √������ − 1 < 2√������ (2) ������������与������������+1异号时结论显然成立,
当������������与������������+1同号时: 由(1)得������������ = ±√������, 不妨得:������������ = √������ − √������ − 1
6. 设复数������满足|������|=1,使得关于������ 的方程z������2 + 2������̅������ +
2 = 0有实根,则这样的复数������的和为

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩
证明:存在 x0 ∈[1, 9] ,使得 f (x0 ) ≥ 2 . 证法 1:只需证明存在 u, v ∈[1, 9] ,满足 f (u) − f (v) ≥ 4 ,进而由绝对值不
等式得
f (u) + f (v) ≥ f (u) − f (v) ≥ 4 ,
故 f (u) ≥ 2 与 f (v) ≥ 2 中至少有一个成立.
注意到 f (4 ) f ( 4) f () 1, f (2 6) f (2) 0 ,
所以
0 f (x) 1 f (2 6) f (x) f (4 ) ,
而 0 2 6 4 1 ,故原不等式组成立当且仅当 x [2 6, 4 ] .

4 7
,即
tan




2


4 7
,从而
tan(

)

cot




2



7 4

6. 设抛物线 C : y2 2x 的准线与 x 轴交于点 A ,过点 B (1, 0) 作一直线 l 与
抛物线 C 相切于点 K ,过点 A 作 l 的平行线,与抛物线 C 交于点 M , N ,则 KMN
…………………5 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
即 log3 a log3 b 2 ,因此 ab 32 9 .于是 abc 9c . 又
…………………10 分
0 f (c) 4 c 1,
…………………15 分
故 c (9, 16) .进而 abc 9c (81, 144) .

2018年全国高中数学联合竞赛试题(A卷)与答案

2018年全国高中数学联合竞赛试题(A卷)与答案

⇒ bx(x − 2) = 02.
2
2

b
=
0
时,由
a2
+ b2
2
=
1

a
=
±1.
代入
1

a
=
1

x
无解,于是
a
=
−1
⇒ z = a + bi = −1;当 x = 0 时,代入 1√得 2 = 0 无解;


x
=
2
时,代入
1

a
=
1 −

b
=
±
15

z
=
a
+
bi
=
1 −
±
15 i.
4
4
44
所以满足条件的复数
3 的圆环区域. 其面积为 9π − π = 8π.
3. 将 1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d, e, f ,则 abc + def 是偶数的概率

.
解答
只有 abc 和 def 一奇一偶时,abc + def 是奇数,且仅当 a, b, c 均为奇数时,abc
所以 B C 的元素个数为 24. 2. 设点 P 到平面 α 的距离为 √3,点 Q 在平面 α 上,使得直线 P Q 与 α 所成角
不小于 30◦ 且不大于 60◦,则这样的点 Q 所构成的区域的面积为
.
解答
设 P O ⊥ 平面 α 于 O,则点 Q 的轨迹为平面 α 上以 O 为圆心,半径为 1 和
2018年全国高中数学联合竞赛试题 (A 卷)

2018年全国高中数学联赛试题与解析B卷

2018年全国高中数学联赛试题与解析B卷
2
o 二二 f(x ) 三1 仲 !( 却一6)三 f(x )三/(4-的,
(用含有r的式子表示〉.
z, =一,Z2 =一,Z3 =-,
因此 W= Z1 �2 +毛毛+勾引·于是
2
Z1
Z2
Z3
r = (z1 十Z2 + Z3 )(王+三十三) =lz.1 十lzJ + lz3 l + w十二=3+2Rew,
2 2
解得Rew=三三 2 二、解答题:本大题共3小题,满分56分.解答应写出立字说明、证明过 程或演算步骤. 9. (本题满分16分)己知数列{a,,}:α, =7, 满足 a. >4
川 生土L =
的最小正整数 n.
2
α
a,,十2 , n = 1, 2, 3, · · · .求
故。”=2 3烛
解:由生土L = α,,+2可知 G川 +1=(α,,+ 1) .因此 α,2 时 ”I 3x2"-1, α,,+l=(a1 +1)2 =82 = 2
AD BC ,以 AB 为直径的圆 与线段 DE 交于一点 F. DC 2CE
A
证明:B,C,F,D 四点共圆(答题时请将图画在答卷纸上)
D
F
B
C
E
三、 (本题满分 50 分)设集合 A {1, 2,
, n} ,X,Y 均为 A 的非空设空子集(允许 X = Y) .X
中的最大元与 Y 中的最小元分别记为 maxX,minY 求满足 maxX > minY 的有序集合对(X , Y) 的数目.
四、 (本题满分 50 分)给定整数 a 2 . 证明:对任意正整数 n,存在正整数 k,使得连续 n 个 数 ak 1, ak 2 , , a k n 均是合数.

2018年全国高中数学联赛A试题+答案

2018年全国高中数学联赛A试题+答案

2018年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设集合 1,2,3,,99,2,2A B x x A C x x A ,则B C 的元素个数为 .答案:24.解:由条件知, 13992,4,6,,198,1,,2,,2,4,6,,48222B C,故B C 的元素个数为24.2. 设点P 到平面的距离为,点Q 在平面 上,使得直线PQ 与 所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为 .答案:8 .解:设点P 在平面 上的射影为O .由条件知,tan OP OQP OQ ,即[1,3]OQ ,故所求的区域面积为22318 .3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 .答案:910.解:先考虑abc def +为奇数的情况,此时,abc def 一奇一偶,若abc 为奇数,则,,a b c 为1,3,5的排列,进而,,d e f 为2,4,6的排列,这样有3!3!36×=种情况,由对称性可知,使abc def +为奇数的情况数为36272×=种.从而abc def +为偶数的概率为72729116!72010−=−=.4. 在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b的左、右焦点分别是1F 、2F ,椭圆C 的弦ST 与UV 分别平行于x 轴与y 轴,且相交于点P .已知线段,,,PU PS PV PT 的长分别为1,2,3,6,则12PF F 的面积为 .答案解:由对称性,不妨设(,)P P P x y 在第一象限,则由条件知112,122P P x PT PS y PV PU ,即(2,1)P .进而由1,2P x PU PS 得(2,2),(4,1)U S ,代入椭圆C 的方程知2222111144161a b a b,解得2220,5a b .从而121212PF F P P S F F y y .5. 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足()1,(2)2f f ,则不等式组12,1()2x f x的解集为 . 答案:[2,82] .解:由()f x 为偶函数及在[0,1]上严格递减知,()f x 在[1,0] 上严格递增,再结合()f x 以2为周期可知,[1,2]是()f x 的严格递增区间.注意到(2)()1,(82)(2)(2)2f f f f f ,所以1()2(2)()(82)f x f f x f ,而12822 ,故原不等式组成立当且仅当[2,82]x .6. 设复数z 满足1z ,使得关于x 的方程2220zx zx 有实根,则这样的复数z 的和为 .答案:32.解:设22i (,,1)R z a b a b a b .将原方程改为2(i)2(i)20a b x a b x ,分离实部与虚部后等价于2220ax ax ,① 220bx bx .②若0b ,则21a ,但当1a 时,①无实数解,从而1a ,此时存在实数1x 1z 满足条件.若0b ,则由②知{0,2}x,但显然0x 不满足①,故只能是2x ,代入①解得14a ,进而bz .综上,满足条件的所有复数z 之和为312.7. 设O 为ABC 的外心,若2AO AB AC,则sin BAC 的值为 .答案 解:不失一般性,设ABC 的外接圆半径2R .由条件知,2AC AO AB BO,①故112AC BO .取AC 的中点M ,则OM AC ,结合①知OM BO ,且B 与A 位于直线OM 的同侧.于是1cos cos(90)sin 4MCBOC MOC MOC OC. 在BOC 中,由余弦定理得BC ,进而在ABC中,由正弦定理得sin 2BC BAC R. 8. 设整数数列1210,,,a a a 满足1012853,2a a a a a ,且1{1,2},1,2,,9i i i a a a i ,则这样的数列的个数为 .答案:80.解:设1{1,2}(1,2,,9)i i i b a a i ,则有11011292a a a b b b ,① 2345285567b b b a a a a b b b .②用t 表示234,,b b b 中值为2的项数.由②知,t 也是567,,b b b 中值为2的项数,其中{0,1,2,3}t .因此237,,,b b b 的取法数为021222323333(C )(C )(C )(C )20 .取定237,,,b b b 后,任意指定89,b b 的值,有224 种方式.最后由①知,应取1{1,2}b 使得129b b b 为偶数,这样的1b 的取法是唯一的,并且确定了整数1a 的值,进而数列129,,,b b b 唯一对应一个满足条件的数列1210,,,a a a .综上可知,满足条件的数列的个数为20480 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知定义在R 上的函数()f x 为3log 1,09,()49.x x f x x设,,a b c 是三个互不相同的实数,满足()()()f a f b f c ,求abc 的取值范围.解:不妨假设a b c .由于()f x 在(0,3]上严格递减,在[3,9]上严格递增,在[9,) 上严格递减,且(3)0,(9)1f f ,故结合图像可知(0,3)a ,(3,9)b ,(9,)c ,并且()()()(0,1)f a f b f c . …………………4分由()()f a f b 得331log log 1a b ,即33log log 2a b ,因此239ab .于是9abc c . …………………8分又0()41f c , …………………12分 故(9,16)c .进而9(81,144)abc c .所以,abc 的取值范围是(81,144). …………………16分注:对任意的(81,144)r ,取09rc =,则0(9,16)c ∈,从而0()(0,1)f c ∈.过点00(,())c f c 作平行于x 轴的直线l ,则l 与()f x 的图像另有两个交点(,())a f a ,(,())b f b (其中(0,3),(3,9)a b ),满足()()()f a f b f c ,并且9ab ,从而abc r =.10.(本题满分20分)已知实数列123,,,a a a 满足:对任意正整数n ,有(2)1n n n a S a ,其中n S 表示数列的前n 项和.证明:(1) 对任意正整数n ,有n a(2) 对任意正整数n ,有11n n a a .证明:(1) 约定00S .由条件知,对任意正整数n ,有221111(2)()()n n n n n n n n n a S a S S S S S S ,从而220n S n S n ,即n S (当0n 时亦成立). …………………5分显然,1n n n a S S . …………………10分(2) 仅需考虑1,n n a a 同号的情况.不失一般性,可设1,n n a a 均为正(否则将数列各项同时变为相反数,仍满足条件),则11n n n S S S ,故必有1n n S S ,此时1n n a a从而11n n a a . …………………20分11.(本题满分20分)在平面直角坐标系xOy 中,设AB 是抛物线24y x 的过点(1,0)F 的弦,AOB 的外接圆交抛物线于点P (不同于点,,O A B ).若PF 平分APB ,求PF 的所有可能值.解:设222123123,,,,,444y y y A y B y P y,由条件知123,,y y y 两两不等且非零. 设直线AB 的方程为1x ty ,与抛物线方程联立可得2440y ty ,故124y y . ① 注意到AOB 的外接圆过点O ,可设该圆的方程为220x y dx ey ,与24y x 联立得,4210164y d y ey .该四次方程有123,,,0y y y y 这四个不同的实根,故由韦达定理得12300y y y ,从而312()y y y .②…………………5分因PF 平分APB ,由角平分线定理知,12PA FA yPB FB y ,结合①、②,有2222312222231212112122222222222321222132()()16(2)44()16(2)()44y y y y y y y y y PA yy PB y y y y y y y y y2222422122122224212112(8)16(416)64192(8)16(416)64192y y y y y y y y y y , ………………10分 即62226222112122126419264192y y y y y y y y ,故 224224121122()(192)0y y y y y y . 当2212y y 时,21y y ,故30y ,此时P 与O 重合,与条件不符. 当422411221920y y y y 时,注意到①,有22221212()192()208y y y y . …………………15分因22121282y y y y ,故满足①以及2212y y 的实数12,y y 存在,对应可得满足条件的点,A B .此时,结合①、②知222231212()4411444y y y y y PF .…………………20分2018年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设n 是正整数,1212,,,,,,,,,n n a a a b b b A B 均为正实数,满足,,1,2,,i i i a b a A i n ≤≤= ,且1212n n b b b Ba a a A≤ . 证明:1212(1)(1)(1)1(1)(1)(1)1n n b b b B a a a A ++++≤++++ .证明:由条件知,1,1,2,,i i i b k i n a =≥= .记BK A=,则1212n n b b b B a a a A ≤ 化为12n k k k K ≤ .要证明11111ni i i ik a KA a A =++≤++∏. ① 对1,2,,i n = ,由于1i k ≥及0i a A <≤知,11111111i i i i i i i i i k a k k k A k k a a A A +−−+=−≤−=++++. 结合12n K k k k ≥ 知,为证明①,仅需证明当0,1(1,2,,)i A k i n >≥= 时,有1211111ni n i k A k k k A A A =++≤++∏. ②…………………20分对n 进行归纳.当1n =时,结论显然成立. 当2n =时,由120,,1A k k >≥可知1212122111(1)(1)0111(1)k A k A k k A A k k A A A A +++−−⋅−=−≤++++, ③ 因此2n =时结论成立. …………………30分设n m =时结论成立,则当1n m =+时,利用归纳假设知,11121111111111111m m i i m m m i i k A k A k A k k k A k A A A A A A +++==+++++ =⋅≤⋅ +++++∏∏ 12111m k k k A A ++≤+ ,最后一步是在③中用121,m m k k k k + (注意1211,1m m k k k k +≥≥ )分别代替12,k k . 从而1n m =+时结论成立.由数学归纳法可知,②对所有正整数n 成立,故命题得证.…………………40分二、(本题满分40分)如图,ABC 为锐角三角形,AB AC ,M 为BC 边的中点,点D 和E 分别为ABC 的外接圆 BAC和 BC 的中点,F 为ABC 的内切圆在AB 边上的切点,G 为AE 与BC 的交点,N 在线段EF 上,满足NB AB . 证明:若BN EM ,则DF FG .(答题时请将图画在答卷纸上)证明:由条件知,DE 为ABC 外接圆的直径,DE BC 于M ,AE AD . 记I 为ABC 的内心,则I 在AE 上,IF AB . 由NB AB 可知(180)90NBE ABE ABN ADE90ADE MEI .① …………………10分又根据内心的性质,有EBI EBC CBI EAC ABI EAB ABI EIB , 从而BE EI .结合BN EM 及①知,NBE MEI ≌ . …………………20分于是90180EMI BNE BFE EFI ,故,,,E F I M 四点共圆.进而可知9090AFM IFM IEM AGM ,从而,,,A F G M 四点共圆. …………………30分 再由90DAG DMG 知,,,,A G M D 四点共圆,所以,,,,A F G M D 五点共圆.从而90DFG DAG ,即DF FG . …………………40分三、(本题满分50分)设,,n k m 是正整数,满足2k ≥,且21k n m n k−≤<. 设A 是{1,2,,}m 的n 元子集.证明:区间0,1n k−中的每个整数均可表示为a a ′−,其中,a a A ′∈.证明:用反证法.假设存在整数0,1n x k∈ −不可表示为a a ′−,,a a A ′∈.作带余除法m xq r =+,其中0r x ≤<.将1,2,,m 按模x 的同余类划分成x 个公差为x 的等差数列,其中r 个等差数列有1q +项,x r −个等差数列有q 项.由于A 中没有两数之差为x ,故A 不能包含以x 为公差的等差数列的相邻两项.从而1,2,12()22,2|,2q x q q q n A r x r q x r q + ⋅ + =≤+−= ⋅+ ① 这里α 表示不小于α的最小整数. …………………20分由条件,我们有()2121k kn m xq r k k >+−−. ②又0,1n x k ∈ −,故(1)n k x >−. ③情形一:q 是奇数.则由①知,12q n x +≤⋅. ④ 结合②,④可知,1()22121q k kx n xq r xq k k +⋅≥>+≥−−,从而21q k <−.再由q 是奇数可知,23q k ≤−,于是1(1)2q n x k x +≤⋅≤−,与③矛盾.情形二:q 是偶数.则由①知,2qn x r ≤⋅+. ⑤结合②,⑤可知,()221q k x r n xq r k ⋅+≥>+−,从而1(1)2(21)2121xq k k xr k k k −−<<−−−,故2(1)q k <−.再由q 是偶数可知,24q k ≤−,于是(2)(1)2qn x r k x r k x ≤⋅+≤−+<−,与③矛盾.综上可知,反证法假设不成立,结论获证. …………………50分四、(本题满分50分) 数列{}n a 定义如下:1a 是任意正整数, 对整数1n ≥, 1n a +是与1ni i a =∑互素,且不等于1,,n a a 的最小正整数.证明:每个正整数均在数列{}n a 中出现.证明:显然11a =或21a =.下面考虑整数1m >,设m 有k 个不同素因子,我们对k 归纳证明m 在{}n a 中出现.记1n n S a a =++,1n ≥.1k =时,m 是素数方幂,设m p α=,其中0α>,p 是素数.假设m 不在{}n a 中出现.由于{}n a 各项互不相同,因此存在正整数N ,当n N ≥时,都有n a p α>.若对某个n N ≥,n p S ,那么p α与n S 互素,又1,,n a a 中无一项是p α,故由数列定义知1n a p α+≤,但是1n a p α+>,矛盾!因此对每个n N ≥,都有|n p S .但由1|n p S +及|n p S 知1|n p a +,从而1n a +与n S 不互素,这与1n a +的定义矛盾. …………………10分假设2k ≥,且结论对1k −成立.设m 的标准分解为1212k km p p p ααα=.假设m 不在{}n a 中出现,于是存在正整数N ′,当n N ′≥时,都有n a m >.取充分大的正整数11,,k ββ−,使得11111max k k n n N M p p a ββ−−′≤≤=> .我们证明,对n N ′≥,有1n a M +≠. …………………20分对任意n N ′≥,若n S 与12k p p p 互素,则m 与n S 互素,又m 在1,,n a a 中均未出现,而1n a m +>,这与数列的定义矛盾.因此我们推出:对任意n N ′≥,n S 与12k p p p 不互素.()∗情形1.若存在(11)i i k ≤≤−,使得|i n p S ,因1(,)1n n a S +=,故1i n p a +,从而1n a M +≠(因|i p M ). …………………30分 情形2.若对每个(11)i i k ≤≤−,均有i n p S ,则由()∗知必有|k n p S .于是1k n p a + ,进而1k n n p S a ++,即1k n p S +.故由()∗知,存在00(11)i i k ≤≤−,使得01|i n p S +,再由11n n n S S a ++=+及前面的假设(11)i n p S i k ≤≤−,可知01i n p a +,故1n a M +≠. …………………40分因此对1n N ′≥+,均有n a M ≠,而1max n i N M a ′≤≤>,故M 不在{}n a 中出现,这与归纳假设矛盾.因此,若m 有k 个不同素因子,则m 一定在{}n a 中出现.由数学归纳法知,所有正整数均在{}n a 中出现. …………………50分。

全国高中数学联赛山东赛区预赛详解

全国高中数学联赛山东赛区预赛详解

2018年全国高中数学联赛山东赛区预赛试题详解一、填空题(本大题共10个小题,每小题8分,共80分)●1.若复数z 满足132z z i -+--=z 的最小值是. 解析:设()()1,0,3,2A B ,复数z 对应的点记为Z ,则AB =,故点Z 的轨迹是线段AB ,数形结合知,min 1z OA ==. ●3.已知[]x 表示不超过实数x 的最大整数,则函数()[][]2sin cos sin cos f x x x x x =++g的值域为.解析:()[][][]2sin cos sin cos sin 24f x x x x x x x π⎤⎛⎫=++=++ ⎪⎥⎝⎭⎦g2cos 22sin 12444x x x x ππππ⎡⎤⎤⎡⎤⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+-++ ⎪ ⎪ ⎪ ⎪⎢⎥⎥⎢⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎦⎣⎦⎦,令sin 4t x π⎛⎫=+ ⎪⎝⎭,则{}{}211,211,0,1,1,0,1t t ⎤⎡⎤-≤≤-∈-∈-⎣⎦⎦,于是(){}2212,1,0,1,2f x t ⎤⎡⎤=-+∈--⎣⎦⎦,∴函数()[][]2sin cos sin cos f x x x x x =++g的值域为{}2,1,1,2--.●2.已知在正四棱锥S-ABCD 中,二面角A-SB-D 的正弦值为3, 则异面直线SA 与BC 所成的角为.解析:设AC 与BD 交于点O ,依题意知,SO ⊥面ABCD ,AO ⊥BD , ∴AO ⊥面SBD ,∴AO ⊥SB ,∴AO ⊥面SBD , 作OE ⊥SB 于E ,则AE ⊥SB ,∴∠AEO 就是二面角A-SB-D 的平面角,∴sin OA AEO AE =∠=①, 设AB =a ,SA =b ,则在△SAB中求得AE =, 又OA,代入①式得:a b =,故正四棱锥S-ABCD 的侧面都是等边三角形, 由于AD ∥BC ,故异面直线SA 与BC 所成的角为∠SAD =60°.●4.已知在△ABC 中,∠BAC 的平分线交BC 于D ,且有14AD AC t AB =+u u u r u u u r u u u r,若AB =8,则AD =.解析:由于B 、D 、C 三点共线,∴34t = ,作DE ∥AB 交AC 于E , 作DF ∥AC 交AB 于F , 则四边形AFDE是菱形,36,4AF AB AD ==== ●5.甲乙两人轮流掷一枚均匀硬币,只出现正面朝上或朝下两种等可能的结果. 规定先掷出正面朝上者赢,前一场的输者,下一场先掷.已知第一场甲先掷, 则甲赢得第n 场的概率为____________________________________________________________________________________________________________________.解析:依题意知第n 场先掷的人若赢,则前面的()1n -场皆为正面朝下, 且第n 场先掷的人正面朝上,故其概率为()2121111222n n --=g , 故每一场先掷的人赢的概率为35211111222223n -+++++=L L L , 设甲赢得第n 场的概率为n p ,则()()111212,12333n n n p p p p n --==+-≥, ∴1111232n n p p -⎛⎫-=-- ⎪⎝⎭,∴()1111*263n n p n N -⎛⎫=+-∈ ⎪⎝⎭.●6.若直线65280x y --=交椭圆()2222221,*,x y a b N a b a b+=∈>于A 、C 两点,设B(0,b )为此椭圆的上顶点,△ABC 的重心为此椭圆的右焦点F 2, 则此椭圆的方程为____________________________________________________________________________________________________________________. 解析:设A(1x ,2x ),B(1y ,2y ), 依题意可得:12120,033x x y y bc ++++==,∴121203,x x c y y b ++=+=-, 代入直线方程得:112265280,65280x y x y --=--=,两式相加可得:18556c b +=①,两式相减可得:212165y y x x -=-, 代入椭圆方程得:2222112222221,1x y x y a b a b+=+=,两式作差得:()()()()2212122121615y y y y b ba x x x x c+---==+-g g ,∴225a bc =②,联立①②,消去c 得:()()222652828a b +-=,∴2222822,56a b ≤<<,又()25565*36b b a N -=∈,∴*b N ∈,且b 是偶数,∴2b =或4b =,检验知当4b =时,2*a N ∈符合题意,这时220a =,因此椭圆的方程为2212016x y +=.●7.对任意实数,a b ,{}max ,,1a b a b b +--的最小值为____________________________________________________________________________________________________________________. 解析:{}21max ,,14a b a b ba b a b b ++-+-+--≥()()()22142a b a b b +--+-≥=,当且仅当10,2a b ==时等号成立. ●8.已知a b +是方程20x ax b ++=的一个根,其中,a b Z ∈, 则b 的最大可能值为____________________________________________________________________________________________________________________.解析:依题意可得:()()20a b a a b b ++++=,即22230a ab b b +++=, 由于,a b Z ∈,∴()()222388b b b b b ∆=--=-必是完全平方数,设()228b b m m Z -=∈,则()()4416b m b m -+--=,且()()4,4b m b m -+--的奇偶性相同,∴48444244,,,42444844b m b m b m b m b m b m b m b m -+=-+=-+=--+=-⎧⎧⎧⎧⎨⎨⎨⎨--=--=---=---=-⎩⎩⎩⎩,解得:9,8,1,0b =-,因此b 的最大可能值为9.●9.已知集合A ,B 满足{}1,2,3,,10,A B A B ==ΦU L I ,若A 中的元素个数不是A 中的元素,且B 中的元素个数不是B 中的元素, 则集合A 的个数为____________________________________________________________________________________________________________________.解析:设集合A 的元素个数为()1,2,,9k k =L ,则B 中元素个数为10k -个, 依题意可得:,10,10k A k B k A ∉-∉-∈, ∴此时集合A 的个数为1102k C --,其中5k ≠, ∴集合A 的总个数为58114848888092186k k k k k CC C C ≠--≤≤==-=-=∑∑.●10.已知()f n()201811k f k ==∑____________________________________________________________________________________________________________________.解析:设()()1,2,,2018f k m k ==L , ①先证()f k12m =±, 则43231122216n m m m m Z =±+±+∉,与*n N ∈矛盾, ②再求()f k m =的k 的个数:由于441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭,且44311422m m m m ⎛⎫⎛⎫+--=+ ⎪ ⎪⎝⎭⎝⎭,∴()f k m =的k 有34m m +个,③()2018f :∵44620187<<,∴()620187f ≤≤, ∴()()()6231141117852m mm m m m m =+=+++=⎡⎤⎣⎦∑,∴()()71786,1787,,2018f k k ==L ,值为7的共有233个,④()()20186311111671323328234233467677k m m m f k m ==⎛⎫=++=++= ⎪⎝⎭∑∑gg g g g . 二、解答题(本大题共4个小题,前两个小题各15分,后两个小题各20分,共70分) ●11.已知()()(),,,,,,*A m n B s p m n s p N ∈是曲线C :3y x t =-上的两点,若满足⊙O :224x y +=上的任意一点到A 、B 的距离之比为定值()1k k >, 求t 的值.(本小题满分15分) 解析:设(),P x y 是⊙O 上任意一点,则PA k PB =,即()()()()222222222222220111k s m k p n m n k s p x y x y k k k --+-++---=---, 因此点P 的轨迹是一个圆,此圆必是⊙O :224x y +=, ∴()()()()2222222222220,0,4111k s m k p n m n k s p k k k --+-+===---,把22,m k s n kp ==代入()()22222241m n k s p k +-+=-得:22244s p k+=<, ∵,*s p N ∈,∴21,2,2,2s p k m n =====,故()()2,2,1,1A B 在曲线C 上,∴232131t t=-⎧⎨=-⎩,解得:43t =.●12.已知数列{}n a 满足:()()111,02,sin sin3*333n n n a a n a a n N ππ+=<<≥≤∈, 求证:)sin *n a n N ≤∈.(本小题满分15分)证明:①当1n =时,1sin a =<,当2,3,4n =时,1sin 3na ≤< ②设()()34013f x x x x =-<<,则()2'14f x x =-, ∴当102x <<时,()2'140f x x =->,∴()f x 在10,2⎛⎫ ⎪⎝⎭上递增.③下面用数学归纳法证明结论:由①知当1,2,3,4n =时结论成立, 假设当()4n k k =≥时结论成立,即有sink a <则当1n k =+时,3114sin sin 3sin sin 33k k k ka a a a +≤=-<-=, 故要证1sin k a +<<,即证2392416191k k k k -+<+, 即证2392416191k k k k -+<+,即证215816k k +>,由于4k ≥,上式成立,故1sin k a +<成立,即当1n k =+时,结论成立, 综上,对一切*n N ∈,sinn a ≤●13.已知实数,,a b c 满足()2220a b c λλ++=>, 试求()()(){}222min,,f a b b c c a =---的最大值.(本小题满分20分) 解析:不妨设a b c ≤≤,令(),,0a b s c b t s t =-=+≥,则()()222b s b b t λ=-+++,即()222320b s t b s t λ--++-=,∴()()2224430s t s t λ∆=--+-≥g,∴2232s st t λ++≤, 不妨设s t ≥,则()2221132f t s st t λ=≤++≤,当且仅当s t ==,即0,a b c ===因此f 的最大值是2λ. ●14.(本小题满分20分)证明对所有的正整数4n ≥,存在一个集合S 满足如下条件: ①S 由都小于12n -的n 个正整数组成;②对S 的任意两个不同的非空子集A 、B 都有A 中元素之和不等于B 中元素之和. 证明:当4n =时,取{}3,5,6,7S =,则集合S 满足上面两个条件; 当5n ≥时,取{}3421113,2,2,,2,23,22,21n n n n S ----=---L ,则集合S 满足条件①,只需证明集合S 满足条件②:记11123,22,21n n n a b c ---=-=-=-,()f X 表示集合X 中的所有元素之和, 设A 、B 是S 的任意两个不同的非空子集,则只需证明()()f A f B ≠,不妨设A B =ΦI ,那么对*m N ∀∈,都有11242212m m m -++++=-<L , ∴当,,a b c A B ∉U 时,都有()()f A f B ≠, 又3421322225n n --++++=-L ,∴当,,a b c 中恰有一个属于A B U 时,都有()()f A f B >,故()()f A f B ≠; 类似地讨论当,,a b c 中恰有2个或3同时个属于A B U 时,都有()()f A f B ≠; 综上所述,当4n ≥时,满足条件的集合S 都存在.。

2018年全国高中数学联赛试题及答案详解(A卷)

2018年全国高中数学联赛试题及答案详解(A卷)


2,
4,
6,,
48

故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为

答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ


tan
OQP



3, 3求的区域面积为 32 12 8 .
3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d , e, f ,则 abc + def 是偶数的
概率为

答案: 9 . 10
在[9,) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知
a (0, 3) , b (3, 9) , c (9, ) ,
并且 f (a) f (b) f (c) (0, 1) .
…………………4 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
注意到 f ( 2) f () 1, f (8 2) f (2) f (2) 2 ,
所以 1 f (x) 2 f ( 2) f (x) f (8 2) ,
而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2] . 6. 设复数 z 满足 z 1,使得关于 x 的方程 zx2 2zx 2 0 有实根,则这样
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1

an
(2Sn

最新-2018年全国高中数学联赛试题及参考答案精品

最新-2018年全国高中数学联赛试题及参考答案精品

最新-2018年全国⾼中数学联赛试题及参考答案精品2018年全国⾼中数学联赛试题及参考答案试题⼀、选择题(本题满分36分,每⼩题6分)1、函数f (x)=log1/2(x2-2x-3)的单调递增区间是()。

(A)(-∞,-1)(B)(-∞,1)(C)(1,+∞)(D)(3, +∞)2、若实数x,y满⾜(x+5)2+(y-12)2=142,则x2+y2的最⼩值为()。

(A)2 (B)1 (C)√3(D)√23、函数f(x)=x/1-2x-x/2()(A)是偶函数但不是奇函数(B)是奇函数但不是偶函数(C)既是偶函数⼜是奇函数(D)既不是偶函数也不是奇函数4、直线x/4+y/3=1与椭圆x2/16+y2/9=1相交于A,B两点,该椭圆上点P,使得ΔPAB⾯积等于3,这样的点P共有()。

(A)1个(B)2个(C)3个(D)4个5、已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100)则这样的映射共有()。

(A)C50100(B)C4899(C)C49100(D)C49996、由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转⼀周所得旋转体的体积为V1;满⾜x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转⼀周所得旋转体的体积为V2,则()。

(A)V1=(1/2)V2 (B)V1=(2/3)V2 (C)V1=V2 (D)V1=2V2⼆、填空题(本题满分54分,每⼩题9分)7、已知复数Z1,Z2满⾜∣Z1∣=2,∣Z2∣=3,若它们所对应向量的夹⾓为60°,则∣(Z1+Z2)/(Z1+Z2)∣=。

8、将⼆项式(√x+1/(24√x))n的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项共有个。

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)一、填空题1.(2018·广东·高三竞赛)袋中装有m 个红球和n 个白球,m >n≥4.现从中任取两球,若取出的两个球是同色的概率等于取出的两个球是异色的概率,则满足关系40m n +≤的数组(m ,n )的个数为_______. 【答案】3 【解析】 【详解】记“取出两个红球”为事件A ,“取出两个白球”为事件B ,“取出一红一白两个球”为事件C ,则()22m m n C P A C +=,()22n m n C P B C +=,()112m nm nC C P C C +⋅=. 依题意得()()()P A P B P C +=,即2211m n m n C C C C +=.所以()2m n m n +=-,从而m n +为完全平方数.又由4m n >≥及40m n +≤,得940m n ≤+≤. 所以9,3,m n m n +=⎧⎨-=⎩或16,4,m n m n +=⎧⎨-=⎩或25,5,m n m n +=⎧⎨-=⎩或36,6,m n m n +=⎧⎨-=⎩. 解之得(m ,n )=(6,3)(舍去),或(10,6),或(15,10),或(21,15). 故符合题意的数组(m ,n )有3个. 故答案为32.(2018·湖南·高三竞赛)已知123A B={a ,,}a a ⋃,当A B ≠时,(,)A B 与(,)B A 视为不同的对,则这样的(,)A B 对的个数有_____个. 【答案】26 【解析】 【详解】由集合A 、B 都是A B 的子集,A B ≠且()123,,A B a a a ⋃=. 当 A =∅时,B 有1种取法; 当A 为一元集时,B 有2种取法;当A 为二元集时,B 有4种取法; 当A 为三元集时,B 有7种取法.故不同的(A ,B )对有13234726+⨯+⨯+=(个). 故答案为263.(2018·湖南·高三竞赛)从-3、-2、-1、0、1、2、3、4八个数字中,任取三个不同的数字作为二次函数()()20f x ax bx c a =++≠的系数.若二次函数的图象过原点,且其顶点在第一象限或第三象限,这样的二次函数有_____个. 【答案】24 【解析】 【详解】可将二次函数分为两大类:一类顶点在第一象限;另一类顶点在第三象限,然后由顶点坐标的符号分别考查.因为图象过坐标原点,所以c=0.故二次函数可写成()2f x a bx =+的形式.又()2224b b f x a x a a ⎛⎫=+- ⎪⎝⎭,所以其顶点坐标是2,24b b a a ⎛⎫- ⎪⎝⎭.若顶点在第一象限,则有02b a >,204b a->.故0a <,0b >. 因此,这样的二次函数有113412A A ⋅=个.若顶点在第三象限,则有02b a -<,204b a-<.故0a >,0b >.这样的二次函数有2412A =个. 由加法原理知,满足条件的二次函数共有11234424A A A ⋅+=个.故答案为244.(2018·湖南·高三竞赛)31||2||x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为_____.【答案】-20 【解析】 【详解】因为6312x x ⎫⎛⎫+-= ⎪ ⎪⎝⎭.所以()333346120T C ⎛⎫=-=-. 故答案为-205.(2018·四川·高三竞赛)设集合{}1,2,3,4,5,6,7,8I =,若I 的非空子集A B 、满足A B =∅,就称有序集合对(),A B 为I 的“隔离集合对”,则集合I 的“隔离集合对”的个数为______.(用具体数字作答) 【答案】6050 【解析】 【详解】设A 为I 的()17k k ≤≤元子集,则B 为I 的补集的非空子集.所以,“隔离集合对”的个数为()()()()7778880880808898888888111212122223216050kkk kk k k k C C C C C C C --===-=-=+-+---=-+=∑∑∑. 故答案为6050.6.(2020·浙江·高三竞赛)已知十进制九位数()12910a a a ⋅⋅⋅,则所有满足1254a a a >>>=,569a a a <<<的九位数的个数为__________.【答案】25 【解析】 【详解】由题意得:{}i (i 1,2,3,4,6,7,8,9)5,6,7,8,9a =∈,且有顺序.于是满足题意的有445525N C C =⋅=.故答案为:25.7.(2018·山东·高三竞赛)集合A 、B 满足{}1,2,3,,10A B =,A B =∅,若A 中的元素个数不是A 中的元素,B 中的元素个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为______. 【答案】186 【解析】 【详解】设A 中元素个数为()1,2,,9k k =,则B 中元素个数为10k -,依题意k A ∉,441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭.10k B -∉,10k A -∈,此时满足题设要求的A 的个数为1102k C --.其中,当5k =时,不满足题意,故5k ≠.所以A 的个数为018484888882186C C C C C +++-=-=.8.(2020·辽宁锦州·高二期末)202148被7除后的余数为_______. 【答案】6 【解析】 【分析】将问题转化为二项式定理即可求解. 【详解】()2021202148491=-的通项公式为()202112021491r rr r T C -+=⨯⨯-,当{}0,1,2,,2020r ∈时,1r T +都能整除7,当2021r =时,该项为-1,所以余数为6. 故答案为:6 【点睛】本题主要考查二项式定理,属于基础题.9.(2021·江西·铅山县第一中学高二阶段练习(理))已知多项式()()10310290129101(1)(1)1x x a a x a x a x a x +=+++++++++,则2a =___________.【答案】42 【解析】 【分析】根据题意把310x x +变形为()()3101111x x ⎡⎤⎡⎤-+++-++⎣⎦⎣⎦,然后利用二项式定理来求. 【详解】因为()()3103101111x x x x ⎡⎤⎡⎤+=-+++-++⎣⎦⎣⎦()()10290129101(1)(1)1a a x a x a x a x =+++++++++,所以22231042a C C =-+=.故答案为:42.10.(2021·全国·高三竞赛)若33223(2011)x y ax bx y cxy dy +=+++,则248a b c d -+-=__________.【答案】8-【分析】 【详解】令x 1,y 2==-,条件式立即化为3(2)248a b c d -=-+-,即2488a b c d -+-=-. 故答案为:8-.11.(2020·江苏·高三竞赛)用三个数字“3,1,4”构成一个四位密码,共有___________种不同结果. 【答案】81 【解析】 【详解】解析:只有一个数时,3种;两个数时,()221344242C C C +⨯=种;三个数时,33436⨯⨯=种,共81种. 故答案为:81.12.(2020·江苏·高三竞赛)已知集合{}1,2,3,4,5,6A =,则满足()()()f f f x x =的函数f :A A →共有___________个.【答案】47 【解析】 【详解】解析,值域中元素的个数为1或6,若值域中元素的个数为1, 则()f x m =(m 为常数),共6种; 若值域中元素的个数6, 当()f x x =时,1种;当()(())((()))x f x f f x f f f x x →→→→,则3个一组,有36240C =.因此题述所求为164047++=个. 故答案为:47.13.(2018·河北·高三竞赛)欲登上7阶楼梯,某人可以每步跨上两阶楼梯,也可以每步跨上一阶楼梯,则共有_____种上楼梯的方法.【解析】 【详解】本题采用分步计数原理.第一类:0次一步跨上2阶楼梯,即每步跨上一阶楼梯,跨7次楼梯,只有1种上楼梯的方法;第二类,1次一步跨上2阶楼梯,5次每步跨上一阶楼梯,跨6次楼梯,有166C =种方法;第三类:2次一步跨上2阶楼梯,3次每步跨上一阶楼梯,跨5次楼梯,有5210C =种方法;第四类:3次一步跨上2阶楼梯,1次每步跨上一阶楼梯,跨4次楼梯,有344C =种方法;共计21种上楼梯的方法.14.(2018·河南·高三竞赛)若()()222012224nn n x a a x a x a x n *+=++++∈N ,则242n a a a +++被3除的余数是______.【答案】1 【解析】 【详解】令0x =,得204na =.分别令1x =和1x =-,将得到的两式相加,得()2202421622nn n a a a a ++++=+. 所以()()2222122242162423142nn n n n n n a a a -+++=+-=+- ()()21211121mod3n n -≡-⨯-≡-≡.15.(2018·湖北·高三竞赛)一枚骰子连贯投掷四次,从第二次起每次出现的点数都不小于前一次出现的点数的概率为______. 【答案】772【解析】 【详解】设1234a a a a 、、、分别是四次投掷骰子得到的点数,那么()1234,,,a a a a 共有46种不同的情况. 如果从第二次起每次出现的点数都不小于前一次出现的点数,则1234a a a a ≤≤≤.若1234a a a a 、、、的值都相等,则()1234,,,a a a a 有16C 种不同的情况;若1234a a a a 、、、恰好取两个不同的值,则()1234,,,a a a a 有263C 种不同的情况;若1234a a a a 、、、恰好取3个不同的值,则()1234,,,a a a a 有363C 种不同的情况;若1234a a a a 、、、恰好取4个不同的值,则()1234,,,a a a a 有46C 种不同的情况.因此,满足1234a a a a ≤≤≤的情况共有1234666633126C C C C +++=(种).故所求的概率为41267672=. 16.(2019·河南·高二竞赛)称{1,2,3,4,5,6,7,8,9}的某非空子集为奇子集:如果其中所有数之和为奇数,则奇子集的个数为____________ . 【答案】256 【解析】 【详解】全集{1,2,3,…,9}中含有5个奇数、4个偶数.根据奇子集的定义知,奇子集中只能含有1个奇数、3个奇数、5个奇数,而偶数的个数为0、1、2、3、4都有可能. 所以,奇子集共有:()()()101401450144444435454445C C C C C C C C C C C C +++++++++++()()135014555444C C C C C C =+++++()451012256=++⨯=个.故答案为:256.17.(2019·贵州·高三竞赛)已知m ∈{11,13,15,17,19},n ∈{2000,2001,…,2019},则mn 的个位数是1的概率为____________ . 【答案】25【解析】 【详解】当m =11,n ∈{2000,2001,…,2019}时,mn 的个位数都是1,此时有20种选法; 当m =13,n ∈{2000,2004,2008,2012,2016}时,mn 的个位数都是1,此时有5种选法; 当m =15时,mn 的个位数不可能为1,此时有0种选法;当m =17,n ∈{2000,2004,2008,2012,2016}时,mn 的个位数都是1,此时有5种选法; 当m =19,n ∈{2000,2002,2004,…,2018}时,m 的个位数都是1,此时有10种选法. 综上,所求概率为205051025205++++=⨯.故答案为:25.18.(2020·全国·高三竞赛)在1,2,3,…,10中随机选出一个数a 在-1,-2,-3,…,-10中随机选出一个数b ,则2a b +被3整除的概率为______ . 【答案】37100【解析】 【分析】题中条件2a b +是3的倍数,考虑2a 被3除的余数分情况讨论.另外注意有2a 和b 被3除的余数相加是3的倍数. 【详解】数组(),a b 共有210100=种等可能性的选法. 考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(),a b 有239=种.若a 不被3整除,则()()222319613321a k k k k k =±=±+=±+,于是2a 被3除余1,那么b 被3除余2.此时a 有7种选法,b 有4种选法,这样的(),a b 有7428⨯=种.因此92837.N =+=于是所求概率为37100. 【点睛】此题考查计数原理和概率的知识,属于中档题.19.(2021·全国·高三竞赛)把数字09~进行排列,使得2在3的左边,3在5的左边,5在7的左边的排法种数为_________. 【答案】151200 【解析】 【分析】 【详解】考虑全排列,有种1010A 排法;将数字2、3、5、7从队列中拿出来,保留原队列顺序,有44A 种排法;使得2在3的左边,3在5的左边,5在7的左边,只能按照2、3、5、7的顺序排列,有1种排法;故满足题意的排法数是1010441151200A A ⋅=. 故答案为:151200.20.(2021·全国·高三竞赛)若多项式219201x x x x -+--+可以表示成1920011920a a y a y a y ++++,这里1y x =+,则2a =___.【答案】1330 【解析】 【分析】 【详解】 因为: ()()219202192021211(1)111(1)y x x x x x x x x x x y -+--+=+-+--+=+=+-,又因为:()()219201920220210119200119201y x x x x y a a y a y a y a y a y a y a y -+--+=++++=++++,所以3221C 1330a ==.故答案为:1330.21.(2021·全国·高三竞赛)有甲乙两个盒子,甲盒中有5个球,乙盒中有6个球(所有球都是一样的).每次随机选择一个盒子,并从中取出一个球,直到某个盒子中不再有球时结束.则结束时是甲盒中没有球的概率为______. 【答案】319512【解析】 【分析】 【详解】相当于前十次中至少有五次选择了甲盒的概率, 即5101011101051319222512i i p CC ===+=∑.故答案为:319 512.22.(2021·全国·高三竞赛)一次聚会有8个人参加,每个人都恰好和除他之外的两个人各握手一次.聚会结束后,将所有握手的情况记录下来,得到一张记录单.若记录单上的每条握手记录不计先后顺序(即对某两张记录单,可以分别对其各条记录进行重新排列后成为两张完全相同的,则这两张被认为是同一种),则所有可能的记录单种数为_______.【答案】3507【解析】【分析】【详解】根据已知,将这8个人进行分组,每组的所有人排成一个圆圈,每个人和与其相邻的两个人握手.问题转化为这样的分组、以及分完组之后的项链排列(因为要求握手记录无序)方法有几种.注意到最多分成两组,则:当分成一组时,有7!2种;当分成两组时,若两组人数分别为3和5,则有384!2! 22C⋅⋅种;若两组人数都是4,则有483!3!2!22C⋅⋅种.故共有43887!4!2!3!3!3507 2222!22CC+⋅⋅+⋅⋅=种.故答案为:3507.23.(2021·全国·高三竞赛)先后三次掷一颗骰子,则其中某两次的点数和为10的概率为___________.【答案】23 108【解析】【分析】【详解】有两次为5的概率为213531166216C C+=,有两次为6和4的概率为211134323306216A C C C+=,所以概率为163023216216108+=. 故答案为:23108. 24.(2021·浙江·高二竞赛)对于正整数n ,若(5315)n xy x y -+-展开式经同类项合并,(,0,1,,)i j x y i j n =合并后至少有2021项,则n 的最小值为______.【答案】44 【解析】 【分析】 【详解】由(5315)(3)(5)n n n xy x y x y -+-=+-,共有()21n +项,所以2(1)2021n +≥,得1n ≥,则min 44n =. 故答案为:44.25.(2021·浙江·高三竞赛)已知整数数列1a ,2a ,…,10a ,满足1012a a =,4862+=a a a ,且11k k a a +-=(1k =,2,…,9),则这样的数列个数共有______个. 【答案】192 【解析】 【分析】 【详解】 分情况讨论:①先考虑468,,a a a ,设4a r =,则:(1)45678,1,2,3,4a r a r a r a r a r ==+=+=+=+; (2)45678,1,,1,a r a r a r a r a r ==+==+=; (3)45678,1,,1,a r a r a r a r a r ==+==-=; (4)45678,1,2,3,4a r a r a r a r a r ==-=-=-=-; (5)45678,1,2,3,a r a r a r a r a r ==-=-=+=; (6)45678,1,,1,a r a r a r a r a r ==-==-=;②再考虑910,a a ,同理共有4种,且10a r s =+,其中6,4,2,0,2,4,6s =---;③最后考虑123,,a a a 共有8种,且1a r t =+,其中1,3t =±±,所以110a a ≠,故1012a a =一定有解, 综上共有864192⨯⨯=个; 故答案为:192.26.(2021·全国·高三竞赛)将2枚白棋和2枚黑棋放入一个44⨯的棋盘中,使得棋盘的每个方格内至多放入一枚棋子,且相同颜色的棋子既不在同一行,也不在同一列,如果我们只区分颜色而不区分同种颜色的棋子,则不同放法的种数为_________. 【答案】3960 【解析】 【分析】利用去杂法可求不同方法的种数. 【详解】解析:将两枚白棋放入方格中的方法数为169722⨯=种,两枚黑棋放入方格中使得它们既不在同一行,也不在同一列的方法数为169722⨯=,其中至少有1枚黑棋与白棋放入同一方格的方法数为1892=⨯种,两枚黑棋均放入两枚白棋所在的方格中的方法数为1种,故由容斥原理可知不同的方法数为72(72291)3960⨯-⨯+=种. 故答案为:3960. 【点睛】思路点睛:对于较为复杂的组合计数问题,我们可以采用去杂法从反面考虑,但要注意防止重复计算,如本题中同色的棋子不做区分.27.(2021·全国·高三竞赛)用平行于各边的直线将一个边长为10的正三角形分成边长为1的正三角形表格,则三个顶点均为格点且各边平行于分割线或与分割线重合的正三角形的个数是___________. 【答案】315 【解析】 【详解】解析:设边长为n 的正三角形中由格点构成各边平行于分割线或与分割线重合的正三角形的个数为n a ,则1231,5,13a a a ===,当n 为偶数时,则21+12+212322n n n n n a a C --⎛⎫=+++++ ⎪⎝⎭,其中21n C +为增加的一条边上的1n +分点中的任意两个不同的构成的正三角形的个数; 2212322n n -⎛⎫++++ ⎪⎝⎭为以增加的一条边上的1n +分点中的任意一个点为顶点的正三角形的个数,同理,当n 为奇数时,则21+11+21232n n n n a a C --⎛⎫=++++ ⎪⎝⎭,其中21n C +为增加的一条边上的1n +分点中的任意两个不同的构成的正三角形的个数; 121232n -⎛⎫+++ ⎪⎝⎭为以增加的一条边上的1n +分点中的任意一个点为顶点的正三角形的个数,故2221034111a C C C =++++()()()()()2012121221221234212345+⨯++⨯+⨯++⨯+++⨯++++⨯++++⎡⎤⎣⎦=()()3223441112123454136101580315C C C C ++++++++++++=++=答案为:315.28.(2021·全国·高三竞赛)设()40382019201k k k x xa x =++=∑,其中(0,1,,4038)i a i =为常数,则134630kk a==∑___________.【答案】20183 【解析】 【详解】 设()201822403601240361x x b b x b x b x ++=++++,则()()()201922498601403611x x x x b b x b x ++=+++++.可见0031236456,,,a b a b b b a b b b ==++=++,因此40384036a b =.20180340380140363a a a b b b +++=+++=.故答案为:20183.29.(2021·全国·高三竞赛)设129,,,a a a 是1,2,…,9的一个排列,如果它们满足123456789a a a a a a a a a <<>>>><<,则称之为一个“波浪形排列”.则所有的“波浪形排列”的个数为___________. 【答案】379 【解析】 【详解】解析: 3a 只能取7、8、9,按照3a 取值依次分成三类,若39a =,有2385280C C =种排列;若38a =,有237484C C =种排列;若37a =,有26=15C 种排列; 可得总数为379. 故答案为:379.30.(2021·全国·高三竞赛)从正方形的四个顶点及四条边的中点中随机选取三个点,则“这三个点能够组成等腰三角形”发生的概率为___________. 【答案】514【解析】 【详解】解析:按照选取点中正方形顶点的个数进行分类,依次可以为3、2、1、0个,相应的等腰三角形个数为3344C 4142C 20+⨯+⨯+=,因此所求概率为38205C 14=. 故答案为:514. 31.(2021·全国·高三竞赛)圆周上有20个等分点,从中任取4个点,是某个梯形4个顶点的概率是_______. 【答案】48323【解析】 【详解】解析:梯形共有两种:从10组平行于直径的9条平行直线中选2条,或从10组不平行于直径的10条平行直线中选2条.第一种去掉矩形有()2910C 4320⨯-=个,第二种去掉矩形有()21010C 5400⨯-=个,共有720个,故概率是42072048323C =.故答案为:48323. 32.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,点集{(,){1,2},{1,2,3,4}}K x y x y =∈∈.从K 中随机取出五个点,则其中有四点共线或四点共圆的概率为____________. 【答案】57【解析】 【详解】考虑任四点不共线、任四点不共圆的情形. 由无四点共线知每列至少有一个点不取.不妨设左边一列有两个点不取,分六种情况知方法数为2200228+++++=.故原概率为3838C 165C 7P -==. 故答案为:57.33.(2021·全国·高三竞赛)在0、1、2、3、4、5、6中取5个数字组成无重复数字的五位数,其中是27倍数的最小数是_______. 【答案】14256 【解析】 【详解】解析:首先这个数是9的倍数,故这5个数字只能是0、3、4、5、6或1、2、4、5、6,五位数字之和为18.设五位数是abcde ,则()1000010001001010810mod27a b c d e a b c d e ++++≡+-++, 为了使数最小,考虑1a =,故可取各数字为1、2、4、5、6,先考虑12456,此时10810123250628a b c d e +-++=-++=,不合要求; 再考虑14256,此时10810141650654a b c d e +-++=-++=,符合要求. 故所求的最小的数是14256. 故答案为:14256.34.(2019·山东·高三竞赛)6个相同的红色球,3个相同的白色球,3个相同的黄色球排在一条直线上,那么同色球不相邻的概率是______ .【答案】5924【解析】 【详解】由题意可知,所有的排列方法种数为:12!6!3!3!N =⨯⨯,满足题意的排列方法数量为:5!253!2!n =⨯⨯⨯, 故同色球不相邻的概率为5!2553!2!12!9246!3!3!p ⨯⨯⨯==⨯⨯. 故答案为:5924. 35.(2019·贵州·高三竞赛)若(a +b )n 的展开式中有连续三项的二项式系数成等差数列,则最大的三位正整数n =____________ . 【答案】959 【解析】 【详解】设(a +b )n 的展开式中连续三项的二项式系数为11C ,C ,C (11)k k k n n n k n -+-.因为112C C C k k k n n n -+=+,所以22(41)420n k n k -++-=,得到n =①由n 为正整数,则8k +9应为奇完全平方数,故设8k +9=(2m +1)2,即222k m m =+-, 代入①式得n =(m +1)2-2或n =m 2-2. 所以,三位正整数n 的最大值为959. 故答案为:959.36.(2019·广西·高三竞赛)从1,2,…,20中任取3个不同的数,这3个数构成等差数列的概率为____________ . 【答案】338【解析】 【详解】设取出的3个不同的数分别为a 、b 、c .不同的取法共有320C 种,若这3个数构成等差数列,则有a +c =2b .故、c 同为奇数或同为偶数,且a 与c 确定后,b 随之而定.从而所求概率为221010320338C C P C +==. 故答案为:338. 37.(2019·浙江·高三竞赛)在复平面上,任取方程10010z -=的三个不同的根为顶点组成三角形,则不同的锐角三角形的数目为____________. 【答案】39200 【解析】 【详解】易知10010z -=的根在单位圆上,且相邻两根之间弧长相等,都为2100π,即将单位圆均匀分成100段小弧.首先选取任意一点A 为三角形的顶点,共有100种取法.按顺时针方向依次取顶点B 和顶点C ,设AB 弧有x 段小弧,CB 弧有y 段小弧,AC 弧有z 段小弧,则△ABC 为锐角三角形的等价条件为:1001,,49x y z x y z ++=⎧⎨⎩970,,48x y z x y z ++=⎧⇒⎨⎩ ① 计算方程组①的整数解个数,记1{|97,49}P x x y z x =++=,2{|97,49}P y x y z y =++=,3{|97,49}P z x y z z =++=,{(,,)|97,,,0}S x y z x y z x y z =++=,则123123||P P P S P P P ⋂⋂=-⋃⋃2991231C |i j i j P P P P P P <⎛=-++-∑⋂+ ⎝)23|P P ⋂⋂229950C 3C 1176=-=. 由于重复计算3次,所以所求锐角三角形个数为1001176392003⨯=.故答案为:39200.38.(2019·新疆·高三竞赛)随机取一个由0和1构成的8位数,它的偶数位数字之和与奇数位数字之和相等的概率为____________ . 【答案】35128【解析】 【分析】该8位数首位数字必须为1,分别计算出奇数位上和偶数位上1的个数,结合组合知识求出基本事件总数和偶数位数字之和与奇数位数字之和相等包含的基本事件个数即可得解. 【详解】设n 是满足题意的8位数,故知其偶数位上1的个数和在奇数位上1的个数相同,从而在奇数位上与偶数位上1的个数可能为1、2、3或4.注意到首位为1,下面分情况讨论:(1)奇数位上与偶数位上有1个1,3个0共有0134C C 4⋅=种可能;(2)奇数位上与偶数位上有2个1,2个0,共有1234C C 18⋅=种可能;(3)奇数位上与偶数位上有3个1,1个0,有2334C C 12⋅=种可能;(4)奇数位上与偶数位上有4个1,共有34341C C ⋅=种可能.合计共有4+18+12+1=35个满足条件的自然数n .又因为0和1构成的8位数共有72128=个,从而概率为35128. 故答案为:35128【点睛】此题考查求古典概型,关键在于熟练掌握计数原理,根据分类计数原理结合组合知识求解概率.39.(2019·新疆·高三竞赛)记[x ]为不超过实数x 的最大整数.若27788A ⎡⎤⎡⎤=+++⎢⎥⎢⎥⎣⎦⎣⎦201920207788⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦,则A 除以50的余数为____________ .【答案】40 【解析】 【分析】根据21277,88k k -均不是整数,利用放缩法分析出21221217772788k k k k ---⎡⎤⎡⎤-<+<⎢⎥⎢⎥⎣⎦⎣⎦,结合二项式定理得A 除以50的余数. 【详解】注意到21277,88k k-均不是整数. 按定义212212212212177777772117888888k k k k k kk k -----⎛⎫⎛⎫⎡⎤⎡⎤-=-+-<+<+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦, 所以对任意正整数k 均有21221777188k k k --⎡⎤⎡⎤+=-⎢⎥⎢⎥⎣⎦⎣⎦22771k -=⋅-17(49)1k -=⋅- ()()()1101111117(501)175050111r k k k r k r k k k k C C C ---------=⋅--=⋅⨯+⋅⋅⋅+⨯⨯-+⋅⋅⋅+⨯--17(1)1(mod 50)k -=⋅--.从而71010(11)101040(mod50)A ≡⋅⋅--≡. 故答案为:40 【点睛】此题考查数论相关知识点,涉及同余问题结合二项式定理处理,需要熟练掌握初等数论相关知识.40.(2020·全国·高三竞赛)现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有i ,j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有________种. 【答案】120. 【解析】 【分析】结合题意,对满足情况进行分类,运用组合的相关知识进行求解. 【详解】解:用{,}i j 表示写有i ,j 的卡片.易知这10张卡片恰为{,}(15)i j i j ≤<≤.考虑“好的”卡片放法.五个盒子一共放有10张卡片,故1号盒至少有3张卡片,能放入1号盒的卡片仅有{1,2},{1,3},{1,4},{1,5}.情况一:这4张卡片都在1号盒中,此时其余每个盒中已经不可能达到4张卡片,故剩下6张卡片无论怎样放都符合要求,有6264=种好的放法.情况二:这4张卡片恰有3张在1号盒中,且其余每盒最多仅有2张卡片. 考虑{1,2},{1,3},{1,4}在1号盒,且{1,5}在5号盒的放法数N .卡片{2,3},{2,4},{3,4}的放法有8种可能,其中6种是在2,3,4号的某个盒中放两张,其余2种则是在2,3,4号盒中各放一张.若{2,3},{2,4},{3,4}有两张在一个盒中,不妨设{2,3},{2,4}在2号盒,则{2,5}只能在5号盒,这样5号盒已有{1,5},{2,5},故{3,5},{4,5}分别在3号与4号盒,即{2,5},{3,5},{4,5}的放法唯一;若{{2,3},{2,4},{3,4}在2,3,4号盒中各一张,则2,3,4号盒均至多有2张卡片,仅需再使5号盒中不超过2张卡片,即{2,5},{3,5},{4,5}有0张或1张在5号盒中,对应0133C C 4+=种放法.因此612414N =⨯+⨯=.由对称性,在情况二下有456N =种好的放法. 综上,好的放法共有6456120+=种. 【点睛】关键点点睛:解答本题的关键是结合题意进行分类讨论,需要考虑全面,不要漏掉情况,要求综合能力较强.41.(2021·浙江·高三竞赛)一条直线上有三个数字1a ,2a ,3a ,数字2a 位于1a ,3a 之间,称数值1223a a a a -+-为该直线的邻差值.现将数字1~9填入33⨯的格子中,每个数字均出现,过横向三个格子、竖向三个格子及对角线三个格子共形成8条直线.则这8条直线的邻差值之和的最小值为______,最大值为______. 【答案】 36 60 【解析】 【分析】 【详解】如图1,这8条直线的邻差值之和:9212387894147636951i i M a a a a a a a a a a a a a a a a a a ==-+-+-+-+-+-+-+-+-∑,利用局部调整法,当(1,2,,9)i a i i ==⋯时,M 有最小值2226668436+++++++=.当如图2排列时,M 有最大值8189(9823)224602i i =⨯++--⨯=+=∑. 故答案为:36,60.42.(2021·全国·高三竞赛)刘老师为学生购买纪念品,商店中有四种不同类型纪念品各10件(每种类型纪念品完全相同),刘老师计划购买24件纪念品,且每种纪念品至少购买一件.则共有________种不同的购买方案. 【答案】633 【解析】 【详解】解析:只需计算()4210()f x x x x =+++中24x 的系数而()()4104210441()(1)x f x x x x x x -=+++=⋅-又由幂级数展开式可得233411420(1)nn x x C x x +=+++++-,故()()4102030403301464n n n f x x x x x x C x ∞+=⎛⎫=-+-+ ⎪⎝⎭∑,故24x 的系数为3332313346633C C C -+=.故答案为:633.43.(2021·全国·高三竞赛)从集合{1,2,,2020}的非空子集中随机取出一个,其元素之和恰为奇数的概率为____________. 【答案】20192020221- 【解析】 【详解】解析:集合{1,2,,2020}共有非空子集202021-个,元素和为奇数的子集个数恰为函数()()22000()(1)11f x x x x =+++的展开式中奇次项系数之和2019(1)(1)22f f --=.故20192020221P =-.故答案为:20192020221-. 44.(2021·全国·高三竞赛)将圆周21n 等分于点1221,,,n A A A +,在以其中每三点为顶点的三角形中,含有圆心的三角形个数为__________. 【答案】1(1)(21)6n n n ++【解析】 【详解】任取一个分点记为P ,然后将其余2n 个分点这样标志, 自P 点后,逆时针方向的连续n 个点依次记为12,,,n A A A ,顺时针方向的连续n 个点依次记为12,,,n B B B .先考虑以P 为顶点且含有圆心的三角形,如图,显然这种三角形的另两个顶点必须一个属于点集{}12,,,n A A A ,而另一个属于点集{}12,,,n B B B .且这种i j PA B ,含有圆心当且仅当1,,{1,2,,}i j n i j n ++∈.现计算符合条件的三角形个数:当i k =时,j 可取值,1,,1n n n k --+,共计k 个值.因此这种含有圆心的i j PA B 个数为()112nk n n k =+=∑ , 当点P 取遍21n 个位置,共得1(1)(21)2n n n ++个三角形,由于每个三角形有三个顶点,故每个三角形重复计算了三遍, 因此符合条件的三角形个数为1(1)(21)6n n n ++.故答案为:1(1)(21)6n n n ++.二、解答题45.(2021·全国·高二课时练习)已知集合M={1,2,3,4,5,6},N={6,7,8,9},从M 中选3个元素,N 中选2个元素组成一个含5个元素的新集合C ,则这样的集合C 共有多少个? 【答案】90 【解析】 【分析】分类计数,再用加法原理求解. 【详解】第一类:从M 中选取3个元素且含6有25C 种,从N 中选取2个元素不含6有23C 种,根据分步乘法计数原理,有2253C C ⨯=10×3=30(种);第二类:从M 中选取3个元素且不含6有35C 种,从N 中选取2个元素有24C 种,根据分步乘法计数原理,有3254C C ⨯=10×6=60(种).由分类加法计数原理,集合C 共有30+60=90(个). 46.(2018·广东·高三竞赛)已知正整数n 都可以唯一表示为2012999m m n a a a a =+⋅+⋅++⋅ ①的形式,其中m 为非负整数,{}0,1,,8j a ∈(0j =,1,,1m -),{}1,,8m a ∈.试求①中的数列012,,,,m a a a a 严格单调递增或严格单调递减的所有正整数n 的和. 【答案】984374748 【解析】【详解】设A 和B 分别表示①中数列严格单调递增和递减的所有正整数构成的集合.符号S (M )表示数集M 中所有数的和,并将满足①式的正整数记为110m m n a a a a -=.把集合A 分成如下两个不交子集{}000A n A a =∈=和{}100A n A a =∈≠. 我们有()()()01S A S A S A ==.对任意1n A ∈,令()09f n n A =∈,则f 是1A 到0A 的双射. 由此得()()019S A S A =,从而()()110S A S A =. 又对任意10m m a a a a B -=∈,令()()()()101999m m b g a a a a A -==---∈,则g 是B 到1A 的双射,其中()119999918m m m a b +++=+++=-. 因为{}101018,0,1,,7m m m m B a a a a a a m --=≤<<<≤=所以B 中共有718m m C+=∑个元素,因此()()()7111809918m m m S B S A C ++=+=-∑88880099988k k k k k C C ===-∑∑ ()8891028=-. 又令2A 表示A 中最高位数8m a =的正整数全体,A 中其余的数和零所构成的集合记为3A , 则()()()23S A S A S A =+. 对任意10m m a a a a B -=∈,令()()()()103888m m b a a a a A σ-==---∈则σ是B 到3A 的双射,其中118989891m m m a b -++=⋅+⋅++=-.所以()()()71138091m m m S B S A C++=+=-∑ ()888091102k k o k C ==-=-∑.最后对任意{}0288ma a a A =∈-,令()()()088mb a a a B τ==--∈.则τ是{}28A -到B 的双射,其中128989891m m m a b +++=⋅+⋅++=-.所以()()()712280891m m m S B S A C ++=+=+-∑()8188818919102k k k C +==+-=⋅-∑.于是,()()()()()8899191021082102S B S A S B S A ⎧+=-⎪⎨⎪+=-⎩解之得()931108096875008032S A =⨯+=,()15624704S B =. 由于A 和B 中都含有1,2,…,8,因此所求正整数的和等于()()36984374748S A S B +-=. 47.(2019·江苏·高三竞赛)平面直角坐标系中有16个格点(i ,j ),其中0≤i ≤3,0≤j ≤3.若在这16个点中任取n 个点,这n 个点中总存在4个点,这4个点是一个正方形的顶点,求n 的最小值. 【答案】11. 【解析】 【分析】分两步来证明:先找到10个点,它们中的任意四点不能构成正方形的顶点,再根据抽屉原理证明任意的11个点,一定存在4个点为正方形的四个顶点. 【详解】存在下面的10点即:点(0,0),(1,0),(2,0),(2,1),(3,1),(0,2),(3,2),(0,3),(1,3),(3,3), 其中任意4个点不能构成正方形的顶点,故11n ≥. 下证:任意11点中,一定存在4个点为正方形的四个顶点.因为共取11个点,分两种情况讨论:(1)有一行有4个点(设为1234,,,P P P P ),则余下三行共有7个点, 由抽屉原理知余下三行中必有一行至少有3个点(设为123,,Q Q Q ),因1234,,,P P P P ,123,,Q Q Q 分布在两行,若该两行相邻或中间隔一行,则存在四个点,它们为正方形的四个顶点;若该两行间隔两行,如图,不妨设1234,,,P P P P 为线段AB 上的格点,123,,Q Q Q 为线段OC 上的格点,对应的点的坐标为()()()0,0,1,0,2,0,余下4个点分布在中间两行,若线段DE 上有两个整点,则它们和1234,,,P P P P 中的两点构成正方形的顶点,否则线段GF 上至少有3个点,则其中必有两个格点与123,,Q Q Q 中的两点构成正方形的顶点.(2)任意一行都没有4个点,则各行的格点数分别为3,3,3,2,故4行中必有相邻两行各有3个格点,这6个格点中必存在4个格点,它们构成正方形的顶点. 【点睛】本题考查组合最值,此类问题,解决的基本方法是先找一个反例,从而确定变量的初始范围,再利用抽屉原理来证明该范围成立.48.(2019·上海·高三竞赛)设n 为正整数,称n ×n 的方格表Tn 的网格线的交点(共(n +1)2个交点)为格点.现将数1,2,……,(n +1)2分配给Tn 的所有格点,使不同的格点分到不同的数.称Tn 的一个1×1格子S 为“好方格”,如果从2S 的某个顶点起按逆时针方向读出的4个顶点上的数依次递增(如图是将数1,2,…,9分配给T 2的格点的一种方式,其中B 、C 是好方格,而A 、D 不是好方格)设Tn 中好方格个数的最大值为f (n ).(1)求f (2)的值;(2)求f (n )关于正整数n 的表达式.【答案】(1)f (2)=3.(2)221()2n n f n ⎡⎤+-=⎢⎥⎣⎦.【解析】【详解】(1)如图①,将T 2的4个1×1格子(以下简称“格子”)分别记为A 、B 、C 、D ,将9个格点上的数分别记为a 、b 、c 、d 、e 、f 、g 、h 、i.当a ,b ,……,i 依次取为1,2,……,9时,易验证B 、C 、D 均为好方格,这表明f (2)≥3. 现假设f (2)=4,即存在一种数的分配方式,使A 、B 、C 、D 均为好方格.由对称性,不妨设边界上8个数a ,b ,……,h 中的最小数为a 或b .此时由A 为好方格知,或者有a <b <i <h ,或者有b <i <h <a ,故b <i <h 总是成立的.进而由B 、C 为好方格知,必有i <f <g <h ,b <c <d <i ,但这时d <i <f ,与D 为好方格矛盾. 综上可得f (2)=3.(2)设Tn 的各格点的数已被分配好,此时好方格有k 个称格子的一条边为一段“格线”我们对Tn 的每段格线标记一个箭头若格线连结了两个格点U 、V ,其中U 上的数小于V 上的数,则对格线UV 标上一个指向UV 顺时针旋转90°后所得方向的箭头.称一个格子S 及S 的一条边UV 所构成的有序对(S ,UV )为一个“对子”,如果UV 上所标的箭头由S 内指向S 外设对子总数为N .一方面,每个格子S 至少贡献1个对子(否则沿逆时针方向读S 顶点上的数将永远递减,矛盾),而根据好方格的定义每个好方格贡献3个对子,于是()22312N k n k k n +⋅-=+.另一方面,Tn 的每段格线至多贡献1个对子,且Tn 边界上至少有一段格线标有向内的箭头(否则,沿逆时针方向读n 边界上的数将永远递增,矛盾),从而不贡献对子.注意到Tn 的格线段数为2n (n +1),所以又有2(1)1N n n +-.综合两方面得,2k +n 2≤2n (n +1)-1,即好方格的个数2212n n k+-. 最后,对n 为奇数和n 为偶数的情况,分别如图②和图③,将1,2,……,(n +1)2按粗线经过的次序依次分配给所有格点对图中标有“▲”记号的每个格子,易验证,按被粗线经过的先后次序排列其4个顶点,恰是一种逆时针排列,因而这些格子均为好方格.。

2018年全国高中数学联赛

2018年全国高中数学联赛

2018年全国高中数学联赛山东预赛试题解析一、填空题(每小题8分,共80分)1.若复数z 满足|z -1|+|z -3-2i|=22,则|z |的最小值为 . 【解析】答案:1.设z =x +y i ,则|z -1|+|z -3-2i|=22的几何意义为点P (x ,y )到点A (1,0),B (3,2)的距离之和为22,因为|AB |=22,从而点P 在线段AB 上,从而:|OP |≥1.即当z =1时有最小值|z |=1. 2.在正三棱锥S —ABCD 中,已知二面角A —SB —D 的正弦值为63,则异面直线SA 与BC 所成的角为 . 【解析】答案:60°.A —SB —D 的二面角等于A —SD —B 的二面角,设底面的中心为O ,取AD 的中点M ,连接SO 、SM 、OM ,过点O 作OE ⊥SM 于E ,易证OE ⊥平面SAD ,过点E 作EP ⊥SD 于点P ,连接OP ,从而:A —SD —B 的二面角为∠EPO .设底面边长为2a ,侧棱长为2b ,于是:OM =a ,SO =4b 2-2a 2,OD =2a , 所以:OE =a 4b 2-2a 24b 2-a 2,OP =2a ·4b 2-2a 22b ,所以:sin ∠OPE =OE OP =2b 4b 2-a 2=63,解得:a =b .于是:△SAD 为正三角形,从而:直线SA 与BC 所成的角为60°.OP MDEC SA3.函数f (x )=[2sin x ·cos x ]+[sin x +cos x ]的值域为 (其中[x ]表示不超过x 的最大整数). 答案:{-1,0,1,2}.【解析】 f (x )=[sin2x ]+⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4,当x ∈⎣⎡⎭⎫0,π4时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x =π4时,[sin2x ]=1,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=2; 当x ∈⎝⎛⎭⎫π4,π2,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x =π2时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x ∈⎝⎛⎭⎫π2,3π4,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=0; 当x =3π4时,[sin2x ]=-1,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=-1; 当x ∈⎝⎛⎭⎫3π4,π时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=0; 当x =π时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=-1;此时f (x )=-1; 其他区间按此方法讨论.4.在△ABC 中,∠BAC =60°,∠BAC 的平分线AD 交BC 于D ,且有AD →=14AC →+tAB →,若AB =8,则AD = . 答案:6 3.【解析】易知t =34,从而:AC =24,AD 2=116×242+916×82+316×8×24=108,从而:AD =6 3.5.甲、乙两人轮流掷一枚硬币至正面朝上或者朝下,规定谁先掷出正面朝上为赢:前一场输者,则下一场先掷,若第一场甲先掷,则甲赢得第n 场的概率为 . 【解析】答案:P n =12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n . 设甲赢得第n 场的概率为P n ,则P n +1=23(1-P n )+13P n ,P 1=23,解得:P n =12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n . 6.若直线6x -5y -28=0交椭圆x 2a 2+y 2b 2=1(a >b >0,且a ,b 为整数)于A 、C ,设B (0,b )为椭圆的上顶点,而△ABC 的重心为椭圆的右焦点F 2,则椭圆的方程为 . 【解析】设A (x 1,y 1),C (x 2,y 2),依题意知:⎩⎨⎧x 1+x 2=3c ,y 1+y 2+b =0,联立椭圆方程和直线方程:⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,6x -5y -28=0,得:⎩⎨⎧x 1+x 2=336a 236a 2+25b 2=3c ①,y 1+y 2=-280b 236a 2+25b 2=-b ②,①÷②可得:2a 25b 2=c b, 即:2a 2=5bc ,两边平方,并有c 2=a 2-b 2可得:4a 4-25a 2b 2+25b 4=0,解得:a 2=5b 2或者a 2=54b 2,7.设a 、b ∈R ,则max{|a +b |,|a -b |,|1-b |}的最小值为 . 【解析】答案:12.max{|a +b |,|a -b |,|1-b |}=max{|a |+|b |,|1-b |}≥|a |+|b |+|1-b |2≥|a |+12≥12. 当且仅当a =0,b =12时等号成立.8.已知a 、b ∈Z ,且a +b 是方程x 2+ax +b =0的一个根,则b 的最大可能值为 . 【解析】答案:9.将a +b 代入方程可得:(a +b )2+a (a +b )+b =0,整理可得:b 2+(3a +1)b +2a 2=0,显然a 、b 中至少有一个为负数,欲求b 的最大值,则a <0,b >0. 视b 为主元,解得:b =-(3a +1)-(3a +1)2-8a 22=-(3a +1)-a 2+6a +12,其中:a ≥22-3或者a ≤-(22+3),因为b ∈Z ,从而:a 2+6a +1=m 2,m ∈Z , 即:a 2+6a +1-m 2=0有整数解.=36-4(1-m 2)=4(m 2+8)为完全平方数,令m 2+8=n 2,其中:n ∈Z ,所以:(n +m )(n -m )=8=2×4=(-2)×(-4),解得:⎩⎨⎧n =±3,m =±1,a =0或-6,b =-1或9,于是b max = 9,此时a =-6.9.设集合A 、B 满足A ∪B ={1,2,…,10},若A ∩B = ,若集合A 的元素个数不是集合A 的元素,集合B 元素个数不是集合B 的元素,则满足条件的所有集合A 的个数为 . 【解析】令|A |=k ,则|B |=10-k ,k ≠5,否则5∈A ∩B ,从而由题意可知:k ∈B ,10-k ∈A ,此时A 中剩余的k -1个元素有C k -18种选择,且剩余的9-k 个元素必定属于集合B .于是,满足题意的集合A 的个数为m =∑k =19C k -18-C 5-18=28-70=256-70=186个.10.设f (n )为最接近4n 的整数,则∑k =120181f (k )= . 【解析】答案:28867.用[n ]表示与4n 最接近的整数,则:当n ∈[1,8]时,[n ]=1,f (n )=1,其中n =1,2,…,8;故∑k =181f (k )=8, 当n ∈[9,48]时,[n ]=2,f (n )=2,其中n =9,10,…,48,故∑k =9481f (k )=20;当n ∈[49,168]时,[n ]=3,f (n )=3,其中:n =49,50,…,168,故∑k =491681f (k )=40; 当n ∈[169,440]时,[n ]=4,f (n )=4,其中n =169,170,…,440,故∑k =1694401f (k )=68; 当n ∈[441,960]时,[n ]=5,f (n )=5,其中:n =441,…,960,故∑k =4419601f (k )=104; 当n ∈[961,1848]时,[n ]=6,f (n )=6,其中n =961,…,1848,故∑k =96118481f (k )=148. 当n ∈[1849,2018]时,[n ]=7,其中n =1849,…,2018,故∑k =184920181f (k )=1707, 综上:∑k =120181f (k )=8+20+40+68+104+148+1707=28867. 事实上,当k ≤4n ≤k +1时,若n 4∈[k 4,k 4+2k 3+3k 2+2k ]时,[n ]=k ,当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,[n ]=k +1. 因为当n 4∈[k 4,k 4+2k 3+3k 2+2k ],则n 4-k 4∈[0,2k 3+3k 2+2k ]<(k +1)4-n 4∈[2k 3+3k 2+2k +1,4k 3+6k 2+4k +1]; 而当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,(k +1)4-n 4∈[0,2k 3+3k 2+2k ]<n 4-k 4∈[2k 3+3k 2+2k +1,4k 3+6k 2+4k +1]; 于是:当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,[n ]=k +1; 当n 4∈[(k +1)4,(k +1)4+2(k +1)3+3(k +1)2+2(k +1)]时,[n ]=k +1,即当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4+2(k +1)3+3(k +1)2+2(k +1)]时,[n ]=k +1,此时共有(k +1)4+2(k +1)3+3(k +1)2+2(k +1)-(k 4+2k 3+3k 2+2k )=4k 3+12k 2+16k +8=4(k +1)(k 2+2k +2)个数,于是:∑k 4-2k 3+3k 2-2k +1k 4+2k 3+3k +2+2k1f (k )=4(k 2+1), 所以:∑k =120181f (k )=∑k =164(k 2+1)+∑i =184920181f (i )=388+1707=28867. 二、解答题(本大题共4小题,共70分)11.已知圆O :x 2+y 2=4与曲线C :y =3|x -t |,A (m ,n ),B (s ,p )(m ,n ,s ,p ∈N*)为曲线C 上的两点,使得圆O 上的任意一点到点A 的距离与到点B 的距离之比为定值k (k >1),求t 的值.【解析】答案:t =43.取圆上的点C (2,0),D (-2,0),E (0,2),F (0,-2),依题意有:⎩⎨⎧(2-m )2+n 2(2-s )2+p 2=(2+m )2+n 2(2+s )2+p 2=ms,m 2+(2-n )2s 2+(p -2)2=m 2+(2+n )2s 2+(2+p )2=np,于是:OA →=tOB →,所以,点A 、B 、O 三点共线.由阿波罗尼斯圆的性质:OA ·OB =R 2=4,且OA =Rλ,OB =Rλ,其中λ>1,则OA <OB ,所以:OA <2;因为:m 2+n 2=OA 2=4λ2,又m 、n ∈N*,从而:OA 2=4λ2∈N*,(1)若OA 2=4λ2=1,则λ=2,此时:m 2+n 2=1,必有mn =0,因为m 、n ∈N*,不符合题意;(2)若OA 2=4λ2=2,则λ=2,此时:m 2+n 2=2,得:m =n =1,s =p =2,直线AB 的方程为y=x ,则点A (1,1),B (2,2)在曲线C 上,代入解得:t =43.(3)若OA 2=4λ2=3,此时:m 2+n 2=3,无正整数解,不合题意.综上:t =43.12.已知数列{a n }满足:a 1=π3,0<a n <π3,sin a n +1≤13sin3a n (n ≥2), 求证:sin a n <1n. 证明:由于0<a n <π3,于是:sin a n ∈⎝⎛⎭⎫0,12, 当n =1时,有sin a 1=12<1;当n =2时,sin a 2∈⎝⎛⎭⎫0,12<12成立; 设当n =k 时,有sin a k <1k, 则当n =k +1时,sin a k +1≤13sin3a k =13(3sin a k -4sin 3a k ),令f (x )=3x -4x 3,x ∈⎝⎛⎭⎫0,12, 则f ′(x )=3-12x 2>0,即f (x )在⎝⎛⎭⎫0,12单调递增, 于是:sin a k +1≤13sin3a k =13(3sin a k -4sin 3a k )≤1k -43k k,所以只需证明:1k -43k k <1k +1(k ≥2) 即可. 即证明:3k -43k<k k +1, 平分后整理可得:15k 2+8k -16>0,即证明对任意k ≥2有:(3k +4)(5k -4)>0,显然成立.于是:对任意n ∈N*,有sin a n <1n. 13.实数a 、b 、c 满足a 2+b 2+c 2=λ(λ>0),试求f =min{(a -b )2,(b -c )2,(c -a )2}的最大值.【解析】由i 对称性,不妨设a ≥b ≥c , 从而:a -b >a -c >0,于是有:f =min{(a -b )2,(b -c )2,(c -a )2}=min{(a -b )2,(b -c )2}≤(a -b )(b -c )≤⎣⎡⎦⎤(a -b )+(b -c )22=(a -c )24≤λ2.当且仅当b =0,a =-c =2λ2时等号成立. 14.证明对所有的正整数n ≥4,存在一个集合S ,满足如下条件: (1)S 由都小于2n-1的n 个正整数组成;(2)对S 的任意两个不同非空子集A 、B ,集合A 中所有元素之和不等于集合B 中所有元素之和.【解析】当S ={20,21,22,…,2n -1}时满足题意.法一、证明:用|T |表示集合T 中的元素个数,M (A )表示集合A 中的元素之和. 当n =4时,若|A |=1,则M (A )={1,2,4,8}; 若|A |=2,则M (A )={3,5,9,6,10,12}, 若|A |=3,则M (A )={7,11,13,14}, 若|A |=4,则M (A )={15},即集合S 的15个子集,其和值也有15个,每个子集的和值各不相同, 所以:当A ≠B 时,总有M (A )≠M (B ). 故:当n =4时,S ={1,2,4,8}满足题意;假设当n =k 时,集合S ={20,21,22,…,2k -1}满足题意, 此时集合S 的2k -1个非空子集有2k -1个不同的值,其集合为{1,2,…,2k -1},则当n =k +1时,集合S 的2k 个子集的和值组成的集合为{1,2,3,…,2k -1,2k ,2k +1,…,2k +2k -1},即:{1,2,3,…,2k -1,2k ,…,2k +1-1},所以当n =k +1时,集合S 的2k +1-1个子集有2k +1-1个不同的值. 综上:集合S ={20,21,22,…,2n -1}总是满足题意.法二、不妨假设a 1<a 2<…<a m ,b 1<b 2<…<b t ,且对任意的i ,j ,a i ≠b j ,b t <a m , 根据题意只需证明:∑i =1m 2a i≠∑j =1t2b j即可.若不然,设∑i =1m2a i=∑j =1t2bj ,则:2a m<∑i =1m2a i=∑j =1t 2bj ,所以:1<2b 1-a m+2b 2-a m+…+2b t -a m≤12+122+…+12t -m =1-12t -m +1<1,矛盾. 从而:集合S ={20,21,…,2n -1}的任意的两个子集之和不同. 所以:存在满足题意的集合S ={20,21,…,2n -1}.。

高中数学竞赛(强基计划)历年真题练习 专题7 解析几何 (学生版+解析版)

高中数学竞赛(强基计划)历年真题练习 专题7 解析几何 (学生版+解析版)

【高中数学竞赛真题·强基计划真题考前适应性训练】专题07解析几何真题专项训练(全国竞赛+强基计划专用〉一、单选题1. (2020·北京高三强基计划〉从圆~切J羔间的线段称为切J羔弦,贝0椭困C内不与任何切点弦相交的区域丽积为(〉-zA B.!!.3c.主4 D.前三个答案都2不对2. (2022·北京·高三校考强基计划〉内接于椭圆王→L=1的菱形周长的最大值和最小4 9值之利是(〉A. 4..{JjB.14.J]3c孚♂D上述三个选项都不对3. (2020湖北武汉·高三统考强基计划〉己知直线11:y=-..!.x,乌:y=..!.x ,动点户在椭2圆ι4= l(a > b > 0)上,作PM Ill,交12于点M,作PN I I以忏点N若。

--IPMl2 +IPN l2为定值,则(〉A.ab=2B.ab=3C.a=2bD.a=3b4. (2020北京·高三强基计划〉设直线y=3x+m与椭圆三+丘=I交于A,B两点,0为25 16坐标原点,贝I],.OAB面积的最大值为(〉A.88.JO c.12 D.前三个答案都不对s. (2022·贵州·高二统考竞赛〉如圈,c,,c2是离心率都为e的椭圆,点A,B是分别是C2的右顶点和上顶点,过A,B两点分别作c,�]切线,,' 12 .若直线l,,儿的斜率分别芳、J k, , k2,则lk儿|的值为(〉A .e 2 B.e 2 -1C.I-e2D.-i e 6. (2020湖北武汉·高三统考强基计划〉过椭圆!....+L =I 的中心作两条互相垂直的弦4 9A C 和B D ,顺次连接A ,B,C,D 得-四边形,则该四边形的丽积可能为(A. 10B. 12c. 14D. 167.(2019贵州高三校联考竞赛〉设椭圆C:牛牛!(a>b>O)的左、右焦点分别为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档