四年级奥数思维训练专题-行程问题

合集下载

小学四年级上册行程问题1奥数题

小学四年级上册行程问题1奥数题

1、甲乙两地汽车同时从东西两地相向开出,甲车每小时行66千米,乙车每小时行58千米,两车在离中点36千米处相遇,求两东西两地相距多少千米?2、甲乙两车同时从两地相向出发,甲每车行58千米,乙每车行48千米,两车在离终点20千米处相遇,求两地间的路程是多少千米?3、快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米。

这时与慢车还相距7千米,慢车每小时行多少千米?4、甲乙两人同时从两地出发相向而行,距离是100千米,甲每小时走6千米,乙每小时走4千米。

甲带着一只狗每小时走10千米,这只狗同甲一道出发,碰到乙的时候,它又掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。

问这只狗一共走了多少千米?5、甲乙两队学生从相距18千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14千米的速度在两队间不停的往返联络。

甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?6、甲乙两人分别从东西两地同时出发,相向而行。

甲每小时行5千米,乙每小时行4千米。

甲带一只狗同时出发,狗以每小时8千米的速度向乙奔去,遇到乙后马上回头向甲奔去,遇到甲后又回头向乙奔去,如此往返,直到甲乙两人相距3千米时,狗才停止奔跑,这时狗共奔跑了16千米,问甲乙两地相距多少千米?人相遇?8、甲乙两车从相距270千米的两地同时相向而行,甲车每小时行50千米,乙车每小时行40千米,几小时后,两车相遇?9、甲乙两地相距450千米,A、B两车从两地同时出发,经过5小时后相遇,已知A车每小时比B车多行驶10千米,A、B两车的速度各是多少?10、甲乙两人分别从相距80千米的两地同时出发,相向而行。

甲每小时走6千米,乙每小时走5千米,3小时后,两人相距多少千米?时后,两人相距多少千米?12、甲乙两人同时从相距20千米的两地反向而行,甲每小时行13千米,乙每小时行7千米,几小时后两人相距100千米?13、一辆汽车由甲城开往乙城,行了3小时后,因车发生故障,修了半小时,然后每小时加速5千米,继续前行,经过6小时准时到达乙地。

四年级数学思维训练——行程问题(一)

四年级数学思维训练——行程问题(一)

四年级数学思维训练——行程问题(一)姓名:【1】甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求A、B两地间的距离是多少千米?【2】甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米,两人在距离中点3千米处相遇。

A、B两地间相距多远?【3】甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲。

甲、乙两地相距多少米?【4】张明、李军和赵琦三人都要从甲地到乙地,早上6时张、李两人一起从甲地出发,张明每小时走5千米,李军每小时走4千米。

赵琦上午8时才从甲地出发,傍晚6时,赵、张同时到达乙地,问赵琦是什么时候追上李军的?【5】一列慢车在上午9点钟以每小时40千米的速度由甲城开往乙城,另有一列快车在上午9时30分以每小时56千米的速度也从甲城开往乙城,规定同方向前进的两列火车之间相距不能少于8千米,问:这列慢车最迟应该在什么时候停车让快车超过?【6】上午8时有一列货车以每小时48千米的速度从甲城开往乙城,上午十时又有一列客车以每小时70千米的速度从甲城开往乙城,为了行驶的安全,列车间的距离不应少于8千米,货车最晚应在什么时候停车让客车通过?【7】一只兔子奔跑时,每两步跑1米,一只狗奔跑时,每两步跑3米,狗跑一步,兔子能跑三步。

如果让狗和兔子在100米跑道上跑一个来回,那么获胜的一定是谁?【8】龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米,兔自以为快,在途中睡了一觉,结果龟到了终点的时候兔子离终点还有400米,兔在途中睡了几分钟?【答案】【1】甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。

求A、B两地间的距离是多少千米?32×2=64千米……甲比乙多行的路程54÷(56-48)=8小时……行的时间(56+48)×8=832千米【2】甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米,两人在距离中点3千米处相遇.A、B两地间相距多远?3×2=6千米6÷(12—10)=3小时(12+10)×3=66千米【3】甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲。

(完整版)奥数四年级行程问题

(完整版)奥数四年级行程问题

(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。

行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。

行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。

在这三个量中,已知两个量,即可求出第三个量。

掌握这三个数量关系式,是解决行程问题的关键。

在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。

一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。

【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。

四年级数学思维训练——行程问题(三)

四年级数学思维训练——行程问题(三)

四年级数学思维训练——行程问题(三)【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。

然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?【2】自行车队出发24分钟后,通信员骑摩托车去追他们。

在距出发点9千米处追上自行车队。

通信员立即返回出发点,然后又返回去追自行车队,在追上时恰好离出发点18千米,求自行车队和摩托车的速度。

【3】某学校与某工厂之间有一条公路,该校下午2点钟派车到工厂接劳模作报告,往返需要1小时,这位劳模在下午1点钟便离厂步行去学校,途中遇到接他的车就立即上车驶往学校,于下午2点40分到达学校,汽车的速度是劳模步行速度的几倍?【4】家住郊外的工程师,每天在同一时候乘火车到达某站,这时工厂接工程师的汽车也同时到达,他乘车准时到达工厂。

有一天,工程师提前55分钟到某站,接他的汽车还未到,他就步行向工厂走去,在路上遇到接他的车,他再坐车,结果比平时提前10分钟到达工厂,问汽车的速度是工程师的几倍?【5】甲、乙两人在相距50米的A、B两端的水池里沿直线来回有用,甲的速度是1米/秒,乙的速度是2米/秒。

他们同时分别从水池的两端出发,来回游了10分钟,如果不计转向的时间,那么在这段时间内他们共相遇了多少次?【6】甲、乙两人在相距120米的直路上来回跑步,甲的速度为4米/秒,乙的速度为5米/秒。

如果他们同时分别从两个端点出发,且每人跑10分钟,问他们共相遇了多少次?【答案】【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。

然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?先得出小明的速度是时是爸爸速度的3倍.爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米.由于爸爸从出发到第二次追上小明共走了16千米,所以爸爸用了16分钟,此时离小明出发共用了8+16=24分钟,所以爸爸第二次追上小明时是8点32分【2】自行车队出发24分钟后,通信员骑摩托车去追他们。

四年级奥数思维训练专题-行程问题

四年级奥数思维训练专题-行程问题

四年级奥数思维训练专题-行程问题(一)专题简析:解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果.例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?分析:这是一道相遇问题.两人每小时共走6+4=10千米(这是他们的速度和).求两人几小时相遇,就是求20千米里面有几个1 0千米.因此,两人20÷(6+4)=2小时后相遇.试一试1:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米.如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去.这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析:“人走狗跑,人相遇狗停”两人相遇的时间就是狗跑的时间.相遇时间=2000÷(110+90)=10分钟狗共行:500×10=5000米.试一试2:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米.一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络.两车队相遇时,摩托车行驶了多少千米?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析:这是一道相背问题.解答相背问题同相遇问题一样.甲乙两人共行54-18=36千米,每小时共行7+5=12千米.要求几小时能行完36千米,就是求36千米里面有几个12千米.所以,36÷12=3小时.试一试3:东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米.几小时后甲可以追上乙?分析:这是一道追及问题.甲追上乙时,比乙多行了24千米(路程差).甲每小时比乙多行13-5=8千米(速度差),即每小时两人间的路程缩短8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米.因此,24÷8=3小时甲可以追上乙.试一试4:小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米.3分钟后两人相距多少米?(从相遇、背向、追及三种情况思考)例5:甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?分析:这是一道封闭线路上的追及问题.甲和乙同时同地起跑,方向一致.因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是400米.根据“路程差÷速度差=追及时间”即可求出甲追上乙所需的时间:400÷(290-270)=20分钟.试一试5:光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑.亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?行程问题(二)专题简析:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇.东西两地相距多少千米?分析:“距中点18千米处相遇”则货车比客车多行18×2=36km,货车每小时比客车多行48-42=6km,两车行了36÷6=6小时.路程=速度和×相遇时间=(48+42)×6=540km.试一试1:甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇.东西两城相距多少千米?例2:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达.求船在静水中的速度(即船速)和水流速度(即水速).分析:路程÷顺水时间=顺水速度,路程÷逆水时间=逆水速度.因此,顺水速度是286÷11=26千米,逆水速度是286÷13=22千米.船在静水中每小时行(26+22)÷2=24千米,水流速度是每小时(26-22)÷2=2千米.试一试2:甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达.求船在静水中的速度和水流速度.例3:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时.已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?分析:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米.又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米.试一试3:一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?例4:A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?分析:甲、乙两船都在同一条水路上行驶,所以水速相同.根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米.又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米.所以,乙船在静水中每小时行16-6=10千米.试一试4:A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?。

四年级数学思维训练专题第6讲行程问题一

四年级数学思维训练专题第6讲行程问题一

四年级数学思维训练专题第6讲行程问题一内容概述掌握速度、路程、时间的概念,以及它们之间的数量关系,掌握基本相遇问题和基本追及问题的解法;学会用比较的方法分析同一段路程上不同的运动过程. 重点掌握画线段图的分析方法.典型问题兴趣篇1. A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时. 如果要按照原定的时间到达B城,汽车在后一半路程上每小时应该行驶多少千米?2. A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1) 甲从A走到B需要多长时间?(2) 两个人从出发到相遇需要多长时间?3. 在第2题中,如果甲、乙两人的速度大小不变,但甲出发时改变方向,即两个人同时、同向出发. 请问:乙出发后多久可以追上甲?4. 甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地,2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地. 问:什么时候两车在途中相遇?5. 小悦和冬冬分别从相距720米的两地出发同向而行,且冬冬比小悦先出发2分钟,已知小悦的速度是每分钟60米,冬冬的速度为每分钟50米,试问:当小悦追上冬冬的时候,冬冬已经走了多少米?6. 一辆公共汽车和一辆小轿车从相距350千米的两地同时出发,相向而行,公共汽车每小时行40千米,小轿车每小时行60千米,问:(1) 2小时后两车相距多少千米?(2) 经过几小时后两车第一次相距50千米?7.一辆公共汽车和一辆小轿车从相距300千米的两地同时出发,同向而行,公共汽车在前,每小时行40千米;小轿车在后,每小时行60千米,问:(1) 经过6小时后两车相距多少千米?(2) 经过几小时后两车第一次相距100千米?8. 甲、乙两人分别在A地和B地,甲从A地到B地需要20分钟,乙从B地到A 地需要30分钟,如果两个人同时出发相向而行,多长时间可以相遇?9. 甲、乙两车分别从A、B两地同时出发相向而行,已知甲车每小时行驶40千米,两车6小时后相遇,相遇后它们继续前进,又过了3小时,甲车到达B地,问:乙车还要过多久才能到达A地?10. 甲、乙两人分别从A、B两地同时出发相向而行,已知甲每分钟走50米,乙走完全程要18分钟,出发3分钟后,甲、乙仍相距450米,问:还要过多少分钟,甲、乙两人才能相遇?拓展篇1. 甲、乙两地相距450千米,快车和慢车分别从甲、乙两地出发相向而行,快车每小时行60千米,慢车每小时行30千米,试问:(1) 如果两车同时出发,几小时后相遇?(2) 如果慢车比快车早出发3小时,当两车相遇时快车走了多远?2. A、B两地相距400千米,甲、乙两车分别从A、B同时出发,相向而行,甲车的速度为每小时60千米,乙车的速度为每小时40千米,请问:(1) 从出发算起,多久后甲、乙两车第一次相距100千米?(2) 从出发算起,多久后甲、乙两车第二次相距100千米?3. 甲、乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?4. 冬冬步行上学,每分钟行75米,冬冬离家12分钟后,爸爸发现他忘了带文具盒,马上骑自行车去追,每分钟行375米,求爸爸追上冬冬所需要的时间隔。

四年级奥数行程问题及答案【三篇】

四年级奥数行程问题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。

【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。

求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。

【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。

【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。

⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。

小学奥数四年级行程问题

小学奥数四年级行程问题

小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。

4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。

行程问题,四年级奥数

行程问题,四年级奥数

行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。

行程问题主要包括相遇问题、相背问题的追及问题。

例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。

两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。

甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。

从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。

哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。

)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。

问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。

两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。

甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。

甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。

从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。

四年级奥数行程问题及解析

四年级奥数行程问题及解析

四年级奥数行程问题及解析
四年级奥数行程问题及解析
1、在一只野兔跑出90米后,猎狗去追。

野兔跑8步的路程,猎狗只需要跑3步。

猎狗跑3步的时间,野兔能跑4步。

问,猎狗至少跑出多远,才能追上野兔。

2、小红从甲地往乙地走,小花同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走路程中,各自速度不变,两人第一次相遇时在距甲地40米处,第二次相遇在距乙地15米处,问,甲.乙两地相距多少米。

解析:
本题需要根据已知条件找出兔和狗之间的'速度关系。

野兔跑4步的时间,猎狗跑3步,猎狗的3步,相当于野兔跑8步的路程,它们的速度比为1:2V狗=8/3×3/4V兔=2V兔(V狗-V兔)×T=90=>V狗×T=180,野兔跑出90米后,猎狗去追,猎狗至少跑出180米才能追上野兔。

解析:
第一次相遇,两人共行了1个全程,小东行了40米,第一次相遇,两人共行了3个全程,小东行了40×3=120米,同时小东行的还是1个全程多15米,甲乙两地的距离是40×3-15=105米。

小学四年级数学思维专题训练—基本行程问题(含答案解析)

小学四年级数学思维专题训练—基本行程问题(含答案解析)

小学四年级数学思维专题训练—基本行程问题l 小明和小新在同一街道,小明家在学校东600米处,小新家在学校西200米处,那么小新家距离小明家米。

2 汽车从A站经过B站后开往c站,已知离开B站9分钟时,汽车离A站15千米,又行驶一刻钟,离开A站25千米,如果再行驶半小时,汽车离A站千米.3 从家到办公室59千米,张经理需驾车l小时.她的行程包括20分钟在高速公路上,40分钟在市区道路上.若在市区道路上的时速为45千米,问她在高速公路上的时速是千米.4 龟、兔赛跑,全程1800米.乌龟每分钟爬15米,兔子每分钟跑400米,发令枪响后,兔子一会儿就把乌龟远远甩在后边,骄傲的兔子自以为跑得快,在途中美美地睡了一觉,结果乌龟到达终点时,兔子离终点还有200米,兔子在途中睡了多少分钟?5 一只电子猫在周长为240米的环形跑道上跑了一圈.前一半时间每秒跑5米,后一半时间每秒跑3米.这只电子猫跑后120米用了多少秒?6 有一车队共15辆车,每辆车长度相等,车与车之间的间隔为10米,这个车队用1 5秒时间,以每秒16米的速度通过一座25米长的大桥,则每辆车长____米.7 一个车队以4米/秒的速度缓慢通过一座长298米的大桥,共用115秒,已知每辆车长 6米,相邻两车间隔20米,则这个车队一共有__辆车8、小巧站在铁路边,一列火车从她身边开过用了3分钟,已知这列火车长360米,以同样的速度通过一座大桥,用了6分钟,这座大桥长____ 米.9、小红乘船以6千米/时的速度从A到B,然后又乘船以12千米/时的速度沿原路返回,那么小红在乘船往返过程中,平均每小时行千米.10、汉江是长江的支流,汉江水的水速为每小时3千米,长江水的水速为每小时4千米,一条船沿汉江顺水航行两小时,行了56千米到达长江,在长江还要逆水航行147千米.这条船还要行小时.11、沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船在静水中的速度是每小时15千米,那么乙船往返两城市需要小时.12 小红上山时每走30分钟休息10分钟,下山每走30分钟休息5分钟.已知小红下山的速度是上山速度的1. 5倍,如果上山用了3小时50分钟,那么下山用了小时。

四年级奥数行程问题

四年级奥数行程问题

四年级奥数行程问题行程问题1、一辆汽车从甲地开往乙地,平均每小时行驶75千米,6小时到达乙地。

甲乙两地相距多少千米?2、甲乙两地相距420千米,一辆汽车从甲地到乙地需要7小时。

如果要求汽车提前1小时到达乙地,速度应提高多少千米/小时?3、小明家到小华家的距离有1160米。

一天,小明和小华同时从自家出发,到对方家去,小明每分钟走75米,小华每分钟走70米,几分钟后他俩会在途中相遇?4、小光早晨从家到学校一共用了15分钟,平均每分钟走60米。

中午放学时,小光跑不回家,只用了10分钟。

小光回家时平均每分钟跑多少米?5、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

问5分钟后,两人相距多少千米?16、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

经过几分钟后,两人相距1300米?7、一辆汽车和一辆客车同时从两地出发,相向而行。

汽车每小时行80千米,客车每小时比汽车少行5千米。

6小时候,两车在途中相遇。

两地相距多少千米?8、小红和小花在学校400米的环形跑道上,从同一起跑线出发,相背而行,4分钟后两人相遇,小红平均每分钟走45米,小花平均每分钟走多少米?9、一辆客车上午8时从甲站开出,每小时行50千米。

经过2小时后,一辆汽车从乙站开出,每小时行60千米,中午12时两车在途中相遇。

甲、乙两站相距多少千米?10、甲、乙两港之间的水路长180千米,一艘轮船从甲港开往乙港,顺水行驶,每小时行驶60千米,从乙港返回时,因为逆水行驶,每小时行驶30千米。

这艘轮船往返一次的平均速度是多少千米/小时?211、一辆客车上午8时从武汉出发,开往郑州,平均每小时行驶60千米。

3小时后,一辆汽车从武汉出发,开往郑州,平均每小时行驶100千米。

几小时后,汽车能追上客车?12、一只猎狗发现在它前方300米处有一只兔子。

兔子同时也发现了猎狗,猎狗以每分钟240米的速度去追赶兔子,兔子以每分钟180米的速度逃跑,请问猎狗要追上兔子需要几分钟?13、学校组织学生去天台山游玩,租两辆车从学校出发,大客车每小时行驶60千米,上午7:00出发,面包车晚出发1小时,每小时行驶80千米,结果两车同时到达天台山。

四年级数学思维训练——行程问题(提高篇)有答案

四年级数学思维训练——行程问题(提高篇)有答案

1、甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时14千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?2、甲乙两车从相距589千米的两地相向而行,甲车每小时行60千米,乙车每小时行64千米,两车行了多少小时后还相距93千米?在继续行几小时,又相距93千米?3、甲、乙两人在环形跑到上以各自的速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?4、龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米,兔自以为速度快,在途中睡了一觉,结果龟到了终点时,兔离终点还有400米,兔在途中睡了几分钟?5、甲、乙、丙三人,甲每分钟走20米,乙每分钟走22米,丙每分钟走25米,甲、乙从东镇,丙从西镇,同时相对出发,丙遇到乙后,10分钟后在遇到甲,求两镇相距多少米?6、甲乙两站相距480千米,快车在上午5时从甲站开往乙站,慢车同时从乙站开往甲站,两车在上午11时相遇,下午3时快车到达乙站后,慢车还要继续行驶多少时间才能到达甲站?行程问题【提高篇答案】1、甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时14千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?要求骑自行车的同学行了多少千米,必须知道两个条件:速度和时间。

速度已经告诉我们每小时14千米,关键是时间,其实这位同学所用的时间就是甲乙两队学生从开始出发到相遇的时间,所以要先求出两队学生相遇需要多少时间:【路程÷速度和=相遇时间】18÷(5+4)=2(小时)14×2=28(千米)答:骑自行车的同学共行28千米2、甲乙两车从相距589千米的两地相向而行,甲车每小时行60千米,乙车每小时行64千米,两车行了多少小时后还相距93千米?在继续行几小时,又相距93千米?两车行了多少小时后还相距93千米,说明两车实际行车路程是:589-93=496(千米)【路程÷速度和=相遇时间】 496÷(60+64)=4(小时)答:两车行了4小时后还相距93千米。

小学四年级奥数思维训练-行程问题

小学四年级奥数思维训练-行程问题

小学四年级奥数思维训练-行程问题行程问题(一)专题简析:解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析:这是一道相遇问题。

两人每小时共走6+4=10千米(这是他们的速度和)。

求两人几小时相遇,就是求20千米里面有几个1 0千米。

因此,两人20÷(6+4)=2小时后相遇。

试一试1:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析:“人走狗跑,人相遇狗停”两人相遇的时间就是狗跑的时间。

相遇时间=2000÷(110+90)=10分钟狗共行:500×10=5000米。

试一试2:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络.两车队相遇时,摩托车行驶了多少千米?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析:这是一道相背问题。

解答相背问题同相遇问题一样。

甲乙两人共行54-18=36千米,每小时共行7+5=12千米。

要求几小时能行完36千米,就是求36千米里面有几个12千米。

所以,36÷12=3小时。

试一试3:东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。

四年级奥数思维第 34 周 行程问题(二)

四年级奥数思维第 34 周 行程问题(二)

行程问题(二)1、快车和慢车同时从A、B两地相对开出,已知快车每小时行60千米,经过2小时候,快车已驶过中点10千米,这时与慢车还相距6千米。

慢车每小时行多少千米?2、小红从家出发,以每小时4千米的速度向郊外走去,3小时后,小芳骑自行车以每小时10千米的速度也向郊外骑去,多长时间后,小芳能赶上小红?3、甲乙两人沿运动场的跑道跑步,甲每分钟跑300米,乙每分钟跑260米,跑道一圈长400米,如果两人同时从起跑线上同一方向跑,那么甲经过多少小时能够第一次追上乙?4、一套环形跑道长200米,A和B两人同时从起跑线旗袍,A每分钟跑280米,B每分钟跑260米,问:A第一次追上B时两人各跑了多少米?5、甲乙两人绕周长1000米得环形跑道赛跑,已知甲每分钟跑300米,乙的速度是甲的2倍,现在甲在乙后面100米,乙追上甲需要多少分钟?6、甲每小时行5千米,乙每小时行4千米,如果两人同时同地向同一方向出发,甲行45千米到达目的地,马上从原路返回,在途中与乙相遇,从出发到相遇,共经历了几小时?7、甲、乙两人同时从东城去西城,甲每分钟行120米,乙每分钟行80米,甲到达西城后立即返回东城,在离西城700米处与乙相遇,东、西两城相距多少千米?8、小芳和小平的家相距1400千米两人同时从家出发,在同一条笔直的路上走,小芳每分钟走80米,小平每分钟走60米,5分钟后两人可能相距多少千米?9、甲乙两人同时从学校去公园,甲每小时行10千米,乙每小时行8千米,甲行至20千米处又回到学校取东西,因此比乙迟到1小时到公园,学校到公园距离多少千米?10、甲、乙、丙三人的速度分别是每分钟50米,60米,70米甲、乙在A地,而丙在B地同时相向而行,丙遇到乙后5分钟和甲相遇,求A、B两地之间的路长多少米?11、有三辆汽车,甲、乙两车从A地,丙车从B地同时相向而行,甲车每小时行90千米,乙车每小时行80千米,丙车每小时行70千米,丙车遇到甲车后10分钟又遇到乙车。

四年级奥数之行程问题

四年级奥数之行程问题

四年级奥数之行程问题内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)行程问题知识要点:1、相遇问题(或背向问题)AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间= (甲的速度-乙的速度)×追击的时间相遇问题例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。

例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地。

求该车的平均速度。

2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米。

小学数学思维训练专题行程问题

小学数学思维训练专题行程问题

十八行程问题例1小华家和李成家相距400 米,两人同时从家中出发在同一条路上行走,小华每分钟走60米,李成每分钟走70 米。

3 分钟后两人相距多少米?例2大毛和二毛两人同时从相距1000 米的两地相向而行。

大毛每分钟行120 米,二毛每分钟行80 米。

如果一只狗与大毛同时同向而行,每分钟行500 米,狗遇到二毛后,立即回头向大毛跑去,遇到大毛后再向二毛跑去。

这样不断来回跑直到大毛和二毛相遇为止,狗共行了多少米?例3面包车以每小时40 千米的速度从甲城开出,2小时后,小轿车以每小时行60 千米的速度从甲城开出,沿着同一行驶路线追赶面包车,多少小时后追上?例4 甲、乙两人同时分别从两地骑车相向而行。

甲每小时行20 千米,乙每小时行18 千米。

两人相遇时距全程中点3 千米。

全程长多少千米?例5一辆客车和一辆货车同时从甲、乙两地相对开出,客车每小时行44 千米,货车每小时行52 千米。

两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时货车比客车多行80 千米。

甲、乙两地相距多少干米?例6 甲、乙、丙三人行走的速度分别为每分钟30米、40米和50米。

甲、乙从A地,丙从B地同时相向而行,丙遇乙后10分钟和甲相遇,则A、B两地相距多少米?练习1.一辆汽车和一辆摩托车同时从相距860 千米的两地出发,汽车每小时行45千米,摩托车每小时行70 千米。

6 小时后两车相距多少千米?2.一到车长120米,它以每秒20米的速度穿过长200 米的隧道。

从车头进入隧道到车尾离开隧道共需多少秒?3.甲、乙两个车队同时从相隔330 千米的两地相向而行,甲队每小时行60 千米乙队每小时行50 千米,一个人骑摩托车以每小时行80 千米的速度在两车队间不断的往返联络。

两车队相遇时,摩托车行驶了多少千米?4.一支队在长50 米,以每秒2 米的速度前进,一个人以每秒3 米的速度从队尾赶到队头,然后再返回队尾,一共要多少分钟?5.甲、乙两车同时从东、西两地相向开出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数思维训练专题-行程问题(一)
专题简析:解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?
分析:这是一道相遇问题。

两人每小时共走6+4=10千米(这是他们的速度和)。

求两人几小时相遇,就是求20千米里面有几个1 0千米。

因此,两人20÷(6+4)=2小时后相遇。

试一试1:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?
例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?
分析:“人走狗跑,人相遇狗停”两人相遇的时间就是狗跑的时间。

相遇时间=2000÷(110+90)=10分钟
狗共行:500×10=5000米。

试一试2:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络.两车队相遇时,摩托车行驶了多少千米?
例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
分析:这是一道相背问题。

解答相背问题同相遇问题一样。

甲乙两人共行54-18=36千米,每小时共行7+5=12千米。

要求几小时能行完36千米,就是求36千米里面有几个12千米。

所以,36÷12=3小时。

试一试3:东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。

两人的速度各是多少?
例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。

几小时后甲可以追上乙?
分析:这是一道追及问题。

甲追上乙时,比乙多行了24千米(路程差)。

甲每小时比乙多行13-5=8千米(速度差),即每小时两人间的路程缩短8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米。

因此,24÷8=3小时甲可以追上乙。

试一试4:小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。

3分钟后两人相距多少米?(从相遇、背向、追及三种情况思考)
例5:甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。

如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?
分析:这是一道封闭线路上的追及问题。

甲和乙同时同地起跑,方向一致。

因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是400米。

根据“路程差÷速度差=追及时间”即可求出甲追上乙所需的时间:400÷(290-270)=20分钟。

试一试5:光明小学有一条长200米的环形跑道,亮亮和晶晶同时从
起跑线起跑。

亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?
行程问题(二)
专题简析:顺水速度=船速+水速
逆水速度=船速-水速
(顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。

东西两地相距多少千米?
分析:“距中点18千米处相遇”则货车比客车多行18×2=36km,货车每小时比客车多行48-42=6km,两车行了36÷6=6小时。

路程=速度和×相遇时间=(48+42)×6=540km。

试一试1:甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。

东西两城相距多少千米?
例2:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达。

求船在静水中的速度(即船速)和水流速度(即水速)。

分析:路程÷顺水时间=顺水速度,路程÷逆水时间=逆水速度。

因此,顺水速度是286÷11=26千米,逆水速度是286÷13=22千米。

船在静水中每小时行(26+22)÷2=24千米,水流速度是每小时(26-22)÷2=2千米。

试一试2:甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达。

求船在静水中的速度和水流速度。

例3:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时。

已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?
分析:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米。

又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米。

试一试3:一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时。

已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?
例4:A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。

如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?
分析:甲、乙两船都在同一条水路上行驶,所以水速相同。

根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米。

又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米。

所以,乙船在静水中每小时行16-6=10千米。

试一试4:A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。

如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?。

相关文档
最新文档