人教版七年级上册数学第一章课件

合集下载

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
.
解:(1) (-4)3=(-4)×(-4)×(-4)=-64;
(2) (-2)4=(-2)×(-2)×(-2)×(-2)=16;
(3) 2 3 3= 2 3 2 3 2 3 =2 8 7.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数. 正数的任何正整数次幂都是正数,0的任何正 整数次幂都是0.
- 1 (当n为奇数时)
(9)(-1)n=
1
(当.n为偶数时).
1.求几个相同因数的积的运算,叫做乘方.
a 幂
n 指数
2.乘方的符号法则: 底数 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)零的正整数次幂都是零
3.注意:
an与an 二者的区别及相互关系;

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
解:原式=0
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.

七年级数学上册全册完整课件

七年级数学上册全册完整课件
2.实际问题中的数量关系
学习难点:1.理解正数、负数表示相反意义的量 。 2.实际问题中的数量关系
以前学过的数,实际上主要 有两大类,分别是整数和分数 (包括小数).
在生活中,仅 有整数和分数够用 了吗?
天气预报中-3℃、-1℃,它的确切含 义是什么?
本章我们将认识一 种新的数——负数,并 在有理数的范围内研究 数的表示、大小比较与 运算等,提高运用数学 解决问题的能力.
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg, 小华体重增长-1kg,小强体重增长0kg.
(2)六个国家2001年商品进出口总额 的增长率: 美国-6.4%,德国1.3%, 法国-2.4%,英国-3.5%, 意大利0.2%,中国7.5%.
人教版
七年级
(上册)
[精品]
人教版七年级数学上册 第一章有理数全套课件
• 第一章 有理数 • 1.1 正数和负数 • 1.2 有理数 • 1.3 有理数的加减法 • 1.4 有理数的乘除法 • 1.5 有理数的乘方 • 本章复习与测试
第一章 有理数
1.1正数和负数
学习目标: 1.了解生活中正数、负数的实际意义。 2.理解正数、负数表示相反意义的量 。 学习重点:1.理解正、负数表示具有相反意义的量。
3. 0既不是正数也不是负数. 0一般情况下只是一个基准.
随堂练习
1.某年度某国家有外债10亿美元,有 内债10亿美元,应用数学知识来解释说明,下 列说法合理的是( A )
A.如果记外债为-10亿美元,则内债 为+10亿美元

人教版七年级数学上册教学课件-1.1 正数和负数 优质课件PPT

人教版七年级数学上册教学课件-1.1 正数和负数 优质课件PPT
(2)六个国家这一年商品进出口总额的增长 率是:
美国 -6.4%, 德国1.35% 法国 -2.4%, 英国-3.5% 意大利 0.2%, 中国7.5%
课堂小结
1、正数和负数是如何定义的? 2、引入正负数后,怎样理解数0? 3、怎样用正负数表示具有相反意义的量?
布置作业
必做题:课、6题
下的执著,而这执著是很多人并不具备的……而许多奇迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要
己失去动力。如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目
现出一条波浪线,有起也有落,但你可以安排自己的休整点。事先看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整

我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。
中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都
激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励
3、如果水位升高3m时水位变化记作+3m,那 么水位下降3m时水位变化记作__-3___m,水位 不升不降时水位变化记作__0___m 。 4、月球表面的白天平均温度零上126℃,记 作_+_1_2_6_℃,夜间平均温度零下150℃,记作 __-1_5_0_℃__。
典例分析
例(1)一个月内,小明体重增加2kg,小华体

新人教版数学七年级上册第一章全部课件

新人教版数学七年级上册第一章全部课件

新人教版数学七年级上册第一章全部
课件
第一章有理数
(一)正负数
1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数
1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)
2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。


2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是
它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

人教版数学七年级上册第一章1.2.3相反数课件

人教版数学七年级上册第一章1.2.3相反数课件

拓展提升
5
2.当+5前面有2021个正号时,化简的结果为_________;
-5
当+5前面有2021个负号时,化简的结果为_________;
当+5前面有2022个负号时,化简的结果为_________。
5
多重复号的化简只需要考虑负号的个数,而不必考虑
正号的个数,当负号个数为偶数时,最后符号为正,
绝对值等于它的相反数的数是0或负数;
绝对值最小的数是0 .
下节课
课堂小结
定义
相反数
求法
在原数前面加负号
多重符号的化简
拓展提升
1.若-[-(-x)]=8,则x的相反数是
8
.
解析:因为-[-(-x)]=8,
所以x=-8,
所以x的相反数是8.
当“-”号的个数是偶数时,化简的结果为正数;
当“-”号的个数是奇数时,化简的结果为负数.
-5
-a
-1
0
1
a
5
相反数的几何意义
在数轴上位于原点两侧且到原点的距离相等的两个点
所表示的数互为相反数.
注意:(1)数轴上表示互为相反数的两个点
到原点的距离相等;
(2)数轴上与原点的距离是a(a为正数)的点
有两个,分别在原点的左右两侧,它们表
示的数互为相反数.
设a是一个正数,数轴上与原点的距离等于a(a为正数)
1)上述各对数之间有什么特点?
2)请写出一组具有上述特点的数。
3)你能得出相反数的概念吗?
4)表示各对数的点在数轴上有什么位置关系?
新知:只有符号不同的两个数互为相反数. 特别地,
0的相反数是0.
除了符号不同之外,其他部分完

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)

2017 √


4
3
√√

-4.9



0

-12 √



探究新知
知识点 2 有理数的分类 你能根据有理数的定义对有理数分类吗?
探究新知
有理数
整数 分数
正整数 零 负整数 正分数
负分数
探究新知
质疑探索 学了有理数的分类后,有没有一些数不是有理数呢? 探究总结
有限小数和无限循环小数都是分数,所以也是有理数. 无限不循环小数(如π)不是分数,就不是有理数.
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
第一章 有理数
1.2 有理数及其大小比较 1.2.1 有理数的概念
学习目标
1. 了解有理数的定义. 2. 会判断一个数是整数还是分数,是正数还是负数. 3. 知道有理数的两种分类方法.
探究新知
知识点 1 有理数的概念 某天毛毛看报纸,见到下面一段内容:冬季的一天,某地 的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而 同一天北京的气温为-3℃~7℃. 问题1:这里面出现的数是什么数? 6,7是正数; -10,-3是负数; 0既不是正数也不是负数.

人教版七年级数学上册第一章 1.1 正负数 优秀教学PPT课件

人教版七年级数学上册第一章 1.1 正负数 优秀教学PPT课件

自学指导
请同学们认真阅读课本P2-P4页练习以上内容,并思考: 1.什么是正数,负数;怎样来表示?零是正数还是负数? 2. 在同一个问题中,相反意义的量可以用什么样的数表示?什么情况下
增长率是0?
问题1: 什么叫做正数?
像3,2,0.5……这样大于0的数叫做正数.
问题2: 什么叫做负数?
像-3,-0.5,-2,-2.7%这样在正数前面加上负号“-” 的数叫做负数.
重难点: 1.掌握正数,负数的概念,理解零的意义。 2.初步使用正数和负数表示具有相反意义的量.
在例子中你发现还不很熟悉的数字了吗?
(1)天气预报北京冬季里某天的温度为―3℃~3℃,它的确切含 义是什么?这一天北京的温差是多少?
(2)某年,我国棉花生产量比上一年增长1.8%,油菜籽产量比上 一年增长-2.7%.“增长-2.7%”表示什么意思?
第一章 有理目标
一、知识与能力:借助生活中的实例会判断一个数是正数还是负数, 能用正负数表示具有相反意义的量 二、过程与方法过程:通过实例引入负数,从而指导学生会识别正负 数及其表示法,能应用正负数表示具有相反意义的量。方法:讨论法、 探究法、讲授法、观察法。 三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论 数学话题,在数学活动中发挥积极作用
12.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是( D) A.25.30千克 B.24.70千克 C.25.51千克 D.24.82千克
13.七(1)班与七(2)班进行拔河对抗赛,如果胜一局记为+1, 负一局记为-1.比赛结束后七(1)班的记录结果为-1和+2, 则表示七(1)班共比赛___3_局,其中胜了__2__局,负了__1__局. 14.教室的天花板高2.8米,课桌高0.6米,如果把课桌面记作0米, 则教室的天花板和地面分别记作__+_2_.2_米__,_-_0_.6_米______; 如果以天花板为0米, 那么桌面高度和地面各记作____-_2_.2_米_,__-_2_.8_米_______.

人教版七年级数学上册全套PPT课件

人教版七年级数学上册全套PPT课件
=0 所以小李又回到了原点 . (2) 解: 〔(+10)+(+3)+(+8)+(+11)+(+10)+(+12)+(+4)+(+15)+(+16〕)+×(+0.155)
=104× 0.5 =52
所以这天下午汽车共耗油 52L.
4
有理数分类
有理数定义: 有限小数和无限循环小数统称有理数.
无理数定义: 无限不循环小数统称有理数. 如π
第一章 有理数 1.1 正数和负数
精品PPT
1
正数与负数:
对于具有相反意义的两个量, 我们规定其中一个量为正, 则与其相反意义 的 量则为负. 小学所学的数统称为正数,在其前面加上负号 - 的数为负数.
例1. 找出下列各题相反意义的量:
在日常生活中,常会遇到这样一些量(事情) :
(1) 汽车向东行驶3千米和向西行驶2千米. 相反意义的量:( 向东)
所有整数组成的集合叫 整数集合 ; 所有分数组成的集合叫 负数集合 ;
所有有理数组成的集合叫 有理数集合; 所有正整数和零组成的集合叫做自然数集合。
例4. 把下列各数分别填入相应的大括号内:
非负整数集合
? 7 ,3 . 5 , ? 3 . 1415 , ? , 0 , 13 ,0 .03 , ? 3 1 ,10 , ? 0 . 2? 3? , ? 4
? ? ? 有理数按定义分类:??? ? ? ? ??
整数 分数
? 正整数
??
?0
?Байду номын сангаас??
负整数
?? 正分数
? ??

人教版七年级数学上册课件:1.1.1正数和负数(共20张PPT)

人教版七年级数学上册课件:1.1.1正数和负数(共20张PPT)

在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( A ). 2 %,
中国 7.
例1 一个月内,小明体重增加 2 kg,小华体重减少 1 kg,小强体重无变化,写出他们这个月的体重增长值.
因此“-3”的含义是这天的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃.
A.-70 m 写出这些国家这一年商品进出口总额的增长率.
A. 0 个 B. 1 个 C. 2 个 D. 3 个
8.一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( ).
8%,油菜籽产量比上一年增长-2.
A.0
B.-2
C.1
8.D. 一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼
2,8,-1 , ,30 %.
④ 0 ℃表示没有温度,其中正确的有(
). A.0
B.-2
C.1
1 D.
举出身边具有相反意义的量的例子
2.下列各数Biblioteka 是负数的为( ).2 %,
中国 7.
2 3.在 -1,0,1,2 这四个数中,既不是正数也不是负
2,8,-1 , ,30 %.
数的是 ___0_____. 7%”表示油菜籽产量比上一年减少 2.
思考:你知道下面图片中数字的含义吗? 2这样在正数前面加上符号“-”(负)的数叫做负数.
B.-50 m C.20 m
D.-20 m
五、作业
1.教科书习题 1.1 第 1,2,3 题. 2.查阅资料,了解数的发展历史.
那么应该怎么表示呢?
一、新知导入
例题: (1)天气预报北京冬季里某天的气温为-3 ℃~ 3 ℃, -3 的确切含义是什么?这一天北京的温差是多少? 解:这天的最高温度是零上 3 ℃,最低温度是零下 3 ℃. 温差是最高温度与最低温度的差. 因此“-3”的含义是这天 的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃. (2)某年,我国花生产量比上一年增长 1.8%,油菜籽 产量比上一年增长-2.7%. “增长-2.7%”表示什么意思? 解:“增长-2.7%”表示油菜籽产量比上一年减少 2.7%.

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和

人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件

人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件

新知演练
新知应用
例4 某公司去年1~3月平均每月亏损1.5万元,4~6月平均 盈利2万元,7~10月平均盈利1.7万元,11~12月平均 亏损2.3万元,这个公司去年总盈亏情况如何?
新知应用
解:记盈利额为正数,亏损额为负数,公司去年
全年总的盈亏(单位:万元)为 除3万以元一,个这不个等公于司0去的年数总,盈等亏于情乘况以如这何个?数的___.
例D.3 -请4×你(2仔÷细8)阅和读-下4×列2÷材8料:计算 综解上:所 (述1),(1原0式-的4)×值3为-3(-或6-)=12.4; 解当:a>原0式,=b-<80+时(-,3原)×式(1=6(+-21)-)+(1-+(4-. 1)=3;
(-1.5)×3+2×3+1.7×4+(-2.3)×2 问(题2)1:4-小(-学6的)÷四3则×1混0=合2运4;算的顺序是怎样的?
答:这个公司去年全年盈利3.7万元.
新知演练
【变式】一架直升飞机从高度为450m的位置开始,先以20m/s 的速度上升60s,后以12m/s的速度下降120s,这时直 升机所在的高度是多少? 解:450+20×60-12×120 =450+1200-1440 =210 答:这时直升机所在的高度是210m.
问题2:我们目前都学习了有理数的哪些运算? 有理数的加法、减法、乘法、除法.
新知讲解
问题1:下列式子含有哪几种运算?先算什么,后算什么? 第二级运算 乘除运算
3 50 2 5 1 ?
加减运算 第一级运算
新知讲解
问题2:观察式子-3×(2+1)÷(5-12),应该按照什么 顺序来计算?
有理数的加减乘除混合运算的顺序: 先算乘除,再算加减,同级运算从左往右依

第一单元第一节正数和负数课件人教版数学七年级上册(25张PPT)

第一单元第一节正数和负数课件人教版数学七年级上册(25张PPT)

练习.填空: (1)如果把顺时针转30°记为+30°, 那么逆时针转45 °记为 - 45 °。
(2)设向东走为正,向东走30米,记 作 +30米;向西走20米,记作-20米 ; 原地不动记作 0米 ;记作-25米表示 向 西 走25米;记作+16米表示向__东___ 走16米。
在这个问题中,0表示没有变化
(D)+15米表示向南走15米
相反意义的量包含两个要素: 一是它们的意义要相反;二是它们都具有数量
举一反三:
请同学们再举一些用正负数表示数量 的实际例子吗?
注意
(1)对于两个具有相反意义的量,把哪一种 意义规定为正,带有任意性。一般情况下,把 向北(东)、上升、增加、收入等规定为正。
(2)与一个量成相反意义的量不止一个,如 与上升2m成相反意义的量就很多,下降1m,下 降0.2m,……
课堂小结 通过这节课的学习,你掌握了哪些知识?
练习:里约奥运会勇夺冠军的中国女 排的平均身高为187公分,如果以平均 身高为标准, 超过部分记为正数,不 足部分记为负数,有5名队员分别记为 +10,-5,0,+7,-2,则她们的实 际身高应是______________________.
方法总结:“0”可以表示一种基准,高于
初 数与代数 中 数 学 图形与几何 内 容 统计与概率
小学数学中我们学过哪些数? 你能按照某一标准将它们分类?
自然数:0、1、2、3…… 分数(小数):1/2、0.36、5%……
数的产生和发展离不开生活和生产的需要
产生
产生
数1,2,3,… 数0
产生分数1 ,1 23
想一想: 这些数足够表示我们生活中常见的量吗? 有比0小的数吗?请举出生活中的实例.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲授新课
一 有理数的概念
我们以前学过的数,
像1,2,3……称为正整数;
2,4,1 354
……称为正分数.
那么在以上这些数的前面添上“-”号后,还有小数呢?
-1,-2,-3……称为负整数;
2 3
典例精析
例1 读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .64Fra bibliotek12正 数
1 6
,+73,4.8,
7 12
负 数
-11,-2.7,
3 4
思考 : (1)负数有什么特点? (2)如果一个数不是正数就是负数,对吗?
(1)从定义中我们发现负数的前面必须有负号“-”. (2)不对.0既不是正数,也不是负数.
学习目标
1.了解正数与负数是从实际需要中产生的. 2.理解正数、负数及0的意义,掌握正数、负数的表示方法. 3.会用正数、负数表示具有相反意义的量.(重点、难点)
导入新课
观察下列图片,体会数的产生和发展过程.
结绳计数 由记数、排序,产 生数1,2,3...
由表示“没
由分物、测量,产生
有”“空位”, 产生数0
学习目标
1.掌握有理数的概念.(重点) 2.会对有理数按一定的标准进行分类,培养分类能力.(难点)
导入新课
情境引入
下表是某日《信息早报》上刊登的几支股票的涨跌情况.
代码 600828 600829 600831 600832 600833 600834 600835
股票名称 A集团 B股份 D集团 E股份 F集团 G股份 H股份
思考:0只表示没有吗?
1.空罐中的金币数量; 2.温度中的0℃; 3.海平面的高度; 4.标准水位; 5.身高比较的基准; 6.正数和负数的界点;
…… 引入正、负数后,0不再简简单单的只表示没有. 它具有丰富的意义,是正负数的分界点.
二 用正、负数表示具有相反意义的量
西

甲汽车向东行驶3km, 乙汽车向西行驶1km.
分数
1 2
1 ,3
,…

思考:根据实际生活的需要,人们引进了另一种数,你知
道是什么数吗?结合你在实际生活中接触到的数,试举例.
电 梯 楼 层 按 钮
新闻报道:某年,我国花生产量比上年增长1.8%,油菜籽 产量比上年增长-2.7%.
讲授新课
一 正、负数的认识 问题1:说一说上面用到的各数的含义.
(1)天气预报中的3,电梯按钮中的1-10,新闻报道中的 1.8%;
解(1)4600 m表示高出海平面4600 m, -200 m表示低于海平面200 m;
(2)水位下降1.5 m; (3)¥2000元表示存入现金2000元,
¥-1800元表示支出现金1800元;
课堂小结
1.正数是比零大的数,正数前面加“—”号 的数叫做负数. 2.0 既不是正数也不是负数,它是正负数的分界. 3.正数和负数表示的是一对具有相反意义的量.
昨收盘 8.83 10.43 21.88 18.81 8.76 10.87 13.47
今收盘 9.71 10.65 21.58 18.61 9.20 10.87 13.31
涨跌(%) +9.97 +2.11 -1.37 -1.06 +5.02
0.00 -1.19
在以上各数中,哪些是在小学里学过的数?哪些是在小 学没学过的数?
(1)如果向东运动4m记作+4m,那么向西运动5m 记作__-_5_m_.
(2)如果-7m表示物体向西运动7m,那么+6m表 明物体_向__东__运__动__6_m__.
例3(1)一个月内,小明体重增加2kg,小华体重减少 1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)某年下列国家的商品进出口总额比上年的变化情 况是:
美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%,中国增长7.5%. 写出这些国家2001年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长 -1kg,小强体重增长0kg.
(2)六个国家2001年商品出口总额的增长率: 美国 -6.4%, 德国 1.3%, 法国 -2.4%, 英国 -3.5%, 意大利 0.2%, 中国 7.5%.
(2)天气预报中的-3,电梯按钮中的-1,-2,新闻报道 中的-2.7%.
问题2:上面这两类数,分别属于什么数?
概念归纳
像1,2,3,1.8%这样大于0的数叫做正数.
像-3,-1,-2,-2.7%这样在正数前面加上符号“-” (负)的数叫做负数.
注意
有时,我们为了明确表达意义,在正数前面也加上“+” (正)号,如+3,+1.8%,+0.5,….不过一般情况下我 们省略“+”不写.
蔬菜店购进黄瓜50kg, 蔬菜店售出黄瓜2kg.
它们都表示相反的意义. 你会用正、负数来表示它们吗?
我们以海平面高度为基 准,珠穆朗玛峰的海拔高度 比海平面高8848米,记为 +8844.4米;鲁番盆地的海拔 0 高度比海平面低155米,我 们记为-155米.
典例精析
例2 一物体沿东西两个相反的方向运动时,可以 用正、负数表示它们的运动.
方法归纳
根据相反意义合理使用正、负数对实际问题 进行表示.一般情况下,把向北(东)、上升、增加、 收入等规定为正,把它们的相反意义规定为负
当堂练习
1.(1)如果零上5℃记作+5℃,那么零下3℃记作 -3℃ . (2)东、西为两个相反方向,如果-4米表示一个物体向西
运动4米,那么+2米表示 向东运动2米 .物体原地不动记 为 0米 . (3)某仓库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应 记作 -3.8吨 .
2.抗洪期间,如果水位超过标准水位1.5米记作+1.5米, 那么后来记录的-0.9米表示低于标准水位0.9米.
3. 如果某公司的股票第一天涨6.25%,表示为+6.25%, 第二天跌1.36%,应表示为 -1.36% .
4.(1)高出海平面记为正,低于海平面记为负,若 地图上A,B两地的高度分别标记为4600米和-200米, 你能说出它们的含义吗? (2)如果水位上升2米记作+2米,那么-1.5米表示 的意义是什么? (3)存入现金记为正,支出现金记为负,若存款折 上记录的数字有¥2000元和¥-1800元,你知道分别 代表什么意义吗?
相关文档
最新文档