高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本知识
(一)不等式与不等关系
1、应用不等式(组)表示不等关系; 不等式的主要性质:
(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;
d b c a d c b a +>+⇒>>,(同向可加)
(4)乘法法则:bc ac c b a >⇒>>0,;
bc ac c b a <⇒<>0,
bd ac d c b a >⇒>>>>0,0(同向同正可乘)
(5)倒数法则:b
a a
b b a 1
10,<⇒
>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且
2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)
3、应用不等式性质证明不等式
(二)解不等式
1、一元二次不等式的解法
一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:
设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆, 0>∆ 0=∆
0<∆
二次函数
c bx ax y ++=2
(0>a )的图象
c bx ax y ++=2
c bx ax y ++=2
c bx ax y ++=2
一元二次方程
()的根
2
>
=
+
+
a
c
bx
ax
有两相异实根
)
(
,
2
1
2
1
x
x
x
x<
有两相等实根
a
b
x
x
2
2
1
-
=
=无实根的解集
)0
(
2
>
>
+
+
a
c
bx
ax{}
2
1
x
x
x
x
x>
<或
⎭
⎬
⎫
⎩
⎨
⎧
-
≠
a
b
x
x
2
R
的解集
)0
(
2
>
<
+
+
a
c
bx
ax{}
2
1
x
x
x
x<
<∅∅
2、简单的一元高次不等式的解法:
标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()
f x的符号变化规律,写出不等式的解集。()()()
如:x x x
+--<
1120
23
3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
()()0
()()
0()()0;0
()0
()()
f x
g x
f x f x
f x
g x
g x
g x g x
≥
⎧
>⇔>≥⇔⎨
≠
⎩
4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题
若不等式()A
x
f>在区间D上恒成立,则等价于在区间D上()
min
f x A
>若不等式()B
x
f<在区间D上恒成立,则等价于在区间D上()
max
f x B
<
(三)线性规划
1、用二元一次不等式(组)表示平面区域
二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
2、二元一次不等式表示哪个平面区域的判断方法
由于对在直线Ax+By+C=0同一侧的所有点(y
x,),把它的坐标(y
x,)代入Ax
+By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y 0),从Ax0+B y0+C 的正负即可判断Ax +By+C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量x 、y的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x 、y的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤:
(1)寻找线性约束条件,列出线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)依据线性目标函数作参照直线a x +b y=0,在可行域内平移参照直线求目标函数的最优解
(四)基本不等式2a b
ab +≤
1.若a,b ∈R ,则a2+b 2
≥2ab ,当且仅当a=b 时取等号.
2.如果a ,b 是正数,那么).""(2
号时取当且仅当==≥+b a ab b
a 变形: 有:a+
b ≥ab 2;ab ≤2
2⎪⎭
⎫
⎝⎛+b a ,当且仅当a=b时取等号.
3.如果a ,b ∈R+,a·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;
如果a,b ∈R +,且a+b =S (定值),当且仅当a=b时,ab 有最大值4
2
S .
注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,
可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等”