(完整版)常见晶胞
(完整版)常见晶胞模型
氯化钠晶体离子晶体(1)NaCI晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个(2)(3)NaCI晶胞中每个CI-等距离且最近的Na+(即CI-配位数)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4个; 占有的CI-4个。
在该晶体中每个Na+周围与之最接近且距离相等的Na+ 与每个Na+等距离且最近的CI-所围成的空间几何构型为CsCI晶体(注意:右侧小立方体为CsCI晶胞;左侧为8个晶胞)(1)CsCI晶胞中每个Cs+等距离且最近的C「(即Cs+配位数)为8个CsCI晶胞中每个CI-等距离且最近的Cs+(即CI-配位数)为8个,这几个Cs+在空间构成的几何构型为正方体。
(2)在每个Cs+周围与它最近的且距离相等的Cs+有6个这几个Cs+在空间构成的几何构型为正八面体。
• Cs* OCI- (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的CI- 1个CaF2晶体(1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。
(2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个(3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个;占有的F-8个。
ZnS晶体:(1)1个ZnS晶胞中,有4 个S2「,有4个Zn2+(2)Zn2+的配位数为4个, S2_的配位数为4个O£n?,•原子晶体(1) 金刚石晶体a 每个金刚石晶胞中含有 8个碳原子,最小的碳环为 6元环,并且不在同一平面(实际为椅 式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个 C 结合,形成正四面体。
键角109° 28'b 、 每个碳原子被12个六元环共用,每个共价键被6个六元环共用c 、 12g 金刚石中有2mol 共价键,碳原子与共价键之比为 (2) Si 晶体由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。
常见的晶体结构及其原胞晶胞
§1-2 常见的晶体结构及其原胞、晶胞1) 简单晶体的简单立方(simple cubic, sc) 它所构成的晶格为布喇菲格子。
例如氧、硫固体。
基元为单一原子结构的晶体叫简单晶体。
其特点有: 三个基矢互相垂直(),重复间距相等,为a,亦称晶格常数。
其晶胞=原胞;体积= ;配位数(第一近邻数) =6。
(见图1-7)图1-7简单立方堆积与简单立方结构单元2) 简单晶体的体心立方( body-centered cubic, bcc ) , 例如,Li,K,Na,Rb,Cs,αFe,Cr,Mo,W,Ta,Ba等。
其特点有:晶胞基矢, 并且,其惯用原胞基矢由从一顶点指向另外三个体心点的矢量构成:(见图1-9 b)(1-2)其体积为;配位数=8;(见图1-8)图1-8体心立方堆积与体心立方结构单元图1-9简单立方晶胞(a)与体心立方晶胞、惯用原胞(b)3) 简单晶体的面心立方( face-centered cubic, fcc ) , 例如,Cu,Ag,Au,Ni,Pd,Pt,Ne, Ar, Xe, Rn, Ca, Sr, Al等。
晶胞基矢,并且每面中心有一格点, 其原胞基矢由从一顶点指向另外三个面心点的矢量构成(见图1-10 b):(1-3)其体积=;配位数=12。
,(见图1-10)图1-10面心立方结构(晶胞)(a)与面心立方惯用原胞(b)4) NaCl结构(Sodium Chloride structure),复式面心立方(互为fcc),配位数=6(图1-11 a)。
表1-1 NaCl结构晶体的常数5) CsCl结构(Cesuim Chloride structure),复式简单立方(互为sc),配位数=8(图1-11 b)。
表1-2 CsCl结构晶体的常数图1-11 NaCl结构和CsCl结构6) 金刚石结构(Diamond structure), 两套fcc格子相互沿对角线位移1/4处套合。
《常见晶胞类型》PPT课件
12
6
3
54
12
6354,源自AB关键是第三层,对第一、二层来说,第三层可以有两种最紧
密的堆积方式。
.
17
第一种是将球对准第一层的球。 下图是此种六方 紧密堆积的前视图
12
A
6
3
54
B
A
于是每两层形成一个周期,
B
即 AB AB 堆积方式,形成六
A
方紧密堆积。
配位数 12 。 ( 同层 6,上下层. 各 3 )
Cu 8×(1/8) + 8×(1/4) = 3
.
Y1
1/8
Cu铜 Ba钡 Y钇 O氧
38
CsCl晶体
在氯化铯晶体中,每个Cl-(或Cs+)周围与之最接近
且距离相等的Cs+(或Cl-)共有 8个 ;这几个Cs+(或 Cl-)在空间构成的几何构型为 立方体 ;在每个Cs+
周围距离相等且最近的Cs+共有 6 个 ;这几个
Cs+(或Cl-)在空间构成的几. 何构型为
正八面体; 39
每个CO2分子周围有多 少个与之最近且等距离
C
B
12
6
3
54
配位数 12 。 ( 同层 6, 上下层各 3 )
A C B A
此. 种立方紧密堆积的前视图 22
A B A
镁型
C B A
铜型
金属晶体的两种最密堆积方式
.
23
金属晶体的原子空间堆积模型4
• 面心立方 (铜型)
.
24
简 单 立 方
(
六
方 密 堆
镁 型
积
)
《常见晶胞类型》课件
晶胞与晶体结构的关系
01
晶胞的形状和内部结构决定了晶 体结构的对称性和空间排列规律 。
02
通过研究晶胞的结构特点,可以 了解晶体的物理性质和化学性质 ,如熔点、导电性、光学性质等 。
常见晶胞类型的特性
01
02
03
简单立方
具有八个顶点,每个顶点 上都有一个原子或分子。
面心立方
具有六个面,每个面上都 有一个原子或分子。
个稳定的四面体结构。
每个原子的配位数为4,即每个 原子与四个相邻原子形成共价键
。
原子间的距离和键角是固定的, 保证了晶胞的稳定性和对称性。
闪锌矿型晶胞的几何特征
闪锌矿型晶胞具有立方晶系结构,其 晶格常数为a=b=c,α=β=γ=90°。
原子间的距离和键角是固定的,保证 了晶胞的稳定性和对称性。
每个面心有一个原子,每个顶点被四 个原子所共享。
是晶胞的角度。
空间群
密排六方晶胞属于P63/mmc空间 群,具有高度的对称性。
原子间距
在密排六方晶胞中,原子间距相等 ,且与晶胞的边长成比例。
05
CATALOGUE
氯化钠型晶胞
定义与特性
定义
氯化钠型晶胞是一种离子晶体结构,由阳离子和阴离子按一定的规律排列而成,具有较高的离子电导 率和热稳定性。
特性
闪锌矿型晶胞是一种立方晶系 结构,其特点是每个顶点被四 个原子所共享,每个面心有一 个原子。
闪锌矿型晶胞具有较高的对称 性,其晶格常数为a=b=c, α=β=γ=90°。
闪锌矿型晶胞的原子排列紧密 ,具有较高的密度和稳定性。
原子排列与配位数
在闪锌矿型晶胞中,每个原子被 其他四个原子所包围,形成了一
《常见晶胞类型》 ppt课件
常见晶体结构彩图
常见晶体结构彩图1.己烷C6H12:碳原子以s骨架,与2个H成C-H键。
2.二茂铁Fe(C5H5)2:上下环戊烯阴离子各以六个π电子参与成键,与Fe对称性匹配的d3p3轨道形成六个分子轨道,Fe其余的三个价轨道为非键的孤对电子占据。
3.B12H122-:12个B形成封闭的三角二十面体,每个B还与1个H形成B-H键。
4.C20H20:每个C以sp3杂化与相邻的3个C、1个H形成s键,整个碳笼为正十二面体。
5.C60:每个C以sp2杂化与相邻的3个C形成球形多面体s骨架(12个五边形与20个六边形),还有1个垂直于曲面的p轨道与其他p轨道形成1个离域的大p键。
6.石墨层内C以共价键与相邻的3个C形成平面骨架,层之间为范德华力。
7.金剛石:为A4结构,每个C以sp3杂化与相邻4个C成四面体配位,晶胞中有8个C原子。
8.NaCl晶体属面心立方点阵,Na+与Cl-的配位数均为6。
Cl-作立方最密堆积,Na+填在Cl-形成的八面体空隙中。
每个晶胞含有4个Cl-和4个Na+,Cl-位于晶胞顶点与面心位置,Na+位于体心与棱心位置。
9.立方ZnS晶体中,S原子作立方最密堆积,Zn原子填在一半的四面体空隙中,形成立方面心点阵,晶胞中含个S原子4个Zn原子;10.六方ZnS晶体中,S原子作六方最密堆积,Zn原子填在一半的四面体空隙中,形成六方点阵,晶胞中含个S原子4个Zn原子。
11.CaF2晶体属立方面心点阵,F-作简单立方堆积,Ca2+数目比F-少一半,填了一半的立方体空隙,每一个Ca2+由八个F-配位,而每个F-有4个Ca2+配位,每个CaF2晶胞有4个Ca2+和8个F-原子。
12.金红石(TiO2)为简单四方结构,Ti4+处在略为变形的氧八面体中,即氧离子作假六方堆积,Ti4+填在它的准八面体空隙中,Ti4+配位数为6,O2-与3个Ti4+配位(3个Ti4+几乎形成等边三角形)。
13.方石英(立方SiO2)构型中的Si,与金刚石结构中C原子一样,形成A4堆积;O原子位于Si-Si连线的中心位置附近,形成三维网络状低密度结构,离子晶体已过渡到共价晶体。
晶胞结构
晶胞结构一、金属晶体2.钾型A2(体心立方堆积)堆积晶胞钾型A2堆积晶胞是立方体心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A2堆积的空间利用率的计算:A2堆积用圆球半径r 表示的晶胞体积为:ar r a r a 43,34 ,43===%02.68833364342234223364)34(33333==⋅=⋅===πππr r V V A rV rr V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中3.六方最密堆积(4)A1(面心立方最密堆积)A1是ABCABCABC······型式的堆积,从这种堆积中可以抽出一个立方面心点阵,因此这种堆积型式的最小单位是一个立方面心晶胞。
A1堆积晶胞是立方面心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A1堆积空间利用率的计算:A1堆积用圆球半径r 表示的晶胞体积为:(5)A4堆积形成晶胞A4堆积晶胞是立方面心点阵结构, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A4堆积的空间利用率的计算:A4堆积用圆球半径r 表示的晶胞体积为: ra r a 22 ,42==%05.742312163441344 4216)22(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中ar r a r r a 83,38 ,8243===⨯=%01.34163335123484348 833512)38(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中二、原子晶体1.金刚石立体网状结构,每个碳原子形成4个共价键,任意抽出2个共价键,每两个单键归两个六元环所有,而不是只归一个六元环所有(如图所示,红色的两个碳碳单键,可以构成蓝色和紫红色的两个六元环)。
(完整版)七大晶系详细图解
七大晶系详细图解已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。
它们都是按七种结晶方式模式发育的,即七大晶系。
晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。
三条轴分别用X、Y 、Z(U)(Z 轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。
就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。
其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。
高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。
立方晶系立方晶系的三个轴的长度是一样的,即X=Y=Z ,且互相垂直,即α=β=γ=9,0° 对称性最强。
具有4 个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。
属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。
这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的晶体都属于立方晶系。
它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。
最典型立方晶系的晶体为:氯化钠。
常见立方晶系晶体模型图:二、四方晶系四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=9。
0其°中两个水平轴(X 轴、Y 轴)长度一样,Z 轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。
横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。
所有主晶面交角都是90。
特征对称元素为四重轴。
如果Z 轴发育,它就是长柱状甚至针状;如果两个横轴(X 轴、Y 轴)发育大于Z 轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。
常见晶胞类型4解析
金
最活泼的金属是---------- 铯
最稳定的金属是---------- 金
5、决定离子晶体结构的因素
(1)几何因素
晶体中正负离子的半径比. 一般决定配位数的多少:正负离子的半 径比越大,配位数越多. 晶体中正负离子的电荷比. 正负离子电荷比=正负离子的配位数比 =正负离子的数目反比 离子键的纯粹因素
(2)电荷因素
(3)键性因素
晶体中微粒的排列、个数及密度的计算 在氯化钠晶体中, 每个Na+周围与 之最接近且距离 相等的Cl-共有 6 个;这几个 Cl-在 空间构成的几何 构型 为 正八面体 。
白磷的键角为多少?Wg白磷中磷磷单键的数 目为多少? 60° (W/124) ×6 ×NA
CaF2 晶体中正离子的配位数8,负离子的配位 4 数为 。 TiO2晶体中正离子的配位数为6,负离子的配 位数为多少? 3 ZnS晶体中负离子的配位数是4,正离子的配位 数为多少? 4
石墨是层状结构的混合型晶体
( 六 方镁 密型 堆 积 )
金属晶体的四种堆积模型对比
4、几种常见的离子晶体的晶胞结构:
(1)氯化钠型晶胞
Na+ Cl-
钠离子和氯离子在晶胞中的位置: 氯离子:体心和棱中点; 或者反之;交错排列 钠离子:面心和顶点.
每个NaCl晶胞含Na+、Cl-的个数?
Na+ Cl-
计算方法:均摊法 顶点占1/8;棱占1/4;面心占1/2;体心占1 Na+:
单质硼有无定形和晶体两种,参考下列数据回答:
金刚石 晶体硅 晶体硼
熔点(K) 沸点(K) 硬度(moh)
>3823 5100 10
1683 2628 7 .0
常见晶胞结构最强整理
常见晶胞结构最强整理常见晶体结构及其详解晶体晶体结构晶体详解原⼦晶体⾦刚⽯(1)每个碳采取杂化⽅式与4个碳以共价键结合,形成结构,键⾓均为 (2)最⼩碳环由个C 组成且六原⼦不在同⼀平⾯内,平均每个碳原⼦被个六元环共⽤,每根C -C 键被个六元环共⽤。
(3)每个C 参与4条C -C 键的形成, C 原⼦个数与C -C 键数之⽐为 ,1mol ⾦刚⽯中,碳碳键为 molSiO 2(1)每⼀个硅原⼦紧邻个氧原⼦,每⼀个氧原⼦紧邻个硅原⼦,形成了由Si-O 键(极性或⾮极性)键构成的元环的最⼩环状结构。
⼀个环上有个硅原⼦,个氧原⼦(2)1mol SiO 2中,硅氧键为 molSiC每个C 原⼦最近的Si 原⼦有个,每个C 原⼦最近的C 原⼦有个分⼦晶体⼲冰(1)⼀个⼆氧化碳晶胞中含有个⼆氧化碳分⼦(2)8个CO 2分⼦构成⽴⽅体且在6个⾯⼼⼜各占据1个CO 2分⼦ (3)每个CO 2分⼦周围等距且紧邻的CO 2分⼦有个冰⼀个⽔分⼦形成个氢键,平均1mol 冰中含有 mol 氢键C 60(1)⾜球烯的分⼦是由60个碳原⼦构成的,空间构型有12个正五边形,20个正六边形(2)⼀个C 60分⼦中含有根单键,根双键 (3)C 60晶胞中与⼀个C 60最近的C 60分⼦有个(与⼲冰的晶胞相似)离⼦晶体NaCl (型)(1)每个Na +周围等距且紧邻的Cl -有个,每个Cl -周围等距且紧邻的Na +有个。
每个Na +周围等距且紧邻的Na +有个,同理Cl -也然。
(2)每个晶胞中含个Na +和4个Cl -。
CsCl (型)(1)每个Cs +周围等距且紧邻的Cl -有个,每个Cl -周围等距且紧邻的Cs +有个。
(2)左图为个晶胞;右图为⼀个晶胞,每个晶胞中含个Cs +,个Cl -。
CaF 21、1个晶胞中含有个Ca 2+,个F -,Ca 2+的配位数为个,F -配位数为个2、Ca 2+周围等距离最近的Ca 2+ 个,F —周围等距离最近的F — 个⾦属晶体简单⽴⽅堆积典型代表空间利⽤率配位数为体⼼⽴⽅堆积典型代表空间利⽤率配位数为⾯⼼⽴⽅堆积典型代表空间利⽤率配位数为六⽅最密堆积典型代表空间利⽤率配位数为混合晶体⽯墨1、碳原⼦的杂化⽅式为,键⾓为2、⽯墨晶体的⽚层结构中,每个六元碳环含有个碳原⼦数,每个六元碳环所含有的共价健数是个3、⽯墨同层C 原⼦间以连接,熔化需要破坏碳碳之间作⽤⼒,故熔沸点较⾼;层与层之间的作⽤⼒为,作⽤⼒⽐较弱,故⽯墨的硬度较低。
高三化学知识点晶胞
高三化学知识点晶胞晶胞是固体中最基本的结构单元,通过晶胞的叠加形成了整个晶体的结构。
在高三化学中,晶胞是一个重要的知识点,其中包括晶体结构的分类、晶胞的构成和晶体的性质等内容。
本文将详细介绍高三化学知识点晶胞。
一、晶体结构的分类晶体结构根据晶体中原子、分子、离子等的空间排列方式,可以分为晶格和非晶态两类。
晶格是指具有规则排列的晶体,而非晶态则是指没有规则排列的晶体。
晶体结构的进一步分类包括简单晶体结构、复式晶体结构、过渡金属复合晶体结构等。
其中简单晶体结构指的是晶体中只有一个类型的晶胞,如简单立方晶体结构、面心立方晶体结构等。
复式晶体结构是指晶体中存在多种类型的晶胞,如锌铁矿晶体结构等。
过渡金属复合晶体结构则是指晶体中的晶胞由不同类型的过渡金属离子共同构成。
二、晶胞的构成晶胞是晶体中最基本的结构单位,它由晶体中的原子、离子、分子等构成。
具体来说,晶胞由一个或多个原子、离子、分子等围成,且晶胞的排列方式决定了晶体的结构。
晶胞的构成取决于晶体中的组成元素和它们的空间排列方式。
例如,在简单立方晶体结构中,晶胞由一个原子组成,而在面心立方晶体结构中,晶胞由四个原子构成。
这些原子的排列方式决定了晶格的类型和晶胞的形状。
三、晶体的性质晶体的性质受晶体结构的影响,晶体结构的不同导致晶体具有不同的物理、化学性质。
首先,晶体具有各向异性,即晶体在不同方向上的性质不同。
这是因为晶体中的晶胞具有规则的排列方式,导致晶体在不同方向上具有不同的结构和性质。
其次,晶体的硬度、导电性等性质与晶体结构有关。
例如,金刚石是一种具有非常高硬度的晶体,这是因为金刚石的晶格结构非常坚固。
另外,金属晶体由于电子的自由运动而具有良好的导电性。
最后,晶体的光学性质也与晶体结构密切相关。
根据晶体对光的透射性,可以将晶体分为各种光学类别,如各向同性晶体和各向异性晶体等。
总结:高三化学知识点晶胞是固体结构的基本单位,通过晶胞的叠加形成了整个晶体的结构。
(完整版)高二化学常见晶胞
晶体与非晶体
【高考热点】
1晶体的组成、结构以及晶体类型的判断。
2.同种和不同种晶体类型性质的比较。
3•晶体结构分析及晶胞中微粒数目的计算方法。
4.晶体类型与微粒间作用力的关系。
晶体
非晶体
结构特征
结构微粒周期性有序排列,
有规则的几何外形
结构微粒无序排列,无规则的几 何外形
熔点
固定
不固定
异同表现
各向异性
【经典例题】
1、根据下表给出的几种物质的熔点、沸点数据,判断下列有关说法中错误的是()
晶体
NaCI1
KCI
AICI3
SiCl4
单质B1
熔点/c
810:
776
190
—68
23001
沸点/c
1465
1418
180
57
2500
A.SiCM是分子晶体
B•单质B可能是原子晶体
C•AICI3加热能升华
D•NaCI的键的强度比KCI的小
3依据晶体的熔点判断。
一般地,熔沸点原子晶体>离子晶体〉分子晶体;金属晶体熔沸点有高有低常温下呈气态或者液态的,一般为分子晶体。
4依据导电性判断。
离子晶体水溶液及熔融状态可以导电;
原子晶体一般一般不导电,晶体硅为半导体
石墨能导电;
分子晶体为非导体,有些分子晶体中的电解质溶于水可以导电;
金属晶体是电的良导体能越大。
2离子的半径:离子的半径越小,晶格能越大。
(3)与离子晶体性质的关系
晶格能越大,形成的离子晶体越稳定,且熔点越高_硬度越 丄。
(完整版)常见晶胞模型
氯化钠晶体(1)NaCl晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个NaCl晶胞中每个Cl-等距离且最近的Na+(即Cl-配位数)为6个(2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个;占有的Cl-4个。
(3)在该晶体中每个Na+周围与之最接近且距离相等的Na+共有12个;与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞)(1)CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数)为8个CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数)为8个,这几个Cs+在空间构成的几何构型为正方体。
(2)在每个Cs+周围与它最近的且距离相等的Cs+有6个这几个Cs+在空间构成的几何构型为正八面体。
(3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。
CaF2晶体(1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。
(2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个(3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个;占有的F-8个。
ZnS晶体:(1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。
(2)Zn2+的配位数为4个,S2-的配位数为 4个。
Si O金刚石 金刚石晶胞 金刚石晶胞分位置注释(1)金刚石晶体a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅 式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。
键角109°28’b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2 (2)Si 晶体由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。
十四种晶格类型
十四种晶格类型晶格是指晶体中原子、离子或分子的排列方式。
根据晶体中原子的排列方式和对称性,晶体可以分为不同的晶格类型。
下面将介绍十四种常见的晶格类型。
1. 简单立方晶格:原子在三个坐标轴上等间距排列,如钠、铜等金属。
2. 面心立方晶格:除了在立方体的顶点上有原子外,每个面的中心也有一个原子,如铝、铜、银等金属。
3. 体心立方晶格:除了在立方体的顶点上有原子外,立方体的中心也有一个原子,如铁、钨等金属。
4. 六方晶格:原子在六个等间距的平面上排列,如硫、石英等。
5. 斜方晶格:原子在三个坐标轴上等间距排列,但其中两个轴之间的夹角不为90度,如二硫化钼。
6. 正交晶格:原子在三个坐标轴上等间距排列,且三个轴之间的夹角均为90度,如钙钛矿。
7. 三方晶格:原子在三个坐标轴上等间距排列,其中两个轴之间的夹角为90度,而第三个轴的夹角为120度,如石墨。
8. 单斜晶格:原子在三个坐标轴上等间距排列,其中两个轴之间的夹角为90度,而第三个轴的夹角不为90度,如硫酸铜。
9. 三斜晶格:原子在三个坐标轴上等间距排列,其中三个轴之间的夹角均不为90度,如石膏。
10. 钻石晶格:原子在三个坐标轴上等间距排列,其中两个轴之间的夹角为90度,而第三个轴的夹角为120度,如金刚石。
11. 锗晶格:原子在三个坐标轴上等间距排列,其中两个轴之间的夹角为90度,而第三个轴的夹角为109.5度,如锗。
12. 铁素体晶格:原子在三个坐标轴上等间距排列,其中两个轴之间的夹角为90度,而第三个轴的夹角为120度,如铁素体。
13. 铁磁晶格:原子在三个坐标轴上等间距排列,其中两个轴之间的夹角为90度,而第三个轴的夹角为120度,如铁磁体。
14. 铁电晶格:原子在三个坐标轴上等间距排列,其中两个轴之间的夹角为90度,而第三个轴的夹角为120度,如铁电体。
这些晶格类型在材料科学、物理学和化学等领域中具有重要的应用价值。
通过研究晶格类型,可以深入了解晶体的结构和性质,为材料的设计和制备提供指导。
(最新整理)(完整版)常见的晶体结构
Zn2+与 S2-的配位数均为:4
2021/7/26
29
闪锌矿与纤锌矿的结构区别:
[ZnS4]四面体层的配置情况不同
纤锌矿型:BeO、ZnO、AlN、CdS、GaAs等
2021/7/26
30
5、萤石(CaF2)型结构
(1)密堆积情况:
——立方晶系
Ca2+ 离子面心立方堆积; F-离子填充八面体空隙; 晶胞分子数:Z=4; 晶胞中:4个八面体空隙
2021/7/26
49
鲍林第三规则──多面体共顶、共棱、共面规则,其内容是:“在一 个配位结构中,共用棱,特别是共用面的存在会降低这个结构的稳 定性。其中高电价,低配位的正离子的这种效应更为明显”。
Cl:00,1010,101,011 22 2 2 22
Na:00 1,10,010,111 22 2 222
晶胞常数:a0=2(r++r-)
2021/7/26
21
(3)配位数与配位多面体:
因为:
0.414 r0.10n2m 0.5 60.732 r 0.18 n1 m
所以,Na+的配位数为CN=6, Cl-的配位数CN=6
2021/7/26
4
(5)原子半径与点阵常数:
晶胞的3个棱边长度(a、b、c)与原子半径r 之间的关系,可由简单的几何知识求出。
面心立方结构(a=b=c):
a2 a2 2r2r2
a2 2r
2021/7/26
5
(6)配位数:
CN=12
(7)致密度(堆垛密度): K=0.74
(8)密度:
密度 =晶原 胞子 体 阿 晶 数 积 佛 胞 原加 子德 量 罗常
其一,判断晶体是否稳定;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见晶胞
类
型
实例
结构
要点
原子晶体
金刚石
1、每一个碳原子采用 杂化与其他 个碳原子等距离紧邻,由非极性键结合成的最小环的结构中有 个碳原子。
平均每个碳原子被 个六元环共用,每根C-C 键被 个六元环共用。
2、1mol 金刚石中,碳碳键为 mol 。
二氧 化硅
1、每一个硅原子紧邻 个氧原子,每一个氧原子紧邻 个硅原子,形成了由Si-O 键(极性或非极性)键构成的 元环的最小环状结构。
一个环上有 个硅原子, 个氧原子。
2、1molSiO 2中,硅氧键为
mol 。
分子晶体
干冰
1、一个二氧化碳晶胞中含有 个二氧化碳分子
2、二氧化碳晶胞中与二氧化碳最近的二氧化碳分子有 个
C 60
1、一个C 60分子中含有____根双键,____根单键。
2、C 60晶胞中与一个C 60最近的C 60分子有___个
冰
1、一个水分子形成
________
个氢
键,平均1mol冰中含有mol 氢键。
ZnS 1、每个锌离子紧邻个硫离子,每一个硫离子又紧邻个锌离子,这些锌离子或硫离子构成了体。
2、锌离子的配位数为
离子晶体NaCl
1、每个钠离子紧邻个Cl-,每
个Cl-又紧邻个Na+,这些氯离
子或Na+构成的空间几何构型
是;2、与每一个Na+等距离的
围绕且又最近的Na+为
个;同理Cl-也然。
CsCl
1、每一个Cl-紧邻个Cs+,
每一个Cs+紧邻个Cl-,这
些Cs+或Cl-构成了体。
2、与每一个Cs+(或Cl-)等距离
的围绕且又最近的Cs+(或Cl-)
为个,这些Cs+(或Cl-)构
成的空间构型是体。
CaF2
1、1个晶胞中含有个Ca2+,
个F-,Ca2+的配位数为个,
F-配位数为个
2、设CaF2晶胞边长为a pm,
求晶体密度为g/cm3
金属晶体
简单立方堆积
1、代表物质: Po
2、空间利用率:
3、配位数:
体心立方堆积
1、代表物质: Na 、K 、Fe 、W
2、空间利用率:
3、配位数:
六方密堆积
ABABAB
1、代表物质: Mg 、Zn 、Ti
2、空间利用率:
3、配位数:
面心立方密堆积
ABCABC
1、代表物质: Cu 、Ag 、Au
2、空间利用率:
3、配位数:
混合晶体
石墨
1、碳原子的杂化方式为 ,键角为 。
2、在石墨晶体的片层结构中,每个六元碳环占有的碳原子数为 个,每个六元碳环所含有的共价健数是 个。