数学建模_微分方程之减肥问题
《数学建模减肥计划》课件
有氧运动
适度增加有氧运动,如跑步、游泳等,
力量训练
2
促进脂肪燃烧。
进行力量训练,增加肌肉质量,提高基
础代谢率。
3
休息与恢复
合理安排运动和休息时间,保持身体的 平ห้องสมุดไป่ตู้和健康。
运动计划的制定基本原则
1 目标明确
设定明确的减肥目标和运 动计划,明白自己想要达 成的结果。
2 个性化定制
根据自身情况制定适合自 己的运动计划,确保可行 性。
2 心率监测工具
使用心率表、心率监测器 等工具监测运动过程中的 心率变化。
3 心率控制训练
通过控制运动时的心率, 达到想要的减肥或锻炼效 果。
体重变化预测模型的建立
1
数据收集与整理
收集身体测量数据并整理成合适的格式。
模型选择与优化
2
选择适合的数学模型,并通过数据优化
来提高模型的准确性。
3
预测与分析
利用建立好的模型进行体重变化的预测, 并分析其对减肥计划的指导意义。
减肥期间的进食策略
均衡饮食
合理搭配主食、蛋白质和蔬果, 保证身体所需的营养摄入。
《数学建模减肥计划》 PPT课件
数学建模减肥计划是一种科学又有效的减肥方法。通过运用数学模型和计算 机软件,帮助人们制定个性化的减肥计划,达到健康减重的目标。
减肥的重要性及影响
1 保持健康
减肥可降低患各种健康问题的风险,如心脏病、糖尿病等。
2 提升自信
减肥有助于改善形象和提升自信心,提高生活质量。
3 循序渐进
从小目标开始,逐步增加 运动强度和时间。
运动强度与时间的适应性分析
初级阶段
运动强度适中,时间较短,以 减肥为主。
数学建模——减肥计划(修改版)
•
C=(β+αγt)ω/α
• 若不运动β1= αγt=0,得c=15000kcal;
• 若运动,则c=16800kcal
减肥建议
• 节食加运动能有效减肥,节食时间周期长 ,在第一阶段就运动减肥会更快达到预期 目标。
• 通过改变β’,缩短减肥的时间,改变运动的 方式和时间是不错的减肥方式。
减肥计划:
• 在节食加运动的情况下,分为三阶段 • 第一阶段:每周减肥1Kg,每周吸收热量逐
渐减少,直至达到安全下限(10000Kcal) • 第二阶段:每周吸收热量保持下限,持续
运动,体重减至75Kg,减肥成功 • 第三阶段:保持减肥成果
• 基本模型: • K: 表示第几周; • ω(k):表示第k周的体重; • C(k):表示第k周吸收的热量; • α:表示热量转换系数[α =1/8000(kg/kcal)]; • β:表示代谢消耗系数(因人而异)
• 问题分析:
• 1 通常,人体重的变化是由于体内的能量守恒遭到 破坏。人通过饮食吸收热量并转化为脂肪等,导致 体重增加;又由于代谢和运动消耗热量,引起体重 减少。
• 2 做适当的假设就可以得到体重变化的关系。
3 减肥应不伤身体,这可以用吸收热量不要过少,
减少体重不要过快来表达
• 模型假设:
1. 体重增加正比于吸收的热量,平均每 8000kcal增加1kg(1kcal=4.2kj);
2. 正常代谢引起的体重减少正比于体重,每 周每公斤体重消耗热量一般在 200kcal~320kcal,且因人而异;
3. 运动引起的体重减少正比于体重,且与运 动形式有关;
4. 为了安全与健康,每周体重减少不宜超过 1.5kg,每周吸收热量不少于10000kcal
减肥模型(最新整理)
Wt值 Kg值 140
120
100 R=60.3
80 R=67.2
60
R=83.3
40
20
t(d)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
图2
若改变每天热量净摄入量 K 的值,分别取 6450、5460、4560,则稳定体重 Ws 分 别为 95.98Kg、81.25Kg、67.86Kg。然后用 MatLab 编程得出此微分方程曲线如 下图所示:
三 模型假设:
(1)一天之内人的体重基本不变化,一天为 t 的最小单位; (2)人的初始体重假设最低为 25kg,最大为 125kg; (3) 存在一个连续可导的函数 W(t),s 使任意正整数 n 都满足 W(n)=第 n 天人的 体重; (4)人体内多余的热量都转化为脂肪储存在体内; (5)某人以脂肪形式储存的热量是 100%地有效,而 1 千克脂肪含热量是 42000 焦耳。 四 符号说明 Wt 表示人的体重 W0 表示人的初体重 Ws 表示人的稳定体重
附件 3 改变每天净摄入量 K 的值体重随时间变化的微分方程程序
clear clc clf t=1:5000 hold on
6
wt=dsolve('Dw=((K-67.2*w0)/42000)*exp(-67.2*t/42000)','w(0)=w0')% 求解微分方程 for w0=25:10:125 K=5460 w=eval(wt);% 数值化 plot(t,w,'r') K=6450 w=eval(wt);% 数值化 plot(t,w,'g') K=4560 w=eval(wt);% 数值化 plot(t,w,'m') end gtext('Wt(Kg)'); gtext('t(d)'); gtext('K=5460'); gtext('K=6450'); gtext('K=4560'); grid on
减肥模型的常微分方程
减肥模型的常微分方程文针对减肥问题建立了常微分方程数学模型并用该模型对时下比较流行的相关减肥药与减肥方法进行了测定,验证其是否真正可以起到减肥的效果。
针对问题1,我们在充分学习生物学知识的基础上,认为体重的改变主要是由于体内脂肪含量的变化。
同时,生物学知识告诉我们能量的摄入主要来自于膳食中的碳水化合物、脂肪和蛋白质;能量的消耗主要有三方面:维持基础代谢、从事劳动以及食物的特殊动力作用,根据能量守恒定律,因此要达到减肥的目的即是要使人体每天消耗的能量大于吸收的能量,从而燃烧体内囤积的脂肪。
我们针对该问题建立了常微分方程模型。
针对问题2,主要是对问题1中模型的应用。
首先通过文献了解减肥药的作用机理,针对曲美减肥药,知道其的主要功效是加速脂肪的代谢率,即是增加了维持基础代谢的耗能。
后经过对模型的求解我们知道每日减肥量上限为0.29千克,因而曲美药减肥药介绍中关于"有特别明显者一月减20斤"的描述具有欺骗消费者之嫌。
另外,通过节食、运动(不包括个体日常劳动)等方法都能达到减肥的目的,用控制饮食的方法,每日至多平均减肥0.185Kg;同时采用控制饮食和运动的方法,每日也只能减肥0.196Kg。
对比两者结果说明,采用控制饮食进行减肥比加强运动更有效。
运动减肥效果不是很明显,但是其是最健康的,对身体的有害影响最小。
关键词:减肥耗能常微分方程减肥药一、问题的重述随着人类生活水平的提高,肥胖问题日益凸显,严重威胁着人类的身体健康,应运而生的是五花八门的减肥产品以及层出不穷的减肥方法。
然而如何选择合适的减肥产品与方法却一直困扰着广大肥胖患者。
究竟哪种减肥产品和方法能在不伤害身体的条件下真正起到瘦身的效果?本题就是要求通过对相关数据的收集与整理建立关于减肥问题的数学模型,并用此模型检验相关的减肥产品与减肥方法,论证其是否能起到安全、有效减肥的效果。
二、背景知识根据中国生理科学会修订并建议的我国人民的每日膳食指南可知:1、每日膳食中,营养素的供给量是作为保证正常人身体健康而提出膳食质量标准。
数学建模(微积分)二
,不难求得 (4)
2c1 r c2
T
2c1 rc 2
再根据(1)有,
Q
(5)
宁波职业技术学院数学教研室
数学建模讲座
Q
2c1 r c2
(5)
这就是经济理论中著名的经济订货批量公式(EOQ公式) 货物本身的价格可不考虑,这是因为若记每吨货 的价格为k,则一周期的总费用 C 中应添加kQ,由于
Q rT
(1)
订货后贮存量由Q均匀地下降,记任意时刻t的贮 存量为q,则q(t)的变化规律可以用图1表示
宁波职业技术学院数学教研室
数学建模讲座 q
Q A r T 图1 t
0
考察一个订货周期的总费用:订货费为c1;贮存费是
c2 q(t )dt 其中积分恰等于图中三角形的面积为A,显然
0 T
1 A QT 2
实例十一、森林救火数学模型
宁波职业技术学院数学教研室
数学建模讲座
贮存模型 背景 不允许缺货的贮存数学模型 知识 工厂要定期地订购各种原料,在仓库里供生产
之用。商店要成批地购进各种商品,放在货柜中以 备零售。水库在雨季蓄水,用于旱季的灌溉和航运。 无论是原料、商品还是水的贮存,都有贮存多少的 问题。原料、商品贮存得太多,贮存费用高;贮存 得太少,则无法满足需求。水库雨季蓄水过量,更 可能危及安全。当影响贮存量的因素包含随机性时, 如顾客对商品的需求,天气对蓄水的影响,需要建 立贮存模型。
Q rT 所以公式(3)中增加一常数项kr,对求解结果
式(4)、(5)没有影响。 (5)式表明,订货费c1越高,需求量越大,订货批量 Q应越大;贮存费c2越高,订货批量Q应越小,这些关系 当然是符合常识的,不过公式在定量上表明的平方关系 却是凭常识方法得到的
微分方程模型---减肥问题
微分方程模型---减肥问题随着社会的进步和发展,人们的生活水平不断提高.由于饮食营养摄入量的不断改善和提高,“肥胖”已经成为全社会关注的一个重要的问题.如何正确对待减肥是我们必须考虑的问题.于是了解减肥的机理成为关键.1.背景知识根据中国生理科学会修订并建议的我国人民的每日膳食指南可知:(1)每日膳食中,营养素的供给量是作为保证正常人身体健康而提出的膳食质量标准.如果人们在饮食中摄入营养素的数量低于这个数量,将对身体产生不利的影响.(2)人体的体重是评定膳食能量摄入适当与否的重要标志.(3)人们热能需要量的多少,主要决定于三个方面:维持人体基本代谢所需的能量、从事劳动和其它活动所消耗的能量以及食物的特殊动力作用(将食物转化为人体所需的能量)所消耗的能量.(4)一般情况下,成年男子每一千克体重每小时平均消耗热量为4200焦耳.(5)一般情况下,食用普通的混合膳食,食物的特殊动力作用所需要的额外的能量消耗相当于基础代谢的10%.2.问题分析与模型假设(1)人体的脂肪是存储和提供能量的主要方式,而且也是减肥的主要目标.对于一个成年人来说体重主要由三部分组成:骨骼、水和脂肪.骨骼和水大体上可以认为是不变的,我们不妨以人体脂肪的重量作为体重的标志.已知脂肪的能量转换率为100%,每千克脂肪可以转换为4.2×107焦耳的能量.记D=4.2×107焦耳/千克,称为脂肪的能量转换系数.(2)人体的体重仅仅看成是时间t的函数w(t),而与其他因素无关,这意味着在研究减肥的过程中,我们忽略了个体间的差异(年龄、性别、健康状况等)对减肥的影响.(3)体重随时间是连续变化的,即w(t)是连续函数且充分光滑,因此可以认为能量的摄取和消耗是随时发生的.(4)不同的活动对能量的消耗是不同的,例如:体重分别为50千克和100千克的人都跑1000米,所消耗的能量显然是不同的.可见,活动对能量的消耗也不是一个简单的问题,但考虑到减肥的人会为自己制订一个合理且相对稳定的活动计划,我们可以假设在单位时间(1日)内人体活动所消耗的能量与其体重成正比,记B为每1千克体重每天因活动所消耗的能量.(5) 单位时间内人体用于基础代谢和食物特殊动力作用所消耗的能量正比于人的体重.记C 为1千克体重每天消耗的能量.(6) 减肥者一般对自己的饮食有相对严格的控制,在本问题中,为简单计,我们可以假设人体每天摄入的能量是一定的,记为A .3.模型的建立建模过程中,我们以“天”为时间单位.根据假设3,我们可以在任何一个时间段内考虑能量的摄入和消耗所引起的体重的变化.根据能量的平衡原理,任何时间段内由于体重的改变所引起的人体内能量的变化应该等于这段时间内摄入的能量与消耗的能量的差.考虑时间区间[t ,t +Δt ]内能量的改变,根据能量平衡原理,有⎰⎰∆+∆+--∆=-∆+t t t tt tds s w C ds s w B t A t w t t w D .)()()]()([ 由积分中值定理有),1,0(,)()()(∈∆∆+-∆=-∆+θθt t t bw t a t w t t w其中a =A/D,b=(B+C)/D,遍除以t ∆并令Δt →0取极限得0),()(>-=t t bw a dt t dw (3.1)这就是在一定简化层次上的减肥的数学模型.4.模型的求解设t =0为模型的初始时刻,这时人的体重为w (0)=w 0.模型(3.1)的求解方法很多,下面用积分因子法求解. 在(3.1)的两边同时乘以e bt 得bt bt bt bt bt ae t w e dt dae e t bw dt t dw e ==+))((,)()(即从0到t 积分,并利用初值w (0)=w 0得bt bt bt e b aw b ae b ae w t w ----+=-+=)()1()(00.(3.2)5.模型的分析与修改推广(1)b a 是模型中的一个重要参数.a =A /D 是每天由于能量的摄入而增加的体重.b=(B+C)/D 是每天由于能量的消耗而失去的体重.不进食的节食减肥法是危险的.因为,0)(lim =+∞→t w t 即体重(脂肪)都消耗尽了,如何能活命!(2)假设a =0,即停止进食,无任何能量摄入,体重的变化(减少)完全是脂肪的消耗而产生.此时,w (t )=w 0e bt -.当a =0时,由(3.11)式有(w 0-w (t ))/w 0=1-e bt -,这表明在[0,t ]内体重减少的百分率为1-e bt -,称之为[0,t ]内体重消耗率,特别地,1―e b -是单位时间内的体重的消耗率,事实上,w (t +1)=w 0e )1(+-t b =w 0e bt -e b -=w (t )e b -,所以(w(t)-w(t+1))/w(t)=1-e b -.自然0/)(w t w e bt =-为[0,t ]内的体重保存率,它表明t 时刻体重占初始体重的百分率.基于上面的分析,由(3.2)式可知,t 时刻的体重由两部分构成:一部分是初始体重中由于能量消耗而被保存下来的部分,另一部分是摄取能量而获得的补充量,这一解释从直观上理解也是合理的.(3)由(3.2)式有,,:)/(/)(lim *+∞→=+==w C B A b a t w t 也就是说模型(3.1)的解渐近稳定于*w ,它给出了减肥的最终结果,称*w 为减肥效果指标.因为bt e -衰减很快,在有限时间内,bt e b a w --)/(0就很小,可以忽略,当t 充分大时,),/(/)(C B A b a t w +==这表明任何人都不必为自己的体重担心(肥胖、瘦小),从理论上讲,体重要多重就有多重,只要适当调节A (进食)、B (活动)、C (新陈代谢).同时也说明了,任何减肥方法都是考虑和调节上述三个要素:节食是调节A 、活动是调节B 、减肥药是调节C.由于C 是基础代谢和食物特殊动力的消耗,它不可能作为减肥的措施随着每个人的意愿进行改变,对于每个人而言可以认为是一个常数,有大量事实表明,通过调整新陈代谢的方法来减肥是值得推敲的.于是我们有如下结论,减肥的效果主要由两个因素控制:进食摄取能量和活动消耗能量,从而减肥的两个重要措施是控制饮食和增加活动量.这也是熟知的常识.对于模型(3.1),容易证明,当且仅当0w w <*时有,0/<dt dw 这表明只有当0w w <*时才有可能产生减肥的效果.(4) 进一步讨论能量的摄取量A 与活动消耗量B 对减肥效果的影响.由有)/(C B A w +=*,,C w B w A **+=在A -B 坐标系内表示一条过点(-C,0)斜率为w *的直线.根据背景知识,任何人通过饮食摄取的能量不能低于用于维持正常生理功能所需要的能量.因此作为人体体重极限值的减肥效果指标一定存在一个下限w 1,当1w w <*时表明能量的摄入过低,无法满足维持人体正常的生理功能所需要的能量.这时减肥所得到的结果不能认为是有效的,它将危及人体的健康,因而称w 1为减肥的临界指标.此外,人们为减肥所采用的各种体力活动对能量的消耗也有一个人体所能承受的范围,即存在B 1使得.01B B <<于是在A ——B 平面上由B =0、B =B 1和A =0所界出的上半带形区域被直线C w B w A l 000:+=和C w B w A l 111:+=分割成三个区域:1Ω、2Ω和3Ω,这表明减肥的效果是控制进食和增加消耗综合作用、相互协调的结果.在区域1Ω中,能量的摄取量A大于体重为w 0(初始体重)时的消耗量w 0(B +C ),这时体重将在w 0基础上继续增加,故称之为非减肥区;而在区域3Ω中,能量的摄取量A 低于体w 1时的消耗量w 1(B +C ),体重将减少到临界减肥指标以下,图3—1这将危及人的身体健康,故称3Ω为减肥危险区.只有区域2Ω所表示的A 和B 的组合才能实现有效的减肥,故称B 为有效减肥区.(如图3-1)实际上,减肥的过程是一个非常复杂的过程.这个模型是一个简化的模型,只是为了揭示饮食和活动这两个主要因素与减肥的关系.。
数学建模减肥模型例题
数学建模减肥模型例题
以下是一个数学建模的减肥模型例题:
假设一个人想通过控制饮食和运动来减肥,他每天所摄入的总卡路里数(包括食物和饮料)为C,他每天通过进行运动所消耗的总卡路里数为E。
为了减肥,他希望每天的摄入卡路里数小于消耗卡路里数。
假设他的基础代谢率为B,即他在休息状态下所消耗的卡路里数。
他希望通过减少每天摄入的卡路里数和增加运动量来控制减肥速度。
现在我们假设他的减肥速度为V(单位:千克/周),并且他的目标减肥时间为T(单位:周)。
我们需要建立一个模型来计算他每天应该摄入的卡路里数C和他每天需要进行的运动量E。
解决方案:
首先,我们需要根据减肥速度V和目标减肥时间T来计算他的目标减肥总量M(单位:千克)。
M = V * T。
然后,我们可以根据他的基础代谢率B和目标减肥总量M来计算他在目标减肥时间内所需的总卡路里数D。
D = M * 7700(每千克脂肪相当于7700卡路里) + B * T。
接下来,我们可以根据目标减肥总量M和目标减肥时间T来计算每天需要摄入的卡路里数C。
C = D / T。
最后,我们可以计算每天需要进行的运动量E。
E = C - B。
通过这个模型,该人可以根据自己的减肥速度和目标减肥时间来计算每天需要摄入的卡路里数和进行的运动量,从而实现减肥目标。
但需要注意的是,这只是一个简化的模型,实际减肥效果受到多种因素的影响,还需综合考虑其他因素来制定全面的减肥计划。
数学建模_微分方程之减肥问题
摘要:在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,在研究能量与运动之间的关系时,得到直接关系,就得求微分方程。
本文利用了微分方程模型求解实际问题,根据基本规律写出了平衡关系式,再利用一定的转换条件进行转化为简单明了的式子,求解出结果,对于第一问,利用微分方程反解出时间t(天),从而得到每个人达到自己理想目标的天数,同理,对于第二和第三问,利用以上方法,加上运动所消耗的能量,也可得出确切的时间,和所要保持体重所消耗的能量。
【关键字】:微分方程转化能量转换系数1.问题重述现有五个人,身高、体重和BMI指数分别入下表一所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去:表一人数12345身高 1.7 1.68 1.64 1.72 1.71体重100112113114124BMI34.633.535.234.835.6理想目标7580808590题目要求如下:(1)在基本不运动的情况下安排计划,,每天吸收的热量保持下限,减肥达到目标;(2)若是加快进程,增加运动,重新安排计划,经过调差资料得到以下各项运动每小时每kg体重的消耗的热量入下表二所示:表二运动跑步跳舞乒乓自行车(中速)游泳(50m/min)热量消耗/k7.0 3.0 4.4 2.57.9(3)给出达到目标后维持体重的方案。
2. 问题的背景与分析随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题,为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖,据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24.,30改为29。
数学建模之减肥计划
一、问题背景随着生活水平的不断提高,肥胖症和减肥问题越来越引起人们的广泛关注。
联合国世界卫生组织颁布的体重指数(简记BMI )为体重(单位:kg )除以身高(单位:m )的平方,固定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖。
据悉,我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29。
在国人初步过上小康生活以后,不少自感肥胖的人纷纷奔向减肥食品的柜台。
目前各种减肥食品或药物数不胜数,各种减肥新法也纷纷登场。
可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。
许多医生和专家意见是只有通过控制饮食和运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的。
模型分析 二、模型分析1 体重变化由体内能量守恒破坏引起;2 饮食(吸收热量)引起体重增加;3 代谢和运动(消耗热量)引起体重减少;4 通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标。
三、模型假设1体重增加正比于吸收的热量————每8000千卡增加体重1千克;2 代谢引起的体重减少正比于体重,每天每公斤体重消耗28.75千卡~45.71千卡(因人而异);3 运动引起的体重减少正比于体重,且与运动形式有关;4 为了安全与健康,每天体重减少不宜超0.2千克,每天吸收热量不要小于p 千卡(p 因体重而异)。
四、模型建立k :表示第几天 ω(k ):表示第k 天的体重 C(k):表示第k 天吸收的热量α:表示热量转换系数[千卡)千克 /(80001=α] β:表示代谢消耗系数(因人而异)则在不考虑运动的情况下体重变化的基本方程: )()1()()1(k w k c k w k w βα-++=+一、以甲为例:1)在不运动的情况下安排一个两阶段计划。
第一阶段:每天减肥0.1429千克,每天吸收热量逐渐减少,直至达到下限(1429千卡);第二阶段:每天吸收热量保持下限,减肥达到目标。
减肥数学建模
减肥数学建模
在当今社会,减肥已经成为了很多人关注的话题。
人们希望通过科学的方法和
合理的方式来减肥,以达到健康和美丽的目的。
而数学建模作为一种科学的分析方法,可以帮助我们更好地理解减肥过程中的变化规律,从而找到更有效的减肥方案。
首先,我们可以通过数学建模来分析减肥的基本原理。
减肥的过程实际上是一
个能量平衡的问题,即摄入的能量和消耗的能量之间的关系。
我们可以用数学模型来描述这个过程,通过方程式来表示能量的变化和平衡,进而找到减肥的最佳方案。
其次,数学建模还可以帮助我们分析减肥过程中的身体变化。
比如,我们可以
通过建立数学模型来研究减肥对身体各项指标的影响,比如体重、体脂率、肌肉量等。
通过数学模型的分析,我们可以更好地了解减肥过程中身体的变化规律,从而找到更科学的减肥方法。
另外,数学建模还可以帮助我们优化减肥方案。
通过建立数学模型,我们可以
对不同的减肥方案进行模拟和比较,找到最适合自己的减肥方案。
比如,我们可以通过数学模型来分析不同饮食和运动方案对减肥效果的影响,从而找到最有效的减肥方案。
除此之外,数学建模还可以帮助我们预测减肥的效果。
通过建立数学模型,我
们可以根据自己的减肥计划和实际情况,预测未来的减肥效果,从而更好地调整和优化减肥方案,提高减肥的效果和成功率。
总的来说,数学建模在减肥过程中发挥着重要的作用。
通过数学建模,我们可
以更好地理解减肥的原理和规律,优化减肥方案,预测减肥效果,从而找到更有效的减肥方法。
因此,我们可以将数学建模应用到减肥过程中,以帮助我们更科学、更有效地减肥,达到健康和美丽的目标。
数学建模减肥模型
w w c ( t )w
c ( t ) w /
(8)
• 若不运动,容易算出c=15000kcal;若运动(内容同上), 则c=16800kcal。 • 评注 人体体重的变化是有规律可循的,减肥也 应该科学化、定量化。这个模型虽然只考虑了一个非 常简单的情况,但是它对专门从事减肥这项活动(甚 至作为一项事业)的人来说也不无参考价值。 • 体重的变化与每个人特殊的生理条件有关,特别 是代谢系数 ,不仅因人而异,而且即使同一个人在 不同环境下也会有所改变。从上面的计算中我们看到, 当 由 0.025增加到0.028时(变化约12%),减肥所 需时间就从19周减少到14周(变化约25%),所以应 用这个模型是要对 作仔细的 核对。
•
• •
•
• •
通常,制订减肥计划以周为时间单位比较方便, 所以这里用离散时间模型——差分方程模型来讨论。 模型假设 根据上述分析,参考有关生理数据, 作出以下简化假设: 1。体重增加正比于吸收的热量,平均每8000kcal 增加体重1kg(kcal为非国际单位制单位1kcal=4.2kJ); 2。正常代谢引起的体重减少正比于体重,每周每 公斤体重消耗热量一般在200kcal至300kcal之间,且因 人而异,这相当于体重70kg的人每天消耗2000kcal至 3200kcal; 3。运动引起的体重减少正比于比重,且与运动形 式有关; 4。为了安全与健康,每周体重减少不宜超过1.5kg, 每周吸收热量不要少于10000kcal。
c / w 20000/ 8000/ 100 0.025
• 相当于每周每公斤体重消耗热量200kcal。从假设2可以 知道,某甲属于代谢相当弱的人。他又吃得那么多, 难怪如此之胖。 • 第一阶段要求体重每周减少b=1kg,吸收热量减 至下限 cmin 10000 kcal , 即
数学建模之减肥问题的数学模型.
东北大学秦皇岛分校数学模型课程设计报告减肥问题的数学建模学院数学与统计学院专业信息与计算科学学号5133117姓名楚文玉指导教师张尚国刘超成绩教师评语:指导教师签字:2016年01月09日摘要肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥.本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程.本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式[()()][()()]t t t D A B R t t ωωω+∆-=-+∆再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式()(1)dt dt at e e dωω--=+- 然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议.关键字: 微分方程模型 能量守恒 能量转换系数1 问题重述1.1 课题的背景随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的人加入了减肥的行列,盲目的减肥,使得人们感到不理想,如何对待减肥问题,不妨通过组建模型,从数学的角度,对有关的规律作一些探讨和分析.根据背景知识,我们知道任何人通过饮食摄取的能量不能低于用于维持人体正常生理功能所需要的能量,因此作为人体体重极限值的减肥效果指标一定存在一个下限1ω,当1*ωω<时表明能量的摄入过低并致使维持他本人正常的生理功能的所需不足,这种减肥所得到的结果不能认为是有效的,它将危机人的身体健康,是危险的,称1ω为减肥的临界指标.另外,人们认为减肥所采取的各种体力运动对能量的消耗也有一个所能承受的范围,记为10<R R <,当能量的摄取量高于体重0ω时,这是体重不会从0ω减少,所以可以看到单一的措施达不到减肥效果. 1.2 具体的问题和相关数据现有五个人,身高、体重和BMI 指数分别如下表1.1所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去:表1.1 身高,体重和BMI 指数表人数编号 1 2 3 4 5 身高 1.7 1.68 1.64 1.72 1.71 体重 100 112 113 114 124 BMI 34.6 33.5 35.2 34.8 35.6 理想目标 75 80 80 85 90 每天摄 入能量 28572543273426892776题目具体要求如下:(1)在基本不运动的情况下安排计划,每天吸收的热量保持下限,减肥达到目标; (2)若是加快进程,增加运动,重新安排计划,经过查找资料得到以下各项运动每小时每kg 体重的消耗的热量如下表1.2所示:表1.2 每小时每kg 体重的热量消耗运动 跑步 跳舞 乒乓 自行车 (中速) 游泳(50m/min )热量消耗7.03.04.42.5 7.9(3)给出达到目标后维持体重的方案.2 模型假设与符号说明2.1 问题分析本问题要建立减肥的数学模型,减肥是一个比较长期和不定的过程,因此要用数学的方法对减肥这一问题建模,就需要选定一个测量肥胖的标准量. 因为人体的脂肪是能量的主要贮存和提供的方式,而且也是减肥的主要目标. 因此,我们以人体脂肪的重量作为体重的标志. 已知脂肪的能量转换率为100﹪,每千克脂肪可以转换为8000kcal,称D为脂肪的能量转换系数.肥胖主要是体现在人的身体上,减肥其实就是将人的体重降下来,所以归根到底,研究减肥就是要研究体重的变化,因此在减肥过程中我们要对人的体重进行持续的检测,忽略个体间的差异(年龄、性别、健康状况等)对减肥的影响,可以将人体的体重ω.看成是时间t的函数()t在减肥的过程中,无论是由于进食摄取能量导致体重的增加,还是由于体力活动消耗能量致使体重的减少,异或还有其他一些不可预知的因素,这都是一个渐变的过程,ω是连续光滑的.所以我们认为能量的摄取和消耗都是随时发生的,而不同所以认定()t的活动对能量的消耗是不同的. 所以我们在建模的过程中需要设定一个参数用来表示某种活动消耗的人体能量. 记r为某一种活动每小时所消耗的能量,记b为1kg体重每小时所消耗的能量.2.2 模型假设1.假设以人体脂肪的重量作为体重的标志.ω是连续而且充分光滑的.2.假设体重随时间的变化()t3.假设在单位时间人体的能量消耗与其体重成正比.4.假设人体每天摄入的能量是一定的.记为A.5.正常代谢引起的减少正比于体重,每人每千克体重消耗热量一般为28.75~45.71kcal,且因人而异.6.假设在研究减肥的过程中,我们忽略个体间的差异对减肥的影响.7.人体每天摄入量是一定的,为了安全和健康,每天吸收热量不要小于1429kcal.8.假设单位时间内人体由于基础代谢和食物特殊动力作用所消耗的能量正比于人的体重.2.3 符号说明D : 脂肪的能量转化系数.()t ω:人体的体重关于时间t 的的函数..r : 每千克体重每小时运动所消耗的能量(/)/kcal kg h .b : 每千克体重每小时所消耗的能量(/)/kcal kg h .0A : 每天摄入的能量.1W : 五个人理想的体重目标向量.A : 五个人每天分别摄入的能量..W : 五个人减肥前的体重.B : 每人每天每千克体重基础代谢的能量消耗.3 模型建立与求解3.1 一般模型建立如果以1天为时间的计量单位,于是每天基础代谢的能量消耗量应=24(/)B b kcal d ,由于人的某种运动一般不会是全天候的,不妨假设每天运动h 小时,则每天由于运动所消耗的能量应为=(/)R rh kcal d . 按照假设2, 体重随时间的变化()t ω是连续而且充分光滑的,我们可以在任何一个时间段内考虑由于能量的摄入与消耗引起人的体重的变化. 按照能量的平衡原理,任何时间段内由于体重的改变所引起的人体内能量的变化应该等于这段时间内摄入的能量与消耗的能量之差. 我们选取某一段时间(, )t t t +∆,在时间段(, )t t t +∆内考虑能量的改变: 设体重改变的能量变化为W ∆,则有=[(+)()]W t t t D ωω∆∆- (3.1)设摄入与消耗的能量之差为M ∆,则有[()()]M A B R t t ω∆=-+∆ (3.2)根据能量平衡原理有M W ∆=∆ (3.3)得:[()()][()()]t t t D A B R t t ωωω+∆-=-+∆ (3.4)取0t ∆→,可得d d (0) a d t ωωωω⎧=-⎪⎨⎪⎩= (3.5) 其中/a A D =,()/d B R D =+,0t =(模型开始考察时刻),即减肥问题的数学模型 模型求解得()(1)dt dt at e e dωω--=+- (3.6)/a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的百分数(每单位体重中由于基础代谢和活动而消耗掉的那部分). 3.2 针对实际问题的模型建立1. 由一般模型的建立已经知道减肥问题的数学模型为微分方程模型(3.6),利用此方法可求解出每个人要达到自己的理想体重的天数.首先确定此人每天每千克体重基础代谢的能量消耗B ,因为没有运动,所以有0R =,根据式(3.6)式,得AB W=(3.7)从而得到每人每天每千克体重基础代谢的能量消耗从假设5可知,这些人普遍属于代谢消耗相当弱的人,加上吃得比较多,有没有运动,所以会长胖,进一步,由()t ω (五人的理想体重),W (五人减肥前的体重),D=8000kcal/kg (脂肪的能量转换系数),根据式(3.6)式有001/ln ln/a d D B At d a d B B Aωωωω--=-=--- (3.8) 将A (五个人每天分别摄入的能量)的值代入上式时,就会得出五个人要达到自己的理想体重时的天数,如下表3.1所示表3.1 达到理想体重所需天数表人1 2 3 4 5 天数 194 372 313 266 298Matlab 源程序: R = 0;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [100 112 113 114 124 ]; %每人的体重 n = length( W );B = A./W %每人每天每千克体重基础代谢的能量消耗 a = A./D d = (B + R)./D for i = 1:nt(i) = -(D/B(i))*log((W1(i)*B(i)-A0)/(W(i)*B(i)-A0)); %减肥所需要的时间 end2. 为加快进程,增加运动,结合查找资料得到各项运动每小时每kg 体重消耗的热量表2,再结合假设3,取1h h =,R rh r ==,根据式(4.6)有001/()ln ln/()a d D B R At d a d B R B R Aωωωω-+-=-=--++- (3.9) 将A (五个人每天分别摄入的能量)的值代入上式时,取不同的r ,得到一组数据, 在运动的情况下,我们选取的是一个小时,得到了每个人在不同运动强度下,要达到自己的理想目标所需的天数,如下表3.2所示:表3.2 不同运动强度下达到理想体重所需天数运动跑步 跳舞 乒乓 自行车 游泳 时间/天122 155 141 160 116 187 261 229 274 176 173 232 207 243 164 148 198 177 206 140 163 220 196 230 154Matlab 源程序: h = 1;r = [ 7.0 3.0 4.4 2.5 7.9 ]; R = h.*r; n1 = length(R);D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [ 100 112 113 114 124 ]; %每人的体重 n = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗 for j = 1:n1 for i = 1:nt = (i,j) = -(D./(B(i) + R(j)) * log((W1(i). * (B(i)+R(j)) - A0)./(W(i).* (B(i) + R(j)) -A0))); %减肥所需要的时间end end3. 要使体重稳定在一个定值,则有*AB Rω=+ (3.10) 根据自己的不同理想目标和B (每人每天每千克体重基础代谢的能量消耗),在不同小时下的能量消耗表:(1)在1h =的情况下运动所消耗的能量,如下表3.3表3.3 1h =的情况下运动所消耗的能量运动 跑步 跳舞 乒乓 自行车 游泳消耗能量(kcal) 2667.00 2367.800 2472.800 2330.200 2735.300 2376.400 2056.400 2168.400 2016.400 2448.400 2495.600 2175.600 2287.600 2135.600 2567.600 2600.000 2260.000 2379.000 2217.500 2676.500 2644.800 2284.800 2410.800 2239.800 2725.800(2)在2h =的情况下运动所消耗的能量,如下表3.4表3.4 2h =的情况下运动所消耗的能量运动 跑步 跳舞 乒乓 自行车 游泳 消耗能量(kcal) 3198.00 2592.800 2802.800 2517.700 3327.800 2936.400 2296.400 2520.400 2216.400 3080.400 3055.600 2415.600 2639.600 2335.600 3199.600 3195.000 2515.000 2753.000 2430.000 3348.000 3274.800 2554.800 2806.800 2464.800 3436.800Matlab 源程序: h = [12];r = [ 7.0 3.0 4.4 2.5 7.9 ]; R = h*r;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [ 100 112 113 114 124 ]; %每人的体重 n1 = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗 for j = 1:n for I = 1:n1A1(i,j) = W1(i).*(B(i)+R(1,j)); %在h=1的时间下运动所消耗的能量 A2(i,j) = W1(i).*(B(i)+R(2,j)); %在h=2的时间下运动所消耗的能量 end end4 模型的分析与讨论4.1 针对一般减肥模型在式(3.6)中假设0a =,即假设停止进食,无任何能量摄入,于是有0()dt t e ωω-= (4.1)这表明在t 时刻保存的体重占初始体重的百分率由dt e -给出,特别当1t =时,e d -给出了单位时间内体重的消耗率,它表明在(0,)t 时间内体重的消耗率,它表明在(0,)t 内体重减少的百分率,可见这种情况下体重的变化完全是体内脂肪的消耗而产生的,如此继续下去,由lim 0t t ω→∞=(),即体重(脂肪)将消耗殆尽,可知不进食的节食减肥方法是危险的.a/d 是模型中的一个重要的参数,由于/a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的体重,于是/a d 就表示摄取能量而获得的补充量,综合以上的分析可知, t 时刻的体重由两部分构成, 一部分是初始体重中由于能量消耗而被保存下来的部分. 另一部分是摄取能量而获得的补充部分,这一解释从直观上理解也是合理的. 由式(3.5)0dtd <ω即/a d ω<,体重从0ω递减, 这是减肥产生效果,另外由式(3.6)可以看到t →∞时*()//()t a d A B R ωω→==+,也就是说式(3.5)的解渐进稳定于*a/d ω=,它给出了减肥过程的最终结果,因此不妨称*ω为减肥效果指标,由*/()A B R ω=+,因为B 是基础代谢的能量消耗,它不能作为减肥的措施随着每个人的意愿进行改变,对于每个人可以认为它是一个常数,于是就有如下结论:减肥的效果主要是由两个因素控制的,包括由于进食而摄入的能量以及由于运动消耗的能量,从而减肥的两个重要措施就是控制饮食和增加运动量,这恰是人们对减肥的认识.人体体重的变化时有规律可循的,减肥也应科学化,定量化,这个模型虽然只是揭示了饮食和锻炼这两个主要因素与减肥的关系,但它们对人们走出盲区减肥的误区,从事减肥活动有一定的参考价值. 4.2 针对具体问题从上几个表可知,普遍观察得出结论,游泳是减肥的最佳方法,无论是在长时间还是短时间内,从结果来看,游泳消耗的能量是最多的,也是达到快速减肥的最佳方法,也可从下图可知,图4.1表示每个人的能量消耗图,都是离散的,并且都是递增的,表明了游泳时能量消耗最快的,选此方法减肥是最合理有效的. Matlab 源程序: x = [ 7.0 3.0 4.4 2.5 7.9 ]; y = [ 2667.00 2367.800 2472.800 2330.200 2735.300 2376.400 2056.400 2168.4002016.4002448.4002495.600 2175.600 2287.600 2135.600 2567.600 2600.000 2260.000 2379.000 2217.500 2676.500 2644.8002284.8002410.800 2239.800 2725.800 ];subplot( 3, 2, 1 ); plot( x, y(1,:),' g* '); title(' 第一个人 '); subplot( 3, 2, 2); plot( x, y(2,:),' ro '); title(' 第二个人 ');数学与统计学院课程设计(实习)报告第10页subplot( 3, 2, 3);plot( x, y(3,:),' g. ');title(' 第三个人');subplot( 3, 2, 4);plot( x, y(4,:),' c+ ');title('第四个人');subplot( 3, 2, 5);plot( x ,y(5,:),' go ');title(' 第五个人');图4.1 每个人的能量消耗图参考文献[1]姜启源,谢金星,叶俊. 数学模型[M]. 北京: 高等教育出版社, 2015年.[2]王敏生,王庚. 现代数学建模方法[M]. 北京: 科学出版社, 2008年.[3]罗万成. 大学生数学建模案例精选[M]. 成都: 西南交通大学出版社, 2007年.[4]胡良剑,孙晓君. Matlab数学实验[M]. 北京: 高等教育出版社, 2006年.。
数学建模减肥计划 (2)
作业数学建模——减肥计划王亮2013201208_朱小光2013201166_李林俊2013201145数学建模——减肥计划论文题目减肥计划数学模型专业数学与应用数学小组成员王亮2013201208朱小光2013201166李林俊2013201145摘要:随着社会的进步和发展,人们的生活水平不断提高。
由于饮食营养摄入量的不断改善和提高,“肥胖”已经成为全社会关注的一个重要的问题。
肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。
肥胖也是身体健康的晴雨表,反映着体内多方面的变化。
很多人在心理上害怕肥胖,追求苗条,因而减肥并不是口头话题,更有人花很多时间和金钱去实施减肥。
这也造成了各种减肥药、减肥器械和治疗方法的巨大市场。
各种假药或对身体有害的药品,夸大疗效的虚假广告等等也就应应运而生理念,对老百姓造成了不必要的伤害。
所以,如何正确对待减肥是我们必须考虑的问题。
于是了解减肥的机理成为关键。
关键词:减肥饮食合理运动一、问题重述联合国世界卫生组织颁布的体重指数(简记BMI)定义为体重(单位:kg)除以身高(单位:m)的平方,规定BMI在18.5至25为正常,大于25为超重,超过30则为肥胖。
据悉,我国有关机构对东方人的特点,拟将上述规定中的25改为24,30改为29。
在国人初步过上小康生活以后,不少自感肥胖的人纷纷奔向减肥食品的柜台。
可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。
许多医生和专家的意见是,只有通过控制饮食和适当的运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的。
肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。
肥胖也是身体健康的晴雨表,反映着体内多方面的变化。
数学建模之减肥问题的数学模型
•
2)为加快进程,第二阶段增加运动。经过调查资
料得到以下各项运动每小时每公斤体重消耗的热量:
运动 跑步 跳舞 热量消耗 7.0 3.0
(kcal)
乒乓 4.4
自行车 游泳 (中速) 50m/秒
2.5
7.9
• 记表中热量消耗 ,每周运动时间t,为利用基本模
型(1)式,只需将 改为 t ,即 w(k 1) w(k) c(k 1) ( t)w(k) (6)
• 相当于每周每公斤体重消耗热量200kcal。从假设2可以 知道,某甲属于代谢相当弱的人。他又吃得那么多, 难怪如此之胖。
•
第一阶段要求体重每周减少b=1kg,吸收热量减
至下限 cmin 10000 kcal , 即
•
w(k)-w(k+1)=b, w(k)=w(0)-bk
• 由基本模型(1)式可得
为14周。
•
3)最简单的维持体重75公斤的方案,是寻求每周
吸收热量保持某常数c,使w(k)不变。由(6)式得
w w c ( t)w
c ( t)w /
(8)
• 若不运动,容易算出c=15000kcal;若运动(内容同上), 则c=16800kcal。
•
评注 人体体重的变化是有规律可循的,减肥也
公斤体重消耗热量一般在200kcal至300kcal之间,且因
人而异,这相当于体重70kg的人每天消耗2000kcal至
3200kcal;
•
3。运动引起的体重减少正比于比重,且与运动形
式有关;
•
4。为了安全与健康,每周体重减少不宜超过1.5kg,
每周吸收热量不要少于10000kcal。
• 基本模型 记第k周末体重为w(k),第k周吸收热
数学建模典型例题
数学建模典型例题暂无明显问题的段落。
一、人体重变化假设某人每天的食量为焦耳,其中基本新陈代谢消耗了5038焦耳,体育运动消耗的热量为69焦耳/(千克•天)乘以他的体重(千克)。
假设以脂肪形式贮存的热量100%有效,1千克脂肪含热量焦耳。
我们需要研究此人体重随时间变化的规律。
一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的。
假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、模型假设1.以脂肪形式贮存的热量100%有效;2.当补充能量多于消耗能量时,多余能量以脂肪形式贮存;3.假设体重的变化是一个连续函数;4.初始体重为W。
三、模型建立假设在△XXX时间内:体重的变化量为W(t+△t)-W(t);身体一天内的热量的剩余为(-5038-69*W(t));将其乘以△XXX即为一小段时间内剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(-5038-69*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/;W(0)=W;解得:69t/)5429-69W=(5429-69W)e;即:69t/)W(t)=5429/69-(5429-69W)/5429e;当t趋于无穷时,w=81.二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。
5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。
在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本aij(购入价减去折旧加上运营和维修成本)。
以千元计数aij的由下面的表给出:年2 | 年3 | 年4 | 年5 | 年6 |年1 | 46 | 5 | 9 | 7 | 6 |年2 | 12 | 11 | 8 | 8 | 20 |年3 | 16 | 13 | 11 | 10 |。
|请寻找什么时间买进和卖出汽车的最便宜的策略。
数学建模减肥计划
当维持体重ω(k)=75kg(稳定)时,我们由 (1)得到������*c-β*ω(k)=0. 得到c=63000kJ,我们由(2)式得到������*cβ1*ω(k)=0. 得到c=70560kJ。
由以上差分方程的图形得知,体重随时间 在一定范围内单调递减,所以当c=42000kJ 时,可以让人达到减肥目的。但是最后体 重会在某时刻达到极 限(即稳定)。如图
对于第二阶段,c(k)=42000kJ,所以 ω(k+1)=(1-β)ω(k)+������*42000(5) 设体重由90kg减至75kg需要n周,则由(5) 有 ω(n+10)=(1-β)^n*[ω(10)-������*42000/β]+������ *42000/β(6) ω(n+10)=75,ω(10)=90,n=19。 如图
如果该肥胖者运动,可取������*γ*t=0.003(每周 跳舞8h或骑自行车10h),记β)=(1-β1)^n*[ω(10)-������ *42000/β1]+������*42000/β1(7) 把������,β1的数据带入(7),n=14。如图
0
上式的基本性质(如:稳定点、单调性、 极限等)和模型(5)相似。
b
b
林道荣.数学实验与数学建模【M】.北京: 科学出版社,2011.
用ω(k)表示第k周某人的体重,其第k周吸收 的热量为c(k)。 不考虑运动:我们有差分方程模型为 ω(k+1)= ω(k)+������*c(k+1)- β*ω(k),k=0,1,2,3… 如果每周运动时间为t h,则 ω(k+1)= ω(k)+������*c(k+1)-(β+������*γ*t)(k), k=0,1,2,3…
数学建模论文范文免费(必备14篇)
数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。
【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。
数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。
因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。
然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。
1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。
按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。
因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。
数学建模 第一题
一、人体重变化问题重述:某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。
每天的体育运动消耗热量大约是69焦/(千克• 天)乘以他的体重(千克)。
假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。
试研究此人体重随时间变化的规律。
问题分析:人体的体重是由于脂肪的增加和减少而变化的,脂肪的增加与减少和摄入与消耗的热量有关。
设人的体重随时间变化的函数为W(t),初始体重为W(t 。
)。
且假设人的体重变化函数图像为连续平滑曲线,由△t 时间内体重W 的变化值可列出微分方程求解。
模型假设:1. 假设人体重随时间的变化是连续变化过程。
2. 多余的能量全部储存为脂肪且转化率100%。
3. 能量转化为脂肪随时进行且不需要时间。
4. 所有摄入与消耗能量均以天为单位考虑。
模型构成:1.在△t 时间内体重的变化量为W (t+△t )-W(t)。
(当△t 趋于0时代表t 时刻的体重)2.体重分为输入和输出:输入/天=10467焦/天-5038焦/天;输出/天=69焦/(千克• 天)*W(t)3.可得方程:即可得微分方程模型求解:W (0)=A利用MATLAB 解得上面的微分方程t △*4186869*t -5038-10467W(t)-)t △+t (W )(W =41868)t (*69-5429dt d W W =41868)t (*69-5429dt d W W =结果为:。
由上式可知,随着时间的增加,即当t 趋于无穷时,最终体重会趋于一个恒定的即附录Matlab 程序:1.解方程:>> Y=dsolve('Dy=(5429-69*y)/41868','y(0)=a','t')2.画图:>> y=(exp(-(23.*t)./13956).*(69.*75 - 5429))./69 + 5429./69;>> t=0:1:10000;>> plot(t,y)结果函数图像为: 695429*695429*69)(13956*23+-=e tA t W kg W 68.78695429≈=。
数学建模微分方程的应用举例
数学建模——微分方程的应用举例分布图示★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题内容要点一、衰变问题例1 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量, 则dtdx表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为.kx dtdx-= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少.解方程(8.1)得通解.ktCex -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238)的半衰期约为50亿年;通常的镭(Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21kHt H C kHt e C e hH h ==-+故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112H C e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-= (8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dt x d 当2)(*Nt x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、价格调整模型在本章第一节例3已经假设, 某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P 的单调递增函数, 商品需求量Q 是价格P 的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为P P Q bP a P S βα-=+=)(,)( (8.6)其中βα,,,b a 均为常数, 且.0,0>>βb当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格baP e +-=βα 并称e P 为均衡价格.一般地说, 当某种商品供不应求, 即Q S <时, 该商品价格要涨, 当供大于求, 即Q S >时, 该商品价格要落. 因此, 假设t 时刻的价格)(t P 的变化率与超额需求量S Q -成正比, 于是有方程)]()([P S P Q k dtdP-= 其中,0>k 用来反映价格的调整速度.将(8.6)代入方程, 可得)(P P dtdPe -=λ (8.7) 其中常数,0)(>+=k b βλ方程(8.7)的通解为t e Ce P t P λ-+=)(假设初始价格,)0(0P P =代入上式, 得,0e P P C -=于是上述价格调整模型的解为t e e e P P P t P λ--+=)()(0由于0>λ知, +∞→t 时, .)(e P t P →说明随着时间不断推延, 实际价格)(t P 将逐渐趋近均衡价格e P .四、人才分配问题模型每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t 年教师人数为),(1t x 科学技术和管理人员数目为),(2t x 又设1外教员每年平均培养α个毕业生, 每年人教育、科技和经济管理岗位退休、死亡或调出人员的比率为βδδ),10(<<表示每年大学生毕业生中从事教师职业所占比率),10(<<δ于是有方程111x x dt dx δαβ-= (8.8) 212)1(x x dtdx δβα--= (8.9) 方程(8.8)有通解t e C x )(11δαβ-=(8.10)若设,)0(101x x =则,101x C =于是得特解te x x )(101δαβ-= (8.11)将(8.11)代入(8.9)方程变为tex x dtdx )(1022)1(δαββαδ--=+ (8.12) 求解方程(8.12)得通解t te x eC x )(122)1(δαβδββ---+= (8.13)若设,)0(202x x =则,110202x x C ⎪⎪⎭⎫⎝⎛--=ββ于是得特解 tt ex e x x x )(101020211δαβδββββ--⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--= (8.14) (8.11)式和(8.14)式分别表示在初始人数分别为)0(),0(21x x 情况, 对应于β的取值, 在t 年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取,1=β即毕业生全部留在教育界, 则当∞→t 时, 由于,δα>必有+∞→)(1t x 而,0)(2→t x 说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将β接近于零. 则,0)(1→t x 同时也导致,0)(2→t x 说明如果不保证适当比例的毕业生充实教师选择好比率β, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.五、追迹问题设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走; 甲从乙的左侧O 点出发, 始终对准乙以)1(0>n mv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻t , 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是有,1tan 0xyt v y --='=θ (8.15) 由题设, 曲线的弧长OP 为,1002t nv dx y x='+⎰解出t v 0代入(8.15), 得.11)1(02⎰'+=+'-x dx y ny y x 两边对x 求导, 整理得.11)1(2y ny x '+=''- 这就是追迹问题的数学模型.这是一个不显含y 的可降阶的方程, 设p y x p y ''=''='),(, 代入方程得211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分, 得|,|ln |1|ln 1)1ln(12C x np p +--=++即 .1112nxC p p -=++ 将初始条件00||==='x x p y 代入上式, 得.11=C 于是,1112nxy y -='++' (8.16) 两边同乘,12y y '+-'并化简得,112n x y y --='+-' (8.17)(8.16)与(8.17)式相加, 得,11121⎪⎭⎫ ⎝⎛---='n n x x y两边积分, 得.)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+-代入初始条件0|0==x y 得,122-=n nC 故所求追迹曲线方程为 ),1(11)1(1)1(2211>-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=-+n n n n x n x n y n n n n甲追到乙时, 即曲线上点P 的横坐标,1=x 此时.12-=n n y 即乙行走至离A 点12-n n个单位距离时被甲追到.。
数学建模 减肥模型
有一人体重110kg,身高180cm,制定减肥计划使其BMI降到25以下目前人们公认的评测体重的标准是联合国世界卫生组织颁布的体重指数BMI,定义为BMI=h/L^2其中h是体重(单位是kg),L是身高(单位是m)。
模型分析:在正常情况下,人体通过食物摄入的热量与代谢和运动消耗的热量会影响体重的变化,摄入的热量大于消耗的热量会使人增肥,反之会使人体重降低,因此需要从人体对热量的吸收与消耗两方面进行分析,在适当的假设下建立模型,减肥计划应以不伤害人体健康为目标,所以吸收热量不应过少减重体重不要过快来限制,同时增大运动量也是减肥的关键,也应加以考虑,通常,制定减肥计划以周为时间单位比较方便,所以这里用离散时间模型——差分方程来讨论。
模型假设:根据上述分析,参考有关生理数据,做出以下假设:1、体重增加正比于吸收的热量,平均每8000kcal增加体重1kg。
(kcal是非国际单位制单位,1kcal=4.5kJ);2、身体正常代谢引起的体重减少正比于体重,每周每千克体重消耗热量一般在200kcal至320kcal之间,且因人而异,这相当于体重110kg的人每天消耗约3413kcal至5029kcal之间;3、运动引起的体重减少正比于体重,且与运动形式和运动时间有关;4、为了健康考虑,每周吸收热量不能少于10 000kcal,且每周减少量不能超过1 000kcal每周体重减少不能超过1kg;5、假设此人身体健康,没有肠胃方面的毛病;通过调查资料得知各种食物的每百克所含的大卡热量供参考(假设食物重量如表中一样重),如下表基本模型:记第k周(初)体重为w(k)(kg),第k周吸收热量为c(k)(kcal),k=1,2,……。
设热量转换(体重的)系数为α,身体代谢消耗系数为β,根据模型假设,正常情况下(不考虑运动)体重变化的基本方程为α(1)wk(k)1kcwβkw(k-+=⋯⋯)=()(+,2,1),由假设1,α=1/8000kg/kcal,当确定了个人的代谢消耗系数β后,就可按照(1)式由每周吸收的热量c(k)推导出他的体重w(k)的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模_微分方程之减肥问题(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--摘要:在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,在研究能量与运动之间的关系时,得到直接关系,就得求微分方程。
本文利用了微分方程模型求解实际问题,根据基本规律写出了平衡关系式,再利用一定的转换条件进行转化为简单明了的式子,求解出结果,对于第一问,利用微分方程反解出时间t(天),从而得到每个人达到自己理想目标的天数,同理,对于第二和第三问,利用以上方法,加上运动所消耗的能量,也可得出确切的时间,和所要保持体重所消耗的能量。
【关键字】:微分方程转化能量转换系数1.问题重述现有五个人,身高、体重和BMI指数分别入下表一所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去:表一题目要求如下:(1)在基本不运动的情况下安排计划,,每天吸收的热量保持下限,减肥达到目标;(2)若是加快进程,增加运动,重新安排计划,经过调差资料得到以下各项运动每小时每kg 体重的消耗的热量入下表二所示:表二(3)给出达到目标后维持体重的方案。
2. 问题的背景与分析随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题,为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在至25为正常,大于25为超重,超过30则为肥胖,据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24.,30改为29。
无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现.不少自感肥胖的人加入了减肥的行列,盲目的减肥,使得人们感到不理想,如何对待减肥问题,不妨通过组建模型,从数学的角度,对有关的规律作一些探讨和分析。
根据背景知识,我们知道任何人通过饮食摄取的能量不能低于用于维持人体正常生理功能所需要的能量,因此作为人体体重极限值的减肥效果指标一定存在一个下限1ω,当1*ωω<时表明能量的摄入过低并致使维持他本人正常的生理功能的所需,这是减肥所得到的结果不能认为是有效的,它将危机人的身体健康,是危险的,称1ω为减肥的临界指标,另外,人们认为减肥所采取的各种体力运动对能量的消耗也有一个所能承受的范围,记为0<R<1R ,为三个区域A,B,C 这表明减肥的效果是由控制饮食和增加消耗综合作用,相互协调的结果。
A 区域表明能量的摄取量高于体重0ω时的摄入量A ,这是体重不会从0ω减少,称之为非减肥区,C 区为危险区,B 区为有效减肥区,可以看到单一的减肥措施达不到减肥效果。
3. 模型的假设与符号说明模型假设:(1)人体的脂肪是能量的主要储存和提供方式,而且也是减肥的主要目标,因为对于一个成年人来说体重主要由四部分组成,包括骨骼、肌肉、水和脂肪。
骨骼,肌肉和水大体上可以认为是不变的,所以不妨以人体的脂肪的重量作为体重的标志,已知脂肪的转化率为100%,每千克的脂肪可以转化为8000kcal 的能量(kcal 为非际单位制单位)。
(2)忽略个体间的差异(年龄、性别、健康状况等)对减肥的影响,人体的体重仅仅看成时间t 的函数w (t )(3)由于体重的增加或减少都是一个渐变的过程,所以w (t )是连续而且是光滑的;(4)运动引起的体重减少成正比于体重;(5)正常代谢引起的减少正比于体重,每人每千克体重消耗热量一般为~,且因人而异(6)人体每天摄入量是一定的,为了安全和健康,每天吸收热量不要小于1429kcal符号说明:D ;脂肪的能量转化系数W (t ):人体的体重关于时间的t 的函数。
r :每千克体重每小时运动所消耗的能量(kcal/kg )/h b :每千克体重每小时所消耗的能量(kcal/kg )/h0A :每天摄入的能量W1: 五个人理想的体重目标向量 A :五个人每天分别摄入的能量 W :五个人减肥前的体重B :每人每天每千克体重基础代谢的能量消耗4.问题分析如果以1天为时间的计量单位,于是每天基础代谢的能量消耗量应为B=24b (kcal/d ),由于人的某种运动一般不会是全天候的,不妨假设每天运动h 小时,则每天由于运动所消耗的能量应为R=rh(kcal/d),在时间段(t,t+t ∆)内能量的变化基本规律为:t ]t R B -[A (t)]D -t)(t [∆+=∆+)()(ωωω取0t →∆,可得0d a d dtωωωω⎧=-⎪⎨⎪⎩,(0)= (1) 其中a=A/D,d=(B+R)/D,t=0(模型开始考察时刻),即减肥问题的数学模型模型求解有dt dt 0a t e e dωω--()=+(1-) (2)利用此方法可求解出每个人要达到自己的理想体重的天数。
5.模型的建立(1)首先确定此人每天每千克体重基础代谢的能量消耗B ,因为没有运动,所以有R=0,根据式(2)式,得WA =B 从而得到每人每天每千克体重基础代谢的能量消耗。
从假设(5)可知,这些人普遍属于代谢消耗相当弱的人,加上吃得比较多,有没有运动,所以会长胖,进一步,由W(t)(五人的理想体重),W (五人减肥前的体重),D=8000kcal/kg (脂肪的能量转换系数)根据式(2)式有AB AB lnB D a/d a/d ln d 1t 00---=---=ωωωω 将A (五个人每天分别摄入的能量)的值代入上式时,就会得出五个人要达到自己的理想体重时的天数,如下表所示表三(2)为加快进程,增加运动,结合调查资料得到以下各项运动每小时每kg 体重消耗的热量表:由假设(4)可知,表中热量消耗为r ,取h=1h ,R=rh=r ,根据式(2)式有AR B AR B R B D d a d a d t -+-++-=---=)()(ln//ln 100ωωωω 将A (五个人每天分别摄入的能量)的值代入时,取不同的r ,得到一组数据, 在运动的情况下,我们选取的是一个小时,得到了每个人在不同运动强度下,要达到自己的理想目标所需的天数,如下表所示:表四(3)要使体重稳定在一个定值,则有RB A*+=ω 根据自己的不同理想目标和B (每人每天每千克体重基础代谢的能量消耗),在不同小时下的能量消耗表:(1) 在h=1的情况下运动所消耗的能量,如下表:表五(2)在h=2的情况下运动所消耗的能量,如下表:表六6.模型的分析与讨论(1)从上几个表可知,普遍观察得出结论,游泳是减肥的最佳方法,无论是在长时间还是短时间内,从结果来看,游泳消耗的能量是最多的,也是达到快速减肥的最佳方法,也可从下图可知,图一表示每个人的能量消耗图,都是离散的,并且都是递增的,表明了游泳时能量消耗最快的,选此方法减肥是最合理有效的。
图一2468200025003000第一个人246820002500第二个人2468200025003000第三个人2468200025003000第四个人2468200025003000第五个人(2)在式(2)中假设a=0,即假设停止进食,无任何能量摄入。
于是有-dt 0e t ωω=)( 或dte t -=ωω)( 这表明在t 时刻保存的体重占初始体重的百分率由dt e -给出,称为(0,t )时间内的体重保存率,特别当t=1时,d e -给出了单位时间内体重的消耗率,它表明在(0,t )时间内体重的消耗率,它表明在(0,t )内体重减少的百分率,可见这种情况下体重的变化完全是体内脂肪的消耗而产生的,如此继续下去,由0t lim t =∞→)(ω,即体重(脂肪)将消耗殆尽,可知不进食的节食减肥方法是危险的。
(3)a/d 是模型中的一个重要的参数,由于a=A/D 表示由于能量的摄入而增加的体重,而d=(B+R )/D 表示由于能量的消耗而失掉的体重,于是a/d 就表示摄取能量而获得的补充量,综合以上的分析可知,t 时刻的体重由两部分构成,一部分是初始体重中由于能量消耗而被保存下来的部分.另一部分是摄取能量而获得的补充部分,这一解释从直观上理解也是合理的. (4)由式0dtd <ω即ω<a/d ,体重从0ω递减,这是减肥产生效果,另外由式可以看到∞→t 时R)A/(B a/d (t)*+==→ωω,也就是说式的解渐进稳定于a/d *=ω,它给出了减肥过程的最终结果,因此不妨称*ω为减肥效果指标,由R)A/(B *+=ω,因为B 是基础代谢的能量消耗,它不能作为减肥的措施随着每个人的意愿进行改变,对于每个人可以认为它是一个常数(非常数,即通过调整新城代谢的方法来减肥),于是就有如下结论:减肥的效果主要是由两个因素控制的,包括由于进食而摄入的能量以及由于运动消耗的能量,从而减肥的两个重要措施就是控制饮食和增加运动量,这恰是人们对减肥的认识。
人体体重的变化时有规律可循的,减肥也应科学化,定量化,这个模型虽然只是揭示了饮食和锻炼这两个主要因素与减肥的关系,但它们对人们走出盲区减肥的误区,从事减肥活动有一定的参考价值。
7.参考文献[1] 王敏生 王庚, 现代数学建模方法, 北京,科学出版社 2006[2] 罗万成,大学生数学建模案例精选,成都,西南交通大学出版社,2007年。
[3] 戴朝寿等,数学建模简明教程,北京,高等教育出版社,2007年。
[4] 江世宏,MATLAB 语言与数学实验,北京,科学出版社,2007年。
[5]胡良剑 孙晓君 matlab 数学实验, 北京, 高等教育出版社,附录:Matlab程序%(1)在不运动的情况下clearR=0;D=8000;%能量转换系数A0=1429; %每天吸收热量的下限W1=[75 80 80 85 90]; %理想的体重目标A=[2857 2543 2734 2689 2776];%每人每天摄入的能量W=[100 112 113 114 124];%每人的体重n=length(W);B=A./W %每人每天每千克体重基础代谢的能量消耗a=A./D %系数d=(B+R)./D %系数for i=1:nt(i)=-(D/B(i))*log((W1(i)*B(i)-A0)/(W(i)*B(i)-A0)); %减肥所需要的时间endt%(2)在做适当的运动的情况下h=1;r=[ ];R=h.*r;n1=length(R);D=8000;%能量转换系数A0=1429; %每天吸收热量的下限W1=[75 80 80 85 90]; %理想的体重目标A=[2857 2543 2734 2689 2776];%每人每天摄入的能量W=[100 112 113 114 124];%每人的体重n=length(W);B=A./W; %每人每天每千克体重基础代谢的能量消耗for j=1:n1for i=1:nt(i,j)=-(D./(B(i)+R(j))*log((W1(i).*(B(i)+R(j))-A0)./(W(i).*(B(i)+R(j))-A0)));%减肥所需要的时间endendt %每行所代表的是每个人所对应的不同运动所需的天数%(3)在体重稳定的情况下h=[1 2]';r=[ ];R=h*r;[m,n]=size(R);D=8000;%能量转换系数A0=1429; %每天吸收热量的下限W1=[75 80 80 85 90]; %理想的体重目标A=[2857 2543 2734 2689 2776];%每人每天摄入的能量W=[100 112 113 114 124];%每人的体重n1=length(W);B=A./W; %每人每天每千克体重基础代谢的能量消耗for j=1:nfor i=1:n1A1(i,j)=W1(i).*(B(i)+R(1,j)); % 在体重稳定的情况下 A2(i,j)=W1(i).*(B(i)+R(2,j));endendA1 %在h=1的时间下运动所消耗的能量A2 %在h=2的时间下运动所消耗的能量%图形程序x=[ ];y=[];subplot(3,2,1);plot(x,y(1,:),'g*');title('第一个人');subplot(3,2,2); plot(x,y(2,:),'ro'); title('第二个人'); subplot(3,2,3); plot(x,y(3,:),'g.'); title('第三个人'); subplot(3,2,4); plot(x,y(4,:),'c+'); title('第四个人'); subplot(3,2,5); plot(x,y(5,:),'go'); title('第五个人');。