牛顿第二定律的应用-连接体问题

合集下载

牛顿第二定律的应用——解决动力学的两类基本问题

牛顿第二定律的应用——解决动力学的两类基本问题

牛顿第二定律的应用(解决动力学的两类基本问题)知识要点:1. 进一步学习分析物体的受力情况,达到能结合物体的运动情况进行受力分析。

2. 掌握应用牛顿运动定律解决问题的基本思路和方法。

重点、难点解析:(一)牛顿第一定律内容:物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。

(二)牛顿第三定律1. 内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一直线上。

2. 理解作用力与反作用力的关系时,要注意以下几点:(1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。

(2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。

)(3)作用力与反作用力分别作用在受力物体和施力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。

(作用力与反作用力能否求和?)(4)作用力与反作用力一定是同种性质的力。

(平衡力的性质呢?)(三)牛顿第二定律1、内容:物体的加速度与物体所受合外力成正比,跟物体质量成反比,加速度方向跟合外力的方向相同。

2、数学表达式:F合=ma3、关于牛顿第二定律的理解:(1)同体性:F合=ma是对同一物体而言的(2)矢量性:物体加速度方向与所受合外力方向一致(3)瞬时性:物体的加速度与所受合外力具有瞬时对应关系牛顿第二定律的应用(一)在共点力作用下物体的平衡1:平衡状态:物体处于静止或匀速直线运动状态,称物体处于平衡状态。

2:平衡条件:在共点力作用下物体的平衡条件是:F合=0。

==(其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力)(二)两类动力学的基本问题1. 从受力情况确定运动情况根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。

2. 从运动情况确定受力情况根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。

牛顿第二定律的应用--整体法与隔离法

牛顿第二定律的应用--整体法与隔离法
第三章 牛顿运动定律
3.3 牛顿第二定律的应用
——整体法与隔离法
整体法与隔离法 • 在求解连接体问题时常常用到整体法与隔 离法.所谓“连接体”问题,是指运动中 的几个物体或上下叠放在一起、或前后挤 靠在一起、或通过轻绳、轻杆、轻弹簧连 在一起、或由间接的场力作用在一起的物 体组. • 内力:各物体间存在相互作用力.
m1 F 联立以上各式得: FBA m1 m2
知识梳理
一、整体法:在研究物理问题时,把所研究 的对象作为一个整体(不考虑内力)来处理 的方法称为整体法。 采用整体法时不仅可以把几个物体作为 整体,也可以把几个物理过程作为一个整体。
采用整体法可以避免对整体内部 进行繁锁的分析,常常使问题解答更 简便、明了。
对B受力分析: 水平方向:
FAB m2 g m2a
m2 F m1 m2
联立以上各式得: FAB
思考:用水平推力F向左推,A、B间的作用 力与原来相同吗?
没有摩擦力时:
解:对整体,根据牛顿第二定律得
F (m1 m2 )a
对 A 受力分析根据牛顿第二定律得:
FBA m1a
例3.如图所示,质量M=60kg的人通过光滑的定 滑轮用绳拉着m= 20kg的物体,当物体以加速度 a=5 m/s2上升时,人在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面 上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2, 三木块均处于静止,则粗糙地面对于三角形木块( ) A.有摩擦力作用,摩擦力的方向水平向右 B.有摩擦力作用,摩擦力的方向水平向左 C.有摩擦力作用,但摩擦力的方向不能确定 D.没有摩擦力的作用
(1)当地面光滑时,A,B作为一个整体,根据牛顿第二定律得:

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用——连接体问题

牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。

如果把其中某个物体隔离出来,该物体即为。

二、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。

运用 列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。

【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+B.F m m m 212+C.FD.F m m 21 练习:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

2.如图右所示,质量为m 1、m 2的物块在F 1、F 2共同作用下向右运动。

已知m 1=3kg m 2=2kg F 1=14 N F 2=4N ,求m 1和m 2之间细绳的作用力F T 为多少?A B m 1 m 2 F3.如右图所示,物体m1、m2用一细绳连接,两者在竖直向上的力F的作用下向上加速运动,重力加速度为g,求细绳上的张力?例2:如图右,m1、m2用细线吊在光滑定滑轮,m1=3kg m2=2kg,当m1、m2开始运动时,求细线受到的张力?例3:如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因数μ=0.22。

在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°角,则F应为多少?(g=10m/s2)练习:如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g=10m/s2)例4:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力作用在B 上,使A 、B 保持相对静止做加速运动,则作用于B 的作用力为多少?练习.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动。

3.8牛顿第二定律的应用(五)连接体、叠加体问题

3.8牛顿第二定律的应用(五)连接体、叠加体问题

牛顿第二定律的应用连接体、叠加体问题(教案)一、连接体、叠加体“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型1.定义:通常是指某些通过相互作用力(绳子拉力、弹簧的弹力、摩擦力等)互相联系的几个物体所组成的物体系。

2.常见模型:(1)用轻绳连接( 2 )直接接触( 3 )靠摩檫接触3.特点:它们一般有着力学或者运动学方面的联系。

4.常见的三类问题:(1)连接体中各物体均处于平衡状态例1.如图已知Q和P之间以及P与桌面之间的动摩擦因数都是μ ,两物体的质量都是m,滑轮的质量和摩擦都不计。

若用一水平向右的力F拉P使它做匀速运动,则F的大小为多少?(答案4 μ mg)(2)各物体具有相同的加速度例2.如图水平面光滑,对M施加水平向右的推力F,则M对m的弹力为多大?(3)连接体中一个静止,另一个物体加速例3.如图中物块m沿斜面体M以加速度a下滑,斜面体不动.求地面对斜面体的静摩擦力的大小与方向。

解法一:对两个物体分别应用隔离法解法二:系统应用牛顿第二定律法f=macosθ+M×0=macosθ5.研究对象的选择和三种常用解题方法:(1)研究对象的选择(2)三种常用方法方法一:隔离法方法二:整体与隔离相结合(整体法求加速度,隔离法求相互作用力)方法三:系统应用牛顿第二定律法6. 解连接体问题时的常见错误:错误一:例如F推M及m一起前进(如图),隔离m分析其受力时,认为F通过物体M作用到m上,这是错误的.错误二:用水平力F通过质量为m的弹簧秤拉物体M在光滑水平面上加速运动时(如图所示.不考虑弹簧秤的重力),往往会认为弹簧秤对物块M的拉力也一定等于F.实际上此时弹簧秤拉物体M的力F/=F—ma,显然F/<F.只有在弹簧秤质量可不计时,才可认为F/=F.错误三:运用整体法分析问题时,认为只要加速度的大小相同就行,例如通过滑轮连接的物体,这是错误的.正确做法应产用分别隔离法求解。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用――― 连接体问题整体法和隔离法,临界问题学习要求:会解决两个物体具有相同加速度的动力学问题求解连接体问题时,只限于各物体加速度相同的情形一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法三、连接体题型:1【例1】A 、B ,今用水平力推【练1】如图所示,质量为M 的斜面面间无摩擦。

在水平向左的推力F 已知斜面的倾角为,物体B A. B. C. D.【练2】如图所示,质量为的物体连接的绳与竖直方向成角,则( A. 车厢的加速度为B. B. 绳对物体1的拉力为C. C. 底板对物体2的支持力为D. D. 物体2所受底板的摩擦力为 kg m B 6=N F A 6=θ()(,sin μθ+==g m M F g a θ)(,cos g m M F g a +==()(,tan μθ+==g m M F g a g m M F g a )(,cot +==μθ2m θθsin g θcos 1gm g m m )(12-θtan 2g m2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)不作要求同步练习P123 124 页3、临界问题 例2、作业本P66页例3、质量为0.2kg 的小球用细线吊在倾角为θ=060的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图4-70所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g =10 2/s m )(1) 斜面体以232/s m 的加速度向右加速运动;(2) 斜面体以432/s m ,的加速度向右加速运动;例4、如图所示,箱子的质量M =3.0 kg ,与水平地面间的动摩擦因数为μ=0.22。

在箱子底板上放一质量为ml =2 kg 的长方体铁块;在箱子顶板处系一细线,悬挂一个质量m2=2.0 kg的小球,箱子受到水平恒力F 的作用,稳定时悬线偏离竖直方向θ=030角,且此时铁块刚好相对箱子静止。

牛顿第二定律应用:连接体与弹簧问题教案

牛顿第二定律应用:连接体与弹簧问题教案

3.如图所示,A 、B 两木块用轻绳连接,放在光滑水平面上,在水平外力F =12 N 作用下从静止开始运动,轻绳中的拉力F 1=3 N ,已知A 木块的质量是m 1=6 kg ,则( ) A .B 木块的质量m 2=18 kg B .B 木块的质量m 2=2 kg C .B 木块的加速度a 2=2 m / s 2D .经过时间2 s ,A 木块通过的距离是1 m4.如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面向右做匀加速直线运动,这时弹簧长度为1L ;若用水平恒力F 拉B ,使A 、B 一起向左做匀加速直线运动,此时弹簧长度为2L .则下列关系式正确的是( ) A .2L <1L B .2L >1LC .2L = 1LD .由于A 、B 质量关系未知,故无法确定1L 、2L 的大小关系 5.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示,已知人的质量为70kg ,木板的质量是10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。

取重力加速度g=10m/s 2.当人以440N 的力拉绳时,人与吊板的加速度a 和人对吊板的压力F 分别为( ) A . a=1.0m/s 2,F=260N B . a=1.0m/s 2,F=330N C . a=3.0m/s 2,F=110N D . a=3.0m/s 2,F=50N6.A 、B 二物块相靠,放于倾角为 的斜面上,如图所示,A 、B 与斜面的动摩擦因数都相同.同时由静止释放.A 、B 向下滑动,下面的说法中正确的是( ) A .A 、B 共同向下滑的加速度大于A 单独滑的加速度 B .A 、B 共同向下滑的加速度小于A 单独滑的加速度 C .A 、B 共同向下滑的加速度等于A 单独滑的加速度D .A 、B 共同向下滑的加速度等于B 单独滑的加速度7.如图所示,物体A 、B 叠放在粗糙的水平桌面上,水平外力F 作用在B 上,使AB 一起沿水平桌面向右加速运动,设A 、B 之间的摩擦力为f 1,B 与水平桌面间的摩擦力为f 2,若水平外力F 逐渐增大,但A 、B 仍保持相对静止,则摩擦力f 1和f 2的大小( )A 。

高考热点:牛顿第二定律

高考热点:牛顿第二定律

高考热点:牛顿第二定律的典型应用——连接体问题、超重与失重牛顿第二定律的地位不用多说了,一定是高考必考内容,可能出现在一道选择题或第一道计算题中. 那么,会以何种方式来考查牛顿第二定律的应用呢?最大的可能一定是连接体问题和超重失重现象!所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系. 实际上在物体的平衡问题中我们已经遇到了不少,只是平衡问题中的物体是没有加速度的,而在“连接体”问题中,有的物体具有加速度,所以求解的时候必须用到牛顿第二定律. 可见,牛顿第二定律是用来解决“非平衡问题”的!而处理“非平衡问题”的程序与解决平衡问题时的程序并无太大的区别:确定研究对象→受力分析(整体或隔离,或整体隔离结合使用)→力的合成或分解(常用正交分解法)→列方程求解(平衡问题列平衡方程,“非平衡问题”列动力学方程,即牛顿第二定律方程)先整体分析加速度,后隔离分析各物体之间的相互作用力是解决连接体问题的最常用思维模式,你掌握了吗?千万要记住:整体法只能分析“整体”外面其它物体对“整体”的作用力,不能分析“整体”内部各物体间的相互作用力;如果要分析“整体”内部的相互作用力,一定要用隔离法!强调这一点,只是想告诉大家,任何情况下,一定要明确研究对象!这是进行正确受力分析的根本!!读完高中,即使不高考,也要知道什么是超重,什么是失重. 要能够辨别和运用牛顿第二定律解释超重和失重现象.这可以说是一个中学生应该具备的基本能力!所以,这是一个在备考中绝对不能忽略的问题!★1.超重、失重现象(1)超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象.2.关于超重和失重的理解(1)当物体处于超重和失重状态时,物体所受的重力并没有变化.(2)物体处于超重还是失重状态,不在于物体向上运动还是向下运动,而是取决于加速度方向是向上还是向下.★①超重时物体的加速度方向竖直向上,但是物体不一定是竖直向上做加速运动,也可以是竖直向下做减速运动;②失重时物体的加速度方向竖直向下,但是物体既可以是向下做加速运动,也可以是向上做减速运动;③尽管物体不在竖直方向上运动,只要其加速度在竖直方向上有分量,即0≠y a ,则当y a 方向竖直向上时,物体处于超重状态,当y a 方向竖直向下时,物体处于失重状态.(3)当物体处于完全失重状态时,重力只产生使物体具有a =g 的加速度效果,不再产生其它效果.(4)处于超重和失重状态下的液体的浮力公式分别为)a g V F +(=排浮ρ和)a g V F -(=排浮ρ,处于完全失重状态下的液体F 浮=0即液体对浸在液体中的物体不再产生浮力.例题1解析:⑴当绳子突然断开,猫保持其相对斜面的位置不变,即相对地面位置不变,猫可视为静止状态,木板沿斜面下滑,取猫和木板整体为研究对象,如图3—31进行受力分析,由牛顿第二定律得3mgsin α=2ma ,a =23gsin α,所以C 选项正确.此解法运用了牛顿第二定律在整体法中的表达形式:当系统内各物体加速度不同时,可以整体分析系统的合外力(不能分析系统内力,即系统内部各物体之间的相互作用力),隔离分析系统内各物体的加速度,然后按照上面牛顿第二定律的表达式列方程求解!这是一个解决动力学问题的绝妙方法,好好的体会和掌握它吧!⑵此题也可以用常规方法求解,分别隔离猫和板进行受力分析,如图所示,猫相对于地面位置不变,其加速度为0,所以猫的合外力为0,有:f =mgsin α,N =mgcos α;板沿斜面向下滑动,由牛顿第二定律,有f ′+2mgsin α=2ma, 又f ′=f =mgsin α,所以a =23gsin α例题2解析:将人与吊板整体考虑,受力分析如图所示,据牛顿第二定律:2T-(m 人+m 板)g =(m 人+m 板)a,代人数据得a=1.0 m /s 2,选项C 、D 被排除.用隔离法研究人向上运动,设吊板对人的支持力为N ,则T +N - m 人g =m 人a,得N =330N ;据牛顿第三定律,人对吊板的压力N ′=N =330N ,选项B 正确.领悟:这是“先整体后隔离”思维模式的典型例子,整体分析的时候不考虑人和板之间的相互作用力,根据轻绳模型的特点:绳内张力处处相等,可知两段绳索对“整体”的拉力相等;求人对板的压力时,必须用隔离法“隔离”人或“隔离”板进行分析.例题3解析:此题是瞬间加速度的计算问题,关键是做好在这个“瞬间”研究对象受力情况的分析,然后运用牛顿第二定律列式求解.分别隔离小球和框架进行受力分析,如图所示,此“瞬间”框架对地面的压力为0,根据牛顿第三定律,地面对框架的支持力为0,故框架除了受到重力外,还应该受到弹簧提供的支持力!于是弹簧对小球的弹力应该是竖直向下的,如图所示,根据物体的平衡条件和牛顿第二定律,有N=Mg,N′+mg=ma,所以a=(M+m)g/m.领悟:受力分析的成败就是解决动力学问题的成败,所以受力分析一定要过关,要能够在任何情况下(“情况”指:静止或匀速,匀变速直线运动,匀速圆周运动,简谐运动等运动状态,即研究对象总是处于我们熟悉的运动模型中,于是掌握各种运动模型中物体受力特点是做好受力分析的必要条件!例如:匀速圆周运动需要向心力,简谐运动需要回复力.)把一个物体(即研究对象)的受力情况分析清楚!例题4解析:.容器抛出后,容器及其中的水均做加速度为g的匀变速运动,容器中的水处于失重状态,水对容器的压强为零,无论如何抛出,水都不会流出.故D项正确.领悟:本题考查对超重失重现象的理解,关键在于判断物体在竖直方向上是否具有加速度,然后根据“同失反超”确定失重还是超重!无论以何种方式抛出,容器和水抛出后都只受到重力的作用,都有竖直向下的加速度,都处于完全失重状态.超重、失重现象的解释,实际上就是牛顿第二定律的应用!关键:做好受力分析!解析:依题意,当重物的重力等于弹簧的弹力时,电压表的示数为零,飞船加速运动的过程中,重物也随之加速,则重物的和外力不为零,即当重物合外力不为零时,电压表有示数!飞船在竖直加速升空的过程中,弹簧上的重物与飞船有同样的加速度,对重物受力分析,如图所示,由牛顿第二定律,有:N-mg=ma,a竖直向上;若飞船在竖直方向上减速返回地面,则飞船的加速度方向仍是竖直向上的,故A选项的说法正确!当飞船在轨道上运动的时候,飞船处于完全失重状态,则弹簧对重物的弹力为零,地球对重物的万有引力产生一个使重物与飞船一起作圆周运动的向心加速度,当取重物受到的万有引力近似等于重物≈g.,的重力时(当忽略地球的自转时,可以认为地球表面附近物体的重力与万有引力近似相等),a向故D选项正确.。

第三章 第3课时 专题强化:牛顿第二定律的综合应用-2025物理大一轮复习讲义人教版

第三章 第3课时 专题强化:牛顿第二定律的综合应用-2025物理大一轮复习讲义人教版

第3课时专题强化:牛顿第二定律的综合应用目标要求 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。

2.理解几种常见的临界极值条件,会用极限法、假设法、数学方法解决临界极值问题。

考点一动力学中的连接体问题多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的物体系统称为连接体。

系统稳定时连接体一般具有相同的速度、加速度(或速度、加速度大小相等)。

1.共速连接体两物体通过弹力、摩擦力作用,具有相同的速度和相同的加速度。

(1)绳的拉力(或物体间的弹力)相关类连接体(2)叠加类连接体(一般与摩擦力相关)例1如图所示,水平面上有两个质量分别为m1和m2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g,下列说法正确的是()A.若水平面是光滑的,则m2越大,绳的拉力越大B.若木块和地面间的动摩擦因数为μ,则绳的拉力为m1Fgm1+m2+μm1C.绳的拉力大小与水平面是否粗糙无关D.绳的拉力大小与水平面是否粗糙有关答案C 解析若设木块和地面间的动摩擦因数为μ,以两木块整体为研究对象,根据牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,得a =F -μ(m 1+m 2)g m 1+m 2,以木块1为研究对象,根据牛顿第二定律有F T -μm 1g =m 1a ,得a =F T -μm 1g m 1,系统加速度与木块1加速度相同,联立解得F T =m 1m 1+m 2F ,可知绳子拉力大小与动摩擦因数μ无关,与两木块质量大小有关,无论水平面是光滑的还是粗糙的,绳的拉力大小均为F T =m 1m 1+m 2F ,且m 2越大,绳的拉力越小,故选C 。

拓展(1)两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接。

①如图甲所示,用力F 竖直向上拉木块时,绳的拉力F T =__________;②如图乙所示,用力F 沿光滑斜面向上拉木块时,绳的拉力为__________;斜面不光滑时绳的拉力F T =__________。

利用牛顿第二定律求加速度(单个,连接体,弹簧等)

利用牛顿第二定律求加速度(单个,连接体,弹簧等)

1、质量为m的物体在水平面上滑动,水平面的摩擦系数为μ,求物体的加速度,(重力加速度为g)2、质量为m的物体在固定的光滑斜面上滑动,求物体的加速度,(重力加速度为g)拓展(1)质量为m的物体在固定的粗糙斜面上向上滑动,斜面的摩擦系数为μ,求物体的加速度,拓展(2)质量为m的物体在固定的粗糙斜面上向下滑动,斜面的摩擦系数为μ,求物体的加速度,3、行驶的汽车中用细线悬挂一小球,小球的质量为m,此时细线与竖直方向的夹角为θ,求汽车的加速度,(重力加速度为g)4、光滑的斜面上放置一小球,小球相对斜面静止,整体向右运动,求斜面的加速度,(重力加速度为g)5、物体放置在水平面上受到恒力F向右运动,F与水平方向成θ斜向右上,地面的摩擦系数为μ,求物体的加速度,(重力加速度为g)拓展:若恒力F斜向右下,求物体的加速度,(重力加速度为g)6、质量为m的人随电梯匀加速上行,加速度为a,求:(1)画出人的受力分析图(2)人受到的F N 和F f1、物体A、B的质量分别是m A、m B,在恒力F作用下向右运动,(1)水平面光滑。

求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。

求物体A、B的加速度和物体A、B间的相互作用力2、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向右运动,(1)水平面光滑。

求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。

求物体A、B的加速度和物体A、B间的相互作用力3、斜面上物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下运动,(1)斜面光滑。

求物体A、B的加速度和物体A、B间的相互作用力(2)斜面的摩擦系数为μ。

求物体A、B的加速度和物体A、B间的相互作用力4、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向上运动,求物体A、B的加速度和物体A、B间的相互作用力5、把以上细线换成弹簧或细杆,会怎样?最终结论:F FF如图:不计滑轮摩擦,求车的加速度和细线拉力?如图:不计滑轮摩擦,求m1的加速度和细线拉力?如图:不计滑轮摩擦,m1>m2求m1的加速度和细线拉力?6、“T”型物体倒立在地面上,质量为M,质量为m的小环套在上面向下滑动,滑动的加速度为a,求地面的支持力拓展:上面问题中,若“T”型物体对地面的压力为零,求环的加速度大小和方向。

第四讲牛顿第二定律的综合应用(原卷版)

第四讲牛顿第二定律的综合应用(原卷版)

第四讲牛顿第二定律的综合应用考点一、连接体问题1.连接体多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的系统称为连接体。

连接体一般(含弹簧的系统,系统稳定时)具有相同的运动情况(速度、加速度).2.常见的连接体(1)物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度速度、加速度相同(2)轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等.速度、加速度相同速度、加速度大小相等,方向不同(3)轻杆连接体:轻杆平动时,连接体具有相同的平动速度.速度、加速度相同(4)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.整体法与隔离法在连接体中的应用(1)整体法当连接体内(即系统内)各物体的加速度大小相同时,可以把系统内的所有物体看成一个整体,分析其受力和运动情况,对整体列方程求解的方法。

(2)隔离法当求系统内物体间相互作用的内力时,常把某个物体从系统中隔离出来,分析其受力和运动情况,再对隔离出来的物体列方程求解的方法.例1、如图所示,水平面上有两个质量分别为m1和m2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g,下列说法正确的是()A.若水平面是光滑的,则m2越大绳的拉力越大B.若木块和地面间的动摩擦因数为μ,则绳的拉力为m1Fm1+m2+μm1gC.绳的拉力大小与水平面是否粗糙无关D.绳的拉力大小与水平面是否粗糙有关L例2、(多选)(2020·高考海南卷,T12)如图,在倾角为θ的光滑斜面上,有两个物块P和Q,质量分别为m1和m2,用与斜面平行的轻质弹簧相连接,在沿斜面向上的恒力F作用下,两物块一起向上做匀加速直线运动,则()A.两物块一起运动的加速度大小为a=Fm1+m2B.弹簧的弹力大小为T=m2m1+m2FC.若只增大m2,两物块一起向上匀加速运动时,它们的间距变大D.若只增大θ,两物块一起向上匀加速运动时,它们的间距变大例3、(2020·高考江苏卷,T5)中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量。

用牛顿第二定律解决加速度不同连接体问题

用牛顿第二定律解决加速度不同连接体问题

用牛顿第二定律解决加速度不同连接体问题青海省西宁市湟中县李家山中学 霍成军 邮编 811607牛顿第二定律不仅能解决加速度相同的连接体,而且能解决加速度不同连接体问题,这是表达式可写为F=m 1a 1+m 2a 2+…+m n a n ①其中,F 是系统所受的合外力,m 1、m 2、…、m n 是组成系统的每一个物体的质量,a 1、a 2、…、a n 是组成系统的每一个物体相对于同一参考系的加速度。

因为①式是矢量式。

所以,F 与a 1、a 2、…、a n 要共线,如F 与某一(或几个)加速度不共线时,将这些加速度在F 方向上分解。

此时牛顿第二定律表达式又写为F x =m 1a 1x +m 2a 2x +…+m n a nx②F y =m 1a 1y +m 2a 2y +…+m n a ny例1:如图,在倾角为θ的固定光滑斜面上,有一用绳子拴着长木板,木板上站着一个人,已知木板的质量是人的质量的2倍。

当绳子剪断是,人立即沿着板向上跑,以保持其相对位置不变。

则此时木板沿斜面下滑的加速度为( )A. θsin 2gB. gsin θC.θsin 23gD.2gsin θ分析:当绳子剪断是,把人和木板看作系统(以m 表示人的质量),受重力和斜面对木板的支持力,合外力的大小为3mgsin θ方向沿斜面向下。

人与斜面保持其相对位置不变,所以,人的加速度为零。

根据①有3mgsin θ=2mg a ,θsin 23g a =,所以选C 。

θb a M 例2:如图,一质量为M 的楔形木块放在水平桌面上,它的顶角为900,两底角为α和β;a 、b 为两个斜面上质量均为m 的小木块。

已知所有接触面都是光滑的。

先发现a 、b 沿斜面下滑,而楔形木块静止不动,这是楔形木块对水平桌面的压力等于( )A.Mg+mgB. Mg+2mgC. Mg+mg(sin α+sin β)D. Mg+mg(cos α+cos β)分析:采用隔离法求得a 、b 两物体的加速度大小分别为gsin α、gsin β,方向沿斜面向下。

3.8牛顿第二定律的应用(五)连接体、叠加体问题

3.8牛顿第二定律的应用(五)连接体、叠加体问题

牛顿第二定律的应用连接体、叠加体问题(教案)一、连接体、叠加体“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型1.定义:通常是指某些通过相互作用力(绳子拉力、弹簧的弹力、摩擦力等)互相联系的几个物体所组成的物体系。

2.常见模型:(1)用轻绳连接( 2 )直接接触( 3 )靠摩檫接触3.特点:它们一般有着力学或者运动学方面的联系。

4.常见的三类问题:(1)连接体中各物体均处于平衡状态例1.如图已知Q和P之间以及P与桌面之间的动摩擦因数都是μ ,两物体的质量都是m,滑轮的质量和摩擦都不计。

若用一水平向右的力F拉P使它做匀速运动,则F的大小为多少?(答案4 μ mg)(2)各物体具有相同的加速度例2.如图水平面光滑,对M施加水平向右的推力F,则M对m的弹力为多大?(3)连接体中一个静止,另一个物体加速例3.如图中物块m沿斜面体M以加速度a下滑,斜面体不动.求地面对斜面体的静摩擦力的大小与方向。

解法一:对两个物体分别应用隔离法解法二:系统应用牛顿第二定律法f=macosθ+M×0=macosθ5.研究对象的选择和三种常用解题方法:(1)研究对象的选择(2)三种常用方法方法一:隔离法方法二:整体与隔离相结合(整体法求加速度,隔离法求相互作用力)方法三:系统应用牛顿第二定律法6. 解连接体问题时的常见错误:错误一:例如F推M及m一起前进(如图),隔离m分析其受力时,认为F通过物体M作用到m上,这是错误的.错误二:用水平力F通过质量为m的弹簧秤拉物体M在光滑水平面上加速运动时(如图所示.不考虑弹簧秤的重力),往往会认为弹簧秤对物块M的拉力也一定等于F.实际上此时弹簧秤拉物体M的力F/=F—ma,显然F/<F.只有在弹簧秤质量可不计时,才可认为F/=F.错误三:运用整体法分析问题时,认为只要加速度的大小相同就行,例如通过滑轮连接的物体,这是错误的.正确做法应产用分别隔离法求解。

4.7《牛顿第二定律应用:连接体问题》

4.7《牛顿第二定律应用:连接体问题》
平恒力F 向右拉木块B, 当两木块一起向右做匀加速直线运动时(
A. 两木块的加速度a 的大小为
B. 弹簧的形变量为

3

3
C. 两木块之间弹簧的弹力的大小为F
D.A 、B 两木块之间的距离为 0 +


AB

【作业2】(多选)如图所示, 5 块质量相同的木块并排放在水平地面上,它们
与地面间的动摩擦因数均相同, 当用力F 推第1 块木块使它们共同加速运动时,
【变式4】如图所示,质量分别为 mA、mB 的 A、B用弹簧相连 ,在恒
力 F 作用下 A B一起竖直向上 匀加速运动,求 A B 间的作用力。
【变式5】(多选)若将A、B 两物块用轻绳连接放在倾角为θ 的固定斜面上,用平
行于斜面向上的恒力F 拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因
A.a1<a2
B.a1=a2
C.a1>a2
D.无法判断
【练习5】如图所示,在光滑的水平桌面上有一物体A,通过绳子与物体B相连,假设
绳子的质量以及绳子与定滑轮之间的摩擦力都可以忽略不计,绳子不可伸长.如果mB
=3mA,则绳子对物体A的拉力大小为( B )
A.mBg
C.3mAg
B.3mAg/4
D.3mBg /4
上的恒力F拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ,为
了增大AB间的作用力,可行的办法是(
)
AB
A. 增大A物块的质量
B. 减小B物块的质量
C. 增大倾角θ
D. 增大动摩擦因数μ
不管是光滑还是粗糙的水面、不管是水平面还是斜面、也不管是竖
直拉着连接体运动,只要推力F、MA、MB、µ(相同)一定,且A、

牛顿第二定律典例(连接体)

牛顿第二定律典例(连接体)

牛顿第二定律是经典力学的基础和核心,是分析、研究和解决力学问题的三大法宝之一,同时也是高考考查的重点和热点。

因此,深刻理解和灵活应用牛顿第二定律是力学中非常重要的内容,下面阐述应用牛顿第二定律时的几类典型问题,供大家参考。

一、连接体问题两个或两个以上物体相互连接并参与运动的系统称为有相互作用力的系统, 即为连接体问题,处理非平衡状态下的有相互作用力的系统问题常常用整体法和隔离法。

当需要求内力时,常把某个物体从系统中“隔离”出来进行研究,当系统中各物体加速度相同时,可以把系统中的所有物体看成一个整体进行研究。

例 1:如图 1所示的三个物体质量分别为 m 1、 m 2和 m 3。

带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计。

为使三个物体无相对滑动,试求水平推力 F 的大小。

解答:本题是一道典型的连接体问题。

由题意可知,三个物体具有向右的相同的加速度,设为 a ,把它们三者看成一个整体,则这个整体在水平方向只受外力 F 的作用。

由牛顿第二定律,即:F=(m 1+m2+m3a ……①隔离 m 2,受力如图 2所示在竖直方向上,应有: T=m2g ……②隔离 m 1,受力如图 3所示在水平方向上,应有: T′=m1a ……③由牛顿第三定律T′=T ……④联立以上四式解得:点评:分析处理有相互作用力的系统问题时,首先遇到的关键问题就是研究对象的选取。

其方法一般采用隔离和整体的策略。

隔离法与整体法的策略,不是相互对立的, 在一般问题的求解中随着研究对象的转化,往往两种策略交叉运用,相辅相成,所以我们必须具体问题具体分析,做到灵活运用。

二、瞬时性问题当一个物体(或系统的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统对和它有联系的物体(或系统的受力发生变化。

例 2:如图 4所示,木块 A 与 B 用一轻弹簧相连,竖直放在木块 C 上。

牛二律的连接体问题

牛二律的连接体问题

1.整体法:连接体中的各物体如果,求加速度时可以把连接体作为一个整体。

运用列方程求解。

2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用求解,此法称为隔离法。

3.整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用法求出,再用法求。

例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( B ) A.F m m m 211+ B.F m m m 212+ C.F D.F m m 21 F -F N =m 1a F -F N =F m m m 211+ 故F N =F m m m 212+ 对A 、B 整体分析F -μ(m 1+m 2)g=(m 1+m 2)a g m m F a μ-+=21 再以B 为研究对象有F N -μm 2g =m 2aF N -μm 2g =m 2g m m m F 221μ-+212m m F m F N +=提示:先取整体研究,利用牛顿第二定律,求出共同的加速度212121sin )(cos )(m m g m m g m m F a ++-+-=ααμ=ααμsin cos 21g g m m F --+ 再取m 2研究,由牛顿第二定律得 F N -m 2gsin α-μm 2gcos α=m 2a 整理得F m m m F N 212+= 例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑,木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止,木板运动的加速度是多少?.解(1)对木板:Mgsin θ=F 。

对人:mgsin θ+F =ma 人(a 人为人对斜面的加速度)。

3-3_牛顿运动定律—连接体问题(整体隔离法)、临界

3-3_牛顿运动定律—连接体问题(整体隔离法)、临界

[变式训练] 1.如图所示,一个质量为 m = 0.2 kg的小球用细绳吊在倾
角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当
斜面以10 m/s2的加速度向右做加速运动时,求绳子的拉力及斜 面对小球的弹力大小.
第三章 牛顿运动定律
第29页
金版教程 · 高三一轮总复习 · 新课标 · 物理
第三章 牛顿运动定律
第26页
金版教程 · 高三一轮总复习 · 新课标 · 物理
主干回顾固基础 典例突破知规律 特色培优增素养 高考模拟提能训 限时规范特训
1 2 由运动学公式 x= at 得从挡板开始运动到小球与挡板分 2 离所经历的时间为 t= 2mgsinθ-a . ka
(2)小球速度达最大时,其加速度为零,即 kx′=mgsinθ 即从挡板开始运动到小球的速度达最大时,小球的位移为 mgsinθ x′= k .
动: ①拉力水平,m1、m2在光滑的水平面上加速运动;
②拉力水平,m1、m2在粗糙的水平面上加速运动;
③拉力平行于倾角为θ的斜面,m1、m2在光滑的斜面上沿斜 面向上加速运动; ④拉力平行于倾角为θ的斜面,m1、m2在粗糙的斜面上沿斜 面向上加速运动.
用 Δl1 、 Δl2 、 Δl3 、 Δl4 依次表示弹簧在以上四种情况下的伸 长量,则下列选项正确的是( )
[针对训练] [2013·湖北重点中学联考 ]如图所示,在建筑工地,民工兄
弟用两手对称水平使力将两长方体水泥制品夹紧并以加速度 a竖
直向上匀加速搬起,其中A的质量为m,B的质量为3m,水平作 用力为 F , A 、 B 之间的动摩擦因数为 μ ,在此过程中, A 、 B 间 的摩擦力为( )
A.μF 3 C. m(g+a) 2

关于系统牛顿第二定律的应用

关于系统牛顿第二定律的应用

精心整理关于系统牛顿第二定律的应用眉山中学 邓学军牛顿第二定律是动力学的核心内容,它深刻揭示了物体产生的加速度与其质量、所受到的力之间的定量关系,在科研、生产、实际生活中有着极其广泛的应用。

本文就牛顿第二定律在物理解题中的应用作些分析总结,以加深学生对该定律的认识与理解,从而达到熟练应用的效果目的。

对于连接体问题,牛顿第二定律应用于系统,主要表现在以下两方面:其一,系统内各物体的加速度相同。

则表达式为:F =(m 1+m 2+…)a ,这种情况往往以整个系统为研究对象,分析系统的合外力,求出共同的加速度。

例1.质量为m 1、m 2的两个物体用一轻质细绳连接,现对m 1施加一个外力F ,在如下几种情况下运动,试求绳上的拉力大小。

⑴m 1⑵m 1⑶m 1对m 2⑷m 1对m 2⑸m 1对m 2解得:T =212m F m m + 其二,系统内各物体的加速度不同。

这种题目较难,牛顿第二定律的基本表达式为:1122F m a m a =++,这是一个矢量表达式,可以分为以下几种情形:⒈系统中只有一个物体有加速度,其余物体均静止或作匀速运动。

例2.如图示,斜面体M 始终处于静止状态,当物体m 沿斜面下滑时,下列说法正确的是:A .匀速下滑时,M 对地面的压力等于(M +m )gB .加速下滑时,M 对地面的压力小于(M +m )gC.减速下滑时,M对地面的压力大于(M+m)gD.M对地面的压力始终等于(M+m)g分析:F N-(M+m)g=ma y。

若a y向上则选C;若a y向下则选B;若a y等于0则选C例3.如图示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱和环的质量为M,环的质量为m,。

已知环沿着杆正匀加速下滑,加速度为a(a<g)。

则此时箱对地面的压力为:A.MgB.(M+m)gC.(M+m)g-maD.(M+m)g+ma分析:同上题。

选C所以小a=量为m。

物块m3从解析:对系统:在水平方向,F合=ma x+M·0=F,如果a x水平向左,则压力F也向左,B处有挤压;如果a x水平向右,则压力F也向右,A处有挤压;如果a x等于零,则F=0,A、B两处均没有挤压;选D。

微专题10 牛顿运动定律应用之连接体问题

微专题10  牛顿运动定律应用之连接体问题

微专题10 牛顿运动定律应用之连接体问题【核心要点提示】1.连接体问题的类型物物连接体、轻杆连接体、弹簧连接体、轻绳连接体.【核心方法点拨】1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,一般采用“先整体求加速度,后隔离求内力”.【微专题训练】【经典例题选讲】【例题1】(2018·湖北省宜昌市葛洲坝中学高三上学期11月检测)质量为2m 的物体A 和质量为m 的物体B 相互接触放在水平面上,如图所示。

若对A 施加水平推力F ,使两物体沿水平方向做匀加速直线运动,下列说法正确的是 ( D )A .若水平面光滑,物体A 的加速度为F 2mB .若水平面光滑,物体A 对B 的作用力为23F C .若物体A 与地面无摩擦,B 与地面的动摩擦因数为μ,则物体A 对B 的作用力大小为F -μmg 3D .若物体A 与地面无摩擦,B 与地面的动摩擦因数为μ,则物体B 的加速度为F -μmg 3m[解析] 如果水平面光滑,以AB 组成的系统为研究对象,根据牛顿第二定律得:a =F m +2m=F 3m ,B 为研究对象,由牛顿第二定律得,A 对B 的作用力:N =ma =F 3,故AB 错误;若物体A 与地面无摩擦,B 与地面的动摩擦因数为μ,以系统为研究对象,根据牛顿第二定律得:a ′=F -μmg 3m,以B 为研究对象,由牛顿第二定律得:N ′-μmg =ma ′,则物体A 对B 的作用力大小为:N ′=F -μmg 3+μmg ,故C 错误,D 正确。

牛顿运动定律的应用之用整体法、隔离法巧解连接体问题(解析版)

牛顿运动定律的应用之用整体法、隔离法巧解连接体问题(解析版)

牛顿运动定律的应用之用整体法、隔离法巧解连接体问题1.连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。

(1)绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;(2)弹簧连接:两个物体通过弹簧的作用连接在一起;(3)接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。

2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。

轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。

学科,网特别提醒(1)“轻”——质量和重力均不计。

(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。

3.连接体问题的分析方法(1)分析方法:整体法和隔离法。

(2)选用整体法和隔离法的策略:①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法;②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。

4. 整体法与隔离法的选用方法(1)整体法的选取原则若在已知与待求量中一涉及系统内部的相互作用时,可取整体为研究对象,分析整体受到的外力,应用牛顿第二定律列方程。

当系统内物体的加速度相同时:a m m m F n )...(21+++=;否则n n a m a m a m F +++=...2211。

(2)隔离法的选取原则若在已知量或待求量中涉及到系统内物体之间的作用时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典例1】如图所示,两个质量分别为m 1=3 kg 、m 2=2 kg 的物体置于光滑的水平面上,中间用轻质弹簧测力计连接。

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、连接体的分类
1、加速度相同的连接体 F
1 a
2 3 4 a
5 6 …… n
F
1
2 a
3
4 …… n
F
A
B
a B
m
M
a
A
2、加速度不同的连接体
例1、地面光滑,两物块质量分别为m1、m2,中间用细线 连接,两物块在拉力F作用下沿水平地面匀加速运动, 试求两个物块运动过程中细线拉力T。
F
m1
T
m2
绳子恰好断了,于是小候沿着木棒向上爬,结果它与地
面间的距离保持不变,求:这时 木棒下落的加速度。
a=(M+m)g/M
练习4 地面光滑,mA=2kg、mB=8kg、 µ =0.2,当F=24N 时,A、B的加速度各为多大?
F
A µ B
练习2、一静止在水平地面上质量为2kg的木块,在大 小为F,方向与水平方向成370角的拉力作用下,沿 地面作匀加速直线运动, 2秒速度达到6m/s,若木块与 地面之间的动摩擦因数为0.2,求:木块受到的拉力F。
练习2、如图所示,将质量为m的物体B放在质量为M 的光滑的斜面A上,当A在水平力F的作用下在光滑水 平面上作匀加速直线运动时,B物体恰好不下滑,则 斜面A的加速度是
A、gsinθ B、gcosθ C、gtanθ D、gcotθ
θ F
A
针对训练2:如图用力F拉着质量为m1、m2的物体沿光滑斜 面加速上升,求细线中的拉力T。 1、求加速度a (1)、恰当选取对象, 正确受力分析: (2)、正确列出表达式 2、求细线的拉力F (1)、恰当选取对象, 正确受力分析:
,已知环沿杆加速下滑,加速度大小为a,则此时箱对
地面的压力为多大?
m M
F=(M+m)g–ma
例4、地面光滑,mA=2kg、mB=8kg、 µ =0.2,当F=50N 时,A、B的加速度各为多大?
µ
A B
F
牛顿第二定律的应用:
——连接体问题
讲课人: 高一物理
题召斗
一、连接体:两个或两个以上的物体直接接触或通过其他 物体发生作用而共同参与运动组成的系统。
二、连接体问题研究对象的选取方法
1、隔离法——求物体的加速度,注意内力会转化为外力
2、整体法——求物体加速度,注意只考虑外力
方法选择原则:
隔离、整体灵活结合运用。
建立直角坐标系 Y N
解:如图所示建立直角坐标系: X轴方向:Fcos -f=ma Y轴方向:N=mg+Fsin f= N 1 2 S= at 2 代入数据得:S=30m
f

G
F1=FCos
X
F2=FSin F
叠加体的分离问题 F
µ =0
µ
m1 m2
F
µ 1 µ 2
m1 m2
F F
例3、一个箱子放在水平地面上,箱内有一固定的竖直 杆,杆上套着一个环,箱和杆的质量为M,环的质量为m
F
m1
T
m2
(2)、正确列出表达式
2、求细线的拉力F (1)、恰当选取对象, 正确受力分析:
F
m1
T
m2
(2)、正确列出表达式
针对训练2:如图用力F拉着质量为m1、m2的物体加速上升,求细线中的拉力T。
1、求加速度a (1)、恰当选取对象,
正确受力分析:
(2)、正确列出表达式 2、求细线的拉力F (1)、恰当选取对象, 正确受力分析:
(2)、正确列出表达式
练习 1、如图所示,质量分别为 M和m的物体 A、 B紧靠着 放在动摩因素为μ水平地面上,在水平力 F的作用下一 起做匀加速运动,求:A对B的推力。
F
A
B
FAB
mF M m
练习3 、 一根质量为M的木棒,上端用细绳系在天花板上, 地面上有一只质量为m的小猴,小猴跳起抓住木板时,
θ
A
F1
如图所示,将质量为m的小球B放在光滑的斜面A上, 当A在水平力F2的作用下在光滑水平面上向左作匀 加速直线运动时,小球B恰好对绳子无拉力,则斜 面A的加速度是 A、gsinθ B、gcosθ C、gtanθ F2 D、gcotθ
θ
A
1.一斜面放在水平地面上,倾角为为θ= 45°,一个质量 为m=0.2kg的小球用细绳吊在斜面顶端,如图所示。斜面 静止时,球紧靠在斜面上,绳与斜面平行,不计斜面与水 平面的摩擦。下列说法中正确的是( ) A、当斜面以向左的加速度a=5m/s2运动时,斜面对小球 的弹力为零; B、斜面向右的加速度超过a=10m/s2时,球与斜面脱离; C、无论斜面做什么运动,绳子拉力的竖直分力一定等于 球的重力; D、无论斜面做什么运动,绳子拉力与斜面弹力的合力一 定竖直向上.
1、求加速度a (1)、恰当选取对象,
F
m1
T
m2
正确受力分析:
(2)、正确列出表达式 2、求细线的拉力F (1)、恰当选取对象, 正确受力分析:
F
m1
T
m2
(2)、正确列出表达式
针对训练1:若上题中m1、m2与地面间的的磨擦因数为µ,两 物体仍做匀加速运动,求细线拉力T。 1、求加速度a (1)、恰当选取对象, 正确受力分析:
mg (3)T cos
方向和竖直方向成θ角,沿绳的方 向向上.
若θ角为300则加速度a= 若θ角为450则加速度a= 若θ角为600则加速度a=
如图所示,将质量为m的小球B放在光滑的斜面A上, 当A在水平力F1 的作用下在光滑水平面上向右作匀 加速直线运动时,小球B恰好对斜面无压力,则斜面 A的加速度是 A、gsinθ B、gcosθ C、gtanθ D、gcotθ
(2)、正确列出表达式
例2、如图所示,在水平铁轨上行驶的车厢里,用细 线悬挂一质量为m的小球,球与车保持相对静止,摆 线与竖直方向夹角为θ,求⑴列车的加速度;⑵车厢 的运动性质;⑶细线对小球的拉力.
mg tan θ
T
θ
mg
(2)向左匀加速运动或者向右匀减速运动
v 6 解:由运动学公式v=at得:a= 3m / s 2 t 2 如图所示建立直角坐标系: X轴方向:F cos f ma Y轴方向:N F sin mg f= N
mg ma 解得:F= 10.89 N cos sin
练习 1 、一静止木箱质量为 m=2kg, 木箱与地面的动摩擦因 数为μ=0.2,现用斜向右下方与水平方向成 θ=370角的力 F推木箱,推力大小为50N, 求经过2S时木箱的位移。
相关文档
最新文档