锐角三角函数的难题汇编附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数的难题汇编附答案
一、选择题
1.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为()
A.43B.12﹣43C.12﹣63D.63
【答案】B
【解析】
【分析】
过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.
【详解】
解:过点B作BM⊥FD于点M,
在△ACB中,∠ACB=90°,∠A=45°,AC=122,
∴BC=AC=122.
∵AB∥CF,
∴BM=BC×sin45°=
2 12212
2
⨯=
CM=BM=12,
在△EFD中,∠F=90°,∠E=30°,
∴∠EDF=60°,
∴MD=BM÷tan60°=43,
∴CD=CM﹣MD=12﹣43.
故选B.
【点睛】
本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.
2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一
个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )
A .39
B .36
C .33
D .32
【答案】A
【解析】
【分析】
直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用EC tan ABC BE
∠=
得出答案. 【详解】
解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF,
设EC=x,则EF=x 3x tan 30︒
, ∴BF AF 2EF 23x === EC 3tan ABC BE 923x 3x 33=
===+∠, 故选:A
【点睛】
此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键.
3.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )
A .1000sin α米
B .1000tan α米
C .1000tan α米
D .1000sin α
米 【答案】C
【解析】
【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB
α=
,即可解决问题. 【详解】 解:在Rt ABC ∆中,∵90CAB ∠=,B α∠=,1000AC =米,
∴tan AC AB α=
, ∴1000tan tan AC AB αα
==米. 故选:C .
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
4.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)
A .78.6米
B .78.7米
C .78.8米
D .78.9米
【答案】C
【解析】
【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度
【详解】
如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G
∵BC 的坡度为1:0.75
∴设CF 为xm ,则BF 为0.75xm
∵BC=140m
∴在Rt △BCF 中,()2
220.75140x x +=,解得:x=112
∴CF=112m ,BF=84m
∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形
∵DE=55m ,CE=FG=36m
∴DG=167m ,BG=120m
设AB=ym
∵∠DAB=40° ∴tan40°=1670.84120
DG AG y ==+ 解得:y=78.8 故选:C
【点睛】
本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.
5.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )
A .53
B .35
C .22
D .23
【答案】B
【解析】
【分析】
先根据翻折变换的性质得到DEF AEF ∆≅∆,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ∠=,设1CD =,CF x =,则2CA CB ==,再根据勾股定理即可求
解.
【详解】
解:∵△DEF 是△AEF 翻折而成,
∴△DEF ≌△AEF ,∠A =∠EDF ,
∵△ABC 是等腰直角三角形,
∴∠EDF =45°,由三角形外角性质得∠CDF +45°=∠BED +45°,
∴∠BED =∠CDF ,
设CD =1,CF =x ,则CA =CB =2,
∴DF =FA =2﹣x ,
∴在Rt △CDF 中,由勾股定理得,
CF 2+CD 2=DF 2,
即x 2+1=(2﹣x )2, 解得:34x =, 3sin sin 5CF BED CDF DF ∴∠=∠=
=. 故选:B .
【点睛】
本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
6.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45︒,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60︒和30,则该电线杆PQ 的高度( )
A .623+
B .63+
C .103
D .83+
【答案】A
【解析】
【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.
【详解】
解:延长PQ 交直线AB 于点E ,设PE=x .