2018年人教版数学选修1-1考点归纳:圆锥曲线
数学选修1-1 第二章 圆锥曲线与方程知识梳理
第二章 圆锥曲线与方程一、椭 圆(一)椭圆及其标准方程1.椭圆的概念:平面内与两个定点F 1,F 2的距离的和等于_常数_(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.当|PF 1|+|PF 2|=|F 1F 2|时,轨迹是线段F 1F 2,当|PF 1|+|PF 2|<|F 1F 2|时_不存在_轨迹.2.椭圆的方程:焦点在x 轴上的椭圆的标准方程为 x 2a 2+y 2b2=1 (a >b >0),焦点坐标为_F 1(-c ,0)__F 2(c ,0),焦距为_2c _;焦点在y 轴上的椭圆的标准方程为 y 2a 2+x 2b2=1 (a >b >0).(二)椭圆的简单几何性质1.椭圆的简单几何性质(1)椭圆的中心:椭圆关于x 轴、y 轴对称,这时原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心。
(2)椭圆的顶点:椭圆与它对称轴的四个交点叫做椭圆的顶点。
(3)椭圆的长轴和短轴:椭圆对称轴被椭圆截得的线段叫做椭圆的长轴和短轴,它们的长分别是2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)椭圆的离心率:椭圆的焦距与长轴长的比ac称为椭圆的离心率,用e 表示,即:)22101c b e e a a==-<<。
e 越接近1,则c 越接近a ,从而22c a b -=越小,因此椭圆越扁;e 越接近0,则c 越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。
焦点的位置焦点在x 轴上 焦点在y 轴上图形标准方程 x 2a 2+y 2b 2=1 y 2a 2+x2b 2=1 范围 -a ≤x ≤a ,-b ≤y ≤b -b ≤x ≤b ,-a ≤y ≤a顶点 (±a,0),(0,±b ) (±b,0),(0,±a )轴长 短轴长=2b ,长轴长=2a焦点 (±c,0) (0,±c )焦距 2c =2a 2-b 2对称性 对称轴是坐标轴,对称中心是原点离心率 e =ca,0<e <1 2.直线与椭圆直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:直线与椭圆相切⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1有 1 组实数解,即Δ = 0.直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1有___2___组实数解,即Δ___>___0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1有___0___组实数解,即Δ___<___0.1.椭圆的标准方程有两种表达式,但总有a >b >0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.2.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx 2+ny 2=1 (m ,n 为不相等的正数).3.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和判断性问题中有着重要的应用.4.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用.5.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围.6.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何中的等量关系.二、双曲线(一)双曲线及其标准方程1.双曲线的有关概念 (1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于_|F 1F 2|_)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为__以F 1,F 2为端点的两条射线_.平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹_不存在 . (2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距_.2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),焦点F 1_(-c,0)_,F 2_( c ,0)__.(2)焦点在y 轴上的双曲线的标准方程是y 2a 2-x 2b2=1(a >0,b >0),焦点F 1_(0,-c )_,F 2__(0,c )_.(3)双曲线中a 、b 、c 的关系是___c 2=a 2+b 2_.(二)双曲线的简单几何性质1.双曲线的几何性质(1)双曲线的中心:双曲线关于x 轴、y 轴对称,这时原点是双曲线的对称中心,双曲线的对称中心叫做双曲线的中心。
人教选修1-1第二章 圆锥曲线章末小结
第二章章末小结
数学(RA) 选修1-1
1.椭圆、双曲线的标准方程和简单几何性质
椭圆 |PF1|+|PF2|=2a(2a>2c=|F1F2|)(a>b>0) 方程
x2 y 2
双曲线 ||PF1|-|PF2||=2a(2a<2c=|F1F2|)(a>0,b>0)
x2 y 2
+ =1(a>b>0) a2 b2
=������
4 2 = , + ������ ������ 1 3
数学(RA) 选修1-1
因此 AD 的垂直平分线的方程为 y-t=-2(x-x2), 令 y=0,得到点 E 的坐标是(2+x2,0), 由 E(3,0),得 x2=1,又点 B 在抛物线上,得 y2=±2. 所以点 B 坐标为(1,2)或(1,-2). 【小结】遇到弦的中点问题常采用点差法求解.
原点为对称中心 原点为对称中心 点为对称中心
������ ������ 2
点为对称中心
������ ������ 2
e=������ = 1- ������ 2 ∈(0,1)
无
������
������ 2
e=������ = 1- ������ 2 ∈(0,1)
无
������
������ 2
e=������ = 1 + ������ 2 ∈(1,+∞) e=������ = 1 + ������ 2 ∈(1,+∞) y=±������ x
������ 2 ������ 2 的轨迹方程是36 +27 =1,且轨迹是椭圆.
数学(RA) 选修1-1
高中数学选修1-1(人教A版)第二章圆锥曲线与方程2.4知识点总结含同步练习及答案
y2 x2 + = 1. 3 2 4 (2)当直线 AB 与 x 轴垂直时,|AB| = ,不符合题意舍去; √3 当直线 AB 与 x 轴不垂直时,设直线 AB 的方程为 y = k(x + 1),代入椭圆方程,消去 y
所以椭圆方程为 得
(2 + 3k2 )x2 + 6k2 x + (3k2 − 6) = 0.
已知椭圆 G :
⎧ y = x + m, ⎨ x2 y2 ⎩ + = 1, 12 4
整理得
4x2 + 6mx + 3m 2 − 12 = 0.
设
⋯⋯①
A ,B 的坐标分别为 (x1 , y 1 ) , (x2 , y 2 ) (x1 < x2 ) , AB 中点为 E (x0 , y 0 ) ,则 x0 = 3m x1 + x2 =− , 2 4 m . y 0 = x0 + m = 4
因为 AB 是等腰 △P AB 的底边,所以 P E ⊥ AB . 所以 P E 的斜率
m 4 k= = −1. 3m −3 + 4 2−
解得 m = 2 .此时方程① 为 4x2 + 12x = 0 .解得
x1 = −3, x2 = 0.
所以
x1 + x2 = −3, x1 ⋅ x2 = 0
所以
− − − −− − − − − − − − − − − − − − − |AB| = √(x1 − x2 )2 + (y 1 − y 2 )2 − − − − − − − − − − − − − − − − − − − − − = √1 + k2 √(x1 + x2 )2 − 4x1 x2 = 3√2 .
高二数学选修1-1知识点
高二数学选修1-1知识点第一章:命题与逻辑结构 知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定 是特称命题.考点:1、充要条件的判定 2、命题之间的关系★1.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,★2、给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3(B)2(C)1(D)0★3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件第二章:圆锥曲线 知识点:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质: 焦点的位置 焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率)01c e e a ==<<准线方程2a x c=±2a y c=±3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率)1c e e a ==>准线方程2a x c =±2a y c =±渐近线方程b y x a=±a y x b=±6、实轴和虚轴等长的双曲线称为等轴双曲线.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. 9、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2px =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤ 0y ≥ 0y ≤10、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB.2C.6p D .1336p ★★2.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .★★★3.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.第三章:导数及其应用 知识点:1、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率. 2、函数()f x 在0x x =处的瞬时变化率是()()210021limlimx x f x f x fx x x∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =. 4、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()limx f x x f x f x y x∆→+∆-''==∆.5、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=; ()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x '=.6、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦; ()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 7、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =.复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.8、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.9、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.10、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.11、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用典型例题★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2 B. 3 C. 4 D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
高中数学选修1-1《圆锥曲线与方程》知识点讲义(K12教育文档)
高中数学选修1-1《圆锥曲线与方程》知识点讲义(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学选修1-1《圆锥曲线与方程》知识点讲义(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学选修1-1《圆锥曲线与方程》知识点讲义(word版可编辑修改)的全部内容。
第二章 圆锥曲线与方程一、曲线与方程的定义:(),C F x y 设曲线,方程=0,满足以下两个条件:()(),,C x y F x y ∀①曲线上一点的坐标满足=0;()(),,.F x y x y C ∀②方程=0解都在曲线上()(),,.C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程二、求曲线方程的两种类型:()1、已知曲线求方程;用待定系数法()()()2,;,x y x y 、未知曲线求方程①设动点②建立等量关系;③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求椭圆一、椭圆及其标准方程1、画法{}121222,2P PF PF a F F a +=<、定义:3、方程()()222222221010x y y x a b a b a ba b +=>>+=>>①或②()2222+10x y a b a b=>>二、几何性质:1,.x a y b ≤≤、范围:2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,.A a A aB b B b --、顶点2224,,a b c a b c =+、之间的关系:()225101c b e e a a ==-<<、离心率:0,1e e →→越圆越扁扩展:()222222222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()()222222221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或.a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大.24.AB F ABF a ⑤为过焦点的弦,则的周长为()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为:()()222121212114l k x k x x x x ⎡⎤=+-=++-⎣⎦()212121222110114k l y y y y y k k ⎡⎤=+-=++-⎣⎦或当存在且不为时,()2210,0.Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为双曲线一、双曲线及其标准方程1、画法{}121222,2P PF PF a F F a-=>、定义:3、方程:()() 222222221,01,0 x y y xa b a ba b a b-=>-=>①或②()22221,0x ya ba b-=>二、几何性质:1,x a y R≥∉、范围:2x y O、对称性:关于轴、轴、原点对称.()()121212,0,,0=2.A a A aA A aB B b-=3、顶点:实轴2,虚轴222.a b c c a b=+4、、、之间的关系:()22511c be ea ae==+>、离心率:越大,开口越阔22221b y x a y x y x a a b b ⎛⎫=±-==± ⎪⎝⎭6、渐近线:的渐近线为()2222222210x y x y m m a b a b -=-=>说明:与有相同离心率.抛物线一、抛物线及其标准方程P l PF PF l d -⎧⎫∉⎨⎬⎩⎭1、定义:且2、标准方程及几何性质 标准方程()220y px p =>()220y px p =->()220x py p =>()220x py p =->简图焦点 ,02p ⎛⎫⎪⎝⎭ ,02p ⎛⎫- ⎪⎝⎭ 02p ⎛⎫ ⎪⎝⎭、 02p ⎛⎫- ⎪⎝⎭、 准线 2p x =-2px =2p y =-2p y =范围 0x ≥0x ≤0y ≥0y ≤对称性 x 轴y 轴顶点 ()0,0离心率1e =P 说明:①越大,开口越阔.②抛物线无限向外延展,但它无渐进线.扩展:Q Q 1、设点分别位于抛物线开口以内,抛物线上,以及开口以外,问过点且和抛物线只有一个交点的直线有几条?()1.Q 答:①当位于抛物线开口以内,个交点的直线只有一条主轴或其平行线1Q ②当位于抛物线上,个交点的直线有两条,即主轴或其平行线,和切线. 1.Q ③当位于抛物线外,个交点的直线有3条,分别是主轴或其平行线,两条切线2、过焦点的弦长()22A B A B AB AF BFp p x x p x x =+⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭=++如图,。
2018高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2-1-2-2
������2 0)或 ������2
+
������2 ������
2
= 1(������ > ������ > 0),
直线与椭圆的两个交点为A(x1,y1),B(x2,y2),
M 目标导航
则|AB|= =
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
= 1 + ������ 2 · |x1-x2|= 1 + ������ 2 · (������1 + ������2 )2 -4������1 ������2 , 或者|AB|= = 1+
1 ������
(������1 -������2 )2 + (������1 -������2 )2 = 1+
M 目标导航
1 2
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
1.直线与椭圆的位置关系 直线 y=kx+m
������2 ������2 与椭圆 ������2 + 2 ������
= 1(������ > ������ > 0)
12 2
设 A(x1,y1),B(x2,y2),则 x1+x2=− 7 , 8 x1· x2= ,
7
∴|AB|=
答案:B
(1 + ������ 2 )[(������1 + ������2 )2 -4������1 ������2 ] =
16 . 7
高中数学选修圆锥曲线
1人教版高中数学选修一圆锥曲线及方程知识点精汇椭圆的定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距注意:椭圆定义中容易遗漏的两处地方: (1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆)由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)由椭圆的定义可知它的基本特征,但对于这种曲线还具有哪些性质,我们几乎一无所知,因此需要建立椭圆的方程,以便于做进一步的认识。
2.根据定义推导椭圆标准方程:取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,1又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得 )()(22222222c a a y a x c a -=+-, 由定义c a 22>,022>-∴c a令222b c a =-∴代入,得 222222b a y a x b =+,两边同除22b a 得:12222=+by a x (a >b>0),此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程, 其中22b c a +=注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+b y a x 中的yx ,调换,即可得12222=+bx a y (a >b>0),也是椭圆的标准方程理解:(1)所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;(2)在12222=+b y a x 与12222=+bx a y 这两个标准方程中,都有0>>b a 的要求,椭圆标准方程的形式:左边是两个分式的平方和,右边是1;1(3)椭圆的标准方程中三个参数a 、b 、c 满足a 2=b 2+c 2,a 最大;由椭圆的标准方程可以求出三个参数a 、b 、c 的值;(4)椭圆的标准方程中,x 2与y 2的分母哪一个大,分母即为a 2,则焦点在哪一个轴上。
2018学年高中数学选修1-1课件:2.1 圆锥曲线 精品
[再练一题] 3.已知动圆 M 与圆 C1:(x+3)2+y2=9 外切且与圆 C2:(x-3)2+y2=1 内切, 则动圆圆心 M 的轨迹是________.
【导学号:24830023】 【解析】 设动圆 M 的半径为 r.因为动圆 M 与圆 C1 外切且与圆 C2 内切, 所以|MC1|=r+3,|MC2|=r-1.相减得|MC1-MC2|=4. 又因为 C1(-3,0),C2(3,0),并且 C1C2=6>4, 所以点 M 的轨迹是以 C1,C2 为焦点的双曲线的右支. 【答案】 以 C1,C2 为焦点的双曲线的右支
和圆 C1 内切,和圆 C2 外切,求动圆圆心的轨迹.
【精彩点拨】 根据椭圆的定义判断.
【自主解答】 (1)由正弦定理,得BCA+BAC=54,又 AB=8,∴BC+AC=10 >AB,
由椭圆定义可知,点 C 的轨迹是以点 A、B 为焦点的椭圆.
【答案】 (1)以点 A、B 为焦点的椭圆 (2)如图所示,设动圆圆心为 M(x,y),半径为 r. 由题意得动圆 M 内切于圆 C1,
【提示】 |PF1-PF2|=2a(2a<F1F2)
探究 3 如果把定义中的“绝对值”去掉,变为动点 P 满足 PF1-PF2=2a(2a <F1F2),那么点 P 的轨迹是什么?
【提示】 动点 P 的轨迹是双曲线的一支(靠近焦点 F2 的一支).
探究 4 如果把双曲线定义中的条件“2a<F1F2”去掉,动点 P 的轨迹是什 么?
数学语言
PF1+PF2= 2a>F1F2
平面内与两个定点F1,F2 距离的差的绝对值 等于
双曲线
常数( 小于F1F2的正数 )的点的轨迹叫做双曲线, 两个 定点F1,F2 叫做双曲线的焦点,两焦点 间
人教课标版高中数学选修1-1拓展资料:活用圆锥曲线“统一性”定义解题
活用圆锥曲线“统一性”定义解题从点的集合(或轨迹)的观点来看,圆锥曲线(除圆外)都是与定点和定直线距离的比是常数e的点的集合(或轨迹).这个定点称为焦点,定直线称为他们的准线,由于常数e的取值范围不同,曲线分为椭圆、双曲线和抛物线.深刻理解这一定义(以下简称“统一性”定义),对解决有关圆锥曲线问题有着举足轻重的作用,下面就此举例说明:一、活用圆锥曲线“统一性”定义判断曲线的形状例1已知平面上的动点M(x,y)满足方程22+++=+-.x y x y(2)(1)|3412|问点M的轨迹是()(A)椭圆 (B)双曲线 (C)抛物线 (D)直线分析:一般情况下,识别点的轨迹是通过化简方程来进行的,但此例若用此法处理不仅麻烦,且由于其曲线的对称轴与坐标轴不平行,化简了方程的形式仍很难识别,若能用圆锥曲线“统一性”定义去思考,答案则显而易见.解:原方程可化为 .此式的几何意义可理解为:在平面内动点M(x,y)到定点(-2,-l)的距离与到定直线:3x+4y一12=0的距离之比为5:1,由圆锥曲线的“统一性”定义可知,这样的轨迹是以定点(-2,-l)为焦点,以直线L:3x+4y一12二0为准线的双曲线.二、活用圆锥曲线“统一性”定义求曲线方程例2:如图,ABCD是一张矩形纸片,AB=4,AD=8,按图形所示方法进行折叠,使折叠后的B点都落在AD上,此时B记为Bˊ,(注:折痕EF中,点F也可落在边CD上)。
过Bˊ作BˊT∥CD交EF于T点,求T点的轨迹方程.分析:本题是有关折叠问题的一道题,应注意折叠前后的图形联系。
就本题而言,连结TB后,有|TB|=|TBˊ|,即T到定点B的距离与到直线AD距离相等,所以T的轨迹为抛物线,剩下的工作就是建系,求方程及范围,同样应注意应用图形的几何性质.解:连结TB,由ΔEBT与ΔEBˊT全等可知,|TB|=|TBˊ|即动点T到定点B与到定直线AD距离相等,所以T的轨迹为抛物线的一部分,B为焦点,AD为准线,以AB 的中垂线为x 轴,以BA 为y 轴建立直角坐标系,AB 中点为O ,设其方程为x 2=-2py ,则|OB|=2p =2,∴所求方程为x 2=-8y. 当沿x 轴为折痕时,T 在原点O ;当沿A 与BC 中点连线为折痕时,T 在BC 的中点,所以T 点横坐标范围是0≤x ≤4.∴T 点的轨迹方程为x 2=-8y(0≤x ≤4).例3:求经过点M(1,2),以y 轴为准线,离心率为12的椭圆左顶点的轨迹方程.分析:设椭圆左顶点为A(x,y)由题设可知,左焦点F所满足的关系是明确的,因此,解决此题的关键是将A 的坐标转移到F 点上去(找出A 点坐标与F 点坐标的关系式),然后再根据题设条件(点M 到点F 的距离与到准线的距离之比为12),利用圆锥曲线统一性定义,列出关系式,经过化简整理,求得轨迹方程.解:设椭圆左顶点为A(x,y),左焦点为F ,反向延长线AF 交y 轴(左准线)于点Q ,则M(1,2)到y 轴的距离d=1,如图,由椭圆统一性定义可得F 点的坐标为3(,)2x y ,再根据统一性定义,由||12MF d =,2231(1)(2)22x y -+-=化简得所求轨迹方程:2229()4(2)13x y -+-=. 三:活用圆锥曲线“统一性”定义判断直线与圆的位置关系例4:已知抛物线y 2=2px ,判断以过焦点的弦为直径的圆与抛物线准线的位置关系。
2018高中数学人教A版选修1-1课件:第二章 圆锥曲线与方程 2-2-1
M 目标导航
1 2
UBIAODAOHANG
Z难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
【做一做
������2 2-1】 双曲线 3
������2 − 2
= 1 的焦点坐标是(
)
A.(± 5, 0) C.(± 1,0)
答案:A
B. (0, ± 5) D.(0,± 1)
M 目标导航
1 2
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
= 1.
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
1.求双曲线的标准方程的方法 剖析求双曲线方程一般采用待定系数法,其解题方法是先定位, 再定量.“定位”是指除了中心在原点之外,还要判断焦点在哪条坐标 轴上,以便使方程的右边为1时,确定方程的左边哪一项为正,哪一项 为负,同时也就确定了焦点的位置.要求双曲线的标准方程,就要求 出a2和b2这两个“待定系数”,于是需要两个独立的条件,按条件列出 关于a2和b2的方程组,解得a2和b2的具体数值后,再按位置特征写出 标准方程,因此“定量”是指a,b,c等数值的确定.解题步骤为:首先判 断焦点的位置,其次求出关键数据,最后写出双曲线方程. 因此,确定一个双曲线的标准方程需要三个条件——两个定形条 件a,b,一个定位条件——焦点坐标. 求双曲线的标准方程的方法还有轨迹方程法.
选修1-1圆锥曲线21椭圆知识点总结提高练习
第二章 圆锥曲线● 平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. ● 椭圆的几何性质:例1.(1~6) 求适合下列条件的椭圆的标准方程(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点距离之和等于10 ; (2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点)25,23(-; (3)长轴长是短轴长的3倍,并且椭圆经过点A (-3)(4)离心率为23,且经过点(2,0)的椭圆的标准方程是 . (5)离心率为35,一条准线方程为3=x ,中心在原点的椭圆方程是 . (6)设)5,0(),5,0(C B -,ABC ∆的周长为36,则ABC ∆的顶点A 的轨迹方程是(7)椭圆方程为12322=+y x ,则焦点坐标为 ,顶点坐标为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为(8)已知椭圆短轴上的两个三等份点与两个焦点构成一个正方形,则椭圆的离心率为 .(9)直线x y 22=与椭圆)0(12222>>=+b a by a x 的两个交点在x 轴上的射影恰为椭圆的两个焦点,则椭圆的离心率为 .(10)如图,正六边形ABCDEF 的两个顶点A ,D 为椭圆的两个焦点,其余四个顶点在椭圆上, 则该椭圆的离心率的值是_________.(11)如图,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点,A ,B 是椭圆的两个顶点,椭圆的离心率为12.点C 在x 轴上,BC ⊥BF , B ,C ,F 三点确定的圆M 恰好与直线l 1:x +3y +3=0相切. (1)求椭圆的方程; (2)过点A 的直线l 2与圆M 交于P ,Q 两点,且−→MP ·−→MQ =-2,求直线l 2的方程.A B CDEF(第(10)题图)变式训练1:已知一个椭圆M 和椭圆1202422=+y x 共准线,且离心率为21.求椭圆M 的标准方程例2. 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程;(2) △PF 1F 2的面积.变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.变式训练3已知椭圆14922=+y x 的焦点为F 1、F 2,点P 是其上的动点,当21PF F ∠为钝角时,点P 的横坐标的取值范围为 。
高中数学选修1-1《圆锥曲线与方程》知识点讲义
高中数学选修1-1《圆锥曲线与方程》知识点讲义第二章 圆锥曲线与方程一、曲线与方程的定义:(),C F x y 设曲线,方程=0,满足以下两个条件:()(),,C x y F x y ∀①曲线上一点的坐标满足=0;()(),,.F x y x y C ∀②方程=0解都在曲线上()(),,.C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程二、求曲线方程的两种类型:()1、已知曲线求方程;用待定系数法()()()2,;,x y x y 、未知曲线求方程①设动点②建立等量关系;③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求椭圆一、椭圆及其标准方程1、画法{}121222,2P PF PF a F F a +=<、定义:3、方程()()222222221010x y y x a b a b a ba b+=>>+=>>①或②()2222+10x y a b a b=>>二、几何性质:1,.x a y b ≤≤、范围:2x y O 、对称性:关于、、原点对称.()()()()12123,0,,0,0,,0,.A a A aB b B b --、顶点2224,,a b c a b c =+、之间的关系: ()225101c b e e a a==-<<、离心率:0,1e e →→越圆越扁扩展:()222222222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1()()222222221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或.a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大.24.AB F ABF a ⑤为过焦点的弦,则的周长为()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为:()()222121212114l k x k x x x x ⎡⎤=+-=++-⎣⎦()212121222110114k l y y y y y k k⎡⎤=+-=++-⎣⎦或当存在且不为时,()2210,0.Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为1,x a y R≥∉、范围:2x y O 、对称性:关于轴、轴、原点对称.()()121212,0,,0=2.A a A a A A aB B b -=3、顶点:实轴2,虚轴222.a b c c a b =+4、、、之间的关系:()22511c b e e a ae ==+>、离心率:越大,开口越阔22221b y x a y x y x a a b b ⎛⎫=±-==± ⎪⎝⎭6、渐近线:的渐近线为()2222222210x y x y m m a b a b-=-=>说明:与有相同离心率.抛物线一、抛物线及其标准方程P l PF P F l d -⎧⎫∉⎨⎬⎩⎭1、定义:且2、标准方程及几何性质 标准方程 ()220y px p =>()220y px p =->()220x py p =>()220x py p =->简图焦点,02p ⎛⎫ ⎪⎝⎭ ,02p ⎛⎫- ⎪⎝⎭02p ⎛⎫ ⎪⎝⎭、 02p ⎛⎫- ⎪⎝⎭、准线 2p x =-2p x =2p y =-2p y =范围 0x ≥0x ≤0y ≥0y ≤对称性 x 轴y 轴顶点 ()0,0离心率 1e =P 说明:①越大,开口越阔.②抛物线无限向外延展,但它无渐进线.扩展:Q Q 1、设点分别位于抛物线开口以内,抛物线上,以及开口以外,问过点且和抛物线只有一个交点的直线有几条?()1.Q 答:①当位于抛物线开口以内,个交点的直线只有一条主轴或其平行线1Q ②当位于抛物线上,个交点的直线有两条,即主轴或其平行线,和切线. 1.Q ③当位于抛物线外,个交点的直线有3条,分别是主轴或其平行线,两条切线2、过焦点的弦长()22A B A B AB AF BFp p x x p x x =+⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭=++如图,。
人教新课标版数学高二数学选修1-1第二章《圆锥曲线与方程》章末总结
第二章章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四 圆锥曲线中的定点、定值问题圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y 23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略:(1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.(2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A (4,0),B (2,2)是椭圆x 225+y 29=1内的两定点,点M 是椭圆上的动点,求|MA |+|MB |的最值.例6 已知F 1、F 2为椭圆x 2+y 22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结 答案重点解读例1 解如图所示,设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a . 由双曲线的定义,得||PF 1|-|PF 2||=2a =c ,在△PF 1F 2中,由余弦定理,得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|(1-cos 60°),即4c 2=c 2+|PF 1||PF 2|. ①又S △PF 1F 2=123,∴12|PF 1||PF 2|sin 60°=123, 即|PF 1||PF 2|=48. ②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1. 例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0,由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k 2, ∵M 、N 两点在抛物线上,∴y 21·y 22=4x 1·x 2=16,而y 1·y 2<0,∴y 1y 2=-4.(2)证明 ∵ OM →=(x 1,y 1),ON →=(x 2,y 2),OM →·ON →=x 1·x 2+y 1·y 2=4-4=0.OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k, 进而可求A ⎝⎛⎭⎫4p k 2,4p k 、B (4pk 2,-4pk ).于是直线AB 的斜率为k AB =k 1-k 2, 从而k OM =k 2-1k, ∴直线OM 的方程为y =k 2-1kx , ① 直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2). ② 将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ), ③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k=±1时,易求得直线AB的方程为x=4p.故此时点M的坐标为(4p,0),也在(x-2p)2+y2=4p2 (x≠0)上.∴点M的轨迹方程为(x-2p)2+y2=4p2 (x≠0),∴其轨迹是以(2p,0)为圆心,半径为2p的圆,去掉坐标原点.例4证明设A(x1,y1),B(x2,y2),联立⎩⎪⎨⎪⎧y=kx+m,x24+y23=1,得(3+4k2)x2+8mkx+4(m2-3)=0,则⎩⎪⎨⎪⎧Δ=64m2k2-16(3+4k2)(m2-3)>0,x1+x2=-8mk3+4k2,x1x2=4(m2-3)3+4k2.即⎩⎪⎨⎪⎧3+4k2-m2>0,x1+x2=-8mk3+4k2,x1x2=4(m2-3)3+4k2.又y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=3(m2-4k2)3+4k2.∵椭圆的右顶点为A2(2,0),AA2⊥BA2,∴(x 1-2)(x 2-2)+y 1y 2=0.∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0.∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0. ∴7m 2+16km +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且均满足3+4k 2-m 2>0. 当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0, ∴直线l 过定点.例5 解 因为A (4,0)是椭圆的右焦点,设A ′为椭圆的左焦点,则A ′(-4,0),由椭圆定义知|MA |+|MA ′|=10.如图所示,则|MA |+|MB |=|MA |+|MA ′|+|MB |-|MA ′|=10+|MB |-|MA ′|≤ 10+|A ′B |.当点M 在BA ′的延长线上时取等号.所以当M 为射线BA ′与椭圆的交点时,(|MA |+|MB |)max =10+|A ′B |=10+210.又如图所示,|MA |+|MB |=|MA |+|MA ′|-|MA ′|+|MB |=10-(|MA ′|-|MB |)≥10-|A ′B |,当M 在A ′B 的延长线上时取等号.所以当M 为射线A ′B 与椭圆的交点时, (|MA |+|MB |)min =10-|A ′B |=10-210. 例6 解 由题意,|F 1F 2|=2.设直线AB 方程为y =kx +1,代入椭圆方程2x 2+y 2=2,得(k 2+2)x 2+2kx -1=0,则x A +x B =-2k k 2+2,x A ·x B =-1k 2+2, ∴|x A -x B |=8(k 2+1)k 2+2. S △ABF 2=12|F 1F 2|·|x A -x B | =22×k 2+1k 2+2=22×1k 2+1+1k 2+1≤22×12= 2. 当k 2+1=1k 2+1,即k =0时,S △ABF 2有最大面积为 2.。
人教版高中数学选修1-1 第二章《圆锥曲线与方程》师用讲解
选修1-1 第二章《圆锥曲线与方程》§2.1.1 椭圆及其标准方程【知识要点】● 椭圆的定义:到两个定点 F 1、F 2的距离之和等于定长(12F F >)的点的轨迹.● 标准方程:(1)()222210x y a b a b+=>>,22c a b =-,焦点是 F 1(-c ,0),F 2(c ,0);(2)()222210y x a b a b+=>>,22c a b =-,焦点是 F 1(0,-c ),F 2(0,c ).【例题精讲】【例 1】两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点 P 到两焦点的距离之和等于 10,写出椭圆的标准方程.【例 2】已知椭圆的两个焦点坐标分别是(0,-2)和(0,2)且过35,22⎛⎫- ⎪⎝⎭,求椭圆的标准方程.点评:题(1)根据定义求.若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程.【例 3】判断下列方程是否表示椭圆,若是,求出 a ,b ,c 的值.【例4】已知ΔABC 的一边BC 的长为6,周长为16,求顶点A 的轨迹方程.【基础达标】1.椭圆221259x y +=上一点 P 到一个焦点的距离为 5,则 P 到另一个焦点的距离为( ) A .5 B .6 C .4 D .102.椭圆2211312x y +=上任一点 P 到两个焦点的距离的和为( ) A .26 B .24 C .2 D .2133.已知 F 1,F 2是椭圆221259x y +=的两个焦点,过 F 1的直线交椭圆于 M ,N 两点,则△MNF 2周长为( )A .10B .16C .20D .324.椭圆的两个焦点分别是F 1(-8,0)和F 2(8,0),且椭圆上一点到两个焦点距离之和为 20,则此椭圆的 标准方程为( )A .2212012x y += B .22140036x y += C .22110036x y += D .22136100x y +=5.椭圆2214x y m +=的焦距是 2,则 m 的值为( ) A .5或 3 B .8 C .5 D .166.椭圆221169x y +=的焦距是 ,焦点坐标为 . 7.焦点为(0,4)和(0,-4),且过点()533,-的椭圆方程是 .1~5 ADCCA【能力提高】8.如果方程 x 2+ky 2=2表示焦点在 y 轴上的椭圆,求实数 k 的取值范围.9.写出适合下列条件的椭圆的标准方程:(1)a=4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.10.求到定点(2,0)与到定直线x =8的距离之比为22的动点的轨迹方程.§2.1.2 椭圆的简单几何性质(一)【知识要点】● 熟练掌握椭圆的范围,对称性,顶点,离心率等简单几何性质. ● 掌握标准方程中a ,b ,c 的几何意义,以及a ,b ,c ,e 的相互关系. ● 理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法.【例题精讲】【例 1】已知椭圆的中心在坐标原点 O ,焦点在 x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且离心率为22,求椭圆的方程.【例 2】已知 x 轴上的一定点 A (1,0),Q 为椭圆2214x y +=上的动点,求 A Q 中点 M 的轨迹方程.【例 3】椭圆22110036x y +=上有一点 P ,它到椭圆的左焦点 F 1的距离为 8,求△PF 1F 2的面积.【例 4】设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值.【基础达标】1.已知P 是椭圆22110036x y +=上的一点,若P 到椭圆右焦点的距离是345,则P 点到椭圆左焦点的距离是( ) A .165 B .665 C .758D .778 2.若焦点在 x 轴上的椭圆2212x y m +=的离心率为12,则 m =( ) A .3 B .32 C .83 D .233.已知椭圆的中心在原点,焦点在 x 轴上,且长轴长为 12,离心率为13,则椭圆的方程是( )A .221144128x y += B .2213620x y += C .2213236x y += D .2213632x y += 4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件()1290PF PF a a a+=+>,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.若椭圆短轴长等于焦距的3倍,则这个椭圆的离心率为( )A .14 B .22 C .24 D .126.已知椭圆C 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆C 的离心率等于 . 7.离心率12e =,一个焦点是 F (0,-3)的椭圆标准方程为 .1~5 BBDDD【能力提高】8.求过点A(-1,-2)且与椭圆22169x y+=的两个焦点相同的椭圆标准方程.9.已知椭圆的对称轴为坐标轴,离心率23e=,短轴长为85,求椭圆的方程.10.设有一颗卫星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此卫星离地球相距m万千米和43m万千米时,经过地球和卫星的直线与椭圆的长轴夹角分别为2π和3π,求该卫星与地球的最近距离.§2.1.2 椭圆的简单几何性质(二)【知识要点】●掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质.●能利用椭圆的有关知识解决实际问题,及综合问题.【例题精讲】【例 1】已知椭圆C 的焦点F 1()22,0-和F 2()22,0,长轴长6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.【例 2】椭圆的中心为点E (-1,0),它的一个焦点为F (-3,0),且椭圆的离心率255e =,求这个椭圆的方程.【例 3】已知椭圆2212x y +=的左焦点为F ,O 为坐标原点,求过点O 、F ,并且与直线l :x =-2相切的圆的方程.【例 4】如图,把椭圆2212516x y +=的长轴 AB 分成 8等份,过每个分点作 x 轴的垂线交椭圆的上半部分于 P 1,P 2,P 3,P 4,P 5,P 6,P 7七个点,F 是椭圆的一个焦点,则123++PF P F P F +45++P F P F67+P F P F = .【基础达标】1.椭圆22110036x y +=上的点 P 到它的左焦点的距离是 12,那么点 P 到它的右焦点的距离是( ) A .15 B .12 C .10 D .82.已知椭圆()2221525x y a a +=>的两个焦点为F 1、 F 2,且|F 1F 2|=8,弦 A B 过点 F 1,则△ A BF 2的周长为( )A .10B .20C .241D .4413.椭圆221259x y +=的焦点 F 1、F 2,P 为椭圆上的一点,已知 P F 1⊥PF 2,则△ F 1PF 2的 面积为( ) A .9 B .12 C .10 D .84.椭圆221164x y +=上的点到直线 x +2y 2-=0 的最大距离是( ) A .3 B .11 C .22 D .105.如果椭圆221369x y +=的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A . x -2 y =0 B . x +2 y -4=0 C . 2x +3y -12=0 D . x +2 y -8=06.与椭圆22143x y +=具有相同的离心率且过点(2,3-)的椭圆的标准方程是 . 7.离心率53e =,一个焦点的坐标为5,03⎛⎫- ⎪⎝⎭的椭圆的标准方程是 . F1~5 DDBAD 【能力提高】8.已知椭圆22194x y+=上的点P到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P点坐标.9.过椭圆22194x y+=内一点D(1,0)引动弦A B,求弦A B的中点M的轨迹方程.10.椭圆221164x y+=上有两点P、Q,O是原点,若O P、OQ斜率之积为14-.求证22OP OQ+为定值.§2.2.1双曲线及其标准方程【知识要点】●掌握双曲线的定义,熟记双曲线的标准方程;●掌握双曲线标准方程的推导,会求动点轨迹方程;● 会按y 2特定条件求双曲线的标准方程; ● 理解双曲线与椭圆的联系与区别.【例题精讲】【例 1】判断下列方程是否表示双曲线,若是,求出三量 a ,b ,c 的值.【例 2】已知双曲线的焦点在y 轴上,中心在原点,且点()13,42P -、29,54P⎛⎫ ⎪⎝⎭在此双曲线上,求双曲线的标准方程.【例 3】点 A 位于双曲线()222210,0x y a b a b-=>>上, F 1,F 2是它的两个焦点,求△AF 1F 2的重心G 的轨迹方程.【例 4】已知三点 P (5,2)、 F 1(-6,0)、 F 2(6,0).(1)求以F 1、F 2为焦点且过点 P 的椭圆的标准方程;(2)设点 P 、F 1、F 2关于直线 y =x 的对称点分别为 P '、F 1'、F 2',求以F 1'、F 2'为焦点且过点P '的双曲线的标准方程.【基础达标】1.双曲线22221124x y m m-=+-的焦距是( ) A .4 B .22 C .8 D .与 m 有关2.椭圆222+134x y n =和双曲线222116x y n -=有相同的焦点,则实数 n 的值是( ) A .±5 B .±3 C .5 D .93.若0k a <<,双曲线22221x y a k b k -=-+与双曲线22221x y a b-=有( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D .相同的焦点4.过双曲线221169x y -=左焦点 F 1的弦 A B 长为 6,则 △ABF 2(F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .125.设F 1,F 2是双曲线2214x y -=的焦点,点 P 在双曲线上,且 ∠F 1PF 2=90°,则点 P 到x 轴的距离为( )A .1B .55C .2D .5 6.到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于 6的点 M 的轨迹是 .7.方程22+111x y k k=+-表示双曲线,则 k 的取值范围是 .1~5 CBDAB【能力提高】8.求与双曲线221164x y -=有公共焦点,且过点(32,2)的双曲线方程.9.如图,某农场在 P 处有一堆肥,今要把这堆肥料沿道路 P A 或 P B 送到庄稼地 A BCD 中去,已知 P A =100 m ,PB =150m ,∠APB =60°.能否在田地 A BCD 中确定一条界线,使位于界线一侧的点,沿道路 P A 送肥较近;而另一侧的点,沿道路 P B 送肥较近? 如果能,请说出这条界线是一条什么曲线,并求出其方程.10.已知点()3,0A -和()3,0B,动点C 到A 、B 两点的距离之差的绝对值为 2,点 C 的轨迹与直线 y =x -2 交于 D 、E 两点,求线段 D E 的长.§2.2.2 双曲线的简单几何性质(一)【知识要点】● 掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质. ● 掌握等轴双曲线,共轭双曲线等概念.【例题精讲】【例 1】求双曲线2214y x -=的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程.【例 2】求一条渐近线方程是 3x +4y =0,一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.【例 3】求与双曲线221169x y -=共渐近线且过 A (33,-3)的双曲线的方程.【例 4】已知△ABC 的底边 B C 长为 12,且底边固定,顶点 A 是动点,使sin B -sin C =12sin A ,求点 A 的轨迹.【基础达标】1.下列方程中,以x ±2y =0为渐近线的双曲线方程是( )A .221164x y -= B .221416x y -= C .2212x y -= D .2212y x -= 2.已知双曲线的离心率为 2,焦点是(-4,0),(4,0),则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= 3.过点(3,0)的直线 l 与双曲线 4x 2-9y 2=36只有一个公共点,则直线 l 共有( ) A .1条 B .2条 C .3条 D .4条4.方程mx 2+ny 2+mn =0(m <n <0)所表示的曲线的焦点坐标是( )A .()0m n ±-,B .()0n m ±-,C .()0m n ±-,D .()0n m ±-,5.与双曲线221916x y -=有共同的渐近线,且经过点A (-3,23)的双曲线的一个焦点到一条渐近线的距离是( )A.8 B.4 C.2 D.16.双曲线9y2-4x2=36的渐近线方程是.7.经过点M(3,-1),且对称轴在坐标轴上的等轴双曲线的标准方程是.1~5 AACBC【能力提高】8.求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.9.求以椭圆22+16416x y=的顶点为焦点,且一条渐近线的倾斜角为56π的双曲线方程.10.已知双曲线的方程是16x2-9y2=144.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.§2.2.2 双曲线的简单几何性质(二)【例题精讲】【例 1】如果双曲线的两个焦点分别为F 1(-3,0)、F 2 (3,0),一条渐近线方程为2y x =,那么它的离心率是( )A .63B .4C .2D .3【例 2】过双曲线221916x y -=的左焦点F 1,作倾斜角为=4πα的直线与双曲线交于两点A 、B ,求AB 的长.【例 3】已知动点 P 与双曲线 x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且 c os ∠F 1PF 2的最小值为13-.求动点P 的轨迹方程.【例 4】已知不论 b 取何实数,直线 y =kx +b 与双曲线 x 2-2y 2=1总有公共点,试求实数 k 的取值范围.【基础达标】1.到两定点F 1(-3,0)、F 2 (3,0) 的距离之差的绝对值等于 6的点 M 的轨迹( ) A .椭圆 B .线段 C .双曲线 D .两条射线 4.双曲线的两个顶点将焦距三等分,则它的离心率为( ) A .32 B .3 C .43D .3 5.已知 m ,n 为两个不相等的非零实数,则方程mx -y +n =0与 n x 2+my 2=mn 所表示的曲线可能是( )A B C D6.双曲线22197x y -=的右焦点到右顶点的距离为 . 7.与椭圆22+11625x y =有相同的焦点,且离心率为355的双曲线方程为 .1~5 DDCBC【能力提高】8.设双曲线()222210x y a b a b-=<<的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线lyox yox yox yox的距离为34c ,求此双曲线的离心率.9.求过点M (3,-1)且被点M 平分的双曲线2214x y -=的弦所在直线方程.10.设双曲线 C 1的方程为()222210,0x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线 C 1上的任意一点,引 Q B ⊥PB ,QA ⊥PA ,AQ 与 B Q 交于点 Q ,求 Q 点的轨迹方程.§2.3.1 抛物线及其标准方程【知识要点】● 掌握抛物线的定义.● 标准方程的不同形式及其推导过程.● 熟练画出抛物线的草图,求出抛物线的标准方程、焦点、准线方程.【例题精讲】【例 1】已知抛物线的标准方程是:(1)y 2=12x ,(2)y =12x 2,求它的焦点坐标和准线方程.【例2】求满足下列条件的抛物线的标准方程:(1)焦点坐标是F(-5,0);(2)经过点A(2,-3)【例3】直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形A PQB的面积为()A.48 B.56 C.64 D.72【例4】斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段A B 的长.【基础达标】1.抛物线y 2=ax (a ≠0)的准线方程是 ( ) A .4a x =-B .4ax = C .4a x =- D .4a x =2.抛物线的顶点在原点,对称轴为 x 轴,焦点在直线 3x -4y -12=0上,此抛物线的方程是( ) A .y 2=16x B .y 2=12x C .y 2=-16x D .y 2=-12x 3.焦点在直线 3x -4y -12=0上的抛物线标准方程是( ) A .y 2=16x 或 x 2=16y B .y 2=16x 或 x 2=12y C .x 2=-12y 或 y 2=16x D .x 2=16y 或 y 2=-12x4.已知 M (m ,4)是抛物线 x 2=ay 上的点,F 是抛物线的焦点,若|MF |=5,则此抛物线的焦点坐标是( )A .(0,-1)B .(0,1)C .(0,-2)D .(0,2) 5.过抛物线 y 2=4x 的焦点 F 作倾斜角为34π的直线交抛物线于 A 、B 两点,则 A B 的长是( ) A .42 B .4 C .8 D .26.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是 . 7.平面上的动点P 到点 A (0,-2)的距离比到直线 l :y =4的距离小 2,则动点P 的轨迹方程 是 .1~5 AACBC【能力提高】8.点M 到点(0,8)的距离比它到直线 y =-7的距离大 1,求 M 点的轨迹方程.9.抛物线 y 2=16x 上的一点 P 到 x 轴的距离为 12,焦点为 F ,求|PF |的值.10.抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?§2.3.2 抛物线的简单几何性质(一)【知识要点】● 抛物线的范围、对称性、顶点、离心率等几何性质;● 能根据抛物线的几何性质对抛物线方程进行讨论;注意数与形的结合.【例题精讲】【例 1】已知抛物线关于x 轴为对称轴,它的顶点在坐标原点,并且经过点()2,22M -,求它的标准方程.xy O【例2】过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以A B为直径的圆和这抛物线的准线相切.【例3】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px()0p>上,求这个正三角形的边长.【例4】抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以A F、BF为邻边作平行四边形F ARB,试求动点R的轨迹方程.【基础达标】1.过抛物线 y 2=4x 的焦点作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么|AB | =( )A .10B .8C .6D .42.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是( ) A .x 2=8y B .x 2=4y C .x 2=2y D .x 2=12y 3.已知 M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点 P (3,1),则MP MF +的最小值为( )A .3B .4C .5D .64.已知抛物线 y 2=-12x 上一点 P (x 0,y 0)到焦点的距离为 8,则 x 0的值为( ) A .-5 B .5 C .-4 D .45.抛物线 y 2=8x 上一点 P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A .()2,4 B .()2,4± C .()1,22 D .()1,22± 6.抛物线 2y 2+5x =0 的准线方程是 .7.过抛物线焦点 F 的直线与抛物线交于 A 、B 两点,若 A 、B 在准线上的射影是 A 2,B 2,则∠A 2FB 2等于 .1~5 BABAD【能力提高】8.抛物线顶点在原点,它的准线经过双曲线22221x y a b-=的一个焦点,并且这条准线与双曲线的实轴垂直,又抛物线与双曲线交于点362⎛⎫ ⎪⎝⎭,,求二者的方程.9.顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求抛物线的方程.p>的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准10.设抛物线y2=2px()0线上,且B C∥轴.证明:直线AC经过原点O.§2.3.2 抛物线的简单几何性质(二)【例题精讲】【例1】过抛物线y2=2x的顶点作互相垂直的二弦O A、OB.(1)求A B中点的轨迹方程.(2)证明:AB与x轴的交点为定点.【例2】已知点 A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线 y 2=2px 上,△ABC 的重心与此抛 物线的焦点 F 重合.(1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点 M 的坐标; (3)求 B C 所在直线的方程.【例 3】抛物线 y =-x 2上的点到直线 4x +3y -8=0距离的最小值是( )A .43 B .75 C .85D .3【基础达标】1.已知抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线 3x -4y -12=0时,则此抛物线的方 程是( )A .y 2=16xB .x 2=-12yC .y 2=8x 或x 2=-6yD . y 2=16x 或x 2=-12y 2.抛物线的顶点在原点,对称轴是x 轴,点()5,25-到焦点距离是6,则抛物线的方程为( ) A .y 2=-4x B 、y 2=-2x C 、 y 2=2x D 、 y 2=-4x 或x 2=-36y 3.在抛物线 y =x 2上有三点 A 、B 、C ,其横坐标分别为-1,2,3,在y 轴上有一点D 的纵坐标为 6,那么以 A 、B 、C 、D 为顶点的四边形是( )A .正方形B .平行四边形C .菱形D .任意四边形4.抛物线 y 2=4x 的焦点F ,准线为l ,交 x 轴于 R ,过抛物线上一点 P (4,4)作 P Q ⊥ l 于Q ,则梯形 PFRQ 的面积是( )A .12B .14C .16D .18 5.抛物线 y 2=-4x 关于直线 x +y =2对称的曲线的顶点坐标为( )A .(2,2)B .(0,0)C .(-2,-2)D .(2,0) 6.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则M 点的轨迹方程 是 .7.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .1~5 DABBA【能力提高】8.经过抛物线 y 2=-8x 的焦点且和抛物线的对称轴成 60°角的直线与抛物线交 A 、B 两点,求|AB |.9.求过A(-1,1),且与抛物线y=x2+2有一个公共点的直线方程.10.已知抛物线C:y=x2+4x+72,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为12-,求点M的坐标(x0,y0).第二章圆锥曲线复习(一)【知识要点】●椭圆定义,椭圆的标准方程,椭圆的性质.●双曲线的定义,双曲线的标准方程及特点,双曲线的几何性质.●抛物线定义,抛物线的几何性质.【例题精讲】【例1】椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近顶点的距离是105-,求椭圆方程.【例 2】已知双曲线2214x y -=和定点12,2P ⎛⎫ ⎪⎝⎭.(Ⅰ)过 P 点可以做几条直线与双曲线 C 只有一个公共点;(Ⅱ)双曲线C 的弦中,以 P 点为中点的弦 P 1P 2是否存在? 并说明理由.【例 3】已知点 A (0,2)及椭圆22+14x y =,在椭圆上求一点 P 使PA 的值最大.【例 4】己知点P 在抛物线 x 2=y 上运动,Q 点的坐标是(-1,2),O 是原点,OPQR (O 、P 、Q 、R顺序按逆时针)是平行四边形,求 R 点的轨迹方程.【基础达标】1.平面上到定点 A (1,1)和到定直线 l :x +2 y =5距离相等的点的轨迹为( )A.直线B.抛物线C.双曲线D.椭圆2.若椭圆2kx2+ky2=1 的一个焦点坐标是(0,4),则k的值为()A.18B.132C.2D.3163.椭圆22+1259x y=上的点M到焦点F1的距离是2,N是M F1的中点,则ON为()A.4 B.2 C.8 D.3 24.如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为()A.32B.62C.32D.25.椭圆22+1259x y=的两焦点F1,F2,过F2引直线L交椭圆于A、B两点,则△ABF1的周长为()A.5 B.15 C.10 D.206.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为.7.若椭圆的两个焦点为F1(-4,0)、F2(4,0),椭圆的弦A B过点F1,且△ABF2的周长为20,那么该椭圆的方程为.1~5 BBACD【能力提高】8.若双曲线的两条渐进线的夹角为60°,求该双曲线的离心率.9.正方形的一条边A B在直线y=x+4上,顶点C、D在抛物线y2=x上,求正方形的边长.10.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,求实数a的取值范围.第二章 圆锥曲线复习(二)【例题精讲】【例 1】已知直线 l 交椭圆22+12016x y =于 M 、N 两点,B (0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线 l 的方程.【例 2】已知倾斜角为4π的直线 l 被双曲线 x 2-4y 2=60截得的弦长82AB =,求直线l 的方程及以AB 为直径的圆的方程.【例 3】已知直线l :x =-1,点F (1,0),以F 为焦点,l 为准线的椭圆中,短轴一端点为B ,P为FB 的中点.(Ⅰ)求 P 点的轨迹方程,并说明它是什么曲线; (Ⅱ)M (m ,0)为定点,求|PM |的最小值.【例 4】已知两定点A (-2,0),B (1,0),如果动点P 满足2PA PB =,求点P 的轨迹所包围的图形的面积.【基础达标】1.已知 M (-2,0),N (2,0),4P M P N -=,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.若圆 x 2+y 2=4上每个点的横坐标不变.纵坐标缩短为原来的13,则所得曲线的方程是( ) A .22+1412x y = B .22+1436x y = C .229+144x y = D .22+1364x y = 3.已知 F 1,F 2是椭圆22+1169x y =的两焦点,过点F 2的直线交椭圆于点A ,B ,若5AB =,则12AF BF -=( )A .3B .8C .13D .164.曲线()()22346225x y x y ---+-=的离心率为( ) A .110 B .12C .2D .无法确定5.抛物线y2=14x 关于直线x-y=0对称的抛物线的焦点坐标是()A.(1,0)B.116⎛⎫⎪⎝⎭,C.(0,1)D.116⎛⎫⎪⎝⎭,6.与椭圆4x2+ 9y2=36有相同的焦点,且过点(-3,2)的椭圆方程为.7.以双曲线22145x y-=的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是.1~5 C CABD 【能力提高】8.设F1,F2为双曲线2214xy-=的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求△F1PF2的面积.9.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,求直线l的斜率的取值范围.10.设椭圆22+162x y=和双曲线2213xy-=的公共焦点为F1,F2,P是两曲线的一个公共点,求cos∠F1PF2的值.。
2018秋新版高中数学人教A版选修1-1:第二章 圆锥曲线与方程 2.3.2.1
|AF|=x1+
������ 2
,
|������������|
=
������2
+
���2���,
11
1
1
∴
|������������|
+
|������������|
=
������1
+
������ 2
+
������2
+
������ 2
=
������2
+
������ 2
+
������1
+
������ 2
2.设直线方程时,要特别注意斜率不存在的直线应单独讨论.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三
Z D 重难聚焦 HONGNAN JVJIAO
典例透析
IANLI TOUXI
【变式训练2】 已知过抛物线y2=4x的焦点F的弦长为36,求弦所 在的直线方程.
方程为 y2=2px 或 y2=-2px(p>0).
又抛物线的焦点到顶点的距离为 5,
������ ∴ 2 = 5. ∴ ������ = 10.
∴所求抛物线的方程为 y2=20x 或 y2=-20x.
解法二由已知条件可知抛物线的对称轴为 x 轴,∴设抛物线的
方程为 y2=mx(m≠0).
又抛物线的焦点到顶点的距离为 5,∴
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三
Z D 重难聚焦 HONGNAN JVJIAO
典例透析
2018版高中数学选修1-1学案:2-1 圆锥曲线 精品
学习目标 1.掌握圆锥曲线的类型及其定义、几何图形和标准方程,会求简单圆锥曲线的方程.2.通过对圆锥曲线性质的研究,感受数形结合的基本思想和理解代数方法研究几何性质的优越性.知识点一椭圆的定义思考命题甲:动点P到两定点A、B的距离之和为P A+PB=2a (a>0且a为常数);命题乙:点P的轨迹是椭圆,且A、B是椭圆的焦点,则命题甲是命题乙的什么条件?梳理平面内与两个定点F1,F2的距离的和等于常数(________)的点的轨迹叫做椭圆.两个定点F1,F2称为椭圆的________,两焦点之间的距离称为椭圆的________.知识点二双曲线的定义思考1取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?思考2在双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?为什么要限制到两定点距离之差的绝对值为常数2a,2a<F1F2?梳理平面内与两个定点F1,F2距离的差的绝对值等于常数(____________)的点的轨迹叫做双曲线.这两个定点F1,F2叫做双曲线的________,两焦点间的距离叫做双曲线的________.知识点三抛物线的定义如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF 上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.思考1画出的曲线是什么形状?思考2DA是点D到直线EF的距离吗?为什么?思考3点D在移动过程中,满足什么条件?梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的________,定直线l叫做抛物线的________.类型一椭圆定义的应用例1在△ABC中,B(-6,0),C(0,8),且sin B,sin A,sin C成等差数列.(1)顶点A的轨迹是什么?(2)指出轨迹的焦点和焦距.反思与感悟本题求解的关键是把已知条件转化为三角形边的关系,找到点A满足的条件.注意A、B、C三点要构成三角形,轨迹要除去两点.跟踪训练1在△ABC中,BC=24,AC、AB边上的中线长之和等于39,求△ABC的重心的轨迹方程.类型二双曲线定义的应用例2如图,已知动圆C与圆F1,F2均外切(圆F1与圆F2相离),试问:动点C的轨迹是什么曲线?引申探究若把本例中“外切”换成“内切”再求解,结论如何?反思与感悟判断动点轨迹是双曲线应满足三个条件:(1)动点P到两定点的距离之差是否为常数;(2)该常数是否小于两定点之间的距离;(3)其差是否加上绝对值.跟踪训练2在△ABC中,BC固定,顶点A移动.设BC=m,且|sin C-sin B|=12sin A,则顶点A的轨迹是什么?类型三 抛物线定义的应用例3 若动圆与定圆(x -2)2+y 2=1外切,又与直线x +1=0相切,求动圆圆心的轨迹. 引申探究点P 到点F (2,0)的距离比它到直线l :x =-3的距离小1,则点P 的轨迹是________.反思与感悟 判断点的轨迹是抛物线注意应满足两点: (1)判断动点到定点与到定直线的距离相等. (2)要特别注意定点不在定直线上.跟踪训练3 若动点P (x ,y )满足x 2+(y -2)2=|x +y -2|2,则动点P (x ,y )的轨迹是______________________________.1.动点M 到定点A (12,0),B (-12,0)的距离之和是2,则动点M 的轨迹是__________.2.已知两点F 1(-5,0),F 2(5,0),到它们的距离的差的绝对值是6的点M 的轨迹是____________.3.到定点A (4,0)和到定直线l :x =-4的距离相等的点的轨迹是__________.4.动圆过点(1,0),且与直线x =-1相切,则动圆圆心的轨迹为________.(从圆、椭圆、双曲线或抛物线中选一个)5.如图,已知圆A :(x +3)2+y 2=100,圆A 内有一定点B (3,0).动圆P 过B 点且与圆A 内切,设动圆P 的半径为r ,试判断圆心P 的轨迹.1.在椭圆定义中,常数>F1F2不可忽视,若常数<F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是线段F1F2.2.在双曲线定义中,若常数>F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是以F1、F2为端点的两条射线.3.在抛物线定义中F∉l.若F∈l,则点的轨迹是经过点F且垂直于l的直线.提醒:完成作业第2章§2.1答案精析问题导学知识点一思考必要不充分条件.仅当2a>AB时,P点的轨迹是椭圆;而当2a=AB时,P点的轨迹是线段AB;当2a<AB时,P点无轨迹.梳理大于F1F2焦点焦距知识点二思考1如图,曲线上的点满足条件:MF1-MF2=常数.如果改变一下位置,使MF2-MF1=常数.可得到另一条曲线.思考2若没有绝对值,动点的轨迹就成了双曲线的一支.只有当2a<F1F2时,动点的轨迹才是双曲线;当2a=F1F2时,动点的轨迹是两条射线;当2a>F1F2时,满足条件的点不存在.梳理小于F1F2的正数焦点焦距知识点三思考1抛物线.思考2是.AB是直角三角形的一条直角边.思考3DA=DC.梳理焦点准线题型探究例1解(1)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A.由正弦定理,可得AC+AB=2BC.又BC=10,所以AB+AC=20,且20>BC,所以点A的轨迹是椭圆(除去直线BC与椭圆的交点).(2)椭圆的焦点为B、C,焦距为10.跟踪训练1解有一定长线段BC,两边上的中线长均与定点B、C和△ABC的重心有关系,因此考虑以BC的中点为原点建立坐标系.如图所示,以线段BC 所在的直线为x 轴、线段BC 的中垂线为y 轴建立直角坐标系.设M 是△ABC 的重心,BD 是AC 边上的中线,CE 是AB 边上的中线.由重心的性质知,BM =23BD ,CM =23CE .于是MB +MC =23BD +23CE =23(BD +CE )=23×39=26>BC =24.根据椭圆的定义知,点M 的轨迹是以B 、C 为焦点的椭圆(除去直线BC 与椭圆的交点).例2 解 设动圆C 的半径为R ,圆F 1,F 2的半径分别为r 1,r 2,易知CF 1=R +r 1,CF 2=R +r 2.所以CF 1-CF 2=r 1-r 2. 又CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心C 的轨迹是以F 1,F 2为焦点的双曲线靠近F 2的一支. 引申探究解 设动圆C 的半径为R , 圆F 1,F 2的半径分别为r 1,r 2. 易知CF 1=R -r 1,CF 2=R -r 2, CF 2-CF 1=r 1-r 2<F 1F 2.故动圆圆心C 的轨迹是以F 1,F 2为焦点的双曲线靠近F 1的一支. 跟踪训练2 解 因为|sin C -sin B |=12sin A ,由正弦定理,可得|AB -AC |=12BC =12m ,且12m <BC ,所以点A 的轨迹是双曲线(除去双曲线与BC 的两个交点). 例3 解 如图所示,设动圆O ′的半径为r ,则动圆的圆心O ′到点(2,0)的距离为r +1,点O ′到直线x =-1的距离为r ,从而可知点O ′到点(2,0)的距离与到直线x =-2的距离相等.由抛物线定义可知,动圆圆心O ′的轨迹是抛物线. 引申探究抛物线跟踪训练3过点(0,2)且与直线x+y-2=0垂直的一条直线当堂训练1.椭圆 2.双曲线 3.抛物线 4.抛物线5.解由题意知A(-3,0),P A=10-r,PB=r,则P A+PB=10>AB=6,满足椭圆的定义,故点P的轨迹是以A,B两点为焦点的椭圆.。
2018圆锥曲线知识点总结
椭圆.双曲线方程知识汇总椭圆双曲线焦点在x 轴上焦点在y 轴上焦点在x 轴上焦点在y 轴上定 义a ||PF ||PF 221=+,c F F 2||21= 不存在线段,椭圆,c a c a c a <=>a ||PF ||PF 2||21=-,c F F 2||21=不存在射线,双曲线c a c a c a >=<,标准方程 12222=+by a x ; 12222=+b x a y 12222=-by a x 12222=-bx a y *参数方程⎩⎨⎧==θθsin cos b y a x ⎩⎨⎧==θθsin cos a y b x ⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==θθsec tan a y b x 图 形x .y范 围by b ax a ≤≤-≤≤-ay a b x b ≤≤-≤≤- Ry a x a x ∈≥-≤或ay a y R x ≥-≤∈或顶点坐标 长轴顶点)0,)(0,(a a -短轴顶点),0)(,0(b b -长轴顶点),0)(,0(a a - 短轴顶点)0,)(0,(b b -顶点)0,)(0,(a a -顶点),0)(,0(a a -对称性 对称轴:x 轴,y 轴, 对称中心:坐标原点各 个 轴 长轴2a ,短轴2b ,焦距2c实轴2a,虚轴2b ,焦距2c恒 等 式 222c b a +=222b a c +=焦点坐标 左右)0,(),0,(21c F c F -上下),0(),,0(21c F c F -左右)0,(),0,(21c F c F -上下),0(),,0(21c F c F -*准线方程ca x 2±= ca y 2±= ca x 2±= ca y 2±= *焦 半 径0||||ex a PF ex a PF -=+=右左0||||ey a PF ey a PF +=-=下上⎩⎨⎧+-+=⎩⎨⎧---=右准左准右准左准右左,,||,,||0000ex a ex a PF ex a ex a PF ⎩⎨⎧---=⎩⎨⎧++-=下准上准下准上准下上,,||,,||0000ex a ex a PF ex a ex a PF*通 径c x ±=,大小22b a c y ±=,大小22b ac x ±=,大小22b ac y ±=,大小22b a离 心 率)10(<<=e ace )1(>=e ace 渐近线方程x ab y ±= x ba y ±= 渐近线斜率k 与离心率e 的关系 12-±=e k112-±=e k抛物线知识汇总焦点在x 轴正半轴焦点在x 轴负半轴焦点在y 轴正半轴焦点在y 轴负半轴定义 到定点F (焦点)的距离等于到定直线(准线)的距离的点的集合标准方程px y 22=px y 22-= py x 22=py x 22-=图 形开 口 向右 向左 向上 向下范 围 R y x ∈≥,0R y x ∈≤,0R x y ∈≥,0R x y ∈≤,0对称轴x 轴y 轴焦 点)0,2(p F )0,2(p F -)2,0(p F)2,0(p F - 准 线 2p x -= 2p x =2p y -= 2p y =*焦半径 2||0p x PF += 2||0p x PF +-= 2||0p y PF += 2||0p y PF +-= *通 径方程2px =,长度p 方程2p x -=,长度p方程2p y =,长度p方程2p y -=,长度p性质AB 是抛物线)0(22>=p px y 的焦点弦,F 为抛物线的焦点,),(11y x A ,),(22y x B ,求证:(1)4,221221p x x p y y =-=;(2)α221sin 2p p x x AB=++=(α为直线AB 与x 轴夹角);(3)α∆sin 22p S AOB =;(4)FBFA 11+为定值p 2.(5)以AB 为直径的圆与抛物线准线相切.圆锥曲线 第二定义到定点(焦点)的距离与到定直线(准线)的距离之比为定值(离心率)的点的集合,其中,离心率在(0,1)为椭圆,大于1为双曲线,等于1为抛物线基本专题:(1)求曲线的标准方程 方法一:待定系数法 方法二.求c b a ,,(2)判断曲线的类型 122=+By A x 类型 022=++C By Ax 类型(3)定义的应用 判断所求轨迹的点的性质(4)求曲线的离心率 要求曲线离心率,找出关系消去b ,化简之后变成e ,注意范围取正值 (5)中点弦问题 点差法(设而不求)(6)焦点三角形 (正弦定理.余弦定理的应用)(7)弦长公式 ||1||11||1||2122122m k y y kx x k AB ∆+=-+=-+=(8)最值问题 注意几何意义(9)圆锥曲线应用题 读题--—>反复读题—-->建立模型---〉求解结果——->写出结论(10)直线与圆锥曲线的位置关系(点在曲线外/内/上)(直线:联立,化简,判断△)圆锥曲线的其他有用结论总结一、椭圆中结论:1、点00(,)P x y 在椭圆22221x y a b +=内部的条件:____________________点00(,)P x y 在椭圆22221x y a b+=外部的条件:____________________2、过椭圆22221x y a b +=上一点00(,)P x y 与椭圆相切的直线方程:____________________过椭圆22221x y a b +=外一点00(,)P x y 与椭圆相切得切点弦的方程:____________________过椭圆22221x y a b+=内一点00(,)P x y 的弦与椭圆交点的切线交点轨迹:____________________3、椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,12F PF θ∠=,则椭圆的焦点三角形的面积为____________________12||||PF PF =__________________4、AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则AB K =______________,即OM AB k k ⋅=______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线高考热点题型归纳
圆锥曲线的考题一般以两个选择、一个填空、一个解答题,客观题的难度为中等,解答题目相对较难,同时平面向量的介入,增加了本专题高考命题的广度与深度,成为近几年高考命题的一大亮点,备受命题者的青睐,本专题还经常结合函数、方程、不等式、数列、三角等知识进行综合考查。
下面对圆锥曲线在高考中出现的热点题型作简单的探究: 一、圆锥曲线的定义与标准方程:
例1、设分别是双曲线的左、右焦点.若点在双曲线上,且,则( )
A
B
.
C
D .
解析.设分别是双曲线的左、右焦点.若点在双曲线上,且,则=,选B 。
点评:圆锥曲线的定义反映了它们的图形特点,是画图、解题的依据和基础,在实际问题中正确的使用定义可以使问题的解决更加灵活。
同时平面向量与圆锥曲线的有机结合也是考查的重点和难点,是高考常常考查的重要内容之一。
变式练习:已知是椭圆的两个焦点,P 是椭圆上一个动点,
则的最大值为( )
(A
) 1 (B ) 2 (C ) 3 (D ) 4
解析:本题主要考查了椭圆的定义,根据条件,
12F F ,2
2
19
y x +=P 120PF PF =12PF PF +=12F F ,2
2
19
y x +=P 120PF PF =12PF PF +=2||PO 12||F F =12,F F 2
214
x y +=12PF PF ⋅124PF PF +=
所以,所以的最大值为4
故答案选 D
二、圆锥曲线的几何性质:
例2、设F 1,F 2分别是双曲线的左、右焦点。
若双曲线上存在点
A ,使∠F 1AF 2=90º,且|AF 1|=3|AF 2|,则双曲线离心率为
(B)
(C)
(D)
解析.设F 1,F 2分别是双曲线的左、右焦点。
若双曲线上存在点
A ,使∠F 1AF 2=90º,且|AF 1|=3|AF 2|,设|AF 2|=1,|AF 1|=3,双曲线中
,
离心率,选B 。
点评:本题主要考查圆锥曲线的离心率的求解问题,这类问题的一般解法是将题目提供的曲线的几何关系转化为关于曲线基本量的方程或不等式,通过解方程或不等式求得离心率的值或取值范围,这是求离心率的的值或范围问题的常用解法。
变式练习:
1、若双曲线的右支上到原点和右焦点距离相等有两
个,则双曲线的离心率的取值范围是( )
A 、
B 、
C 、
D 、
解析:由于到原点O 和右焦点F 的距离相等的点在线段OF 的垂直平分线上,
其方程为,依题意,在双曲线的右支上到原点和右
2
121242PF PF PF PF ⎛+⎫
⋅≤= ⎪⎝⎭
12PF PF ⋅22
221x y a b
-=22
221x y a b
-=122||||2a AF AF =-=2c ==e =
,,a b c ()22
2210,0x y a b a b
-=>>e >1e <<2e >12e <<2c x =()22
2210,0x y a b a b
-=>>
焦点距离相等的点两个,所以直线与右支有两个交点,故应满足,即
,得。
故答案选 C 2、经过点且与双曲线有相同的渐近线的双曲线的方程是
A 、
B 、
C 、
D 、 解析:由与有相同的渐近线,则可设所求双曲线为,把点代入得,,所以 故答案选 C 三、与圆锥曲线有关的综合应用问题
例5、已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.
(I )若动点满足(其中
为坐标原点),求点的轨迹方程;
(II )在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.
解析:由条件知,,设,.
解法一:(I )设,则则,,,由得
2c x =
2
c x a =>2c
a
>2e
>(M -22
143
x y -
=22168x y -=22186y x -=22168y x -=22
186x y -
=22
143x y -
=()22
043
x y λλ-=
≠(M -2λ=-2222
214368
x y y x -=-⇒-=222x y -=1F 2F 2F A B ,M 1111FM F A F B FO =++O M x C CA CB C 1(20)F -,2(20)F ,11()A x y ,22()B x y ,()M x y ,1
(2)FM x y =+,111(2)F A x y =+,1221(2)(20)F B x y FO =+=,,,1111FM F A F B FO =++
即 于是的中点坐标为. 当不与轴垂直时,,即. 又因为两点在双曲线上,所以,,两式相减得 ,即. 将代入上式,化简得. 当与轴垂直时,,求得,也满足上述方程. 所以点的轨迹方程是.
(II )假设在轴上存在定点,使为常数. 当不与轴垂直时,设直线的方程是. 代入有.
则是上述方程的两个实根,所以,,
于是
. 因为是与无关的常数,所以,即,此时=.
当与轴垂直时,点的坐标可分别设为,, 1212
26x x x y y y +=++⎧⎨
=+⎩,12124x x x y y y +=-⎧⎨+=⎩,
AB 422x y -⎛⎫
⎪⎝
⎭,AB x 1212
24822
y
y y y x x x x -==
----1212()8y y y x x x -=--A B ,22112x y -=222
22x y -=12121212()()()()x x x x y y y y -+=-+1212()(4)()x x x y y y --=-1212()8
y
y y x x x -=
--22(6)4x y --=AB x 122x x ==(80)M ,
M 22(6)4x y --=x (0)C m ,
CA CB AB x AB (2)(1)y k x k =-≠±222x y -=2222(1)4(42)0k x k x k -+-+=12x x ,212241k x x k +=-212242
1
k x x k +=-2
1212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222
(1)(42)4(2)411k k k k m k m k k +++=-++--222
22
2(12)2442(12)11
m k m m m m k k -+-=+=-++--CA CB k 440m -=1m =CA CB 1-AB x A B
,(2
(2
此时. 故在轴上存在定点,使为常数. 点评:存在性问题: ①对这类问题,若能将所观察色对象联系其几何背景进行数与形的转化,常能将复杂抽象的问题变得直观、具体,有利探明结论;②解析几何中的存在与否的问题常用,或曲线方程本身的取值范围,或题意中变量的取值范围进行判断。
(1
2)(12)1CA CB =-=-,,x (10)C ,
CA CB 0∆>。