平面弯曲及梁的基本分类
合集下载
直梁的弯曲
MC,MA的坐标相连,画出 抛物线;再以直线MA,MD左 和MD右,MB的坐标,可得 全梁的弯矩图图c所示。 由图可见,在D稍右处横
截面上有绝对值最大的弯 矩,其值为
M 15kN m max
例题分析
例题4-1:管道托架如图所示,如AB长为l,作用在其上的 管道重P1与P2,单位为kN,a、b、l以m计。托架可简化 为悬臂梁,试画出它的弯矩图。
例题分析
例题4-2:卧式容器可以简化为受均布载荷的外伸梁,如图 所示受均布载荷q作用的筒体总长L,试作出其弯矩图,并 讨论支座放在什么位置使设备的受力情况最好。
解:(1)共分三个受力段, 如图建立坐标系yAx.
(2)求支座反力RC、RD RC=RD =0.5qL
例题分析
(3)列弯矩方程,画弯矩图
例题分析
解:共分为三个受力段,取 梁左端A为坐标原点,建立 坐标系,如图:
•分段列弯矩方程,画弯矩图:
M1=0 (0≤x1 ≤ a)
M
M2=-P1 (x2 -a)
(a ≤ x2 ≤ b)
M3=-P1 (x3 -a) -P2 (x3 -b)
(b ≤ x3 ≤ l)
x
x
-
-P1 (b -a) -P1 (l -a) -P2 (l -b)
bh2
IZ 12
WZ 6
IZ
D 4
64
(1
4)
WZ
D3
32
(1
4)
截面几何量Iz 与Wz
其它截面形状的Iz 和Wz(参见表4-2)
对各种型钢,Iz 和Wz值可从有关材料手册中查到
❖结论:1)梁在弯矩相同的截面上, Iz 和Wz值 越大, σmax越小,因此设计梁的截面形状时,要 尽量使Iz 和Wz值大; 2)梁在弯矩相同的截面上, Iz和Iy可能不同,Wz 和Wy可能不同,因此若将梁沿轴向转90º,其承载 能力不同。
截面上有绝对值最大的弯 矩,其值为
M 15kN m max
例题分析
例题4-1:管道托架如图所示,如AB长为l,作用在其上的 管道重P1与P2,单位为kN,a、b、l以m计。托架可简化 为悬臂梁,试画出它的弯矩图。
例题分析
例题4-2:卧式容器可以简化为受均布载荷的外伸梁,如图 所示受均布载荷q作用的筒体总长L,试作出其弯矩图,并 讨论支座放在什么位置使设备的受力情况最好。
解:(1)共分三个受力段, 如图建立坐标系yAx.
(2)求支座反力RC、RD RC=RD =0.5qL
例题分析
(3)列弯矩方程,画弯矩图
例题分析
解:共分为三个受力段,取 梁左端A为坐标原点,建立 坐标系,如图:
•分段列弯矩方程,画弯矩图:
M1=0 (0≤x1 ≤ a)
M
M2=-P1 (x2 -a)
(a ≤ x2 ≤ b)
M3=-P1 (x3 -a) -P2 (x3 -b)
(b ≤ x3 ≤ l)
x
x
-
-P1 (b -a) -P1 (l -a) -P2 (l -b)
bh2
IZ 12
WZ 6
IZ
D 4
64
(1
4)
WZ
D3
32
(1
4)
截面几何量Iz 与Wz
其它截面形状的Iz 和Wz(参见表4-2)
对各种型钢,Iz 和Wz值可从有关材料手册中查到
❖结论:1)梁在弯矩相同的截面上, Iz 和Wz值 越大, σmax越小,因此设计梁的截面形状时,要 尽量使Iz 和Wz值大; 2)梁在弯矩相同的截面上, Iz和Iy可能不同,Wz 和Wy可能不同,因此若将梁沿轴向转90º,其承载 能力不同。
材料力学——4梁的弯曲内力
21
例题1 图所示,悬臂梁受集中力F作用, 试作此梁的剪力图和弯矩图 解: 1.列剪力方程和弯矩方程
FQ ( x) F
(0<x<l ) (0≤x<l)
M ( x) Fx
2.作剪力图和弯矩图 由剪力图和弯矩图可知:
FQ M
max max
F Fl
22
例题 2简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。 解:1.求约束反力 由对称关系,可得: 1 FAy FBy ql 2 2.列剪力方程和弯矩方程
Q2 Q1– Q2=P
x
x
梁的内力计算的两个规律:
(1)梁横截面上的剪力FQ,在数值上等于该截 面一侧(左侧或右侧)所有外力在与截面平行方 向投影的代数和。即:
FQ
F
yi
若外力使选取研究对象绕所求截面产生顺时针 方向转动趋势时,等式右边取正号;反之,取 负号。此规律可简化记为“顺转剪力为正”, 或“左上,右下剪力为正”。相反为负。
12
二、例题
[例1]:求图(a)所示梁1--1、2--2截面处的内力。 q 2 解:截面法求内力。 qL 1 1--1截面处截取的分离体 1 a y qL A M1 x1 Q1 图(b) 2 b 如图(b)示。
x
图(a)
Y qL Q1 0 Q1 qL
mA( Fi ) qLx1 M1 0 M1 qLx1
作梁的剪力图 FQB右=4kN/m×2m=8kN,FQD=0
34
35
27
3. 弯矩图与剪力图的关系
(1)任一截面处弯矩图切线的斜率等于该截面 上的剪力。 (2) 当FQ图为斜直线时,对应梁段的M图为二 次抛物线。当FQ图为平行于x轴的直线时,M图 为斜直线。
梁的弯曲
MB 0
MA 0
FAy= - M / l FBy= M / l
(2)列剪力方程和弯矩方程
弯曲内力
A
FAy= - M / l
a
x1 l
b B
C x2
FBy= M / l
AC段:距A端为x1的任意截面1-1以左研究
V x1=FAy M / l 0 x1 a M x1=FAyx1 Mx1 / l 0 x1 a
剪力和弯矩一般是随横截面的位置而变化的。横截面 沿梁轴线的位置用横坐标x表示,则梁内各横截面上的剪 力和弯矩就都可以表示为坐标x的函数,即
V=V(x)和 M=M(x) 以上两函数分别称为梁的剪力方程和弯矩方程。
弯曲内力
二、剪力图和弯矩图
为了形象地表明沿梁轴线各横截面上剪力和弯矩的变 化情况,通常将剪力和弯矩在全梁范围内变化的规律用图 形来表示,这种图形称为剪力图和弯矩图。
FBy
弯曲内力
总结与提示
截面法是求内力的基本方法。 (1) 用截面法求梁的内力时,可取截面任一侧研究,但 为了简化计算,通常取外力比较少的一侧来研究。 (2) 作所取隔离体的受力图时,在切开的截面上,未知 的剪力和弯矩通常均按正方向假定。 (3) 在列梁段的静力平衡方程时,要把剪力、弯矩当作 隔离体上的外力来看待,因此,平衡方程中剪力、弯矩的 正负号应按静力计算的习惯而定,不要与剪力、弯矩本身 的正、负号相混淆。
弯曲内力
q>0
弯曲内力
FQ=0截面
弯曲内力
三、应用规律绘制梁的剪力图和弯矩图
用规律作剪力图和弯矩图的步骤 (1) 求支座反力。 对于悬臂梁由于其一端为自由端,所以可以不求支 座反力。 (2) 将梁进行分段 梁的端截面、集中力、集中力偶的作用截面、分布 荷载的起止截面都是梁分段时的界线截面。 (3) 由各梁段上的荷载情况,根据规律确定其对应的 剪力图和弯矩图的形状。 (4) 确定控制截面,求控制截面的剪力值、弯矩值, 并作图。
平面弯曲的概念
3-2 直梁弯曲时的内力分析
解: 1、先求支座反力: 1)A处支座反力为:
Pb RA l
2)B处支座反力为:
Pa RB l
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-2 直梁弯曲时的内力分析
2、作剪力图: 1)AC段梁的剪力方程为:
Pb Q1 l
(0 x1 a)
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-2 直梁弯曲时的内力分析
2、内力符号规定: 1)剪力: 横截面上的剪力Q使该截面的邻近 微段有作顺时针转动趋势时取正号;有 反时针转动趋势时取负号。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-2 直梁弯曲时的内力分析
3-3纯弯曲时梁横截面上的正应力
二、 弯曲变形与应力的关系 1、纵向纤维的线应变:
bb O O
OO
( y)d d d
3-1 平面弯曲的概念
1、弯曲:当杆件受到垂直于杆轴线的外 力(即横向力)或力偶作用时,杆的轴线 由直线变成曲线的变形。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-1 平面弯曲的概念
2、梁:以弯曲变形为主的杆件。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-1 平面弯曲的概念
6、梁的类型: 梁根据约束有以下三种基本类型: 1)简支梁 2)外伸梁 3)悬臂梁 (注:以上梁都为静定梁)
2008.9~2009.1
梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)
6kN
1
2
q 2kN m
3
4
5
B
1 2 3 4 5
2m
A
3m
C
3m
FA 13kN
FB 5kN
例题
4.5
为使在锯开处两端面的开裂最小,应使锯口处的 弯矩为零,木料放在两只锯木架上,一只锯木架 放置在木料的一端,试问另一只锯木架放置何处 才能使木料锯口处的弯矩为零。
q
B
A
C
D
MD 0
MD 0
※
剪力和弯矩的计算规则
梁任意横截面上的剪力,等于作用在该截面左边 (或右边)梁上所有横向外力的代数和。截面左 边向上的外力(右边向下的外力)使截面产生正的 剪力,反之相反。【左上右下为正,反之为负】 梁任意横截面上的弯矩,等于作用在该截面左 边(或右边)所有外力(包括外力偶)对该截面 形心之矩的代数和。截面左边(或右边)向上的 外力使截面产生正弯矩,反之相反。【左顺右逆 为正,反之为负】
2m
FB 2kN 1m
7
kN
3 3
x 1.56
2 2
kNm
2.44
2
例题
4.12
4kN m
6kN
2kN m
4.5
4.5
1m
1m
2m
5.5
kN 1.5
5.5
4
8.5 7
kNm
例题
4.13
80 kN m
A
160 kN
D E
40kN m
B
40 kN
F
C
310 kN 2m
120
30
190
D
FD
MA
梁的弯曲(工程力学课件)
02 弯曲的内力—弯矩与剪力
3-3截面
M 3 q 2a a 2qa 2
4-4截面
qa 2
5qa 2
2
M 4 FB 2a M C
3qa
2
2
5-5截面
qa 2
M 5 FB 2a
2
02 弯曲的内力—弯矩与剪力
由以上计算结果可以看出:
(1)集中力作用处的两侧临近截面的弯矩相同,剪力不同,说明剪力在
后逐段画出梁的剪力图和弯矩图。
04 弯矩、剪力与载荷集度之间的关系
例8 悬臂梁AB只在自由端受集中力F作用,如图(a)所示,
试作梁的剪力图和弯矩图。
解:
1-1截面: Q1=-F M1=0
2-2截面: Q1=-F M1=-Fl
04 弯矩、剪力与载荷集度之间的关系
例9 简支梁AB在C点处受集中力F作用,如图(a)所示,作此梁的剪力
(2)建立剪力方程和弯矩方程;
(3)应用函数作图法画出剪力Q(x),弯矩M(x)的图线,即为剪力
图和弯矩图
03 弯矩图和剪力图
例9.3 悬臂梁AB在自由端B处受集中载荷F作用,如图(a)所示,试作
其剪力图和弯矩图。
解 :(1)建立剪力方程和弯矩方程
() = ( < < )
() = −( − ) ( ≤ ≤ )
方程和弯矩方程,并作剪力图和弯矩图。
解:(1)求支反力
(2)建立剪力方程和弯矩方程
03 弯矩图和剪力图
(3)绘制剪力图、弯矩图
计算下列5个截面的弯矩值:
03 弯矩图和剪力图
二、用简便方法画剪力图、弯矩图 (从梁的左端做起)
1.无载荷作用的梁段上 剪力图为水平线。 弯矩图为斜直线(两点式画图)。
工程力学第八章 梁的平面弯曲
在中性轴上,y=0,则正应力σ为零。
③静力平衡关系
空间平行力系的简化
N=∫AσdA My=∫AzσdA Mz=∫AyσdA ∵是纯弯曲
∴∑X=0 N=∫AσdA=0 ∑My=0 My=∫AzσdA=0 又∵∫AσdA=-Ε/ρ∫AydA ∴∫AydA=0 ∫AydA=Sz是横截面对Z轴(中性轴)的静面积
A
B
Q(x) + -
M(x)
+
④在集中力偶作用处,弯矩图将发生突
变,突变值等于集中力偶矩的大小;当
集中力偶顺时针作用时,弯矩图向上跳
跃(沿x方向),当集中力偶逆时针作用
时,弯矩图向下跳跃(沿x方向)。
M
A
C
B
Q(x)
-
M/L
Mb/L
M(x)
+
Ma/L
⑤若在梁的某一截面上Q(x)=0,亦即弯
=[(ρ+|y|)dψ-ρdψ]/ ρdψ
=|y|/ρ 这表明纵向纤维的线应变与它到中性层的距离
成正比。 ∵ε与y的符号相反 ∴ε=- y/ρ
②物理关系
当应力不超过材料的比例极限时,材料 符合虎克定律,σ=E·ε,将ε代入得σ=- E y/ρ
表明,横截面上任意点处的正应力σ与该 点到中性轴的距离成正比,即沿截面高 度,正应力呈线形分布。
危险截面上下边缘处的点叫危险点。 弯曲强度条件:
σmax= Mmax/ WZ≤[σ]
对于拉压许用应力不同的材料,其强度
条件应同时满足:
σmax拉≤[σ拉]
σmax压≤[σ压]
弯矩图: 没有载荷斜直线, 均布载荷抛物线, 集中载荷有尖点, 力偶载荷有突变。
③静力平衡关系
空间平行力系的简化
N=∫AσdA My=∫AzσdA Mz=∫AyσdA ∵是纯弯曲
∴∑X=0 N=∫AσdA=0 ∑My=0 My=∫AzσdA=0 又∵∫AσdA=-Ε/ρ∫AydA ∴∫AydA=0 ∫AydA=Sz是横截面对Z轴(中性轴)的静面积
A
B
Q(x) + -
M(x)
+
④在集中力偶作用处,弯矩图将发生突
变,突变值等于集中力偶矩的大小;当
集中力偶顺时针作用时,弯矩图向上跳
跃(沿x方向),当集中力偶逆时针作用
时,弯矩图向下跳跃(沿x方向)。
M
A
C
B
Q(x)
-
M/L
Mb/L
M(x)
+
Ma/L
⑤若在梁的某一截面上Q(x)=0,亦即弯
=[(ρ+|y|)dψ-ρdψ]/ ρdψ
=|y|/ρ 这表明纵向纤维的线应变与它到中性层的距离
成正比。 ∵ε与y的符号相反 ∴ε=- y/ρ
②物理关系
当应力不超过材料的比例极限时,材料 符合虎克定律,σ=E·ε,将ε代入得σ=- E y/ρ
表明,横截面上任意点处的正应力σ与该 点到中性轴的距离成正比,即沿截面高 度,正应力呈线形分布。
危险截面上下边缘处的点叫危险点。 弯曲强度条件:
σmax= Mmax/ WZ≤[σ]
对于拉压许用应力不同的材料,其强度
条件应同时满足:
σmax拉≤[σ拉]
σmax压≤[σ压]
弯矩图: 没有载荷斜直线, 均布载荷抛物线, 集中载荷有尖点, 力偶载荷有突变。
平面弯曲1(内力及内力图)
1
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l
工程力学19 平面弯曲和梁的类型
阳台的挑梁
工 程力 学
ENGINEERING MECHANICS
二、弯曲的概念
1. 弯曲(bending): 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴 线变成了曲线,这种变形称为弯曲。
2. 梁:以弯曲变形为主的构件通常 称为梁(ECHANICS
工 程力 学
ENGINEERING MECHANICS
平面弯曲和梁的类型
工 程力 学
ENGINEERING MECHANICS
一、工程中的弯曲构件
工厂厂房的吊车大梁:
工 程力 学
ENGINEERING MECHANICS
火车的轮轴:
工 程力 学
ENGINEERING MECHANICS
楼房的横梁
(1)活动支座
(2)固定铰支座
(3)固定端
工 程力 学
ENGINEERING MECHANICS
2. 静定梁的基本形式
悬臂梁
简支梁
外伸梁
工 程力 学
ENGINEERING MECHANICS
谢 谢 观 赏!
3、 平面弯曲(plane bending):杆发生弯曲变形后,轴线仍然和外力 在同一平面内。
对称弯曲(如下图)—— 平面弯曲的特例。
工 程力 学
ENGINEERING MECHANICS
特点:构件的几何形状、材料性能和外力作用均对称于杆件的纵对称面
工 程力 学
ENGINEERING MECHANICS
纵向对称面
A
P1
P2
梁的轴线
B
RA
RB
梁变形后的轴线
与外力在同一平
面内
工 程力 学
ENGINEERING MECHANICS
《材料力学 第2版》_顾晓勤第06章第1节 梁的计算简图
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
弯曲变形:当杆件受到垂直于轴线的外力作用或受 到作用面平行于轴线的外力偶作用时,杆件的轴线 会由直线变为曲线,这种变形称弯曲变形。
梁:以弯曲变形为主的杆件称作梁。
直梁:工程中常见的轴线是直线的梁。
平面弯曲:若梁的外 力及支座反力都作用 在纵向对称面内,则 梁弯曲时轴线将变成 此平面内的一条平面 曲线,该弯曲变形称 为平面弯曲。
第 1 节 梁的计算简图
第六章 梁弯曲时内力和应力
二、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力 F。单位 为牛顿(N)或千牛顿(kN)。
2)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载
荷 q。其大小用载荷集度表
示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
3)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶 M。单位为牛 顿·米(N·m)或千牛顿·米(kN·m)。
第 1 节 梁的计算简图 三、静定梁的基本形式
第六章 梁弯曲时内力和应力
静定梁:在平面弯曲情况下,作用在梁上的外力 (包括载荷和支反力)是一个平面力系。当梁上 只有三个支反力时,可由平面力系的三个静力平 衡方程将它们求出,这种梁称为静定梁。
1、悬臂梁:梁的一端自由, 另一端是固定支座。
第 1 节 梁的计算简图
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
第 1 节 梁的计第算六简章图梁弯曲时内第力六和章 应梁力弯曲时内力和应力
弯曲变形:当杆件受到垂直于轴线的外力作用或受 到作用面平行于轴线的外力偶作用时,杆件的轴线 会由直线变为曲线,这种变形称弯曲变形。
梁:以弯曲变形为主的杆件称作梁。
直梁:工程中常见的轴线是直线的梁。
平面弯曲:若梁的外 力及支座反力都作用 在纵向对称面内,则 梁弯曲时轴线将变成 此平面内的一条平面 曲线,该弯曲变形称 为平面弯曲。
第 1 节 梁的计算简图
第六章 梁弯曲时内力和应力
二、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力 F。单位 为牛顿(N)或千牛顿(kN)。
2)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载
荷 q。其大小用载荷集度表
示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
3)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶 M。单位为牛 顿·米(N·m)或千牛顿·米(kN·m)。
第 1 节 梁的计算简图 三、静定梁的基本形式
第六章 梁弯曲时内力和应力
静定梁:在平面弯曲情况下,作用在梁上的外力 (包括载荷和支反力)是一个平面力系。当梁上 只有三个支反力时,可由平面力系的三个静力平 衡方程将它们求出,这种梁称为静定梁。
1、悬臂梁:梁的一端自由, 另一端是固定支座。
第 1 节 梁的计算简图
第九章 梁的平面弯曲
x
左顺右逆,M为正
M
FQ
M
内力 右截面正向 左截面正向 FQ M
微段变形(正)
顺时针错动 向上凹
内力图
剪力图—以杆件轴线为基线,Q为纵坐标,作出的反映Q沿
杆件轴线的变化规律的曲线
弯矩图—以杆件轴线为基线,M为纵坐标,作出的反映M 沿杆件轴线的变化规律的曲线
内力图作法:
以坐标x表示横截面的位置,通过平衡方程求出内力与x 的关系,称为内力方程,根据内力方程作图
FAy q M0 M3
0 x3 B C c FQ3
Fy=FAy-4q-FQ2=0 FQ2=13kN
Mc(F )=M2+4q(x2-2)-FAyx2=0 M2=13x2+72(kN•m)
CD段: 6mx3<8m FQ3=13kN; M3=13x3+24(kN•m)
FAy q M0 F M4 DE段: 8mx4<12m
内力与外力的相依关系
某一截面上的内力与作用在该截 面一侧局部杆件上的外力相平衡;
在载荷无突变的一段杆的各截 面上内力按相同的规律变化;
控制截面的概念: 外力规律发生变化的截面—集中力、集中力偶作用点、分 布载荷的起点和终点处的横截面,支座
。
截面法,确定各段Q、M 分布规律,以此列出各 段的内力方程(剪力方程、弯矩方程)。以此 作出剪力图和弯矩图。
q
A
FA
FQ qa
2a
B
2L
FB
qa
q(L-a) q(L-a)
M
qLa-qL2/2
q(L-a)2/2
根据给定的剪力图和弯矩图能否确定梁的受
力,能否确定梁的支承性质与支承位置?由给
平面弯曲的概念
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-3纯弯曲时梁横截面上的正应力
3)纵向纤维的变形(伸长或缩短)与 它到中性层的距离有关,在横截面的同 一高度处,梁的纵向纤维的变形是相同 的,与它在横截面宽度上的位置无关。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-1 平面弯曲的概念
3、纵向对称平面:
工程上常见的梁,其横截面都具有一根 对称轴y。
纵向对称面—由对称轴和梁的轴线组成 的平面。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-1 平面弯曲的概念
4、平面弯曲: 梁由直线在纵向对称平面内变成曲线的弯
曲。 5、载荷分类:
作用在梁上的载荷一般可分为三种: 1)集中载荷(KN,N) 2)分布载荷(N/m) 3)集中力偶(N·m,KN·m)
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
例
解: (1)求支座反力,画弯矩图。
RA 3kN RB 11kN
M B 4kN m
M c 3kN m
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
2)CB段梁的剪力方程为:
Pa Q2 l
(a x2 l)
3)剪力图:见右图。
2008.9~2009.1
第三章 直梁的弯曲——《化工设备设计基础》
3-2 直梁弯曲时的内力分析
3、作弯矩图: 1)AC段梁的弯矩方程为:
M1
Pb l
x1
(0 x1 a)
2)CB段梁的弯矩方程为:
第六章:梁弯曲时的内力和应力
FS FS (x) M M (x)
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。
第7章 平面弯曲《建筑力学》教学课件
坐标系。
列
方
当梁上同时作用着多个荷载时,剪力和弯矩 程
与截面位置间的关系发生变化,需分段列方程。
作 图
剪力图和弯矩图
将剪力方程和弯矩方程在直角坐标系中画成图 像,观察内力变化规律既唯一又直观。
1. 作 FS , M 图步骤 建立坐标系;
列 FS ,M 方程;
作 FS , M 图。
7.3.1 列 方 程 作 图
1)剪力
Fiy 0 YAFS 0 得: FS YA
大小:等于截面一侧所有横向外力的代数和。
7.2.1 梁
FS (左或)右Fi侧
弯 曲
正负号:对研究对象内任一点呈顺时针力矩者为正。
变 形
外力的正负号规定同剪力符号规定一致,仍是
的 内
顺正逆负。
力-
剪
力
和
弯
矩
2)弯矩
M0 YAxM 0
得: M YAx
图7-8
7.3.1 列 方 程 作 图
7.3.1 列 方 程 作 图
【例7-3】图7-9(a)所示的简支梁AB受一集中力作用,试作其剪 力图和弯矩图。
图7-9
7.3.1 列 方 程 作 图
【例7-3】图7-9(a)所示的简支梁AB受一集中力作用,试作其剪 力图和弯矩图。
图7-9
7.3.1 列 方 程 作 图
图7-2
7.1.1 梁 的 弯 曲 变 形
如图7-3所示的建筑物楼面梁和阳台挑梁,它们都因受 到楼面荷载和梁自重的作用而发生平面弯曲。
图7-3
7.1.1 梁 的 弯 曲 变 形
常见梁的分类
(1) 悬臂梁:梁的 一端固定,另 一端自由,如 图7-4(a)所示
。
工程力学第1节 梁的计算简图
工程实例
一、 工程实例
弯曲变形:当杆件受到垂直于轴线的外力作用或受 到作用面平行于轴线的外力偶作用时,杆件的轴线 会由直线变为曲线,这种变形称弯曲变形。 梁:以弯曲变形为主的杆件称作梁。
直梁:工程中常见的轴线是直线的梁。 平面弯曲:若梁的外 力及支座反力都作用 在纵向对称面内,则 梁弯曲时轴线将变成 此平面内的一条平面 曲线,该弯曲变形中常见的梁的支座有以下三 种形式。 1、固定铰支座:如图a所示,固定铰支座限制梁在 支承处任何方向的线位移,其支座反力可用两个正 交分量表示,即沿梁轴线方向的 FAx 和垂直于梁轴 线方向的FAy。
或
2、活动铰支座:如图b所示,活动铰支座只能限制 梁在支承处垂直于支承面的线位移,支座反力可用 一个分量FRA表示。 3、固定端支座:如图c所示,固定端支座限制梁在 支承处的任何方向线位移和角位移,其支座反力有 两个正交力FAx、FAy和一个力偶分量MA。
三、静定梁的基本形式
静定梁:在平面弯曲情况下,作用在梁上的外力 (包括载荷和支反力)是一个平面力系。当梁上 只有三个支反力时,可由平面力系的三个静力平 衡方程将它们求出,这种梁称为静定梁。 1、悬臂梁:梁的一端自由, 另一端是固定支座。
2、简支梁:梁的支座一端 是固定铰支座,另一端 是活动铰支座。
3、外伸梁:梁的支座与 简支梁相同,只是梁 的一端或两端伸出在 支座之外。
或
MA
二、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力F。单位 为牛顿(N)或千牛顿(kN)。 2)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶M。单位为牛 顿· 米(N· m)或千牛顿· 米(kN· m)。 3)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载 荷q。其大小用载荷集度表 示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
一、 工程实例
弯曲变形:当杆件受到垂直于轴线的外力作用或受 到作用面平行于轴线的外力偶作用时,杆件的轴线 会由直线变为曲线,这种变形称弯曲变形。 梁:以弯曲变形为主的杆件称作梁。
直梁:工程中常见的轴线是直线的梁。 平面弯曲:若梁的外 力及支座反力都作用 在纵向对称面内,则 梁弯曲时轴线将变成 此平面内的一条平面 曲线,该弯曲变形中常见的梁的支座有以下三 种形式。 1、固定铰支座:如图a所示,固定铰支座限制梁在 支承处任何方向的线位移,其支座反力可用两个正 交分量表示,即沿梁轴线方向的 FAx 和垂直于梁轴 线方向的FAy。
或
2、活动铰支座:如图b所示,活动铰支座只能限制 梁在支承处垂直于支承面的线位移,支座反力可用 一个分量FRA表示。 3、固定端支座:如图c所示,固定端支座限制梁在 支承处的任何方向线位移和角位移,其支座反力有 两个正交力FAx、FAy和一个力偶分量MA。
三、静定梁的基本形式
静定梁:在平面弯曲情况下,作用在梁上的外力 (包括载荷和支反力)是一个平面力系。当梁上 只有三个支反力时,可由平面力系的三个静力平 衡方程将它们求出,这种梁称为静定梁。 1、悬臂梁:梁的一端自由, 另一端是固定支座。
2、简支梁:梁的支座一端 是固定铰支座,另一端 是活动铰支座。
3、外伸梁:梁的支座与 简支梁相同,只是梁 的一端或两端伸出在 支座之外。
或
MA
二、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力F。单位 为牛顿(N)或千牛顿(kN)。 2)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶M。单位为牛 顿· 米(N· m)或千牛顿· 米(kN· m)。 3)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载 荷q。其大小用载荷集度表 示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
梁弯曲
例如:AC和DB段。
称为横力弯曲
(bending by transverse force)。
横截面上只有弯矩没有剪力。
例如:CD段。
称为纯弯曲(pure bendin而另一端为可动 铰支座的梁 悬臂梁:一端为固定端, 另一端为自由端的梁 外伸梁:简支梁的一端或两端 伸出支座之外的梁
载荷简化
(1)分布载荷q(x) ――连续作用在一段长度 的载荷。
例如:自重、惯性力、液压等, 单位: N/m。
q(x)
a d
b
x
(2)集中力P
dx
(3)集中力偶 M
剪力和弯矩
例 一悬臂梁,其尺寸及梁上荷载如图8-9所示,求截面1-1上的剪力和 弯矩。
解: 对于悬臂梁不需求支座反力,可取右段梁为研究对象,其受力图如 图 (b)所示。
如取1-1截面右段梁为研究对象,可得出同样的结果。
一、梁弯曲时的内力—剪力与弯矩 1、剪力Q和弯矩M---剪力是横截面切向分布内力的合力; 弯矩M是横截面法向分布内力的合力偶矩。 (1)用截面法,根 据静力平衡求内力
∑FY=0: Q=RA-P1
∑MA=0: M=P1.a+Q.x
=P1.a+(RA-P1).x
2.求弯矩的规律 计算弯矩时,对截面左(或右)段梁建立力矩方程,经过移项后可得
M MC左
或
M MC右
上两式说明:梁内任一横截面上的弯矩在数值上等于该截面一侧所有外力(包 括力偶)对该截面形心力矩的代数和。将所求截面固定,若外力矩使所考虑的梁 段产生下凸弯曲变形时(即上部受压,下部受拉),等式右方取正号;反之取负号, 此规律可记为“下凸弯矩正”。
梁的平面弯曲
3、纵向对称面— 通过梁的轴线和 横截面的对称轴 的平面。
称为横力弯曲
(bending by transverse force)。
横截面上只有弯矩没有剪力。
例如:CD段。
称为纯弯曲(pure bendin而另一端为可动 铰支座的梁 悬臂梁:一端为固定端, 另一端为自由端的梁 外伸梁:简支梁的一端或两端 伸出支座之外的梁
载荷简化
(1)分布载荷q(x) ――连续作用在一段长度 的载荷。
例如:自重、惯性力、液压等, 单位: N/m。
q(x)
a d
b
x
(2)集中力P
dx
(3)集中力偶 M
剪力和弯矩
例 一悬臂梁,其尺寸及梁上荷载如图8-9所示,求截面1-1上的剪力和 弯矩。
解: 对于悬臂梁不需求支座反力,可取右段梁为研究对象,其受力图如 图 (b)所示。
如取1-1截面右段梁为研究对象,可得出同样的结果。
一、梁弯曲时的内力—剪力与弯矩 1、剪力Q和弯矩M---剪力是横截面切向分布内力的合力; 弯矩M是横截面法向分布内力的合力偶矩。 (1)用截面法,根 据静力平衡求内力
∑FY=0: Q=RA-P1
∑MA=0: M=P1.a+Q.x
=P1.a+(RA-P1).x
2.求弯矩的规律 计算弯矩时,对截面左(或右)段梁建立力矩方程,经过移项后可得
M MC左
或
M MC右
上两式说明:梁内任一横截面上的弯矩在数值上等于该截面一侧所有外力(包 括力偶)对该截面形心力矩的代数和。将所求截面固定,若外力矩使所考虑的梁 段产生下凸弯曲变形时(即上部受压,下部受拉),等式右方取正号;反之取负号, 此规律可记为“下凸弯矩正”。
梁的平面弯曲
3、纵向对称面— 通过梁的轴线和 横截面的对称轴 的平面。
第3章 平面弯曲
二、杆件变形的几种形式: 1、拉压变形;
2、弯曲变形;
3、剪切变形; 4、扭转变形; 三、弯曲的概念 1、一直杆在通过杆的轴线的一个纵向平面内,如果受到垂直于轴线的 外力(即横向力) 或力偶作用,杆的轴线就变成一条曲线,这种变形称为 弯曲变形。 2、纵向对称面:由横截面对称轴和梁的轴线组成的平面,称为纵向对 称面。 3、梁在变形时,它的轴线将弯曲成在纵向对称面内的一条曲线,这种 情况称为平面弯曲。
(1) 先求出支座反力
RA = RB =
ql 2
(2) 列出剪力方程和弯矩方程
1 ql - qx (0 < x < l) 2 1 1 M = qlx - qx 2 (0 x l) 2 2 Q=
(3) 作剪力图和弯矩图 1 Qmax = ql 2
由弯矩方程可知弯矩图是一抛物 线,故要定出几点(如5个点) 的M 值,才能近似地作出弯矩图。
二、剪力和弯矩方程 剪力图和弯矩图
AC段梁的弯矩方程为
M1 = Fb x1 l (0 x1 a)
a
1
F
b
2
A
x1
1 x2
C
2
B
CB段梁的弯矩方程为
Fa M2 = (l - x 2 ) l (a x 2 l)
l
M
Fab l
画出弯矩图
M max
Fab = l
x
3.2 直梁弯曲的内力分析
3.3 平面弯曲的应力计算
三个假设: (1 ) 梁在纯弯曲时, 横截面像直线 mn、m1n1 那样, 各自偏转一个角 度, 但仍然保持平面, 且垂直于梁 轴, 这就是平面截面假设。 (2 ) 纵向纤维的变形和它到中性 层的距离有关, 且沿宽度相等。 (3 ) 纵向纤维的变形只是简单的 拉伸或压缩, 它们之间没有相互 挤压, 因此, 梁的横截面上只能产 生拉应力或压应力。由于这些应 力都垂直于横截面, 故统称为正 应力。
2、弯曲变形;
3、剪切变形; 4、扭转变形; 三、弯曲的概念 1、一直杆在通过杆的轴线的一个纵向平面内,如果受到垂直于轴线的 外力(即横向力) 或力偶作用,杆的轴线就变成一条曲线,这种变形称为 弯曲变形。 2、纵向对称面:由横截面对称轴和梁的轴线组成的平面,称为纵向对 称面。 3、梁在变形时,它的轴线将弯曲成在纵向对称面内的一条曲线,这种 情况称为平面弯曲。
(1) 先求出支座反力
RA = RB =
ql 2
(2) 列出剪力方程和弯矩方程
1 ql - qx (0 < x < l) 2 1 1 M = qlx - qx 2 (0 x l) 2 2 Q=
(3) 作剪力图和弯矩图 1 Qmax = ql 2
由弯矩方程可知弯矩图是一抛物 线,故要定出几点(如5个点) 的M 值,才能近似地作出弯矩图。
二、剪力和弯矩方程 剪力图和弯矩图
AC段梁的弯矩方程为
M1 = Fb x1 l (0 x1 a)
a
1
F
b
2
A
x1
1 x2
C
2
B
CB段梁的弯矩方程为
Fa M2 = (l - x 2 ) l (a x 2 l)
l
M
Fab l
画出弯矩图
M max
Fab = l
x
3.2 直梁弯曲的内力分析
3.3 平面弯曲的应力计算
三个假设: (1 ) 梁在纯弯曲时, 横截面像直线 mn、m1n1 那样, 各自偏转一个角 度, 但仍然保持平面, 且垂直于梁 轴, 这就是平面截面假设。 (2 ) 纵向纤维的变形和它到中性 层的距离有关, 且沿宽度相等。 (3 ) 纵向纤维的变形只是简单的 拉伸或压缩, 它们之间没有相互 挤压, 因此, 梁的横截面上只能产 生拉应力或压应力。由于这些应 力都垂直于横截面, 故统称为正 应力。
材料力学梁的弯曲问题
F2 M
F1
A
B
●工程实例
建筑工程中的各类梁、火车轴、水压作用下的水 槽壁等。
火车轴
厂房吊车梁
●对称(平面)弯曲 (Planar bending)
对称平面 F2
F1
(b)
F2
F1
(a)
A
B
(c)
平面弯曲:梁的轴线在变形后仍保持在同一平面( 荷载作用面)内,即梁的轴线成为一条平面曲线。
梁的荷载和支座反力
1.5m
FRB
3m
15.3 内力图──剪力图和弯矩图
为了形象地看到内力的变化规律,通常将剪力、弯 矩沿梁长的变化情况用图形表示出来,这种表示剪力 和弯矩变化规律的图形分别称为剪力图和弯矩图。
具体作法是:
剪力方程: FQFQx 函数图形 弯矩方程: MMx
例4 求作图示受均布荷载作用的简支梁的剪力图和
FQ2FRAF1F2
FQ2 FRB
M O
0
M 2 F R A 2 F 1 1 . 5 F 2 0 . 5 0 M 2 7 k N m
M 2 F R A 2 F 1 1 .5 F 2 0 .5
FQ2FRAF1F2
FQ
F1
M 2 F R A 2 F 1 1 .5 F 2 0 .5
当变形为微小时,可采用变
形前尺寸进行计算。
MB
1、叠加原理:当梁在各项
A
荷载作用下某一横截面上
的弯矩等于各荷载单独作
用下同一横截面上的弯矩
的代数和。
2、区段叠加法作弯矩图:
设简支梁同时承受跨间荷
MB
载q与端部力矩MA、MB的作用 。其弯矩图可由简支梁受端部
力矩作用下的直线弯矩图与跨
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L q — 均布力
F — 集中力
L
L
(L称为梁的跨长)
平面弯曲的概念及工程实例
一、弯曲实例 工厂厂房的天车大梁:
F F
火车的轮轴:
F
F
F
F
楼房的横梁:
阳台的挑梁:
二、弯曲的概念:
受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
主要产生弯曲变形的杆--- 梁。
q
P M
三、平面弯曲的概念:
RA
NB
F1
q
F2
M
纵向对称面
平面弯曲
受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平 面曲线。
静定梁的分类(三种基本形式)
q(x)— 分布力 1、悬臂梁:
2、简支梁:
L M — 集中力偶
3、外伸梁: