统计概率知识点归纳总结
统计概率所有知识点总结
统计概率所有知识点总结一、基本概率论概率论是统计学中最基础的部分,它研究的是随机事件的可能性。
随机事件是不确定的事件,而概率就是描述这种不确定性的量。
在概率论中,经常用到的概念包括事件、概率、样本空间等。
事件是指可能发生或者不发生的事物,而概率则是衡量事件发生可能性的大小。
样本空间是所有可能结果的集合,它包括了所有可能的事件。
二、条件概率条件概率是指在已知某些信息的情况下,另一个事件发生的概率。
条件概率的计算方法通常使用乘法法则。
条件概率在许多领域中都有着广泛的应用,比如医学诊断、市场营销、风险管理等。
三、独立性在概率论中,独立性是一个非常重要的概念。
两个事件如果是独立的,那么它们的发生不会互相影响。
独立性的概念在统计推断中有着广泛的应用,比如在抽样调查中,我们通常要求样本之间是独立的,以保证统计推断的准确性。
四、随机变量随机变量是统计学中的一个重要概念,它是对随机事件的量化描述。
随机变量可以是离散的,也可以是连续的。
对于离散的随机变量,我们通常关心的是它的概率分布;而对于连续的随机变量,我们通常关心的是它的密度函数。
五、概率分布概率分布是描述随机变量取值可能性的函数。
常见的概率分布包括均匀分布、正态分布、泊松分布、指数分布等。
概率分布在统计学中有着广泛的应用,比如在假设检验、参数估计等问题中。
六、抽样分布抽样分布是指统计量在重复抽样过程中的概率分布。
常见的抽样分布包括t 分布、F分布、卡方分布等。
抽样分布在统计推断中有着重要的作用,它可以帮助我们理解样本统计量的性质,从而进行参数估计和假设检验。
七、统计推断统计推断是统计学中一个重要的领域,它研究的是如何通过样本数据对总体特征进行推断。
统计推断通常包括参数估计和假设检验两个部分。
参数估计是指在已知总体分布的情况下,通过样本数据估计总体参数的值;而假设检验是指在总体参数未知的情况下,通过样本数据来对总体特征进行检验。
统计推断在医学、经济学、社会学等领域中有着广泛的应用。
概率与统计知识点总结
概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
(完整版)(最全)高中数学概率统计知识点总结
(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
统计和概率知识点总结
统计和概率知识点总结1.概率的基本概念概率是描述事件发生可能性的一种数学工具。
在概率论中,事件可以是任何可能的结果,而概率是描述一个事件发生的可能性大小的数字。
概率的基本概念包括样本空间、事件空间、概率分布、随机变量等等。
样本空间是指所有可能结果的集合,而事件空间是指样本空间中的子集。
概率分布描述了各个事件发生的可能性,而随机变量则描述了事件对应的数值。
2.概率的规则和定理概率的计算有一些基本的规则和定理,如加法法则、乘法法则、条件概率、贝叶斯定理等等。
这些规则和定理可以帮助我们计算事件发生的概率,并且在实际应用中非常重要。
3.统计学的基本概念统计学是研究如何收集、分析、解释和展示数据的科学。
统计学的基本概念包括总体和样本、统计量、抽样、推断等等。
总体是指我们想要研究的一组对象或者变量,而样本是从总体中抽取出来的一部分。
统计量是对总体或者样本的某些特征进行描述的具体数值,而抽样则是从总体中选择样本的过程。
推断是通过对样本进行分析得出对总体的推断。
4.常见的概率分布在概率论和统计学中,有一些常见的概率分布模型,如均匀分布、正态分布、泊松分布、指数分布等等。
这些概率分布具有不同的特性和应用场景,在实际应用中非常重要。
正态分布在实际应用中非常普遍,它描述了许多自然现象和人类行为的分布规律。
5.统计假设检验统计假设检验是统计学中的一项重要方法,它可以帮助我们判断一个假设是否成立。
假设检验的基本步骤包括提出假设、选择检验方法、计算统计量、进行判断等等。
在实际应用中,我们可以利用假设检验来进行医学研究、经济分析、质量控制等等。
6.回归分析和相关性分析在统计学中,回归分析和相关性分析是描述变量之间关系的重要工具。
回归分析可以帮助我们理解一个自变量对因变量的影响程度,而相关性分析可以帮助我们理解变量之间的关系强度。
这些方法在经济学、社会学、医学等领域都有广泛的应用。
总的来说,统计和概率是一门非常重要的学科,它们在实际应用中具有广泛的使用价值。
统计概率知识点归纳总结大全
统计概率知识点归纳总结大全统计概率是数学中的一个重要分支,它是一门研究数据收集、分析、解释和预测的学科。
在我们的日常生活中,统计概率也是不可避免的。
在我们购买彩票、浏览社交媒体的统计数据、选举、医学实验中的分析等方面,统计学都在起着重要的作用。
下面我们就来对统计概率的知识点进行归纳总结。
一、基本概念1. 概率是指某一事件发生的可能性大小,通常表示为P。
2. 样本空间是指所有可能的结果构成的集合,一般用S表示。
3. 事件是指样本空间S的子集,即可能发生的结果的集合。
4. 随机变量是指样本空间S中的元素与实数集之间的一个函数。
5. 概率分布是指随机变量每个可能取值的概率。
二、概率公式1. 概率加法规则:P(A或B) = P(A) + P(B) - P(A且B),其中A 且B是指A和B同时发生的概率。
2. 概率乘法规则:P(A且B) = P(A) × P(B|A),其中P(B|A)是指在A发生的前提下,B发生的概率。
3. 贝叶斯公式:P(A|B) = P(B|A) × P(A) / P(B),其中P(A|B)是指在B发生的前提下,A发生的概率。
4. 全概率公式:P(A) = ∑ P(A|B_k) × P(B_k),其中B_k是划分样本空间的一组事件。
三、概率分布1. 离散型随机变量的概率分布:P(X=x_i) = p_i,其中X为随机变量,x_i为可能取值,p_i为取值为x_i的概率。
2. 离散型随机变量的期望:E(X) = ∑ x_i × p_i,其中x_i为可能取值,p_i为取值为x_i的概率。
3. 连续型随机变量的概率密度函数:f(x),其中f(x)为概率密度函数的值,表示X落在一个x到(x+dx)的范围内的概率为f(x) × dx。
4. 连续型随机变量的期望:E(X) = ∫ x × f(x)dx。
5. 方差: Var(X) = E(X²) - [E(X)]²。
高中数学概率与统计知识点
高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
概率 统计知识点总结
概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。
样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。
2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。
基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。
3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。
4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。
二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。
2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。
3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。
三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。
2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。
3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。
四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。
统计概率知识点归纳
本文将通过以下几部分对统计概率的知识点进行归纳:一、随机变量随机变量(random variable)表示随机试验各种结果的实值单值函数。
随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
随机变量可分为离散随机变量和连续随机变量两种,可通过概率计算公式进行概率的计算。
计算离散随机变量的公式叫做概率质量函数(Probability Mass Function,PMF),计算连续随机变量的公式叫做概率密度函数(Probability Density Function,PDF)。
1、概率质量函数是离散随机变量在各特定取值上的概率。
2、概率密度函数描述随机变量的输出值,在某个确定的取值点附近的可能性的函数。
而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。
二、概率分布数据在统计图中的形状叫做它的分布。
可以通俗的理解为:概率分布=随机变量+概率+分布1、离散(Discrete)概率分布以下是几种常见离散概率分布A、伯努利分布(Bernoulli Distribution)(0-1分布)伯努利试验是单次随机试验,只有"成功(值为1)"或"失败(值为0)"这两种结果,其概率分布称为伯努利分布,也叫“0-1分布”或“两点分布”,是最简单的离散型概率分布。
记成功概率为p(0≤p≤1),则失败概率为q=1-p,则:其概率质量函数为:其期望为:其方差为:Python实现方式:绘制图形如下:B、二项分布(Binomial distribution)(n个伯努利分布)二项分布是n重伯努利试验成功次数的离散概率分布。
二项分布具有如下特征:1)每次试验相互独立2)每次试验只有两种可能结果:成功或失败3)每次试验成功与失败的概率是相同的4)当n=1时,二项分布服从0-1分布其概率质量函数为:其期望为:其方差为:Python实现方式:绘制图形如下:C、几何分布(Geometric distribution)(二项分布第一次成功)几何分布是在n次伯努利试验中,试验k次才得到第一次成功的机率。
数学统计概率知识点总结
数学统计概率知识点总结一、概率的基本概念1. 概率的定义数学统计中的概率是指在一定的条件下,某一事件发生的可能性大小。
一般用P(A)来表示事件A发生的概率,0≤P(A)≤1,且P(Ω)=1。
2. 事件的分类在概率论中,事件可分为基本事件和复合事件。
基本事件是不可再分解的事件,而复合事件是由基本事件组成的事件。
3. 概率的公理概率的公理包括样本空间、事件和概率的公理。
其中,样本空间是指所有可能发生的基本事件的集合,事件是样本空间的子集,而概率就是定义在事件上的函数。
4. 古典概率古典概率是指在古典概型条件下,根据基本事件的等可能性,利用概率定义来计算事件发生的可能性。
5. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率的计算公式为P(A|B)=P(AB)/P(B)。
6. 独立事件独立事件是指事件A和事件B的发生与否互不影响,即P(AB)=P(A)P(B)。
7. 事件的互斥与对立互斥事件是指事件A和事件B不能同时发生,即P(AB)=0;对立事件是指事件A和事件B至少有一个发生,即P(A或B)=P(A)+P(B)。
二、概率的计算方法1. 加法定理加法定理是指事件A或事件B发生的概率为P(A或B)=P(A)+P(B)-P(AB)。
2. 全概率公式全概率公式是指如果事件B1、B2、…、Bn构成了一个完备事件组,且它们两两互斥,那么对任意事件A,有P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)P(Bn)。
3. 贝叶斯公式贝叶斯公式是指利用全概率公式和条件概率的定义,可以求得P(Bi|A)=P(A|Bi)P(Bi)/[P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)P(Bn)]。
4. 排列与组合排列是指从n个元素中取出m个元素按一定顺序排列的方法数,记作A(n,m);组合是指从n个元素中取出m个元素不考虑顺序的方法数,记作C(n,m)。
概率与统计 知识点总结
概率与统计知识点总结一、概率论的基本概念1. 随机试验与样本空间随机试验是一种具有随机性质的实验,样本空间是随机试验所有可能结果的集合。
例如,投掷一枚硬币的结果可以是正面或者反面,样本空间为{正面,反面}。
2. 事件与概率事件是样本空间的子集,概率是事件发生的可能性大小。
概率的性质包括非负性、规范性和可列可加性。
3. 条件概率与独立事件条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
两个事件相互独立是指它们的发生不会相互影响。
4. 随机变量与概率分布随机变量是随机试验结果的量化表达,概率分布描述了随机变量各个取值的概率。
常见的概率分布包括均匀分布、正态分布、泊松分布等。
5. 随机变量的期望和方差期望是随机变量平均取值的大小,方差是衡量随机变量取值波动程度的指标。
二、统计学的基本概念1. 总体与样本总体是指研究对象的全体,样本是从总体中选择出来的一部分。
2. 参数与统计量总体的特征量称为参数,样本的特征量称为统计量。
统计量是对参数的估计。
3. 抽样分布当从总体中多次抽取样本,统计量的分布称为抽样分布。
中心极限定理指出,大量独立同分布的随机变量的和的分布近似服从正态分布。
4. 点估计与区间估计点估计是用样本统计量估计总体参数,区间估计是用区间来估计参数的取值范围。
5. 假设检验假设检验是对总体参数的某些假设进行检验,包括原假设和备择假设。
6. 方差分析与回归分析方差分析用于比较多个总体均值是否相等,回归分析用于研究自变量与因变量之间的关系。
三、概率与统计在实际应用中的意义1. 产品质量控制概率与统计的方法可用于产品质量的抽样检验、质量控制图的绘制、质量误差的分析等方面,帮助企业提高产品质量。
2. 金融风险管理在金融行业,概率与统计的方法被广泛应用于风险评估、股票价格预测、投资组合管理等方面,为投资者提供科学的决策依据。
3. 医学研究概率与统计的方法可用于临床试验设计、医学数据分析、疾病发病率估计等领域,为医学研究提供科学的数据支持。
概率统计中考知识点总结
概率统计中考知识点总结1. 概率的基本概念概率是描述随机事件发生可能性大小的数值。
在概率统计中,我们通常用P(A)表示事件A发生的概率,该概率的取值范围是0≤P(A)≤1。
当P(A)=1时,表示事件A一定发生;当P(A)=0时,表示事件A一定不会发生;当0<P(A)<1时,表示事件A可能发生,但也可能不发生。
2. 概率的加法公式当事件A和事件B互斥时,它们的概率之和等于它们发生的并集的概率,即P(A∪B)=P(A)+P(B)。
当事件A和事件B不互斥,即存在交集时,加法公式可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
3. 概率的条件概率条件概率表示在已知事件B发生的条件下,事件A发生的概率。
它的计算公式为P(A|B)=P(A∩B)/P(B)。
条件概率的计算在很多实际问题中都有着重要的应用,比如医学诊断、金融风险管理等领域。
4. 概率的独立性两个事件A和B称为相互独立,如果它们的发生不会相互影响,即P(A|B)=P(A)或者P(B|A)=P(B)。
在概率统计中,独立事件的性质给予我们便利的计算条件,简化了问题的复杂性。
5. 随机变量和概率分布随机变量是取值不确定的变量,它可以是离散型的也可以是连续型的。
在概率统计中,我们通常用概率分布来描述随机变量的分布规律。
常见的概率分布包括二项分布、正态分布、泊松分布等,它们在实际问题中有着广泛的应用。
6. 统计推断统计推断是利用样本数据对总体特征进行推断和估计的过程。
在统计学中,我们通常使用点估计和区间估计来估计总体参数的值,同时利用假设检验来对统计推断进行检验。
7. 相关性和因果关系在概率统计中,我们也经常研究变量之间的相关性和因果关系。
相关性研究变量之间是如何随着变化而变化的规律,而因果关系则研究变量之间的因果关系。
这些研究成果在科学研究和实际问题中都有着重要的应用价值。
以上是概率统计中的一些重要知识点总结,概率统计在现代社会中有着广泛的应用,我们需要认真学习和掌握这些知识,以便更好地理解和应用在实际问题中。
概率统计每章知识点总结
概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。
概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。
随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。
大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。
第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。
古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。
几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。
等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。
第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。
随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。
数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。
离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。
第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。
高中概率统计考点归纳
高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。
概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。
举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。
概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。
举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。
由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。
二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。
举例:抛掷两颗骰子,求点数之和为7的概率。
总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。
因此,点数之和为7的概率为6/36=1/6。
几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。
举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。
样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。
因此,该点位于线段前1/3部分的概率为1/3。
三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。
计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。
举例:一个班级中有40名学生,其中25名男生和15名女生。
已知某学生是女生,求该学生数学成绩优秀的概率。
统计和概率知识点总结
第一章数据的收集、整理与描述1、全面调查:考察全体对象的调查方式叫做全面调查。
2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3、总体:要考察的全体对象称为总体。
4、个体:组成总体的每一个考察对象称为个体。
5、样本:被抽取的所有个体组成一个样本。
6、样本容量:样本中个体的数目称为样本容量。
7、样本平均数:样本中所有个体的平均数叫做样本平均数。
8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
10、频率:频数与数据总数的比为频率。
11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
第二章 数据的分析1、平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。
2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里nf f f k =++ 21)。
那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。
5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
概率与统计基本知识点总结
概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。
概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。
加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。
乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。
条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。
贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。
2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。
离散型随机变量:取有限个或可数个值的随机变量。
连续型随机变量:取任意实数值的随机变量。
概率分布:描述随机变量取各个值的概率的函数。
离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。
连续型概率分布:包括连续均匀分布、正态分布、指数分布等。
期望:随机变量的平均值,反映其分布的中心位置。
方差:随机变量偏离其均值的程度,反映其分布的离散程度。
3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。
抽样分布:样本统计量的概率分布。
中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。
置信区间:用样本统计量作为总体参数的估计范围。
假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。
概率统计知识点汇总
概率统计知识点汇总1.分类加法计数原理完成一件事有n 类不同的方案,在第一类方案中有m 1种不同的方法,在第二类方案中有m 2种不同的方法,……,在第n 类方案中有m n 种不同的方法,则完成这件事情,共有N =m 1+m 2+…+m n 种不同的方法. 2.分步乘法计数原理完成一件事情需要分成n 个不同的步骤,完成第一步有m 1种不同的方法,完成第二步有m 2种不同的方法,……,完成第n 步有m n 种不同的方法,那么完成这件事情共有N =m 1×m 2×…×m n 种不同的方法. 3.两个原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.4.排列与排列数公式 (1)排列与排列数从n 个不同元素中取出m m ≤n 个元素――――――――→按照一定的顺序排成一列排列―――――→所有不同排列的个数排列数(2)排列数公式A mn =n (n -1)(n -2)…(n -m +1)=n !n -m !.(3)排列数的性质 ①A nn =n !; ②0!=1. 5.组合与组合数公式 (1)组合与组合数从n 个不同元素中取出m m ≤n 个元素――――→合成一组组合――――――→所有不同组合的个数组合数(2)组合数公式C m n=A mn A m m=nn -n -n -m +m !=n !m !n -m !.(3)组合数的性质①C 0n =1; ②C mn =C n -mn ; ③C m n +C m -1n =C mn +1.6.排列与组合问题的识别方法7.二项式定理(1)定理: (a +b )n=C 0n a n+C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为:T k +1=C k n an -k b k.(3)二项式系数:二项展开式中各项的二项式系数为:C kn (k =0,1,2,…,n ). 8.二项式系数的性质9.概率与频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率. (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 10.事件的关系与运算11.理解事件中常见词语的含义:(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A -B -;(4)A ,B 恰有一个发生的事件为A B -∪A -B ; (5)A ,B 至多一个发生的事件为A B -∪A -B ∪A -B -. 12.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (E )=1. (3)不可能事件的概率:P (F )=0.(4)概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ).13.互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 14.基本事件的特点(1)任意两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 15.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验中所有可能出现的基本事件只有有限个. ②每个基本事件出现的可能性相等.(2)古典概型的概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.16.几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的概率公式:P (A )=构成事件A 的区域长度面积或体积试验的 所构成的区域长度面积或体积.17.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P AB P A =n ABn A.(2)条件概率具有的性质: ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 18.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立.19.离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示.所有取值可以一一列出的随机变量,称为离散型随机变量. 20.离散型随机变量的分布列及其性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表(2)离散型随机变量的分布列的性质:①p i ≥0(i =1,2,…,n ); ②∑ni =1p i =1. 21.常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=C kM C n -kN -MC n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称(3①独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.②在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p),并称p 为成功概率.22.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为<1>均值:称E (1122i i n n 它反映了离散型随机变量取值的平均水平.<2>方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差.<3>均值与方差的性质E aX +b = D aX +b =(a ,b 为常数).<4>两点分布与二项分布的均值、方差23.(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称;(3)曲线在x =μ处达到峰值1σ2π;(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. (7)正态分布的三个常用数据(不需记忆) ① P (μ-σ<X ≤μ+σ)=0.682 6; ② P (μ-2σ<X ≤μ+2σ)=0.954 4; ③ P (μ-3σ<X ≤μ+3σ)=0.997 4. 24.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),且每次抽取时各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样. (2)常用方法:抽签法和随机数表法. 25.系统抽样(1)步骤:①先将总体的N 个个体编号;②根据样本容量n ,当N n 是整数时,取分段间隔k =N n; ③在第1段用简单随机抽样确定第一个个体编号l (l ≤k ); ④按照一定的规则抽取样本.(2)适用范围:适用于总体中的个体数较多时. 26.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)适用范围:适用于总体由差异比较明显的几个部分组成时.27.三种抽样方法的比较(1)求极差(即一组数据中最大值与最小值的差). (2)决定组距与组数. (3)将数据分组. (4)列频率分布表. (5)画频率分布直方图. 29.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 30.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指 的一列数,叶是从茎的旁边生长出来的数. 31.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数. (3)平均数:把a 1+a 2+…+a nn称为a 1,a 2,…,a n 这n 个数的平均数.(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x ,则这组数据 标准差为s =1nx 1-x2+x 2-x2+…+x n -x2]方差为s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]32.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关. 33.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)回归方程为y ^=b ^x +a ^,其中 ,a ^=y -b ^x .(3)通过求Q = (y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法. (4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |大于0.75时,认为两个变量有很强的线性相关性. 34.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2=n ad -bc 2a +ba +cb +dc +d(其中n =a +b +c +d 为样本容量).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计概率知识点归纳总结大全
1.了解随机事件的发生存在着规律性和随机事件概率的意义.
2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.
5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归.
考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P (A )=)
()(I card A card =n
m ;
等可能事件概率的计算步骤:
(1) 计算一次试验的基本事件总数n ;
(2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n
=求值;
(4) 答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );
特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.
(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:
第一步,确定事件性质⎧⎪⎪⎨
⎪⎪⎩等可能事件
互斥事件 独立事件 n 次独立重复试验
即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨
⎩和事件积事件
即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
第三步,运用公式()()()()()()()()(1)
k k n k n n m P A n
P A B P A P B P A B P A P B P k C p p -⎧
=⎪⎪⎪+=+⎨
⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念
①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i
x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.
为随机变量ξ的概率分布,简称ξ的分布列.
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布
n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,
1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:
称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:
),;(p n k
b q p C k
n k k n =- .
(2) 几何分布
在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生.
随机变量ξ的概率分布为:
考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差
(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度. ⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.
(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;
如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p
E 1=ξ,D ξ =2
p
q 其中q=1-p.
考点4 抽样方法与总体分布的估计 抽样方法
1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).
3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计
由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.
总体分布:总体取值的概率分布规律通常称为总体分布.
当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.
当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布. 总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 考点5 正态分布与线性回归 1.正态分布的概念及主要性质 (1)正态分布的概念
如果连续型随机变量ξ 的概率密度函数为 2
22)(21)(σμπσ
--
=
x e
x f ,x R ∈ 其中σ、μ为
常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).
(2)期望E ξ =μ,方差2σξ=D . (3)正态分布的性质 正态曲线具有下列性质:
①曲线在x 轴上方,并且关于直线x =μ对称.
②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.
③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.
(4)标准正态分布
当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式
①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.
(6)2(,)N μσ与(0,1)N 二者联系.
(1)若2~(,)N ξμσ,则~(0,1)N ξμησ
-= ;
②若2~(,)N ξμσ,则()()()b a P a b μμξφφσ
σ
--<<=-.
2.线性回归
简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.
变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.
具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y +=ˆ.其中
,
,)(1
2
21
x b y a x n x
y
x n y
x b n
i i
n
i i
i
⋅-=--=
∑∑==,其中y x ,分别为|i x |、|i y |的平均
数.。