正弦与余弦
正弦与余弦知识点总结
正弦与余弦知识点总结正弦与余弦的定义在直角三角形中,如果一个锐角的对边和斜边的比值为正弦值,邻边和斜边的比值为余弦值。
假设在直角三角形ABC中,∠C为90°,AB为斜边,BC为对边,AC为邻边,那么正弦与余弦的定义如下:正弦值:sin∠A=对边/斜边=BC/AB余弦值:cos∠A=邻边/斜边=AC/AB在直角三角形中,正弦与余弦的值可以用来描述角度和三角形边长的关系。
在不同的三角形中,正弦与余弦的值并不相同,但其性质和图像是相似的。
正弦与余弦的性质1. 周期性:正弦与余弦函数都具有周期性,其周期为2π。
这意味着在一个周期内,函数值将重复出现。
在[-π, π]或[0, 2π]范围内,正弦与余弦的函数图像将呈现出周期性的特点。
2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数。
奇函数具有对称中心原点,即f(-x)=-f(x),在图像上关于原点对称。
而偶函数则具有对称中心y轴,即f(-x)=f(x),在图像上关于y轴对称。
3. 交替性:正弦与余弦函数在图像上呈现出交替变化的特点。
在一个周期内,正弦函数的最大值为1,最小值为-1;余弦函数的最大值为1,最小值为-1。
两个函数的图像像是上下振荡的波形。
4. 相关性:正弦与余弦函数是相互关联的。
在直角三角形中,三角函数的相互关系可以由勾股定理推导出来。
sin²x + cos²x = 1是三角函数基本关系式,也称为三角恒等式。
正弦与余弦的图像正弦与余弦函数的图像是学习三角函数的重要内容之一。
它们的图像形状、周期性、奇偶性等特点对于理解三角函数的性质至关重要。
正弦函数的图像是一条连续的波纹状曲线,具有周期性、奇函数特点。
其图像在[-π, π]或[0, 2π]范围内呈现出从最小值-1到最大值1的振荡变化。
正弦函数的图像具有对称性,关于原点对称。
余弦函数的图像也是一条连续的波纹状曲线,具有周期性、偶函数特点。
其图像在[-π, π]或[0, 2π]范围内同样呈现出从最大值1到最小值-1的振荡变化。
三角函数的正弦和余弦关系
三角函数的正弦和余弦关系三角函数是数学中重要的概念之一,它在几何、物理、工程等领域中都具有广泛的应用。
其中,正弦函数和余弦函数是最常见和基础的三角函数,它们之间存在着紧密的关系。
一、正弦和余弦的定义和性质正弦函数和余弦函数是定义在单位圆上的函数。
在单位圆上,以原点为中心作一个半径为1的圆,对于任意一点P(x,y),该点到x轴的距离为x,到y轴的距离为y,这时角OPx的弧度就是点P的角度。
定义:对于单位圆上的任意一个点P(x, y),它的角度为θ,则点P的正弦和余弦值分别定义为:sinθ = ycosθ = x性质:1. 在单位圆上,正弦值的取值范围在[-1, 1]之间,而余弦值的取值范围也在[-1, 1]之间。
2. 当角θ为0或2π的整数倍时,正弦值为0,余弦值为1。
当角θ为π的奇数倍时,正弦值为-1,余弦值为0。
3. 对于任意的角θ,有sin^2θ + cos^2θ = 1,这一关系被称为三角恒等式。
二、正弦和余弦的图像特点正弦函数和余弦函数的图像是周期性的波形图,其周期为2π。
正弦函数的图像是一条上下振荡的曲线,而余弦函数的图像则是一条左右偏移的曲线。
1. 正弦函数图像特点:正弦函数图像在θ = 0, π, 2π 等处过零点,即sin(0) = 0, sin(π) = 0, sin(2π) = 0。
在θ = π/2, 3π/2 等处达到最大值1,即sin(π/2) = 1, sin(3π/2) = 1。
在θ = π, 2π 等处达到最小值-1,即sin(π) = -1, sin(2π) = -1。
2. 余弦函数图像特点:余弦函数图像在θ = 0, 2π 等处达到最大值1,即cos(0) = 1, cos(2π) = 1。
在θ = π/2, 3π/2 等处过零点,即cos(π/2) = 0, cos(3π/2) = 0。
在θ = π, 2π 等处达到最小值-1,即cos(π) = -1, cos(2π) = -1。
高中数学正弦余弦公式大全
正弦定理和余弦定理一:基础知识理解1 .正弦定理分类内容定理===2 R ( R 是△ ABC 外接圆的半径 )变形公式① a = 2 R sin _ A , b = 2 R sin _ B , c = 2 R sin _ C ,② sin A ∶ sin B ∶ sin C =a ∶ b ∶ c ,③ sin A =,sin B =,sin C =解决的问题① 已知两角和任一边,求其他两边和另一角,② 已知两边和其中一边的对角,求另一边的对角2 .余弦定理分类内容定理在△ ABC 中,有 a 2 = b 2 + c 2 -2 bc cos _ A ;b 2 = a 2 +c 2 -2 ac cos _ B ; c 2 = a 2 + b 2 -2 ab cos _ C 变形公式cos A =;cos B =;cos C =解决的问题① 已知三边,求各角;② 已知两边和它们的夹角,求第三边和其他两个角3 .三角形中常用的面积公式( 1 ) S = ah ( h 表示边 a 上的高 );( 2 ) S = bc sin A = ac sin B = ab sin C ;( 3 ) S = r ( a + b + c )( r 为三角形的内切圆半径 ).二:基础知识应用演练1 .( 2012·广东高考 ) 在△ ABC 中,若∠ A = 60°,∠ B = 45°, BC = 3 ,则 AC =()A . 4B . 22 .在△ ABC 中, a =, b = 1 , c = 2 ,则 A 等于 ()A . 30°B . 45°C . 60°D . 75°3 .( 教材习题改编 ) 在△ ABC 中,若 a = 18 , b = 24 , A = 45°,则此三角形有 ()A .无解B .两解C .一解D .解的个数不确定4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c .若 a = 2 , B =, c = 2 ,则 b = ________.5 .△ ABC 中, B = 120°, AC = 7 , AB = 5 ,则△ ABC 的面积为________ .解析:1 选B 由正弦定理得:=,即=,所以 AC = × =2 .2 选C ∵ cos A ===,又∵ 0°< A <180°,∴ A =60°.3 选B ∵ =,∴ sin B = sin A = sin 45°,∴ sinB = .又∵ a < b ,∴ B 有两个.4 由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B =4+12-2×2×2 × =4,所以 b =2.答案:25、解析:设 BC = x ,由余弦定理得49=25+ x 2 -10 x cos 120°,整理得 x 2+5 x -24=0,即 x =3.因此 S △ ABC = AB × BC ×sin B = ×3×5× = . 答案:小结: ( 1 ) 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A > B ⇔ a > b ⇔ sin A >sin B .( 2 ) 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a = b sin A b sin A < a < b a ≥ b a > b解的个数一解两解一解一解三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1] ( 2012·浙江高考 ) 在△ ABC 中,内角 A , B , C 的对边分别为 a , b ,c ,且 b sin A = a cos B .( 1 ) 求角 B 的大小; ( 2 ) 若 b = 3 , sin C = 2sin A ,求 a , c 的值.解析: ( 1 ) 由 b sin A = a cos B 及正弦定理=,得sinB = cos B ,所以tan B =,所以 B = .(2) 由 sin C =2sin A 及=,得 c = 2 a . 由 b =3 及余弦定理 b 2 = a 2 + c 2 -2 ac cos B ,得 9= a 2 + c 2 - ac . 所以 a =, c =2 .思考一下:在本例 ( 2 ) 的条件下,试求角 A 的大小.方法小结:1 .应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2 .已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练 1 .△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c , a sin A sin B + b cos 2 A = a .( 1 ) 求;( 2 ) 若 c 2 = b 2 + a 2 ,求 B .解: ( 1 ) 由正弦定理得,sin 2 A sin B +sin B cos 2 A = sin A ,即 sin B ( sin 2 A +cos 2 A ) = sin A .故 sin B = sin A ,所以= .( 2 ) 由余弦定理和 c 2 = b 2 + a 2 ,得 cos B = .由 (1) 知 b 2 = 2 a 2 ,故 c 2 =(2+ ) a 2 . 可得 cos 2 B =,又 cos B >0,故 cos B =,所以 B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ ABC 中 a , b , c 分别为内角 A , B , C 的对边,且2 a sin A =( 2 b + c ) sin B +( 2 c + b ) sin C .( 1 ) 求 A 的大小;( 2 ) 若sin B + sin C = 1 ,试判断△ ABC 的形状.[ 解析 ] ( 1 ) 由已知,根据正弦定理得 2 a 2 = ( 2 b + c ) · b + ( 2 c + b ) c ,即a 2 = b 2 + c 2 + bc .由余弦定理得 a 2 = b 2 + c 2 -2 bc cos A ,故 cos A =-,∵ 0< A <180°,∴ A =120°.(2) 由 (1) 得 sin 2 A =sin 2 B +sin 2 C +sin B sin C =又 sin B +sin C =1,解得 sin B =sin C = .∵ 0°< B <60°,0°< C <60°,故 B = C ,∴△ ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:( 1 ) 利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;( 2 ) 利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用 A + B + C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 ( 2012·安徽名校模拟 ) 已知△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c ,向量 m =( 4 ,- 1 ), n =,且m · n = .( 1 ) 求角 A 的大小;( 2 ) 若 b + c = 2 a = 2 ,试判断△ ABC 的形状.解:( 1 ) ∵ m = ( 4,-1 ) , n =,∴ m · n =4cos 2 -cos 2 A =4·- ( 2cos 2 A -1 ) =-2cos 2 A +2cos A +3.又∵ m · n =,∴ -2cos 2 A +2cos A +3=,解得 cos A =. ∵ 0< A < π ,∴ A = .(2) 在△ ABC 中, a 2 = b 2 + c 2 -2 bc cos A ,且 a =,∴ ( ) 2 =b 2 +c 2 -2 bc ·= b 2 + c 2 -bc . ①又∵ b + c =2 ,∴ b =2 - c ,代入① 式整理得 c 2 - 2 c +3=0,解得 c =,∴ b =,于是 a = b = c =,即△ ABC 为等边三角形.(3)与三角形面积有关的问题[例3] ( 2012·新课标全国卷 ) 已知 a , b , c 分别为△ ABC 三个内角 A , B ,C 的对边, a cos C + a sin C - b - c = 0.( 1 ) 求 A ;( 2 ) 若 a = 2 ,△ ABC 的面积为,求 b , c .[ 解 ] ( 1 ) 由 a cos C + a sin C - b - c =0及正弦定理得sin A cos C + sin A sin C -sin B -sin C =0.因为 B =π- A - C ,所以 sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin = . 又0< A <π,故 A = .( 2 ) △ ABC 的面积 S = bc sin A =,故 bc =4.而 a 2 = b 2 + c 2 -2 bc cos A ,故 b 2 + c 2 =8. 解得 b = c =2.方法小结:1 .正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2 .在解决三角形问题中,面积公式 S = ab sin C = bc sin A = ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 ( 2012·江西重点中学联考 ) 在△ ABC 中, cos 2 A = cos 2 A -cos A .( 1 ) 求角 A 的大小;( 2 ) 若 a = 3 , sin B = 2sin C ,求 S △ ABC .解: ( 1 ) 由已知得 ( 2cos 2 A -1 ) =cos 2 A -cos A ,则cos A = .因为0< A <π,所以 A = .( 2 ) 由=,可得==2,即 b = 2 c .所以cos A ===,解得 c =, b =2 ,所以 S △ ABC = bc sin A = ×2 × × = .课后强化与提高练习(基础篇-必会题)1 .在△ ABC 中, a 、 b 分别是角 A 、 B 所对的边,条件“ a < b ”是使“cosA >cosB ”成立的 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2 .( 2012·泉州模拟 ) 在△ ABC 中, a , b , c 分别是角 A , B , C 所对的边.若 A =, b = 1 ,△ ABC 的面积为,则 a 的值为 ()A . 1B . 23 .( 2013·“江南十校”联考 ) 在△ ABC 中,角 A , B , C 所对的边分别为 a , b ,c ,已知 a = 2 , c = 2 , 1 +=,则 C =()A . 30°B . 45°C . 45°或135°D . 60°4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c ,若 a 2 + b 2 = 2 c 2 ,则cos C 的最小值为 ()D .-5 .( 2012·上海高考 ) 在△ ABC 中,若sin 2 A + sin 2 B <sin 2 C ,则△ ABC 的形状是 ()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6 .在△ ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c .若 b = 2 a sin B ,则角 A 的大小为________ .解析:由正弦定理得sin B =2sin A sin B ,∵ sin B ≠0,7 .在△ ABC 中,若 a = 3 , b =, A =,则 C 的大小为________ .8 .( 2012·北京西城期末 ) 在△ ABC 中,三个内角 A , B , C 的对边分别为 a ,b ,c .若 b = 2 , B =, sin C =,则 c = ________ ; a = ________.9 .( 2012·北京高考 ) 在△ ABC 中,若 a = 2 , b + c = 7 , cos B =-,则 b = ________.10 .△ ABC 的内角 A , B , C 的对边分别为 a , b , c , a sin A + c sin C -a sin C =b sin B .( 1 ) 求 B ;( 2 ) 若 A = 75°, b = 2 ,求 a , c .11 .( 2013·北京朝阳统考 ) 在锐角三角形 ABC 中, a , b , c 分别为内角 A , B ,C 所对的边,且满足 a - 2 b sin A = 0.( 1 ) 求角 B 的大小;( 2 ) 若 a + c = 5 ,且 a > c , b =,求 ·的值.12 .( 2012·山东高考 ) 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b ,c ,已知sin B ( tan A + tan C )= tan A tan C .( 1 ) 求证: a , b , c 成等比数列;( 2 ) 若 a = 1 , c = 2 ,求△ ABC 的面积 S .课后强化与提高练习(提高篇-选做题)1 .( 2012·湖北高考 ) 设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c .若三边的长为连续的三个正整数,且 A > B > C , 3 b = 20 a cos A ,则sin A ∶ sin B ∶ sin C 为 ()A .4 ∶ 3 ∶ 2B .5 ∶ 6 ∶ 7C .5 ∶ 4 ∶ 3D .6 ∶ 5 ∶ 42 .( 2012·长春调研 ) 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知4sin 2 - cos 2 C =,且 a + b = 5 , c =,则△ ABC 的面积为________ .3 .在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,且满足 ( 2 b - c ) cos A - a cos C = 0.( 1 ) 求角 A 的大小;( 2 ) 若 a =, S △ ABC =,试判断△ ABC 的形状,并说明理由.选做题1 .已知 a , b , c 分别是△ ABC 的三个内角 A , B , C 所对的边.若 a = 1 ,b =, A + C = 2 B ,则sin C = ________.2 .在△ ABC 中, a = 2 b cos C ,则这个三角形一定是 ()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3 .在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cos 2 C =- .( 1 ) 求sin C 的值;( 2 ) 当 a = 2 , 2sin A = sin C 时,求 b 及 c 的长.4 .设△ ABC 的内角 A , B , C 所对的边长分别为 a , b , c ,且cos B =, b = 2.( 1 ) 当 A = 30°时,求 a 的值;( 2 ) 当△ ABC 的面积为3时,求 a + c 的值.课后强化与提高练习(基础篇-必会题)解析1 解析:选C a < b ⇔ A < B ⇔ cos A >cos B .2 解析:选D 由已知得 bc sin A = ×1× c ×sin =,解得 c = 2 ,则由余弦定理可得 a 2 = 4 + 1 - 2×2×1×cos =3 ⇒ a = .3 解析:选B 由1 +=和正弦定理得 cos A sin B +sin A cos B=2sin C cos A ,即 sin C =2sin C cos A ,所以 cos A =,则 A =60°. 由正弦定理得=,则 sin C =,又 c < a ,则 C <60°,故 C =45°.4 解析:选 C 由余弦定理得 a 2 + b 2 - c 2 =2 ab cos C ,又 c 2 =( a 2 + b 2 ),得 2 ab cos C = ( a 2 + b 2 ),即 cos C =≥ = .6 解析:选 C 由正弦定理得 a 2 + b 2 < c 2 ,所以 cos C =<0,所以 C 是钝角,故△ ABC 是钝角三角形.∴ sin A =,∴ A =30°或 A =150°. 答案:30°或 150°7 解析:由正弦定理可知 sin B ===,所以 B =或 ( 舍去 ),所以 C =π - A - B =π --= . 答案:8 解析:根据正弦定理得=,则 c ==2 ,再由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,即 a 2 - 4 a -12=0,( a +2)( a -6)=0,解得 a =6 或 a =-2( 舍去 ).答案:2 69 解析:根据余弦定理代入 b 2 =4+(7- b ) 2 -2×2×(7- b )× ,解得b =4. 答案:410 解:(1) 由正弦定理得 a 2 + c 2 - ac = b 2 . 由余弦定理得 b 2 = a 2 +c 2 -2 ac cos B .故cos B =,因此 B =45°.(2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°= .故 a = b × ==1+, c = b × =2×= .1 1 解:(1) 因为 a -2 b sin A =0,所以 sin A -2sin B sin A =0,因为sin A ≠0,所以 sin B = . 又 B 为锐角,所以 B = .( 2 ) 由 ( 1 ) 可知, B = .因为 b = .根据余弦定理,得7= a 2 + c 2 -2 ac cos ,整理,得 ( a + c ) 2 - 3 ac =7.由已知 a + c =5,得 ac =6.又 a > c ,故 a =3, c =2.于是cos A ===,所以 ·=| |·| |cos A = cb cos A=2× × =1.12 解: ( 1 ) 证明:在△ ABC 中,由于sin B ( tan A +tan C ) =tan A tan C ,所以sin B = ·,因此sin B ( sin A cos C +cos A sin C ) =sin A sin C ,所以 sin B sin( A + C )=sin A sin C .又 A + B + C =π ,所以 sin( A + C )=sin B ,因此 sin 2 B =sin A sin C .由正弦定理得 b 2 = ac ,即 a , b , c 成等比数列.( 2 ) 因为 a =1, c =2,所以 b =,由余弦定理得cos B ===,因为0< B <π,所以sin B ==,故△ ABC 的面积 S = ac sin B = ×1×2× = .课后强化与提高练习(提高篇-选做题)解析1 解析:选D 由题意可得 a > b > c ,且为连续正整数,设 c = n , b = n +1,a = n +2 ( n >1,且n ∈ N * ) ,则由余弦定理可得3 ( n +1 ) =20 ( n +2 ) ·,化简得7 n 2 -13 n -60=0,n ∈ N * ,解得 n =4,由正弦定理可得sin A ∶ sin B ∶ sin C =a ∶ b ∶ c =6 ∶ 5 ∶ 4.2 解析:因为4sin 2 -cos 2 C =,所以2[1-cos( A + B )]-2cos 2 C +1=,2+2cos C -2cos 2 C +1=,cos 2 C -cos C +=0,解得cos C = .根据余弦定理有cos C ==,ab = a 2 + b 2 -7 , 3 ab = a 2 + b 2 +2 ab -7= ( a + b ) 2 -7=25-7=18,ab =6,所以△ ABC 的面积 S △ ABC = ab sin C = ×6× =.答案:3 解: ( 1 ) 法一:由 ( 2 b - c ) cos A - a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴ 2sin B cos A -sin( A + C )=0,sin B (2cos A -1)=0. ∵ 0< B < π ,∴ sin B ≠0,∴ cos A =. ∵ 0< A < π ,∴ A= .法二:由 (2 b - c )cos A - a cos C =0,及余弦定理,得 (2 b - c )·- a ·=0,整理,得 b 2 + c 2 - a 2 = bc ,∴ cos A ==,∵ 0<A < π ,∴ A = .(2) ∵ S △ ABC = bc sin A =,即 bc sin =,∴ bc =3,①∵ a 2 = b 2 + c 2 -2 bc cos A , a =, A =,∴ b 2 + c 2 =6,② 由①② 得 b = c =,∴△ ABC 为等边三角形.选择题解析1 解析:在△ ABC 中, A + C =2 B ,∴ B =60°. 又∵ sin A ==,∴ A =30°或 150°( 舍 ),∴ C =90°,∴ sin C =1.答案:12 解析:选A 法一: ( 化边为角 ) 由正弦定理知:sin A =2sin B cos C ,又 A =π -( B + C ),∴ sin A =sin( B + C )=2sin B cos C .∴ sin B cos C +cos B sin C =2sin B cos C ,∴ sin B cos C -cos B sin C =0,∴ sin ( B - C ) =0.又∵ B 、 C 为三角形内角,∴ B = C .法二: ( 化角为边 ) 由余弦定理知cos C =,∴ a =2 b ·=,∴ a 2 = a 2 + b 2 - c 2 ,∴ b 2 = c 2 ,∴ b = c .3 解: ( 1 ) 因为cos 2 C =1-2sin 2 C =-,且0< C <π,所以sin C = .( 2 ) 当 a =2 , 2sin A =sin C 时,由正弦定理=,得 c =4.由cos 2 C =2cos 2 C -1=-,及0< C <π得cos C =± .由余弦定理 c 2 = a 2 + b 2 -2 ab cos C ,得 b 2 ± b -12=0,解得 b =或2 ,所以或4 解: ( 1 ) 因为cos B =,所以sin B = .由正弦定理=,可得=,所以 a = .( 2 ) 因为△ ABC 的面积 S = ac ·sin B ,sin B =,所以 ac =3, ac =10.由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,得4= a 2 + c 2 - ac = a 2 + c 2 -16,即 a 2 + c 2 =20.所以 ( a + c ) 2 - 2 ac =20, ( a + c ) 2 =40.所以 a + c =2 .。
初中正弦余弦正切公式
初中正弦余弦正切公式“初中数学必背三角函数公式、三角函数值”主要包括正弦、余弦、正切函数的定义式和关系式,特殊锐角的正弦、余弦、正切值。
一、正弦、余弦、正切的定义假设在直角三角形ABC中,∠C为直角,∠A、∠B、∠C的对边长度分别记为a、b、c,则有(注:初中数学里,三角函数的定义只适用于直角三角形。
):1、锐角A的正弦值、余弦值、正切值的定义式分别如下:(1)∠A的正弦值=∠A的对边:斜边,记作sinA=a/c。
(2)∠A的余弦值=∠A的邻边:斜边,记作cosA=b/c。
(3)∠A的正切值=∠A的对边:∠A的邻边,记作tanA=a/b。
2、锐角B的正弦值、余弦值、正切值的定义式分别如下:(1)∠B的正弦值=∠B的对边:斜边,记作sinB=b/c。
(2)∠B的余弦值=∠B的邻边:斜边,记作cosB=a/c。
(3)∠B的正切值=∠B的对边:∠B的邻边,记作tanB=b/a。
【注】正弦=“对比斜”、余弦=“邻比斜”、正切=“对比邻”。
3、互余的两个角间的正弦、余弦、正切值关系假设在直角三角形ABC中,∠C为直角,则∠A与∠B互余。
通过∠A和∠B的正弦、余弦、正切值的定义式的对比,我们不难发现:∠A的正弦值与∠B的余弦值相等,∠A的余弦值与∠B的正弦值相等,∠A的正切值与∠B的正切值互为倒数。
所以,当∠A与∠B互余时我们有以下3个同时成立的等式关系:(1)sinA=cosB;(2)sinB=cosA;(3)tanA·tanB=1。
二、同角的正弦值、余弦值、正切值间的关系式1、商数关系:tanA=sinA/cosA;tanB=sinB/cosB.2、平方关系:同一个锐角的‘正弦的平方’与‘余弦的平方’的和为1,即(sinA)^2+(cosA)^2=1;(sinB)^2+(cosB)^2=1.3、倒数关系:tanA·cotA=1;tanB·cotB=1.【注】“cotA”称为为∠A的余切,它等于∠A的邻边比上∠A的对边。
三角函数中的正弦函数与余弦函数
三角函数中的正弦函数与余弦函数在数学中,三角函数是研究角的性质和变化规律的重要工具。
其中,正弦函数(sine function)和余弦函数(cosine function)是最基本和常见的两个三角函数。
它们在数学、物理、工程等领域中都有广泛的应用。
本文将对正弦函数和余弦函数进行详细介绍,探讨它们的定义、性质和应用。
一、正弦函数正弦函数是三角函数中最基本的函数之一,通常用符号sin表示。
它可以通过单位圆上的点的纵坐标来定义。
在单位圆上,以圆心为原点,半径为1的圆为基准,对于圆上的任意一点P,其纵坐标y就是正弦函数的值。
正弦函数的定义域是实数集,值域是闭区间[-1,1]。
正弦函数具有以下几个重要的性质:1. 周期性:正弦函数是周期函数,其最小正周期为2π。
也就是说,对于任意实数x,有sin(x+2π)=sin(x)。
2. 奇偶性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。
这意味着正弦函数关于原点对称。
3. 对称性:正弦函数具有轴对称性,即sin(π-x)=sin(x)。
4. 最值:正弦函数的最大值为1,最小值为-1。
正弦函数在数学和物理中有广泛的应用。
例如,在几何学中,正弦函数可以用来求解三角形的边长和角度。
在物理学中,正弦函数可以用来描述波动、振动等现象。
二、余弦函数余弦函数是另一个常见的三角函数,通常用符号cos表示。
它也可以通过单位圆上的点的横坐标来定义。
在单位圆上,以圆心为原点,半径为1的圆为基准,对于圆上的任意一点P,其横坐标x就是余弦函数的值。
余弦函数的定义域是实数集,值域是闭区间[-1,1]。
余弦函数具有以下几个重要的性质:1. 周期性:余弦函数也是周期函数,其最小正周期为2π。
也就是说,对于任意实数x,有cos(x+2π)=cos(x)。
2. 偶性:余弦函数是偶函数,即满足cos(-x)=cos(x)。
这意味着余弦函数关于y轴对称。
3. 对称性:余弦函数具有轴对称性,即cos(π-x)=-cos(x)。
正弦定理与余弦定理的关系
正弦定理与余弦定理的关系
正弦余弦正切的关系:sinA/cosA=tanA,三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
定要确定角的范围,本题中sinα·cosα大于0,则sinα和cosα同号,正弦值和余弦值符号相同,说明角α是第一或者第三象限角,又已知中π≤α≤2π,则就可以确定α是第三象限角,则sinα和cosα都是负数,则sinα+cosα的值是负值。
正弦与余弦
正弦与余弦【知识要点】1.正弦:在直角三角形中,一个锐角所对的直角边与斜边的比,叫做这个角的正弦.即:c a A A =∠=斜边的对边sin ; cb B B =∠=斜边的对边sin . 2.余弦:在直角三角形中,一个锐角的邻边与斜边的比,叫做这个角的余弦.即:c b A A =∠=斜边的邻边cos ; ca B B =∠=斜边的邻边cos 3.特殊角的三角函数值=︒0sin ;=︒30sin ;=︒45sin ;=︒60sin ;=︒90sin ; =︒0cos ;=︒30cos ;=︒45cos ;=︒60cos ;=︒90cos .4. 增减性正弦值随锐角的增大而增大,余弦值随锐角的增大而减小。
正切值随锐角的增大而增大,余切值随锐角的增大而减小。
5.互余关系:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.()ααcos 90sin =-︒; ()ααsin 90cos =-︒.6.同角的正弦,余弦间的关系: ①平方和的关系:1cos sin 22=+A A .②大小比较:当︒<<︒450A 时,A A sin cos >.当︒<<︒9045A 时,A A sin cos <.【典型例题】例1. 根据下列图中给出的ABC Rt ∆的数据,求A sin ,A cos ,B sin , B cos 的值.例2.已知等腰梯形ABCD 中,上底CD=2cm,下底AB=5cm,腰AD=3cm ,试求A sin ,A cos 的值.例3.求下列各式的值.(1)︒+︒-︒60cos 45cos 30sin (2)︒⋅︒-︒30cos 30sin 260sinBA2 C B3 A B(3)︒+︒+︒50cos 50sin 45cos 222 (4)︒-︒︒60cos 245cos 45sin 例4.用不等号“>”“<”或“=”连接。
⑴ ︒35sin 635sin '︒; ⑵0372cos '︒ 2872cos ︒;⑵ ︒50.15sin 0315sin '︒; ⑷︒6cos ︒84sin⑸︒-︒27cos 63sin 0; ⑹︒-︒48sin 32cos 0。
初中数学 什么是正弦和余弦
初中数学什么是正弦和余弦正弦和余弦是初中数学中与三角函数相关的两个重要概念。
它们是用来描述和计算三角形中角度和边长之间关系的函数。
在本文中,我们将详细讨论正弦和余弦的定义、性质和应用。
一、正弦函数正弦函数是指一个角的正弦值与其对边与斜边的比值之间的关系。
具体来说,对于一个锐角A,它的正弦值定义为sin(A) = 对边/斜边。
对于钝角A,正弦值定义为sin(A) = -对边/斜边。
正弦函数具有以下几个重要的性质:1. 值域和定义域:正弦函数的值域为[-1, 1],定义域为整个实数集。
2. 周期性质:正弦函数是周期函数,其最小正周期为2π,即sin(A) = sin(A + 2π)。
3. 对称性质:正弦函数是奇函数,即sin(-A) = -sin(A)。
4. 单调性质:在一个周期内,正弦函数在[0, π]上是单调递增的,在[π, 2π]上是单调递减的。
正弦函数在几何学中有着广泛的应用。
它可以用来计算和描述三角形中的角度和边长之间的关系,比如计算角度的正弦值、计算边长的比例等。
此外,正弦函数还可以用来解决关于周期性和周期函数的问题,比如计算函数的周期、求解方程等。
二、余弦函数余弦函数是指一个角的余弦值与其邻边与斜边的比值之间的关系。
具体来说,对于一个锐角A,它的余弦值定义为cos(A) = 邻边/斜边。
对于钝角A,余弦值定义为cos(A) = -邻边/斜边。
余弦函数具有以下几个重要的性质:1. 值域和定义域:余弦函数的值域为[-1, 1],定义域为整个实数集。
2. 周期性质:余弦函数是周期函数,其最小正周期为2π,即cos(A) = cos(A + 2π)。
3. 对称性质:余弦函数是偶函数,即cos(-A) = cos(A)。
4. 单调性质:在一个周期内,余弦函数在[0, π/2]上是单调递减的,在[π/2, 3π/2]上是单调递增的。
余弦函数在几何学中有着广泛的应用。
它可以用来计算和描述三角形中的角度和边长之间的关系,比如计算角度的余弦值、计算边长的比例等。
三角函数中的正弦定理与余弦定理
三角函数中的正弦定理与余弦定理三角函数是数学中常用的一种函数,在几何学中也起着重要的作用。
本文将探讨三角函数中的两个关键定理:正弦定理和余弦定理。
这两个定理在解决各种三角形问题时非常有用,通过它们可以计算出未知的边长和角度。
一、正弦定理正弦定理是一个关于三角形边长和角度之间关系的定理,它适用于所有的三角形。
正弦定理表达的是三角形中一个角的正弦值与其对边的比例关系。
设三角形的三边分别为a、b、c,相应的角为A、B、C,那么正弦定理可以表示为:a/sinA = b/sinB = c/sinC这个定理的一种形式是:a/sinA = 2R其中,R是三角形外接圆的半径。
正弦定理的应用非常广泛,例如可以通过已知两边和一个角度,求解未知边长或者角度。
同时,它也常用于解决三角形的面积问题。
二、余弦定理余弦定理是另一个与三角形边长和角度之间关系的定理,与正弦定理相比,余弦定理更加灵活,适用于各种类型的三角形。
余弦定理表达的是三角形中一个角的余弦值与其对边的平方和其他两边的乘积之间的关系。
设三角形的三边分别为a、b、c,相应的角为A、B、C,那么余弦定理可以表示为:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理的应用非常广泛,可以通过已知三边求解未知角度或者通过已知两边和一个夹角求解未知边长。
三、正弦定理与余弦定理的关系正弦定理和余弦定理在解决三角形问题时可以互相补充使用。
根据正弦定理,我们可以求解任意一个角的正弦值,通过求解余弦,我们可以得知其他两个角的余弦值。
进而,我们可以通过余弦定理求解三角形的边长。
例如,在解决三角形的边长问题时,我们可以首先使用正弦定理求解一个角的正弦值,然后使用余弦定理求解其他两个角的余弦值。
通过已知角度的余弦值,我们可以应用余弦定理求解未知边长。
在实际应用中,我们常常需要通过这两个定理来解决与三角形相关的问题。
正弦定理和余弦定理
返回
[研一题] [例 2] B、b. π 在△ABC 中,c= 6,C=3,a=2,求 A、
返回
[自主解答] π 3 ∴A=4或4π.
a c asin C 2 ∵sin A=sin C,∴sin A= c = 2 .
π 又∵c>a,∴C>A.∴A=4. 5π 6· sin 1n C = π = 3+1. sin 3
第四章
三角函数
四
正弦定理和余弦定理
• 1、正、余弦定理
定理 正弦定理
a b c = = sin A sin B sin C =2R
余弦定理 a2= a2+c2-2accos B b2=a2+b2-2abcosC c2 =
b2+c2-2bccos A
内
; ; .
容
定理
变 形 形 式
正弦定理 余弦定理 ①a= 2Rsin A , b= 2Rsin B , c= 2Rsin C ; b2+c2-a2 cosB= a b 2bc ②sin A=2R,sin B=2R, 2 a +c2-b2 c 2ac sin C=2R; cos B= ; 2 2 2 a + b - c (其中 R 是△ABC 外接圆半径) cos C= 2ab . ③a∶b∶c=sinA∶sin B∶sin C ④asin B=bsin A,bsin C=csin B, asin C=csin A.
(2)由正弦定理知sin A∶sin B∶sin C=a∶b∶c正确,即
(2)正确.
返回
2.在△ABC中,若A>B,是否有sin A>sin B?反之,是 否成立?
提示:∵A>B,∴a>b. a b 又∵sin A=sin B,∴sin A>sin B. 反之,若 sin A>sin B, 则 a>b,即 A>B. 故 A>B⇔sin A>sin B.
正弦定理和余弦定理
正弦定理和余弦定理知识要点归纳:一、 正弦定理(其中R 表示三角形的外接圆半径):R Cc B b A a 2sin sin sin === 2sin ,2sin ,2sin ;a R A b R B c R C ⇔===sin ,sin ,sin ;222a b c A B C R R R⇔=== ::sin :sin :sin .a b c A B C ⇔=用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。
二、余弦定理第一形式,2b =B ac c a cos 222-+余弦定理第二形式,cosB = acb c a 2222-+ 用途:⑴已知三角形两边及其夹角,求其它元素;⑵已知三角形三边,求其它元素。
(3)已知三角形两边和其中一边的对角,求第三边。
三、△ABC 的面积用S 表示 ① =⋅=a h a S 21;② ==A bc S sin 21; 四、在△ABC 中: ()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. △ABC 是锐角三角形0,,,,2A B C A B B C C A ππ⇔<<<+++<sin sin ;a b A B A B >⇔>⇔> 若sin 2sin 2,.2A B A B A B π==+=则或sin(A+B)=sinC ,cos(A+B) -cosC ,tan(A+B) -tanC ==2cos 2sinC B A =+,2sin 2cos C B A =+典型例题精析:考点五:正弦定理、余弦定理例1设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长;(Ⅱ)求()C A -cos 的值.例2 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知. (Ⅰ)求的值;(Ⅱ)若cosB=,,求的面积.cos A-2cos C 2c-a =cos B bsin sin C A142b =ABC ∆例3(15年江苏)在ABC ∆中,已知 60,3,2===A AC AB .(1)求BC 的长;(2)求C 2sin 的值.例4(15年天津文科)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为12,cos ,4b c A -==- (I )求a 和sin C 的值;(II )求cos 26A π⎛⎫+⎪⎝⎭的值.。
正弦函数余弦函数的图像与性质
三角函数在物理学中的应用
振动与波动
正弦和余弦函数是描述简谐振动和波动的基本函 数,广泛应用于声学、光学等领域。
交流电
交流电的电压和电流是时间的正弦或余弦函数, 用于驱动各种电器设备。
磁场与电场
在电磁学中,正弦和余弦函数用于描述磁场和电 场的分布和变工程中的许多振动问题都可以用 正弦和余弦函数来描述,如桥梁 振动、车辆振动等。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比值,记作 cos(x)。
周期性
余弦函数也具有周期性,其周期为2π。
奇偶性
余弦函数是偶函数,满足cos(-x) = cos(x)。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
奇函数满足$f(-x) = -f(x)$,偶函数满 足$f(-x) = f(x)$。对于正弦函数, $sin(-x) = -sin(x)$;对于余弦函数, $cos(-x) = cos(x)$。
最值与振幅
总结词
正弦函数和余弦函数都具有最大值和最小值,这取决于它们的振幅。
正弦函数余弦函数的图像与性质
目录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的图像 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的扩展知识
01 正弦函数与余弦函数的定 义
正弦函数的定义
定义
正弦函数是三角函数的 一种,定义为直角三角 形中锐角的对边与斜边 的比值,记作sin(x)。
正弦定理和余弦定理ppt课件
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
高中数学必修五-正弦定理与余弦定理
正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
正弦函数 余弦函数
正弦函数余弦函数正弦函数和余弦函数是数学中的两个重要概念,它们是周期函数的典型代表,具有广泛的应用。
下面将详细介绍正弦函数和余弦函数的概念、性质、应用等方面。
一、正弦函数的概念正弦函数是指在单位圆上,以逆时针方向从 x 轴正半轴开始,向左绕过的弧长对应的 y 坐标值。
正弦函数的定义域为实数集,值域为[-1,1]。
正弦函数可以用函数表达式sin x来表示。
正弦函数和余弦函数之间存在着很紧密的关系。
根据勾股定理可知,在一个半径为 r 的圆形中,当夹角为θ 时,正弦值等于斜边的长度除以半径,余弦值等于邻边的长度除以半径。
因此,对于同一个角度,正弦函数和余弦函数的数值可以相互计算。
sinθ = opposite / hypotenuse1. 周期性正弦函数和余弦函数都具有周期性,即在一定的间隔内,函数值呈现出重复的规律。
正弦函数和余弦函数的周期均为2π。
2. 偶函数和奇函数余弦函数是一个偶函数,即cos(-x) = cos(x),而正弦函数是一个奇函数,即sin(-x) = -sin(x)。
3. 值域正弦函数和余弦函数的值域均为[-1,1],它们的最大值为1,最小值为-1。
4. 对称性正弦函数和余弦函数是以坐标原点为中心的轴对称函数。
正弦函数和余弦函数在科学和工程领域中有着广泛的应用。
这里介绍一些典型的应用:1. 声波和电磁波正弦函数和余弦函数可以用来描述声波和电磁波的周期性变化。
声波和电磁波的波长和频率与正弦函数和余弦函数的周期和角频率有着密切的关系。
2. 振动物理学中的振动可以用正弦函数和余弦函数来描述。
例如,弹簧振子、单摆等的运动都可以用正弦函数或余弦函数描述。
3. 信号处理信号处理领域中经常使用正弦函数和余弦函数对信号进行分析和处理,例如傅里叶变换、离散余弦变换等。
4. 几何学正弦函数和余弦函数在几何学中也有广泛的应用,例如三角形的求解中就会涉及到正弦函数和余弦函数。
5. 统计学正弦函数和余弦函数在统计学中也有一些应用,例如周期性随时间变化的数据可以使用正弦函数和余弦函数进行拟合和分析。
正弦定理和余弦定理直角三角形
正弦定理和余弦定理直角三角形正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
一、正弦定理:在任何三角形中,对于一个角度和它对应的边,正弦定理表示边长与正弦值成正比例关系。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则正弦定理可表示为:sin A = a / c其中,sin A 表示角 A 的正弦值,a 表示角 A 对应的直角三角形的对边长,c 表示直角三角形的斜边长。
可以通过正弦定理推导出其他两个角的正弦值,从而求解三角形中的边和角度:sin B = b / csin C = c / c = 1二、余弦定理:余弦定理是另一种在直角三角形中解决边长和角度关系的基本公式。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则余弦定理可表示为:cos A = b / c其中,cos A 表示角 A 的余弦值,b 表示角 A 对应的直角三角形的邻边长,c 表示直角三角形的斜边长。
通过余弦定理,可以求出其他两个角的余弦值:cos B = a / ccos C = 0三、比较正弦定理和余弦定理:正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
它们都可以用于求解三角形的边和角度,但是有一些不同点:1. 适用条件不同。
正弦定理适用于任何三角形,而余弦定理无法适用于等边三角形。
2. 求解的变量不同。
正弦定理可以求解角的正弦值,而余弦定理可以求解角的余弦值。
3. 计算方式不同。
正弦定理使用正弦函数,余弦定理使用余弦函数,两者在计算推导过程中存在差异。
总之,正弦定理和余弦定理是直角三角形中解决边长和角度关系的基本公式,掌握并灵活应用这两个公式可以帮助我们更好地理解和求解三角形中的各种问题。
正弦定理和余弦定理公式
正弦定理和余弦定理公式设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。
正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。
一、正弦定理公式a/sinA=b/sinB=c/sinC=2R。
【注1】其中“R”为三角形△ABC外接圆半径。
下同。
【注2】正弦定理适用于所有三角形。
初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。
二、正弦定理推论公式1、(1)a=2RsinA;(2)b=2RsinB;(3)c=2RsinC。
2、(1)a:b=sinA:sinB;(2)a:c=sinA:sinC;(3)b:c=sinB:sinC;(4)a:b:c=sinA:sinB:sinC。
【注】多用于“边”、“角”间的互化。
三角板的边角关系也满足正、余弦定理3、由“a/sinA=b/sinB=c/sinC=2R”可得:(1)(a+b)/(sinA+sinB)=2R;(2)(a+c)/(sinA+sinC)=2R;(3)(b+c)/(sinB+sinC)=2R;(4)(a+b+c)/(sinA+sinB+sinC)=2R。
4、三角形ABC中,常用到的几个等价不等式。
(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。
(2)“a+b>c”等价于“sinA+sinB>sinC”。
(3)“a+c>b”等价于“sinA+sinC>sinB”。
(4)“b+c>a”等价于“sinB+sinC>sinA”。
5、三角形△ABC的面积S=(abc)/4R。
其中“R”为三角形△ABC的外接圆半径。
部分三角函数公式余弦定理公式及其推论余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
一、余弦定理公式(1)a^2=b^2+c^2-2bccosA;(2)b^2=a^2+c^2-2accosB;(3)c^2=a^2+b^2-2abcosC。
余弦定理与正弦定理
余弦定理与正弦定理余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
它们在三角学中有着广泛的应用,能够帮助我们计算未知边长或角度。
本文将介绍余弦定理和正弦定理的定义、公式以及应用,并探讨它们的区别和联系。
一、余弦定理的定义和公式余弦定理是在三角形中,通过已知边长和夹角计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2abcosC其中,c为三角形对应于角C的边长,a和b为与角C相邻的两条边长,cosC为角C的余弦值。
二、正弦定理的定义和公式正弦定理是在三角形中,通过已知两个角度和一个边长计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
三、余弦定理和正弦定理的应用1. 通过余弦定理计算未知边长或角度:- 已知两边长和夹角:可以使用余弦定理计算第三条边长,或者计算其他两个角度。
- 已知三边长:可以使用余弦定理计算其中一个角度。
2. 通过正弦定理计算未知边长或角度:- 已知两角度和一个边长:可以使用正弦定理计算其他两条边长。
- 已知一个角度和两边长:可以使用正弦定理计算另外两个角度。
四、余弦定理与正弦定理的区别和联系余弦定理和正弦定理在解决三角形问题时具有不同的应用场景。
余弦定理适用于已知边长和夹角的情况,可以求解缺失的边长或角度。
而正弦定理适用于已知两个角度和一个边长的情况,同样可以求解其他边长或角度。
此外,两个定理之间也存在一定的联系。
通过余弦定理可以推导出正弦定理,而正弦定理也可以推导出余弦定理。
在解决问题时,可以根据具体情况选择使用其中一个定理进行计算。
总结:余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下册1.1.1 锐角三角函数(第2课时-正弦余弦)
班级: 姓名:
一、 温故知新
1、如图,Rt △ABC 中,tanA = ,tanB= 。
2、在Rt △ABC 中,∠C =90°,tanA =4
3
,AC =10,求BC,AB 的长。
3、若梯子与水平面相交的锐角(倾斜角)为∠A ,∠A 越大,梯子越 ;tanA 的值越大,梯子越 。
4、当Rt △ABC 中的一个锐角A 确定时,其它边之间的比值也确定吗? 可以用其它的方式来表示梯子的倾斜程度吗?
二、探究新知
探究1:如图,请思考:
(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)
的关系是和2
2
2111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则
的关系是和2
2
2111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________。
它的邻边与斜边的比值呢?
归纳概念: 1、正弦的定义:
如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的对边BC 与斜边AB 的比叫做∠A 的正弦,记作sinA ,即:sinA =________。
B 1
B 2
A
C 1
C 2
A
C B
2、余弦的定义:
如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的邻边AC 与斜边AB 的比叫做∠A 的余弦,记作cosA ,即:cosA=_ _____。
3、锐角A 的正弦,余弦,正切和余切都叫做∠A 的三角函数。
温馨提示:
(1)sinA ,cosA 是在直角三角形中定义的,∠A 是一个锐角;
(2)sinA ,cosA 中常省去角的符号“∠”。
但∠BAC 的正弦和余弦表示为: sin ∠BAC ,cos ∠BAC 。
∠1的正弦和余弦表示为: sin ∠1,cos ∠1; (3)sinA ,cosA 没有单位,它表示一个比值;
(4)sinA ,cosA 是一个完整的符号,不表示“sin ”,“cos ”乘以“A” ;
(5)sinA ,cosA 的大小只与∠A 的大小有关,而与直角三角形的边长没有必然的关系。
探究2:我们知道,梯子的倾斜程度与tanA 有关系,tanA 越大,梯子越陡,那么梯子的倾斜程度与sinA 和cosA 有关系吗?是怎样的关系?
探索发现:梯子的倾斜程度与sinA,cosA 的关系: sinA 越大,梯子 ; cosA 越 ,梯子越陡。
探究活动3:如图,在Rt △ABC 中,∠C=90°,AB=20,sinA=0.6,求BC 和cosB 。
通过上面的计算,你发现sinA 与cosB 有什么关系呢? sinB 与cosA 呢?在其它直角三角形中是不是也一样呢?请举例说明。
小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 。
三、及时检测
1、如图,在Rt △ABC 中,锐角A 的对边和邻边同时扩大100倍,sinA 的值( ) A 、扩大100倍 B 、缩小100倍 C 、不变 D 、不能确定
A
B
C
2、已知∠A ,∠B 为锐角 (1)若∠A=∠B ,则sinA sinB ; (2)若sinA=sinB ,则∠
A ∠
B 。
3、如图, ∠C=90°,CD ⊥AB ,sinB=( )=( )=( )
四、归类提升
类型一:已知直角三角形两边长,求锐角三角函数值
例1、如图,在Rt △ABC 中,∠C=90°, AC=3,AB=6,求∠B 的三个三角函数值。
类型二:利用三角函数值求线段的长度
例2、如图,在Rt △ABC 中,∠C=90°,BC=3,sinA= ,求AC 和AB 。
类型三:利用已知三角函数值,求其它三角函数值
例3、在Rt △ABC 中,∠C=90°,BC=6,sinA=
,求cosA 、tanB 的值。
类型四:求非直角三角形中锐角的三角函数值
例4、如图,在等腰△ABC 中,AB=AC=5,BC=6,求sinB,cosB,tanB 。
五、总结延伸
1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;
2、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形。
135
5
3
C
E
A
D
F
B
3、你觉得应该注意的问题:
六、随堂小测
1、如图,分别求∠α,∠β的三个三角函数值。
2、在等腰△ABC 中, AB=AC=13,BC=10,求sinB,cosB 。
3、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4。
求:CD 和sinC 。
4、在Rt △ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5。
求sin ∠ACD ,cos ∠ACD 和tan ∠ACD 。
5、在梯形ABCD 中,AD//BC ,AB=DC=13,AD=8,BC=18,求sinB,cosB,tanB 。
6、如图,在△ABC 中,点D 是AB 的中点,DC ⊥AC ,且tan ∠BCD=1/3。
求∠A 的三个三角函数值。