5-2向量的乘法运算
向量相乘运算公式
向量相乘运算公式
向量相乘是在向量运算中常用的一种操作,有两种形式:点积和叉积。
1.点积(又称为内积、数量积):点积是指两个向量按照相同位置的元素分别相乘,并将得到的乘积相加的运算。
点积的计算公式如下:
对于两个n维向量A和B:A·B=A1B1+A2B2+...+AnBn
其中,A1、A2、...、An和B1、B2、...、Bn分别表示两个向量A和B在对应位置的元素。
点积的结果是一个标量(即一个实数),表示两个向量的夹角的余弦值乘以两个向量的模的乘积。
2.叉积(又称为外积、向量积):叉积是指根据右手法则,通过两个向量的模和夹角计算出一个与这两个向量同时垂直的新向量的运算。
叉积的计算公式如下:
对于三维空间中的向量A=(A1,A2,A3)和B=(B1,B2,B3):A×B=(A2B3A3B2,A3B1A1B3,A1B2A2B1)
叉积的结果是一个新的向量,它的模表示两个向量张成的平行四边形的面积,方向垂直于两个向量所在的平面,并符合右手法则。
需要注意的是,点积和叉积只适用于特定维度的向量运算,分别是点积适用于任意维度的向量,而叉积只适用于三维空间中的向量。
此外,点积和叉积具有不同的性质和应用领域,在物理、数学等领域都有广泛的应用。
解析几何课件(第五版)精选全文
所求平面方程为
上一页
返回
解
§3.2 平面与点的相关位置
下一页
返回
上一页
下一页
返回
点到平面距离公式
上一页
下一页
返回
在第一个平面内任取一点,比如(0,0,1),
上一页
返回
定义
(通常取锐角)
两平面法向量之间的夹角称为两平面的夹角.
§3.3 两平面的相关位置
下一页
返回
按照两向量夹角余弦公式有
§1.5 标架与坐标
§1.7 两向量的数性积
§1.9 三向量的混合积
§1.8 两向量的矢性积
第二章 轨迹与方程
§2.1 平面曲线的方程
§2.2 曲面的方程
§2.4 空间曲线的方程
§2.3 母线平行与坐标轴的柱面方程
第三章 平面与空间直线
注意 空间曲面的参数方程的表达式不是惟一的.
抛物柱面
平面
抛物柱面方程:
平面方程:
三、母线平行与坐标轴的柱面方程
下一页
返回
从柱面方程看柱面的特征:
(其他类推)
实 例
椭圆柱面,
双曲柱面 ,
抛物柱面,
母线// 轴
母线// 轴
母线// 轴
上一页
下一页
返回
a
b
椭圆柱面
上一页
下一页
返回
y
平面的点法式方程
平面上的点都满足上方程,不在平面上的点都不满足上方程,上方程称为平面的方程,平面称为方程的图形.
其中法向量
已知点
上一页
下一页
返回
解
所求平面方程为
化简得
上一页
下一页
第五章-向量空间
第五章 向量空间向量空间或称线性空间是一个重要的代数系统(定义了代数运算的集合),现代数学所涉及的欧氏空间、U 空间、希尔伯特空间等都是建立在向量空间的基础上的.我们知道,在n 元向量集和n m ⨯矩阵集中,都分别定义了加法和数乘运算,并且就这两种运算的基本性质而言,在形式上是完全一样的.向量空间就是对这类集合的共性的抽象.学习向量空间的理论,不仅有助于深化对矩阵理论、线性方程组理论等内容的理解,同时也为后面两章内容的讨论奠定了基础.除此之外,向量空间的理论和方法在自然科学、工程技术等领域都有一定的应用.本章重点是向量空间的定义、基、内积、正交矩阵等.5.1 向量空间的概念定义 1 设V 是一个非空集,F 是一个数域.如果:1) V 中定义了一个加法.α∀、∈βV , V 中有唯一确定的元与它们对应,这个元称为α与β的和,记为α+β.2) F 到V 有一个数量乘法.k ∀∈F ,∀α∈V ,V 中有唯一确定的元与它们对应,这个元称为k 与α的数量乘积,记为αk .3) 加法与数量乘法满足以下算律: ∀α、β、γ∈V ,∀k 、l ∈F 1 α+β=β+α;2 (α+β)+γ=α+(β+γ);3 0∈V ,称为V 的零元,有0+α=α;4 α-∈V ,称为α的负元,有α+(α-)=0;5 βαβαk k k +=+)(;6 αααl k l k +=+)(;7 )()(ααl k kl =;8 αα=1,那么称V 是数域F 上的一个向量空间.向量空间V 的元称为向量.定义1中的条件1)和2)可以合并为:F l k V ∈∀∈∀、、,βα,有V l k ∈+βα.由于运算是线性的,也将向量空间称为线性空间.例 1 nF 为数域F 上所有n 元向量构成的集,对向量的加法和数乘,nF 是F 上的一个向量空间.例 2 )(},|){()(F M F a a F M ij n m ij ∈=⨯对矩阵的加法和数量乘法构成F 上的一个向量空间.例 3 在解析几何里,平面或空间中从原点出发的一切向量对向量的加法和实数与向量的乘法都构成实数域上的向量空间.分别记为32,V V .例 4 令],[b a C 为定义在区间],[b a 上的一切连续函数所构成的集.对函数的加法,实数与函数的乘法,],[b a C 是实数域上的向量空间.例5 复数域C 是实数域R 上的向量空间.任意数域都是它自身上的向量空间. 由定义1,可以推出向量空间V 的如下几个性质: 1. 在向量空间V 中,零向量是唯一的.事实上,若10与20都是V 的零向量,便有22110000=+=.2. V 中每一向量的负向量是唯一的.事实上,V ∈∀α,若21,αα都是α的负向量,即有0,021=+=+αααα,那么222121110)()(0αααααααααα=+=++=++=+=.规定α-β=α+ (-β). 3. 在V 中, (Ⅰ) 00=α; (Ⅱ) 00=k ;(Ⅲ) αααk k k -=-=-)()(.事实上, 0=+αα0=+αα1(0+1)ααα==1.等式两边同时加上(-α),得0α=0.故(i )式成立.由0)00(00k k k k =+=+,两边加上0)(k -,得00=k ,即(ii )式成立.由00)()(==+-=+-k k k k αααα,即)(α-k 是αk 的负元,所以ααk k -=-)(.同样可得ααk k -=-)(.4. 在V 中,如果0=αk ,则=k 0或0=α. 事实上,若0=αk ,而≠k 0,那么001)(1==k k k α.又αααα===1)1()(1k kk k ,故.0=α此外,由于V 中的加法满足交换律﹑结合律,V 中s 个向量相加,可以任意交换各项的次序,任意添加括号,所得结果都相同.定义2 设V 是数域F 上的向量空间,.,φ≠⊆W V W 如果F k W ∈∀∈∀,βα、,有W k W ∈∈+αβα,, (1)那么称W 是V 的一个子空间.由定义,V 的子空间一定含V 中的零向量(则,W ∈α0W ∈=0α).如果W 是V 的子空间,那么W 也是数域F 上的向量空间.这是因为W 对V 的加法和F 到V 的数量乘法封闭,而定义1中的算律1 至8在V 中成立,在W 中当然成立.例 6. 由向量空间V 的零向量构成的集{0}是V 的子空间,称为零空间.V 自身是V 的子空间.这两个子空间都称为V 的平凡子空间.例7. nF 中一切形如),0,,,,(121-n a a a F a i ∈的向量构成的集是nF 的一个子空间.定义2中的条件(1)可表示为:F l k W ∈∀∈∀、、,βαW l k ∈+βα. (2) 反之,若(2)成立,则W 是V 的一个子空间.事实上,在(2)中,令1==l k ,得W ∈+βα;令0=l ,得W k ∈α,由定义2,W 是V 的子空间.在向量空间V 中,我们可以依照3.2中n 元向量线性相关性的表述来定义诸如向量的线性组合、线性相关等相应的概念,从而得出相应的结论.从形式上说,这些概念、结论的表述是完全一样的.只是在向量空间中涉及这些概念、结论的对象——向量以及线性运算,已经不局限于n 元向量及其运算.在此,不再一一列出.现设V 是数域F 上的向量空间,V 中的s 个向量s ααα,,,21 的一切线性组合构成的集},,2,1,|{2211s i F k k k k s i s s =∈+++=ααα是V 的一个子空间.事实上,∀α﹑β∈S ,∀k ∈F ,令s s k k k αααα+++= 2211,2211ααβl l +=s s l α++ ,那么α+β与αk 仍为s ααα,,,21 的线性组合,即有α+β∈S ,αk ∈S .故S 是V 的子空间,它称为由s ααα,,,21 生成的子空间,记为 L (s ααα,,,21 ),s ααα,,,21 称为生成向量.下面我们看一个例子.m 个方程n 个未知量的齐次线性方程组0=AX ,它的所有解向量的集{}元列向量为n A T ααα,0==是n F 的非空子集.若n F ∈βα、(βα、为n 元列向量),有0,0==βαA A ,那么F k ∈∀,则0)(=+βαA ,0)(=αk A .即F k T ∈∈∀,,βα,有T k T ∈∈+αβα,.因此T 是n F 的一个子空间.由于0=AX 的任一解都可表示为它的基础解系的线性组合,若r n -ηηη,,,21 是0=AX 的一个基础解系,那么α﹑β可表示为r n -ηηη,,,21 的线性组合,于是T 包含于生成子空间),,,(21r n L -ηηη .即 T ⊆),,,(21r n L -ηηη . 反之,任取∈β),,,(21r n L -ηηη ,令F k k k k i r n r n ∈+++=--,2211ηηηβ 为常数,r n i -=,,2,1 ,那么,0)(2211=+++=--r n r n k k k A A ηηηβ ,即β∈T .因而),,,(21r n L -ηηη ⊆T . 故 ),,,(21r n L T -=ηηη .n F 的子空间),,,(21r n L -ηηη 称为齐次线性方程组0=AX 的解空间.最后,我们给出子空间的和的概念。
课件_人教版数学高中二年级选修-节空间向量及其运算复习PPT课件_优秀版
共线定理、共面定理的应用
【训练 2】 已知 A,B,C 三点不共线,对平面 ABC 外的任一点 O, 若点 M 满足O→M=1(O→A+O→B+O→C).
3 (1)判断M→A,M→B,M→C三个向量是否共面; (2)判断点 M 是否在平面 ABC 内.
解 (1)由已知O→A+O→B+O→C=3 O→M, ∴O→A -O→M= (O→M -O→B )+(O→M -O→C), 即M→A=B→M+C→M=-M→B-M→C, ∴M→A,M→B,M→C共面. (2)由(1)知,M→A,M→B,M→C共面且基线过同一点 M, ∴四点 M,A,B,C 共面,从而点 M 在平面 ABC 内.
空间向量的数量积及其应用
【例3】如图所示,已知空间四边形的ABCD各边和对角线的长都等
于a ,点M , N分别是AB,CD 的中点.
在空间中,具有 的量叫做(空1间)向求量,证其大:M小叫N做向量A的B长度;或模(.2)求 MN 的长;
a1= b1,a2= b2,a3= 探究三 空间向量的数量
(b33 )求异面直线AN与CM
2.空间向量中的有关定理
(1)共线(平行)向量定理:对空间任意两个向量 a,b(b≠0),a∥b⇔存
在λ∈R,使 a= b . (2)共面向量定理:若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面 ⇔存在唯一的有序实数对(x,y),使 p= xa+yb . (3)空间向量基本定理:如果三个向量 a,b,c 不共面,那么对空间任一 向量 p,存在一个唯一的有序实数组{x,y,z}使得 p= xa+yb+zc .
【例3】如图所示,已知空间四边形的 各边和对角线的长都等于 ,点 分别是 的中点.
(1)利用数量积解决问题的两种途径:
5-2新田中学-平面向量的坐标运算
分析:ma+b=(2m-1,3m+2),a-2b=(4,-1), 2m-1 若 ma+b 与 a-2b 平行,则 4 =-3m-2,即 2m- 1 1=-12m-8,解之得 m=-2.故选 B.
答案:B 失分警示:没有理解向量的坐标表示与向量 平行的条件.
→ → 3. 在平面 xOy 内有三向量OA=(3,12), =(4,5),→ OB OC =(10,k),若 A、B、C 三点共线,则 k=________.
三、几个重要结论 1.如图,若a、b为不共线向量,则a+b, a-b为以a,b为邻边的平行四边形的对角 线的向量. 2 2 2 2
2.a+b +a-b =2(a +b ).
→ → → 3 . G 为 △ABC 的 重 心 ⇔ GA + GB + GC = 0 ⇔ x1+x2+x3 y1+y2+y3 G( , )[其中 A(x1 ,y1),B(x2 ,y2), 3 3 C(x3,y3)].
→ 解析:∵AB=(-6,2), → → AB AB 6 2 ∴± =± =± (- , ) → 2 10 2 10 2 10 |AB| -3 10 10 =± ( , ). 10 10
答案:C
→ → 5.如果向量AB=i-2j,BC=i+mj,其中 i、j 分别是 x 轴、y 轴正方向上的单位向量,且 A、B、C 三点共线,则 m =________.
总结评述:本题侧重于向量的坐标运算,定 比分点及两个向量垂直的充要条件.通过这 些知识的综合,很好地体现出向量作为工具 解决解析几何的有关问题的作用.
平面直角坐标系中,O 为坐标原点,已知两点 A(3,1), → → → B(-1,3),若点 C 满足OC=αOA+βOB,其中 α、β∈R 且 α +β=1,则点 C 的轨迹方程为 A.(x-1)2+(y-2)2=5 B.3x+2y-11=0 C.2x-y=0 D.x+2y-5=0 ( )
向量运算与复数运算
)
【解析】选A.因为BD=2DC,所以 BD 2 BC.因为AD=AB BD=
3 2 2 1 2 a BC a b a a b. 3 3 3 3
2
2.(2014·新课标全国卷Ⅰ)已知A,B,C是圆O上的三点,
若 AO 1 AB AC , 则 AB与AC 的夹角为_____. 【解析】由 AO 1 AB AC ,
2 2
故O是线段BC的中点, 故BC是⊙O的直径,从而∠BAC=90°, 因此 AB与AC 的夹角为90°. 答案:90°
【解析】选D.由于a=(1,2),b=(4,2),
所以c=ma+b=(m+4,2m+2),
又由于c与a的夹角等于c与b的夹角,
ac bc , 即cos〈a,c〉=cos〈b,c〉,也就是 | a || c | | b || c |
m 4 2 2m 2 4 m 4 2 2m 2 即得 , 5 20
|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=(
2 A.2B. 2C.1D. 2
)
【解析】选B.因为|a|=1,(a+b)⊥a,(2a+b)⊥b,
(a b) a 0, 所以 (2a b) b 0. a b 1, 化简得 2 2 a b b , 所以 b 2,则 b 2.
解得m=2.
2.(2014·安徽高考)已知两个不相等的非零向量a,b,两组向量
x1,x2,x3,x4,x5和y1,y2,y3,y4,y5均由2个a和3个b排列而成.记
6.2.3 向量的数乘运算
(3) ( x y )a ( x y )a [( x y ) ( x y )]a 2 ya
例析
例6.如图,□ 的两条对角线相交于点,且 = , = ,
用,表示,,和.
解:在□中, = + = + , = − = − .
= + 3.猜想, , 三点之间的位置关系,并证明你的猜想.
解:分别作向量,,,过点,作直线(如图).观察发现,
不论向量,怎样变化,点始终在直线上,猜想, , 三点共线.
3
事实上,因为 = − = + 2 − ( + ) = ,
(1) 5(3a 2b) 4(2b 3a ) 15a 10b 8b 12a 3a 2b;
1
1
1
(2) (a 2b ) (3a 2b ) (a b )
3
4
2
1
2
3
1
1
1
11
1
a b a b a b a b
3
3
4
2
2
2
12
3
(3)原式= 2 + 3 − − 3 + 2 − = − + 5 − 2.
2. 化简:课本练习(第16页)
(1) 5(3a 2b) 4(2b 3a );
1
1
1
(2) (a 2b ) (3a 2b ) ( a b );
3
4
2
(3) ( x y )a ( x y )a .
量.
新知探索
人教版高中数学必修二第9章向量的运算精品课程及练习讲解(大全必学!)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 对|a+b|= 2|a-b|两边平方得,2+2a·b=2-4a·b+2,
即 a·b=13,则 a·a+b=1+13=43,
设 a 与 a+b 的夹角为 α,则a·a+bcos α=43.
又a+b=
2+2×13=2
2, 3
故acos
α=43×2
3= 2
36,
因为e是与a+b方向相同的单位向量, 所以 a 在 a+b 方向上的投影向量为 36e.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.如图,在直角梯形 ABCD 中,∠DAB=90°,∠B=30°,AB=2 3, BC=2,点 E 在线段 CD 上,若A→E=A→D+λA→B,求实数 λ 的取值范围.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.如图,在△ABC 中,若 AB=AC=3,cos∠BAC=12,D→C=2B→D,则A→D·B→C =__-__32____.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 根据条件,得 A→D=A→B+B→D=A→B+13B→C=A→B+13(A→C-A→B)=23A→B+13A→C, 所以A→D·B→C=23A→B+13A→C·(A→C-A→B) =13A→B·A→C-23A→B2+13A→C2 =13×3×3×12-23×9+13×9=-32.
沪教版数学九年级上册24.7《向量的线性运算》(第2课时)教学设计
沪教版数学九年级上册24.7《向量的线性运算》(第2课时)教学设计一. 教材分析《向量的线性运算》(第2课时)是沪教版数学九年级上册第24章的一部分,主要介绍了向量的线性运算性质,包括向量的加法、减法、数乘和向量与标量的乘法。
这部分内容是向量学习的重要部分,也是学生理解向量几何意义的关键所在。
通过这部分的学习,学生能够掌握向量的基本运算规则,并能够运用这些规则解决实际问题。
二. 学情分析九年级的学生已经具备了一定的代数和几何基础,对向量的概念和几何意义有一定的理解。
但学生在运算方面的规律和性质的理解上可能存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出向量的运算规律,并通过大量的例子来帮助学生理解和巩固。
三. 教学目标1.知识与技能:使学生掌握向量的线性运算性质,能够熟练地进行向量的加法、减法、数乘和向量与标量的乘法运算。
2.过程与方法:通过实际问题,引导学生从实际问题中抽象出向量的运算规律,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:向量的线性运算性质。
2.难点:向量的线性运算在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生抽象出向量的运算规律,通过案例讲解使学生理解向量运算的实质,通过小组合作让学生在讨论中巩固知识,培养学生的团队合作意识。
六. 教学准备1.准备相关的实际问题,用于引导学生抽象出向量的运算规律。
2.准备典型案例,用于讲解向量的运算规律。
3.分组学生,进行小组合作学习。
七. 教学过程1.导入(5分钟)通过一个实际问题,如物体在平面直角坐标系中的运动问题,引导学生思考如何进行向量的加法运算。
2.呈现(15分钟)呈现典型案例,讲解向量的加法、减法、数乘和向量与标量的乘法运算的实质和规律。
3.操练(15分钟)让学生进行向量的线性运算练习,教师巡回指导,及时纠正学生的错误。
数学苏教版必修4学案:第2章 2.2 2.2.3 向量的数乘
2.2.3向量的数乘预习课本P68~71,思考并完成下列问题1.向量数乘的定义是什么?2.向量数乘运算满足哪三条运算律?3.什么是向量共线定理?[新知初探]1.向量的数乘运算(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当a=0时,λa=0;当λ=0时,λa=0.(2)运算律:设λ,μ为任意实数,则有:①λ(μa)=(λμ)a;②(λ+μ)a=λa+μ a;③λ(a+b)=λa+λb;特别地,有(-λ)a=-(λa)=λ(-a);λ(a -b )=λa -λb .[点睛] (1)实数与向量可以进行数乘运算,但不能进行加减运算. (2)λa 的结果为向量,所以当λ=0时,得到的结果为0而不是0. 2.向量共线定理如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使b =λa .[小试身手]1.化简:2(3a -2b )+3(a +5b )-5(4b -a )=_________. ★答案★:14a -9b2.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA =a ,OB =b ,则DC =________.★答案★:b -a3.已知向量a 与b 反向,且|a |=r ,|b |=R ,b =λa ,则λ=________. ★答案★:-Rr4.在△ABC 中,已知点D 在AB 边上,且AD =2DB ,CD =13CA +λCB ,则λ=________.★答案★:23向量数乘的基本运算[典例] (1)(-5)×4a ;(2)5(a +b )-4(a -b )-3a ; (3)(3a -5b +2c )-4(2a -b +3c ). [解] (1)原式=(-5×4)a =-20a .(2)原式=5a +5b -4a +4b -3a =-2a +9b .(3)原式=3a -5b +2c -8a +4b -12c =-5a -b -10c .向量基本运算的方法向量的基本运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量.[活学活用] 化简下列各式: (1)3(6a +b )-9⎝⎛⎭⎫a +13b ; (2)12⎣⎡⎦⎤(3a +2b )-⎝⎛⎭⎫a +12b -2⎝⎛⎭⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a . 解:(1)原式=18a +3b -9a -3b =9a .(2)原式=12⎝⎛⎭⎫2a +32b -a -34b =a +34b -a -34b =0. (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .用已知向量表示未知向量[典例] 在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB =a ,AC =b ,试用a ,b 表示AD ,AG .[解] AD =12(AB +AC )=12a +12b ; AG =AB +BG =AB +23BE =AB +13(BA +BC )=23AB +13(AC -AB )=13AB +13AC =13a +13b .用已知向量表示未知向量的方法(1)利用三角形法则可以把任何一个向量用两个向量的和或差来表示.(2)当用已知向量线性表示未知向量时,要注意向量选取的恰当性,常常借助图形与平面几何知识(如三角形的中线性质、中位线性质、平行四边形性质等)并结合向量共线定理,把问题解决.如图,ABCD 是一个梯形,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,已知AB =a ,AD =b ,试用a ,b 表示BC 和MN .解:连结CN ,因为N 是AB 的中点,AB =2CD ,所以AN∥DC且AN=DC,所以四边形ANCD是平行四边形,所以CN=-AD=-b,又CN+NB+BC=0,所以BC=-NB-CN=-12a+b;MN =MC+CN=14a-b.向量共线的判定及应用1.如图所示,在平行四边形ABCD中,点M是AB的中点,点N在BD上,且BN=13BD.求证:M,N,C三点共线. 证明:设BA=a,BC=b,则由向量减法的三角形法则可知:CM=BM-BC=12BA-BC=12a-b.又因为N在BD上且BN=13BD,所以BN=13BD=13(BC+CD)=13(a+b),所以CN=BN-BC=13(a+b)-b=13a-23b=23⎝⎛⎭⎫12a-b,所以CN=23CM,又因为CN与CM的公共点为C,所以M,N,C三点共线.题点二:利用向量的共线求参数2.设a,b不共线,AB=2a+pb,BC=a+b,CD=a-2b,若A,B,D三点共线,则实数p=________.解析:因为BC=a+b,CD=a-2b,所以BD=BC+CD=2a-b.又因为A,B,D三点共线,所以AB,BD共线.设AB=λBD,所以2a+pb=λ(2a-b),所以2=2λ,p=-λ,所以λ=1,p=-1.★答案★:-1题点三:利用向量共线判定几何图形形状3.如图所示,正三角形ABC 的边长为15,AP =13AB +25AC ,BQ =15AB +25AC . 求证:四边形APQB 为梯形. 证明:因为PQ =PA +AB +BQ=-13AB -25AC +AB +15AB +25AC =1315AB ,所以PQ ∥AB .又|AB |=15,所以|PQ |=13,故|PQ |≠|AB |,于是四边形APQB 为梯形.向量共线定理应用的注意点(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行.层级一 学业水平达标1.化简:16[]2(2a +8b )-4(4a -2b )=_______.解析:原式=16(4a +16b -16a +8b )=16(-12a +24b )=-2a +4b .★答案★:-2a +4b2.若2⎝⎛⎭⎫y -13a -12(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则向量y =________. 解析:2⎝⎛⎭⎫y -13a -12(c +b -3y )+b =2y -23a -12c -12b +32y +b =0,所以72y =23a +12c -12b ,所以y =421a -17b +17c . ★答案★:421a -17b +17c3.若AP =13BP ,AB =t BP ,则t 的值是________.解析:由题意AP =13BP ,所以AB =-23BP ,所以t =-23.★答案★:-234.已知a ,b 是非零向量,AB =a +2b ,DC =2a +4b ,则四边形ABCD 的形状一定是________.解析:因为 DC =2AB ,所以DC ∥AB ,且DC =2AB ,所以四边形ABCD 一定是梯形.★答案★:梯形5.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =________(用a ,b 表示).解析:由AN =3NC ,得4AN =3AC =3(a +b ),AM =a +12b ,所以MN =AN -AM =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . ★答案★:-14a +14b6.已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM 成立,则m =________.解析:因为AB +AC =(AM +MB )+(AM +MC )=MB +MC +2AM .由MA +MB +MC =0得,MB +MC =AM ,所以AB +AC =3AM ,故m =3.★答案★:37.如图,在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =________.解析:AF =AD +DF ,又AB +AD =a ,AD -AB =b , ∴AB =12a -12b ,AD =12a +12b ,DC =AB =12a -12b ,∴AF =AD +13DC =23a +13b .★答案★:23a +13b8.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC =________. 解析:设AB =a ,AC =b ,则EB =-12b +a ,FC =-12a +b ,从而EB +FC =⎝⎛⎭⎫-12b +a +⎝⎛⎭⎫-12a +b =12(a +b )=AD .★答案★:AD 9.计算:(1)14⎣⎡⎦⎤(a +2b )+3a -13(6a -12b ); (2)(λ+μ)(a +b )-(λ-μ)(a -b ).解:(1)原式=14(a +2b )+34a -112(6a -12b )=14a +12b +34a -12a +b =⎝⎛⎭⎫14+34-12a +⎝⎛⎭⎫12+1b =12a +32b . (2)原式=(λ+μ)a +(λ+μ)b -(λ-μ)a +(λ-μ)b =[(λ+μ)-(λ-μ)]a +[(λ+μ)+(λ-μ)]b =2μa +2λb .10.如图所示,已知△OAB 中,点C 是以A 为对称中心的B 点的对称点,D 是把OB 分成2∶1的一个内分点,DC 和OA 交于E ,设OA =a ,OB =b .(1)用a 和b 表示向量OC ,DC ; (2)若OE =λOA ,求实数λ的值.解:(1)依题意,A 是BC 中点,∴2OA =OB +OC , 即OC =2OA -OB =2a -b ,DC =OC -OD =OC -23OB=2a -b -23b =2a -53b .(2)若OE =λOA ,则CE =OE -OC =λa -(2a -b )=(λ-2)a +b . ∵CE 与DC 共线.∴存在实数k ,使CE =k DC . ∴(λ-2)a +b =k ⎝⎛⎭⎫2a -53b ,解得λ=45.层级二 应试能力达标1.已知向量a ,b 是两个不共线的向量,且向量ma -3b 与a +(2-m )b 共线,则实数m 的值为________.解析:因为向量ma -3b 与a +(2-m )b 共线且向量a ,b 是两个不共线的向量,所以存在实数λ,使得ma -3b =λ[a +(2-m )b ],即(m -λ)a +(mλ-2λ-3)b =0,因为a 与b 不共线,所以⎩⎪⎨⎪⎧m =λ,mλ-2λ-3=0,解得m =-1或m =3.★答案★:-1或32.若AB =5e ,CD =-7e ,且|AD |=|BC |,则四边形ABCD 的形状是________. 解析:因为AB =5e ,CD =-7e ,所以CD =-75AB .所以AB 与CD 平行且方向相反,易知|CD |>|AB |.又因为|AD |=|BC |,所以四边形ABCD 是等腰梯形.★答案★:等腰梯形3.点C 在线段AB 上,且AC =35AB ,若AC =λCB ,则λ=________.解析:∵AC =35AB ,∴AC =32CB ,AC 与CB 方向相同,故λ=32.★答案★:324.已知OP 1=a ,OP 2=b ,P P 12=λPP 2 (λ≠0),则OP =_________.解析:因为P P 12=λPP 2,所以OP 2-OP 1=λ(OP 2-OP ),所以OP =1λOP 1+λ-1λOP 2.★答案★:1λ a +λ-1λb5.若点M 是△ABC 所在平面内的一点,且满足5AM =AB +3AC ,则△ABM 与△ABC 的面积比为________.解析:设AB 的中点为D ,由5AM =AB +3AC ,得3AM -3AC =2AD -2AM ,即3CM =2MD .如图所示,故C ,M ,D 三点共线,且MD =35CD ,也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比为35.★答案★:356.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP =m OA ,OQ =n OB ,m ,n ∈R ,则1n +1m 的值为________.解析:设OA =a ,OB =b ,由题意知OG =23×12(OA +OB )=13(a +b ),PQ =OQ -OP =nb -ma ,PG =OG -OP =⎝⎛⎭⎫13-m a +13b , 由P ,G ,Q 三点共线,得存在实数λ使得PQ =λPG , 即nb -ma =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m =3.★答案★:37.已知O ,A ,B 是不共线的三点,且OP =m OA +n OB (m ,n ∈R). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP =m OA +(1-m )OB =OB +m (OA -OB ), 所以OP -OB =m (OA -OB ), 即BP =m BA ,所以BP 与BA 共线.又因为BP 与BA 有公共点B ,则A ,P ,B 三点共线, (2)若A ,P ,B 三点共线,则存在实数λ,使BP =λBA , 所以OP -OB =λ(OA -OB ).又OP =m OA +n OB . 故有m OA +(n -1)OB =λOA -λOB , 即(m -λ)OA +(n +λ-1)OB =0.因为O ,A ,B 不共线,所以OA ,OB 不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,所以m +n =1.8.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB =a ,AC =b ,试用a ,b 表示AG .解:AG =AB +BG =AB +λBE=AB +λ2(BA +BC )=⎝⎛⎭⎫1-λ2AB +λ2(AC -AB ) =(1-λ)AB +λ2AC =(1-λ)a +λ2b .又AG =AC +CG =AC +m CF =AC +m2(CA +CB )=(1-m )AC +m 2AB =m2a +(1-m )b , 所以⎩⎨⎧1-λ=m 2,1-m =λ2,解得λ=m =23,所以AG =13a +13b .。
2023年高考数学一轮复习讲义(新高考)第5章§5-2平面向量基本定理及坐标表示
§5.2 平面向量基本定理及坐标表示考试要求 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB → =(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.常用结论已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为(x 1+x 22,y 1+y 22);已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为(x 1+x 2+x 33,y 1+y 2+y 33).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任意两个向量都可以作为一个基底.( × )(2)设{a ,b }是平面内的一个基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( × )(4)平面向量不论经过怎样的平移变换之后其坐标不变.( √ )教材改编题1.(多选)下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,3),e 2=(12,-34)答案 BD2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)答案 A解析 设P (x ,y ),由题意知P 1P —→ =13P 1P 2—→,∴(x -1,y -3)=13(4-1,0-3)=(1,-1),即Error!∴Error!3.已知向量a =(x ,1),b =(2,x -1),若(2a -b )∥a ,则x 为________.答案 2或-1解析 2a -b =(2x -2,3-x ),∵(2a -b )∥a ,∴2x -2=x (3-x ),即x 2-x -2=0,解得x =2或x =-1.题型一 平面向量基本定理的应用例1 (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( )A.34AB → -14AC →B.14AB → -34AC →C.34AB → +14AC →D.14AB → +34AC →答案 A(2)如图,已知平面内有三个向量OA → ,OB → ,OC → ,其中OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,且|OA → |=|OB → |=1,|OC → |=23.若OC → =λOA → +μOB →(λ,μ∈R ),则λ+μ=______.答案 6解析 方法一 如图,作平行四边形OB 1CA 1,则OC → =OB 1—→ +OA 1—→,因为OA → 与OB → 的夹角为120°,OA → 与OC →的夹角为30°,所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23,所以|OB 1—→ |=2,|B 1C —→|=4,所以|OA 1—→ |=|B 1C —→|=4,所以OC → =4OA → +2OB → ,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B (-12,32),C (3,3).由OC → =λOA → +μOB → ,得Error!解得Error!所以λ+μ=6.教师备选1.(2022·山东省实验中学等四校联考)如图,在Rt △ABC 中,∠ABC =π2,AC =2AB ,∠BAC的平分线交△ABC 的外接圆于点D ,设AB → =a ,AC → =b ,则向量AD →等于( )A .a +b B.12a +b C .a +12bD .a +23b答案 C解析 设圆的半径为r ,在Rt △ABC 中,∠ABC =π2,AC =2AB ,所以∠BAC =π3,∠ACB =π6,又∠BAC 的平分线交△ABC 的外接圆于点D ,所以∠ACB =∠BAD =∠CAD =π6,则根据圆的性质得BD =AB ,又因为在Rt △ABC 中,AB =12AC =r =OD ,所以四边形ABDO 为菱形,所以AD → =AB → +AO →=a +12b .2.(2022·苏州质检)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG → =λCD → +μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题图可设CG → =xCE →(0<x <1),则CG → =x (CB → +BE → )=x (CB → +12CD →)=x 2CD →+xCB → .因为CG → =λCD → +μCB → ,CD → 与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一个基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.跟踪训练1 (1)如图,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE → =λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A.58B.14C .1 D.516答案 A解析 DE → =12DA → +12DO→=12DA → +14DB →=12DA → +14(DA → +AB → )=14AB → -34AD →,所以λ=14,μ=-34,故λ2+μ2=58.(2)如图,以向量OA → =a ,OB → =b 为邻边作平行四边形OADB ,BM → =13BC → ,CN → =13CD → ,则MN →=________.(用a ,b 表示)答案 12a -16b解析 ∵BA → =OA → -OB →=a -b ,BM → =16BA → =16a -16b ,∴OM → =OB → +BM →=b +(16a -16b )=16a +56b .∵OD →=a +b ,∴ON → =OC → +13CD → =12OD → +16OD → =23OD → =23a +23b .∴MN → =ON → -OM → =23a +23b -16a -56b =12a -16b .题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.(133,83) B.(-133,-83)C.(133,43)D.(-133,-43)答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b ).∵a -2b =(5,-2)-(-8,-6)=(13,4),∴c =-13(a -2b )=(-133,-43).(2)如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE → +μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B.85 C .2 D.83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA → =(-2,2),CE → =(-2,1),DB →=(1,2),∵CA → =λCE → +μDB → ,∴(-2,2)=λ(-2,1)+μ(1,2),∴Error!解得Error!故λ+μ=85.教师备选已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC → =2AD →,则顶点D 的坐标为( )A.(2,72)B.(2,-12)C .(3,2)D .(1,3)答案 A解析 设D (x ,y ),则AD → =(x ,y -2),BC →=(4,3),又BC → =2AD →,所以Error!解得Error!所以顶点D 的坐标为(2,72).思维升华 向量的坐标表示把点与数联系起来,引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体.跟踪训练2 (1)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ等于( )A .1B .2C .3D .4答案 D解析 以向量a 和b 的交点O 为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO → =(-1,1),b =OB →=(6,2),c =BC →=(-1,-3),∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),则Error!解得Error!∴λμ=-2-12=4.(2)在△ABC 中,点P 在BC 上,且BP → =2PC → ,点Q 是AC 的中点,若PA → =(4,3),PQ →=(1,5),则AQ → =________,BC →=________.答案 (-3,2) (-6,21)解析 AQ → =PQ → -PA →=(1,5)-(4,3)=(-3,2),PC → =PA → +AC → =PA → +2AQ →=(4,3)+2(-3,2)=(-2,7),BC → =3PC →=3(-2,7)=(-6,21).题型三 向量共线的坐标表示例3 (1)已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),若(a -b )∥c ,则锐角x 等于( )A .15° B .30°C .45° D .60°答案 C(2)已知在平面直角坐标系Oxy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3—→与向量a =(1,-1)共线,若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则λ等于( )A .-3B .3C .1D .-1答案 D解析 设OP 3—→=(x ,y ),则由OP 3—→∥a 知x +y =0,所以OP 3—→=(x ,-x ).若OP 3—→ =λOP 1—→ +(1-λ)OP 2—→,则(x ,-x )=λ(3,1)+(1-λ)·(-1,3)=(4λ-1,3-2λ),即Error!所以4λ-1+3-2λ=0,解得λ=-1.教师备选1.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.答案 12解析 由题意得2a +b =(4,2),因为c =(1,λ),c ∥(2a +b ),所以4λ-2=0,解得λ=12.2.已知O 为坐标原点,点A (6,3),若点P 在直线OA 上,且|OP → |=12|PA →|,P 是OB 的中点,则点B 的坐标为________________________.答案 (4,2)或(-12,-6)解析 ∵点P 在直线OA 上,∴OP → ∥PA →,又∵|OP → |=12|PA → |,∴OP →=±12PA → ,设点P (m ,n ),则OP → =(m ,n ),PA →=(6-m ,3-n ).①若OP → =12PA →,则(m ,n )=12(6-m ,3-n ),∴Error!解得Error!∴P (2,1),∵P 是OB 的中点,∴B (4,2).②若OP →=-12PA →,则(m ,n )=-12(6-m ,3-n ),∴Error!解得Error!∴P (-6,-3),∵P 是OB 的中点,∴B (-12,-6).综上所述,点B 的坐标为(4,2)或(-12,-6).思维升华 平面向量共线的坐标表示问题的解题策略(1)若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是x 1y 2=x 2y 1.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).跟踪训练3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +k c )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.解 (1)a +k c =(3+4k ,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1),又a +b =(2,4),|d -c|=5,∴Error!解得Error!或Error!∴d 的坐标为(3,-1)或(5,3).课时精练1.(2022·泉州模拟)若向量AB → =(2,3),AC → =(4,7),则BC →等于( )A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)答案 B2.(2022·TOP300尖子生联考)已知A (-1,2),B (2,-1),若点C 满足AC → +AB →=0,则点C 的坐标为( )A.(12,12) B .(-3,3)C .(3,-3)D .(-4,5)答案 D3.下列向量组中,能表示它们所在平面内所有向量的一个基底是( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =(-34,12),b =(3,-2)答案 B4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 由m ∥n ,得b cos B -a cos A =0,即sin B cos B =sin A cos A ,所以sin 2B =sin 2A ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形;反之,△ABC 是等腰三角形,若a =c ≠b ,则不能得到m ∥n ,所以“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件.5.(多选)(2022·聊城一中模拟)在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD的中点,AC 与BD 交于点M ,设AB → =a ,AD →=b ,则下列结论正确的是( )A.AC → =12a +b B.BC → =-12a +b C.BM → =-13a +23b D.EF → =-14a +b 答案 ABD解析 AC → =AD → +DC → =AD → +12AB → =12a +b ,故A 正确;BC → =BA → +AD → +DC → =-AB → +AD → +12AB →=-12a +b ,故B 正确;BM → =BA → +AM → =-AB → +23AC → =-23a +23b ,故C 错误;EF → =EA → +AD → +DF → =-12AB → +AD → +14AB → =-14a +b ,故D 正确.6.(多选)已知向量OA → =(1,-3),OB → =(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2 B.12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB → =OB → -OA →=(2,-1)-(1,-3)=(1,2),AC → =OC → -OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,A ,B ,C 三点就可构成三角形.7.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,若点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 ∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC → =2AB →,设点D 的坐标为(x ,y ),则DC → =(4-x ,2-y ),又AB →=(1,-1),∴(4-x ,2-y )=2(1,-1),即Error!∴Error!∴点D 的坐标为(2,4).8.(2022·开封模拟)已知向量m =(λ+1,1),n =(λ+2,2).若(2m +n )∥(m -2n ),则λ=________.答案 0解析 由题意得,2m +n =(3λ+4,4),m -2n =(-λ-3,-3),∵(2m +n )∥(m -2n ),∴-3(3λ+4)-4(-λ-3)=0,解得λ=0.9.已知A (-2,4),B (3,-1),C (-3,-4).设AB → =a ,BC → =b ,CA → =c ,且CM → =3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)方法一 ∵m b +n c =(-6m +n ,-3m +8n ),∴Error!解得Error!方法二 ∵a +b +c =0,∴a =-b -c ,又a =m b +n c ,∴m b +n c =-b -c ,∴Error!(3)设O 为坐标原点,∵CM → =OM → -OC →=3c ,∴OM → =3c +OC →=(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵CN → =ON → -OC →=-2b ,∴ON → =-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).10.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB → =2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值.解 (1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,即2k -4+5=0,解得k =-12.(2)方法一 ∵A ,B ,C 三点共线,∴AB → =λBC →,即2a +3b =λ(a +m b ),∴Error!解得m =32.方法二 AB →=2a +3b =2(1,0)+3(2,1)=(8,3),BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ),∵A ,B ,C 三点共线,∴AB → ∥BC →,∴8m -3(2m +1)=0,即2m -3=0,∴m =32.11.(2022·金华模拟)已知△ABC 的三边分别是a ,b ,c ,设向量m =(sin B -sin A ,3a +c ),n =(sin C ,a +b ),且m ∥n ,则B 的大小是( )A.π6B.5π6C.π3D.2π3答案 B解析 因为m ∥n ,所以(a +b )(sin B -sin A )=sin C (3a +c ).由正弦定理得(a +b )(b -a )=c (3a +c ),整理得a 2+c 2-b 2=-3ac ,由余弦定理得cos B =a 2+c 2-b 22ac =-3ac 2ac =-32.又0<B <π,所以B =5π6.12.(多选)如图,B 是AC 的中点,BE → =2OB → ,P 是平行四边形BCDE 内(含边界)的一点,且OP →=xOA → +yOB → (x ,y ∈R ),则下列结论中正确的是( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =-12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .当P 在C 点时,x =1,y =2答案 BC解析 当OP → =y OB →时,点P 在线段BE 上,故1≤y ≤3,故A 中结论错误;当P 是线段CE 的中点时,OP → =OE → +EP → =3OB → +12(EB →+BC → )=3OB → +12(-2OB → +AB → )=3OB → +12(-2OB → +OB → -OA → )=-12OA → +52OB →,故B 中结论正确;当x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是一条线段,故C 中结论正确;因为OB → =12(OC →+OA → ),所以OC → =2OB → -OA →,则OP → =-OA → +2OB →,所以x =-1,y =2,D 错误.13.已知|OA → |=1,|OB → |=3,OA → ·OB → =0,点C 在∠AOB 内,且OC → 与OA → 的夹角为30°,设OC →=mOA → +nOB → (m ,n ∈R ),则m n的值为______.答案 3解析 ∵OA → ·OB →=0,∴OA → ⊥OB →,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴建立平面直角坐标系(图略),则OA → =(1,0),OB →=(0,3),OC →=mOA → +nOB → =(m ,3n ).∵tan 30°=3nm =33,∴m =3n ,即m n=3.14.若点M 是△ABC 所在平面内一点,且满足AM → =34AB → +14AC →.则△ABM 与△ABC 的面积之比为________;若N 为AB 的中点,AM 与CN 交于点O ,设BO → =xBM → +yBN →,则x +y =________.答案 1∶4 107解析 由AM → =34AB → +14AC →,可知点M ,B ,C 三点共线,令BM → =λBC →(λ∈R ),则AM → =AB → +BM → =AB → +λBC → =AB → +λ(AC → -AB → )=(1-λ)AB → +λAC →,所以λ=14,即点M 在边BC 上,如图所示,所以S△ABM S △ABC =BM BC =14.由BO → =xBM → +yBN →,得BO → =xBM → +y 2BA →,BO → =x 4BC →+yBN → ,由O ,M ,A 三点共线及O ,N ,C 三点共线得Error!解得Error!所以x +y =107.15.若{α,β}是一个基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底{α,β}下的坐标,现已知向量a 在基底{p =(1,-1),q =(2,1)}下的坐标为(-2,2),则a 在基底{m =(-1,1),n =(1,2)}下的坐标为______.答案 (0,2)解析 因为a 在基底{p ,q }下的坐标为(-2,2),所以a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ),所以Error!即Error!所以a 在基底{m ,n }下的坐标为(0,2).16.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.(1)设PG → =λPQ → ,将OG → 用λ,OP → ,OQ →表示;(2)设OP → =xOA → ,OQ → =yOB → ,求证:1x +1y是定值.(1)解 OG → =OP → +PG →=OP → +λPQ →=OP → +λ(OQ → -OP →)=(1-λ)OP → +λOQ →.(2)证明 由(1)得OG → =(1-λ)OP → +λOQ →=(1-λ)xOA → +λy OB →,因为G 是△OAB 的重心,所以OG → =23OM → =23×12(OA →+OB → )=13OA → +13OB → .又OA → ,OB →不共线,所以Error!解得Error!所以1x +1y =3,即1x +1y 为定值.。
数学实验 矩阵
A
2
3
4
,
B
2
2
2
3 4 5
3 3 3
求:
C A B, D A, E A3, F A. B
创建matrix06.m文件 A=[1 2 3;2 3 4;3 4 5]; B=[1 1 1;2 2 2;3 3 3]; C=A+B D=A' E=A^3 F=A.*B
运行结果: C=
B1 = 0 1 1 1
000 000 300 4 10 0
B2 = 1 1 1 1
110 234 3 6 10 4 10 20
4. 矩阵的扩展
矩阵的扩展有以下两种方法:
<1> 利用矩阵标识块的赋值命令 X(m1:m2,n1:n2)=A
生成大矩阵。其中,(m1:m2)必须等于A的 行维数,(n1:n2)必须等于A的列维数。 生成的(m2×n2)的矩阵X,除赋值子阵和 已存在的元素外,其余元素都默认为0。
一点。点M1到平面π的距离是:
d | nM0M1 | |n|
创建vector03.m文件 M0=[1 1 3]; M1=[8 3 -4]; n=[2 -2 1]; d=abs(dot(n,M1-M0))/norm(n) 运行结果:
d= 1
三、矩阵的生成
1、 一般矩阵的生成: (1) 输入矩阵时以“[ ]”为其标识,即矩阵 的元素应在“[ ]”内部; (2)同行元素之间可由空格或“,”分隔, 行与行间用“;”或回车符分隔; (3) 矩阵元素可为运算表达式;
3. 矩阵的抽取 (1)对角元素抽取函数diag
diag(X,k) 抽取矩阵X的第k条对角线的元素向量。K为0时即 为抽取主对角线,k为正值时为上方第k条对角线, k为负值时为下方第k条对角线。
高中数学第六章平面向量初步6.1.4数乘向量6.1.5向量的线性运算学案新人教B版必修第二册
6.1.4 数乘向量 6.1.5 向量的线性运算问题导学预习教材P145-P150的内容,思考以下问题:1.向量与实数可以求积,那么向量和实数可以进行加减运算吗?2.数乘向量的定义及其几何意义是什么?3.向量线性运算满足哪些运算律?1.数乘向量一般地,给定一个实数λ与任意一个向量a,规定它们的乘积是一个向量,记作λa,其中:(1)当λ≠0且a≠0时,λa的模为|λ||a|,而且λa的方向如下:①当λ>0时,与a的方向相同;②当λ<0时,与a的方向相反.(2)当λ=0或a=0时,λa=0.上述实数λ与向量a相乘的运算简称为数乘向量.当λ和μ都是实数时有λ(μa)=(λμ)a.数乘向量的定义说明,如果存在实数λ,使得b=λa,则b∥a.■名师点拨(1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ-a均无法运算.(2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0.2.向量的线性运算(1)向量的加法与数乘向量的混合运算一般地,对于实数λ与μ,以及向量a,有λa+μa=(λ+μ)a.一般地,对于任意实数λ,以及向量a与b,有λ(a+b)=λa+λb.(2)向量的线性运算向量的加法、减法、数乘向量以及它们的混和运算,统称为向量的线性运算.判断正误(正确的打“√”,错误的打“×”) (1)对于任意的向量a ,总有0·a =0.( ) (2)当λ>0时,|λa |=λa .( )(3)若a ≠0,λ≠0,则a 与-λa 的方向相反.( ) 答案:(1)× (2)× (3)×已知点C 是线段AB 靠近点B 的三等分点,下列正确的是( ) A.AB →=3BC →B.AC →=2BC →C.AC →=12BC →D.AC →=2CB →解析:选D.由题意可知,AB →=-3BC →;AC →=-2BC →=2CB →.故只有D 正确.设四边形ABCD 中,有DC →=12AB →且|AD →|=|BC →|,则这个四边形是( )A .平行四边形B .矩形C .等腰梯形D .菱形答案:C如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析:由向量加法的平行四边形法则知AB →+AD →=AC →. 又因为O 是AC 的中点,所以AC =2AO , 所以AC →=2AO →,所以AB →+AD →=2AO →, 所以λ=2. 答案:2向量的线性运算(1)若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =________. (2)化简下列各式:①3(6a +b )-9⎝ ⎛⎭⎪⎫a +13b ;②12[(3a +2b )-⎝ ⎛⎭⎪⎫a +12b ]-2⎝ ⎛⎭⎪⎫12a +38b ;③2(5a -4b +c )-3(a -3b +c )-7a .【解】 (1)由已知得3x +3a +2x -4a -4x +4a -4b =0,所以x +3a -4b =0,所以x =4b -3a .故填4b -3a .(2)①原式=18a +3b -9a -3b =9a .②原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.③原式=10a -8b +2c -3a +9b -3c -7a =b -c .向量线性运算的方法(1)向量的线性运算类似于多项式的代数运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在实数与向量的乘积中同样适用,但是这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)向量也可以通过列方程来解,把所求向量当作未知数,利用解代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.1.化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).解:原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b . 2.已知向量为a ,b ,未知向量为x ,y ,向量a ,b ,x ,y 满足关系式3x -2y =a ,-4x +3y =b ,求向量x ,y .解:⎩⎪⎨⎪⎧3x -2y =a ①,-4x +3y =b ②,由①×3+②×2得,x =3a +2b ,代入①得3×(3a +2b )-2y =a , 所以x =3a +2b ,y =4a +3b .利用已知向量表示相关向量(1)如图,▱ABCD 中,E 是BC 的中点,若AB →=a ,AD →=b ,则DE →=( )A.12a -b B.12a +bC .a +12bD .a -12b(2)如图所示,D ,E 分别是△ABC 的边AB ,AC 的中点,M ,N 分别是DE ,BC 的中点,已知BC →=a ,BD →=b ,试用a ,b 分别表示DE →,CE →,MN →.【解】 (1)选D.DE →=DC →+CE →=AB →+⎝ ⎛⎭⎪⎫-12AD →=AB →-12AD →=a -12b .(2)由三角形中位线定理,知DE 綉12BC ,故DE →=12BC →,即DE →=12a .CE →=CB →+BD →+DE →=-a +b +12a =-12a +b .MN →=MD →+DB →+BN →=12ED →+DB →+12BC →=-14a -b +12a =14a -b .[变条件,变问法]在本例(1)中,设AC 与BD 相交于点O ,F 是线段OD 的中点,AF 的延长线交DC 于点G ,试用a ,b 表示AG →.解:因为DG ∥AB , 所以△DFG ∽△BFA ,又因为DF =12OD =12×12BD =14BD ,所以DG AB =DF BF =13,所以AG →=AD →+DG →=AD →+13AB →=13a +b .用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示OM →,ON →,MN →.解:BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ), 所以OM →=OB →+BM →=b +16a -16b =16a +56b .因为CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →)=23(a +b ). MN →=ON →-OM → =23(a +b )-16a -56b =12a -16b .利用向量判断三点共线已知非零向量e 1、e 2 不共线.如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线.【证明】 因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →.所以AB →,BD →共线,且有公共点B ,所以A 、B 、D 三点共线.利用向量判断三点共线的方法一般来说,要判定A ,B ,C 三点是否共线,只需看是否存在实数λ,使得AB →=λAC →(或BC →=λAB →等)即可.如图所示,已知D ,E 分别为△ABC 的边AB ,AC 的中点,延长CD 到M 使DM =CD ,延长BE 至N 使BE =EN ,求证:M ,A ,N 三点共线.证明:因为D 为MC 的中点,且D 为AB 的中点, 所以AB →=AM →+AC →, 所以AM →=AB →-AC →=CB →.同理可证明AN →=AC →-AB →=BC →.所以AM →=-AN →. 所以AM →,AN →共线且有公共点A , 所以M ,A ,N 三点共线.1.下列命题中正确的个数是( ) ①AB →+BA →=0;②AB →-AC →=BC →;③0·AB →=0. A .1 B .2 C .3D .0解析:选A.由两相反向量的和为零向量知①正确; 由向量的减法运算法则知,AB →-AC →=CB →,②错; 由数乘向量的意义知0·AB →=0,③错, 即正确的个数是1,故选A.2.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC → D.14AB →+34AC → 解析:选A.法一:如图所示,EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →,故选A.法二:EB →=AB →-AE →=AB →-12AD →=AB →-12×12(AB →+AC →)=34AB →-14AC →,故选A.3.对于向量a ,b 有下列表示:①a =2e ,b =-2e ;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2.其中,向量a ,b 一定共线的是( ) A .①②③ B .②③④ C .①③④D .①②③④解析:选A.对于①,b =-a ,有a ∥b ; 对于②,b =-2a ,有a ∥b ; 对于③,a =4b ,有a ∥b ; 对于④,a 与b 不共线.4.若|a |=5,b 与a 方向相反,且|b |=7,则a =________b . 解析:由题意知a =-57b .答案:-57[A 基础达标]1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( ) A .2a -b B .2b -a C .b -aD .a -b解析:选B.原式=13(a +4b -4a +2b )=13(-3a +6b )=-a +2b =2b -a .2.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( )①m (a -b )=m a -m b ;②(m -n )a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n .A .①④B .①②C .①③D .③④解析:选B.①正确.②正确.③错误.由m a =m b 得m (a -b )=0,当m =0时也成立,推不出a =b .④错误.由m a =n a 得(m -n )a =0,当a =0时也成立,推不出m =n .3.若5AB →+3CD →=0,且|AD →|=|BC →|,则四边形ABCD 是( ) A .平行四边形B .菱形C .矩形D .等腰梯形解析:选D.由5AB →+3CD →=0知,AB →∥CD →且|AB →|≠|CD →|,故此四边形为梯形,又|AD →|=|BC →|,所以梯形ABCD 为等腰梯形.4.已知向量a ,b 是两个非零向量,在下列四个条件中,一定能使a ,b 共线的是( ) ①2a -3b =4e 且a +2b =-2e ;②存在相异实数λ,μ,使λa -μb =0; ③x a +y b =0(其中实数x ,y 满足x +y =0); ④已知梯形ABCD ,其中AB →=a ,CD →=b . A .①② B .①③ C .②D .③④解析:选A.对于①,可解得a =27e ,b =-87e ,故a 与b 共线;对于②,由于λ≠μ.故λ,μ不全为0,不妨设λ≠0则由λa -μb =0得a =μλb ,故a 与b 共线;对于③,当x=y =0时,a 与b 不一定共线;对于④,梯形中没有AB ∥CD 这个条件,也可能AD ∥BC ,故a 与b 不一定共线.5.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF →=( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA → D.12AB →-23AD → 解析:选D.EC →=12AB →,CF →=23CB →=-23AD →,所以EF →=EC →+CF →=12AB →-23AD →.6.已知A ,B ,C 是三个不同的点,OA →=a -b ,OB →=2a -3b ,OC →=3a -5b ,则A ,B ,C 三点________.(填写“共线”或“不共线”)答案:共线7.若AP →=tAB →(t ∈R ),O 为平面上任意一点,则OP →=________.(用OA →,OB →表示) 解析:AP →=tAB →,OP →-OA →=t (OB →-OA →), OP →=OA →+tOB →-tOA →=(1-t )OA →+tOB →. 答案:(1-t )OA →+tOB →8.已知平面上不共线的四点O ,A ,B ,C ,若OA →-3OB →+2OC →=0,则|AB →||BC →|=________.解析:因为OA →-3OB →+2OC →=0,所以OB →-OA →=2(OC →-OB →),所以AB →=2BC →, 所以|AB →||BC →|=2.答案:29.如图在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB ,DC 与OA 的交点为E ,设OA →=a ,OB →=b ,用a ,b 表示向量OC →,DC →. 解:因为AC =BA ,所以A 是BC 的中点, 所以OA →=12(OB →+OC →),所以OC →=2OA →-OB →=2a -b . 所以DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .10.设两个非零向量e 1,e 2 不共线,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2.问:是否存在实数k ,使得A ,B ,D 三点共线,若存在,求出k 的值;若不存在,说明理由.解:设存在k ∈R ,使得A ,B ,D 三点共线.因为DB →=CB →-CD →=(e 1+3e 2)-(2e 1-e 2)=-e 1+4e 2,AB →=2e 1+k e 2. 又因为A ,B ,D 三点共线,所以AB →=λDB →, 所以2e 1+k e 2=λ(-e 1+4e 2),所以⎩⎪⎨⎪⎧2=-λ,k =4λ,所以k =-8,所以存在k =-8,使得A ,B ,D 三点共线.[B 能力提升]11.已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,且PA →+PB →+PC →=AB →,则( ) A .P 在△ABC 内部 B .P 在△ABC 外部C .P 在AB 边上或其延长线上D .P 在AC 边上解析:选D.因为PA →+PB →+PC →=AB →,所以PA →+PC →=AB →+BP →=AP →, 所以2AP →+PA →+PC →=3AP →,所以(AP →+PA →)+(AP →+PC →)=3AP →,即AC →=3AP →, 所以点P 在AC 边上,且为AC 的三等分点.12.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示以下向量:(1)AC →; (2)AD →; (3)DF →+FE →+ED →.解:(1) AC →=OC →-OA →=c -a . (2)AD →=AO →+OD →=-OA →+OD →=-a +d .(3)DF →+FE →+ED →=DO →+OF →+FO →+OE →+EO →+OD →=0.13.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,AB →=a ,AC →=b .(1)用a ,b 分别表示向量AE →,BF →; (2)求证:B ,E ,F 三点共线.解:(1)因为AD →=12(AB →+AC →)=12(a +b ),所以AE →=23AD →=13(a +b ),因为AF →=12AC →=12b ,所以BF →=AF →-AB →=-a +12b .(2)证明:由(1)知BF →=-a +12b ,BE →=-23a +13b =23⎝⎛⎭⎪⎫-a +12b ,所以BE →=23BF →.所以BE →与BF →共线.- 11 - 又BE ,BF 有公共点B ,所以B ,E ,F 三点共线.[C 拓展探究])14.如图,在△AOB 中,C 是AB 边上的一点,且BC CA =λ(λ>0),若OA →=a ,OB →=b ,用a ,b 表示OC →.解:由题意得,OC →=OB →+BC →,BA →=OA →-OB →=a -b , 由BC CA =λ(λ>0),所以BC BA =λ1+λ,所以BC →=λ1+λBA →,即OC →=OB →+λ1+λBA →=b +λ1+λ(a -b )=λa +b1+λ.。
课件7:6.1.5 向量的线性运算
[正解] 因为向量 ka+2b 与 8a+kb 的方向相反, 所以 ka+2b=λ(8a+kb)⇒2k==8λkλ,⇒k=-4(因为方向相反, 所以 λ<0⇒k<0). [答案] -4
本课结束
综上,a 与 b 共线,即 a∥b.
典例剖析
易错警示
典例 4 设a,b是两个不共线的向量,若向量ka+2b与8a +kb的方向相反,则k=_______. [错解] ±4 [辨析] 本题容易出现得到k=±4的错误,出错的原因 是忽视了条件方向相反对k取值的限制.因此由两个向 量共线求参数时要注意两向量的方向.
规律方法:用已知向量表示未知向量的技巧 (1)由已知向量表示未知向量时,要善于利用三角形法则、 平行四边形法则以及向量线性运算的运算律. (2)当直接表示较困难时,应考虑利用方程(组)求解.
对点训练 2.如图,四边形 ABCD 是一个梯形,AB∥CD,且 AB =2CD,M,N 分别是 DC 和 AB 的中点,已知A→B=a, A→D=b,试用 a,b 表示B→C和M→N.
(2)如图所示,已知□ABCD 的边 BC,CD 上的中点分别为
K,L,且A→K=e1,A→L=e2,试用 e1,e2 表示B→C,C→D.
解:设B→C=x,则B→K=12x,A→B=A→K+K→B=e1-21x, D→L=21e1-14x,又A→D=x,由A→D+D→L=A→L,得 x+12e1-14x=e2, 解方程得 x=43e2-23e1,即B→C=43e2-23e1, 由C→D=-A→B,A→B=e1-12x,得C→D=-43e1+23e2.
解:(1)∵A→D=12(A→B+A→C)=12(a+b), பைடு நூலகம்A→E=23A→D=31(a+b), ∵A→F=12A→C=21b,
5_2_1 向量运算
§5.2.1 向量运算
0011 0010 1010 1101 0001 0100 1011
一、向量的概念 二、向量的线性运算
1
一、向量的概念
向量: 既有大小, 又有方向的量称为向量 (又称矢量).
表示法: 有向线段 M1 M2 , 或 a , 或a .
向量的模 : 向量的大小, 记作 M1M2 , 或 a , 或 a . 向径 (矢径): 起点为原点的向量.
a
.
总之:
a
a
运算律 : 结合律 分配律
(
a)
(
a)
a
( (a
)a
b)
a a
a b
11可aa见a;a ;
若
a
0,
则有单位向量
a
1
a.
因此
a
a
a
a
Page 7
定理1. 设 a 为非零向量 , 则
a∥b
b a ( 为唯一实数)
证: “ ”. 设 a∥b , 取 =± b a , a , b 同向时 取正号, 反向时取负号, 则 b 与 a 同向, 且
例1. 设 M 为 ABCD 对角线的交点, AB a , AD b ,
试用 a 与 b 表示 MA, MB , MC , MD .
解: a b AC 2 MC 2 MA
D
C
b a BD 2 MD 2 MB
b
MA
1 2
(
a
b)
MB
1 2
(
b
a
)
A
MC
1 2
(
a
b
)
MD
1 2
(
2020高考数学一轮复习第五章平面向量5-2平面向量基本定理及坐标表示学案理
【2019最新】精选高考数学一轮复习第五章平面向量5-2平面向量基本定理及坐标表示学案理考纲展示►1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.考点1 平面向量基本定理及其应用1.平面向量基本定理如果e1,e2是同一平面内的两个________向量,那么对于这一平面内的任意向量a,________一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组________.答案:不共线有且只有基底2.平面向量的正交分解把一个向量分解为两个________的向量,叫做把向量正交分解.答案:互相垂直向量相等的常见两种形式:用基底表示的向量相等;用坐标表示的向量相等.(1)已知向量a,b不共线,若λ1a+b=-a+μ1b,则λ1=__________,μ1=__________.答案:-1 1解析:根据平面向量基本定理,用一组基底表示一个向量,基底的系数是唯一的,则有λ1=-1,μ1=1.(2)已知向量a=(1,2),b=(2,3),c=(3,4),若c=λa+μb,则2λ+μ=__________.答案:0解析:由c=λa+μb,得(3,4)=λ(1,2)+μ(2,3)=(λ+2μ,2λ+3μ),∴ 解得故2λ+μ=0.向量易忽略的两个问题:向量的夹角;单位向量.(1)等边三角形ABC 中,若=a ,=b, 则a ,b 的夹角为__________.答案:120°解析:求两向量的夹角要求两向量的起点是同一点,因此a ,b 的夹角为120°.(2)已知A(1,3),B(4,-1),则与向量共线的单位向量为__________.答案:或⎝ ⎛⎭⎪⎫-35,45 解析:由已知得=(3,-4),所以||=5,因此与共线的单位向量为=或-=.[典题1] (1)如果e1,e2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e1与e1+e2B .e1-2e2与e1+2e2C .e1+e2与e1-e2D .e1+3e2与6e2+2e1 [答案] D[解析] 选项A 中,设e1+e2=λe1,则无解;选项B 中,设e1-2e2=λ(e1+2e2),则无解;选项C 中,设e1+e2=λ(e1-e2),则无解;选项D 中,e1+3e2=(6e2+2e1),所以两向量是共线向量.(2)[2017·山东济南调研]如图,在△ABC 中,=,P 是BN 上的一点,若=m +,则实数m 的值为________.[答案] 311[解析] 设=k ,k∈R.因为=+=+k BN→=+k(-)=+k ⎝ ⎛⎭⎪⎫14AC →-AB → =(1-k)+,且=m +,所以解得⎩⎪⎨⎪⎧k =811,m =311. [点石成金] 用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点2 平面向量的坐标运算平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a =(x1,y1),b =(x2,y2),则a +b =________,a -b =________,λa =________,|a|=________.(2)向量坐标的求法①若向量的起点是坐标原点,则终点的坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则=________,||=________.答案:(1)(x1+x2,y1+y2) (x1-x2,y1-y2) (λx1,λy1) x21+y21(2)②(x2-x1,y2-y1)(1)[教材习题改编]已知A(-1,-1),B(1,3),C(2,λ),若A ,B ,C 三点共线,则λ=________.答案:5(2)[教材习题改编]设P 是线段P1P2上的一点,若P1(2,3),P2(4,7)且P 是P1P2的一个四等分点,则P 的坐标为________.答案:或⎝ ⎛⎭⎪⎫72,6 [典题2] (1)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则=() A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4) [答案] B[解析] 由题意,得=-AB→=-=(-)-=-2AB→=(1,3)-2(2,4)=(-3,-5).(2)[2017·广东六校联考]已知A(-3,0),B(0,2),O 为坐标原点,点C 在∠AOB内,|OC|=2,且∠AOC=,设= λ+(λ∈R),则λ的值为() A .1B. C.D.23 [答案] D[解析] 过C 作CE⊥x 轴于点E.由∠AOC=知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=.[点石成金] 平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.考点3 平面向量共线的坐标表示平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),则a∥b⇔________.答案:x1y2-x2y1=0(1)[教材习题改编]已知a=(3,4),b=(sin β,cos β),且a∥b,则tan β=__________.答案:34解析:由a∥b,得b=λa,∴sin β=3λ,cos β=4λ(λ≠0),∴=,即tan β=. (2)[教材习题改编]已知e1,e2是平面向量的一组基底,且a=λ1e1+λ2e2.若a∥e2,则λ1=________;a和e1共线的条件是________.答案:0 λ2=0解析:若a∥e2,则设a=λe2(λ≠0),于是λe2=λ1e1+λ2e2,即(λ-λ2)e2=λ1e1.又e1,e2不共线,所以λ-λ2=0且λ1=0.同理a和e1共线有λ2=0. [考情聚焦] 平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式出现,难度较小,属容易题.主要有以下几个命题角度:角度一利用向量共线求参数或点的坐标[典题3] (1)已知向量a=(2,3),b=(-1,2),若ma+4b与a-2b共线,则m=________.[答案] -2[解析] ma +4b =(2m -4,3m +8),a -2b =(4,-1),由于ma +4b 与a -2b 共线,∴-(2m -4)=4(3m +8),解得m =-2.(2)已知梯形ABCD ,其中AB∥CD,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.[答案] (2,4)[解析] ∵在梯形ABCD 中,DC =2AB ,AB∥CD,∴=2.设点D 的坐标为(x ,y),则=(4-x,2-y),=(1,-1),∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),∴解得⎩⎪⎨⎪⎧x =2,y =4, 故点D 的坐标为(2,4).[点石成金] 1.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若a =(x1,y1),b =(x2,y2),则a∥b 的充要条件是x1y2=x2y1”解题比较方便.2.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.角度二利用向量共线解决三点共线问题[典题4] 已知向量=(1,-3),=(2,-1),=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则k =________.[答案] 1[解析] 若A ,B ,C 不能构成三角形,则向量,共线.∵=-=(2,-1)-(1,-3)=(1,2),AC →=-=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k =0,解得k =1.[点石成金] 向量共线的充要条件用坐标可表示为x1y2-x2y1=0.[方法技巧] 1.两向量平行的充要条件若a =(x1,y1),b =(x2,y2),其中b≠0,则a∥b 的充要条件是a =λb ,这与x1y2-x2y1=0在本质上是没有差异的,只是形式上不同.2.三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定.3.若a 与b 不共线且λa +μb =0,则λ=μ=0.[易错防范] 1.若a ,b 为非零向量,当a∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.2.若a =(x1,y1),b =(x2,y2),则a∥b 的充要条件不能表示成=,因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0.真题演练集训1.[2016·新课标全国卷Ⅱ]已知向量a =(1,m),b =(3,-2),且(a +b)⊥b,则m =( )A .-8B .-6C .6D .8 答案:D解析:由向量的坐标运算,得a +b =(4,m -2),由(a +b) ⊥b,得(a +b)·b=12-2(m -2)=0,解得m =8,故选D.2.[2015·四川卷]设向量a =(2,4)与向量b =(x,6)共线,则实数x =( )A .2B .3C .4D .6 答案:B解析:∵ a∥b,∴ 2×6-4x =0,解得x =3.3.[2014·福建卷]在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e1=(0,0),e2=(1,2)B .e1=(-1,2),e2=(5,-2)C .e1=(3,5),e2=(6,10)D .e1=(2,-3),e2=(-2,3)答案:B解析:解法一:若e1=(0,0),e2=(1,2),则e1∥e2,而a 不能由e1,e2表示,排除A ;若e1=(-1,2),e2=(5,-2),因为≠,所以e1,e2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.解法二:因为a =(3,2),若e1=(0,0),e2=(1,2),不存在实数λ,μ,使得a =λe1+μe2,排除A ;若e1=(-1,2),e2=(5,-2),设存在实数λ,μ,使得a =λe1+μe2,则(3,2)=(-λ+5μ,2λ-2μ),所以解得所以a =2e1+e2,故选B.4.[2015·新课标全国卷Ⅱ]设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案:12解析:∵ λa +b 与a +2b 平行,∴ λa +b =t(a +2b), 即λa +b =ta +2tb ,∴ 解得⎩⎪⎨⎪⎧λ=12,t =12. 5.[2015·北京卷]在△ABC 中,点M ,N 满足=2,=.若=x +y ,则x =________,y =________. 答案: -16解析:∵ =2,∴ =.∵ =,∴ =(+),∴=-=(+)-23AC →=-.又=x+y,∴ x=,y=-.课外拓展阅读向量问题坐标化向量具有代数和几何的双重特征,比如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征.而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.[典例1] 向量a,b,c在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则=________. [解析] 设i,j分别为水平方向和竖直方向上的正向单位向量,则a=-i+j,b=6i+2j,c=-i-3j,所以-i-3j=λ(-i+j)+μ(6i+2j),根据平面向量基本定理得,λ=-2,μ=-,所以=4.[答案] 4[典例2] 给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上运动.若=x+y,其中x,y∈R,求x+y的最大值.[思路分析][解] 以O为坐标原点,所在的直线为x轴建立平面直角坐标系,如图所示,则A(1,0),B,设∠AOC=α,α∈,则C(cos α,sin α),由=x+y,得所以x=cos α+sin α,y=sin α,所以x+y=cos α+sin α=2sin,又α∈,所以当α=时,x+y取得最大值2.方法探究典例2首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x+y的最大值.引入向量的坐标运算使得本题比较容易解决,体现了坐标法解决问题的优势.。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高三数学一轮复习第五章 平面向量5.2 平面向量的基本定理及向量坐标运算课件
【解析】由题意得
uur P1P
=
1 3
uuur P1P2
或
uur P1P
=
2 uuur 3 P1P2
,
uuur P1P2
=(3,-3).
设P(x,y),则
uur P1P
=(x-1,y-3),
当
uur P1P
=
1 uuur 3 P1P2时,(x-1,ຫໍສະໝຸດ -3)=1 (3,-3),
3
所以x=2,y=2,即P(2,2).
【解析】因为a∥b,所以4×3-2x=0,所以x=6. 答案:6
2.(必修4P79练习T7改编)已知三个力F1=(-2,-1),F2= (-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体 保持平衡,现加上一个力F4,则F4=________.
【解析】根据力的平衡原理有F1+F2+F3+F4=0,所以F4= -(F1+F2+F3)=(1,2). 答案:(1,2)
(2)基底:不共线的向量e1,e2叫做表示这一平面内所有 向量的一组基底. (3)平面向量的正交分解. 向量正交分解是把一个向量分解为两个_互__相__垂__直__的向 量.
2.平面向量的坐标表示 (1)平面向量的坐标表示: 在平面直角坐标系中,分别取与x轴、y轴方向相同的两 个单位向量i,j作为基底,由平面向量基本定理知,该平 面内的任一向量a可表示成a=x i+y j,由于a与有序数 对(x,y)是一一对应的,因此向量a的坐标是(x,y),记作 _a_=_(_x_,_y_)_.
2
2
于是得
1 2
1 2
1, 解得
向量的坐标表示及其运算
1向量的坐标表示及其运算一、知识点(一)向量及其表示:1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示.对于平面直角坐标系内的任意一个向量a ,我们都能将它正交分解为基本单位向量,i j 的线性组合吗?如下图左.显然,如上图右,我们一定能够以原点O 为起点作一位置向量OA ,使OA a =.于是,可知:在平面直角坐标系内,任意一个向量a 都存在一个与它相等的位置向量OA .由于这一点,我们研究向量的性质就可以通过研究其相应的位置向量来实现.由于任意一个位置向量都可以正交分解为基本单位向量,i j 的线性组合,所以平面内任意的一个向量a 都可以正交分解为基本单位向量,i j 的线性组合.即:a =OA =xi y j +上式中基本单位向量,i j 前面的系数x,y 是与向量a 相等的位置向量OA 的终点A 的坐标.由于基本单位向量,i j 是固定不可变的,为了简便,通常我们将系数x,y 抽取出来,得到有序实数对(x,y ).可知有序实数对(x,y )与向量a 的位置向量OA 是一一对应的.因而可用有序实数对(x,y )表示向量a ,并称(x,y )为向量a 的坐标,记作:a =(x,y )[说明](x,y )不仅是向量a 的坐标,而且也是与a 相等的位置向量OA 的终点A 的坐标!当将向量a 的起点置于坐标原点时,其终点A 的坐标是唯一的,所以向量a 的坐标也是唯一的.这样,我们就将点与向量、向量与坐标统一起来,使复杂问题简单化.显然,依上面的表示法,我们有:(1,0),(0,1),0(0,0)i j ===.(3)模:向量的长度叫向量的模,记作|a|或|AB|.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定.(5)单位向量:长度为1个长度单位的向量叫做单位向量.(6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线.(7)相等的向量:长度相等且方向相同的向量叫相等的向量.2向量坐标的有关概念(1)基本单位向量(2)位置向量(3)向量的正交分解我们称在平面直角坐标系中,方向与x轴和y轴正方向分别相同的的两个单位向量叫做基本单位向量,分别记为,i j,如图,称以原点O为起点的向量为位置向量,如下图左,OA即为一个位置向量.如上图右,设如果点A的坐标为(),x y,它在小x轴,y轴上的投影分别为M,N,那么向量OA能用向量OM与ON来表示吗?(依向量加法的平行四边形法则可得OA OM ON=+),OM与ON 能用基本单位向量,i j来表示吗?(依向量与实数相乘的几何意义可得,OM xi ON y j==),于是可得:OA OM ON xi y j=+=+由上面这个式子,我们可以看到:平面直角坐标系内的任一位置向量OA都能表示成两个相互垂直的基本单位向量,i j的线性组合,这种向量的表示方法我们称为向量的正交分解.向量的坐标运算:设),(),(),(),,(1121212211yxayyxxbayxbyxaλλλλ=±±=±ℜ∈==,,3.向量的摸:22yxa+=(二)向量平行的充要条件:1向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,即b∥a⇔b=λa(a≠0).2设a=(x1,y1),b=(x2,y2)则b∥a⇔1221yxyx=练习2:1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________;2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( ) ① 存在一个实数λ,使a =λb 或b =λa ; ②2121y yx x =;③(a +b )//(a -b ) A 、0个 B 、1个 C 、2个 D 、3个3.设0a 为单位向量,有以下三个命题:(1)若a 为平面内的某个向量,则0a a a =⋅;(2)若a 与0a 平行,则0a a a =⋅;(3)若a 与0a 平行且1a =,则0a a =.上述命题中,其中假命题的序号为 ;问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ [说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线.*法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线. 问题二:定比分点公式:设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.解:由12PP PP λ= ,可知{)()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++=++=λλλλ112121x x x y y y ,这就是点P 的坐标.[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=222121x x x y y y ,此公式叫做线段21P P 的中点公式.例、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标.解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB 的中点,于是点D 的坐标是(2,22121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =则由定比分点公式得 ⎪⎩⎪⎨⎧+++=+++=21222122213213x x x x y y y y ,整理得 ⎪⎩⎪⎨⎧++=++=3332121x x x x y y y y 这就是△ABC 的重心G 的坐标.例、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),所以定比λ=-32.解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式得12=λλ+-⨯+1)3(2解出实数λ=-32.解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又21PP P P= 32 ,所以λ=-32 .3.向量的坐标表示的运算我们学过向量的运算,知道向量有加法、减法、实数与向量的乘法等运算,那么,在学习了向量的坐标表示以后,我们怎么用向量的坐标形式来表示这些运算呢?设λ是一个实数,1122(,),(,).a x y b x y == 由于1111(,),a x y x i y j ==+ 2222(,)b x y x i y j ==+ 所以1122(,)(,)a b x y x y ±=±()()1122x i y j x i y j =+±+()()()()()121212121212,x i x i y j y j x x i y y j x x y y =±+±=±+±=±± ()()11111111(,),a x y x i y j x i y j x y λλλλλλλ==+=+=于是有:1122(,)(,)x y x y ±()1212,x x y y =±±()1111(,),x y x y λλλ=[说明]上面第一个式子用语言可表述为:两个向量的和(差)的横坐标等于它们对应的横坐标的和(差),两个向量的和(差)的纵坐标也等于它们对应的纵坐标的和(差),可笼统地简称为:两个向量和(差)的坐标等于对应坐标的和(差);同样,第二个式子用语言可表述为:数与向量的积的横坐标等于数与向量的横坐标的积,数与向量的积的纵坐标等于数与向量的纵坐标的积,也可笼统地简称为:数与向量积的坐标等于数与向量对应坐标的积. 例.如图,平面上A 、B 、C 三点的坐标分别为()2,1、()3,2-、()1,3-.(1)写出向量,AC BC 的坐标; (2)如果四边形ABCD 是平行四边形,求D 的坐标.解:(1)()()12,313,2AC =---=- ()()()13,322,1BC =----=(2)在上图中,因为四边形ABCD 是平行四边形,所以DC AB = 设点D 的坐标为(),D D x y ,于是有()1,3D D x y AB ---= 又 ()()32,215,1AB =---=- 故 ()()1,35,1D D x y ---=- 由此可得1531D D x y --=-⎧⎨-=⎩ 解得42D D x y =⎧⎨=⎩因此点D 的坐标为()4,2.1. 如图,写出向量,,a b c 的坐标.2.已知(1,2)a =-,若其终点坐标是(2,1),则其起点的坐标是 ;DC(-1,3)A(2,1)B(-3,2)yxO若其起点坐标是(2,1),则其终点的坐标是 . 3.已知向量()2,3a =-与()1,5b =-,求3a b -及3b a -的坐标.解:1.由题意:()()()()()()2,1,1,1,2,11,121,1(1)1,2a b c ==-=--=---=2.设起点的坐标是(x,y),则(2,1)-(x,y)=(-1,2),解得:(x,y)=(3,-1),即起点的坐标是(3,-1);设终点的坐标是(x,y),则(x,y)-(2,1) =(-1,2),解得:(x,y)=(1,3),即起点的坐标是(1,3).3. 3a b -=3()7,14---()()1,57,14-=- 3b a -=()1,5--3()2,3-()7,14=-[另法]:3b a -=()3a b --=()7,14--()7,14=-二、典型例题例1若向量b a ,. 满足.b a b a -=+,则b a 与所成角的大小为多少?例2 下列哪些是向量?哪些是标量?(1)浓度 (2)年龄 (3)风力 (4) 面积 (5)位移 (6)人造卫星速度 (7)向心力 (8)电量 (9)盈利 (10)动量 例3. ∆ABC 中,A (1,1),B (-3,5), C (8,-3),G 是ABC ∆重心,求GA 的坐标例4. 已知A ()()()()3,2,2,3,1,2,2,1--D C B ()反向的单位向量求与AB 1 ()()的坐标,求点,若E BE 522-= ()3若a BD AC a 求,-=()三点不共线,,求证:C B A 4 ()CD BD AD AC AB ++来表示,以5()()坐标三点共线,求点,,且若P P B A x P 3,6()如图7所示,若点M 分BA 的比λ为3:1,点N 在线段BC 上,且ABC AMNC S S ∆=32,求点N 点的坐标例5若ABCD 为正方形,E 是CD 的中点,且AB =a ,AD =b ,则BE 等于 A.b +21a B.b -21a C.a +21b D.a -21b 例6.e 1、e 2是不共线的向量,a =e 1+k e 2,b =k e 1+e 2,则a 与b 共线的充要条件是实数k 等于 A.0 B.-1 C.-2 D.±1例7.若a =“向东走8 km ”,b =“向北走8 km ”,则|a +b |=_______,a +b 的方向是_______.例8 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于 A.1B.2C.5D.6. 例11若a 、b 是两个不共线的非零向量(t ∈R ).(1)若a 与b 起点相同,t 为何值时,a 、t b 、31(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小?例12.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有A.a ∥b 且a 、b 方向相同B.a =bC.a =-bD.以上都不对例13.设四边形ABCD 中,有DC =21AB 且|AD |=|BC |,则这个四边形是 A.平行四边形 B.矩形 C.等腰梯形 D.菱形例15.设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围..例16已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?例17.如图所示,D 、E 是△ABC 中AB 、AC 边的中点,M 、N 分别是DE 、BC 的中点,已知BC =a ,BD =b ,试用a 、b 分别表示DE 、CE 和MN .AB CDMN E例18在△ABC 中,AM ∶AB =1∶3,AN ∶AC =1∶4,BN 与CM 交于点E ,AB =a ,AC =b ,用a 、b 表示AE .A BCMNE1.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 A.(-3,6) B.(3,-6)C.(6,-3)D.(-6,3) 2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于A.43 B.-43 C.34D.-343已知平面向量a =(3,1),b =(x ,-3)且a ⊥b ,则x 等于 A.3 B.1 C.-1 D.-31.如图,已知四边形ABCD 是梯形,AB ∥CD ,E 、F 、G 、H 分别是AD 、BC 、AB 与CD 的中点,则EF 等于( )A .BC AD +B .DC AB +C .DH AG +D .GH BG +2.下列说法正确的是 ( ) A .方向相同或相反的向量是平行向量 B .零向量的长度为0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 4 4.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( ) A .c b a =+ B .d b a =-C .d a b =-D .b a c =- 6.下列各量中是向量的是( ) A .质量 B .距离C .速度D .电流强度7.在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e + B .)35(2121e e - C .)53(2112e e - D .)35(2112e e - 8.若),,(,,,R o b a b a ∈=+μλμλ不共线则( )A .o b o a ==,B .o o a ==μ,C .o b o ==,λD .o o ==μλ, 9.化简)]24()82(21[31b a b a --+的结果是( )A .b a -2B .a b -2C .a b -D .b a -10.下列三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底 ②一个平面内有无数对不共线向量可作为该平面的所有向量的基底 ③零向量不可作为基底中的向量.其中正确的是 ( )A .①②B .②③C .①③D .①②③ 11.若2121,,PP P P b OP a OP λ===,则OP 等于 ( )A .b a λ+B .b a +λC .b a )1(λλ-+D .b a λλλ+++111 12.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||4||||22AB BD AC =+ 2其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共16分,答案填在横线上)13.21,e e 不共线,当k= 时,2121,e k e b e e k a +=+=共线. 14.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 15.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .16.已知c b a ,,的模分别为1、2、3,则||c b a ++的最大值为 .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、 B 、D 三点共线,求k 的值.19.已知向量,,32,32212121e e e e b e e a 与其中+=-=不共线向量,9221e e c -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线?20.如图,在△ABC 中,P 是BC 边上的任一点,求证:存在,1)1,0(,2121=+∈λλλλ且使AC AB AP 21λλ+=.1.已知(2,0),(1,3),a b ==-则a b +与a b -的坐标分别为( ) (A)(3,3),(3,-3) (B)(3,3),(1,-3) (C)(1,3),(3,3) (D)(1,3),(3,-3)2.若点A 坐标为(2,-1),AB 的坐标为(4,6),则B 点的坐标为( ) (A)(-2,-7) (B)(2,7) (C)(6,5) (D)(-2,5)3.已知(,4),(3,2).a x b y ==-若1,2a b =则x= ,y= . 4.已知AB (1)i x j +-=(2-x),且AB 的坐标所表示的点在第四象限,则x 的取值范围是.5.已知A(5,-2),B(2,-5),C(7,4),D(4,1),求证:AB=CD .6.已知(1,2),(3,1),(11,7),a b c =-=-=-并且.c xa yb =+求x,y 的值.7.已知22(,2),(5,)a m n b mn =+=,且.a b =求,.m n 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
r r r c = a × b = ax bx
r i
r j ay by
r k
r i
r j
r k
r r 4 = 10 j + 5k ,
az = 3 2 bz 1 1 2
r 2 2 Q | c |= 10 + 5 = 5 5 ,
r c 2 r 1 r 0 ∴ c = ± r = ± j+ k . 5 |c | 5
( 2) cosθ =
a x bx + a y b y + a z bz a x + a y + az
2 2 2
bx + b y + bz
2 2
2
1 , = 2 r r r r ( 3) a b =| b | Pr jb a
r r r ab ∴ Pr jb a = r = 3. |b |
3π π . ∴θ = 4
启示 两向量作这样的运算 结果是一个数量 两向量作这样的运算, 结果是一个数量.
r r r r 数量积为 定义 向量a 与b 的数量积为a b r r r r r r a b =| a || b | cosθ (其中θ 为a 与b 的夹角 的夹角) 其中
r b
r a r r r r Q | b | cos θ = Pr ja b , | a | cos θ = Pr jb a , r r r r r r ∴ a b =| b | Pr jb a = | a | Pr ja b .
二、两向量的向量积
r r r r r 定义 向量 a 与b 的向量积为 c = a × b 向量积为 r r r r r | c |=| a || b | sinθ 其中 的夹角 (其中θ 为a 与b 的夹角) r r r c 的方向既垂直于a ,又垂直于b ,指向符合
向量积也称为“叉积”、“外积”. 向量积也称为“叉积” 外积”
r r r 两两垂直,符合右手规则, 例 6 设向量 m , n, p 两两垂直,符合右手规则,且 r r r r r r | m |= 4 ,| n |= 2 ,| p |= 3 ,计算( m × n) p . r r r r r∧ r 解 | m × n |=| m || n | sin( m , n )
数量积符合下列运算规律: 数量积符合下列运算规律:
r r r r 交换律: (1)交换律:a b = b a; r r r r r r r 分配律: (2)分配律: a + b ) c = a c + b c ; (
r r r r r r 为数: (3)若 λ 为数: ( λa ) b = a ( λb ) = λ ( a b ), r r r r 为数: 若 λ 、为数: ( λa ) ( b ) = λ ( a b ).
向量积的坐标表达式
向量积还可用三阶行列式表示
r i r r a × b = ax bx
由上式可推出
r j ay by
r k az bz
a x a y az r r a // b = = bx b y bz
不能同时为零,但允许两个为零, b x 、 b y 、bz 不能同时为零,但允许两个为零,
cx cy cz
混合积的坐标表达式
关于混合积的说明: 关于混合积的说明: (1)向量混合积的几何意义: )向量混合积的几何意义:
r r向量的混合积 r r r r [ab c ] = (a × b ) c 是这样
的一个数, r 的一个数,它的绝对值表 r r 示以向量a 、b 、c 为棱的 平行六面体的体积. 平行六面体的体积
r r a⊥b axbx + ayby + azbz = 0
r r r r 例 1 已知 a = (1,1,4) , b = (1,2,2) ,求(1)a b ; r r r r 的夹角;( (2) a 与 b 的夹角;(3)a 在b 上的投影.
r r 解 (1) a b = 1 1 + 1 ( 2) + ( 4) 2 = 9.
r | b |≠ 0, r r ∴ sinθ = 0, θ = 0, a // b r r ( ) Q a // b ∴θ = 0或 π ∴ sinθ = 0 r r r r | a × b |=| a || b | sinθ = 0.
r | a |≠ 0,
向量积符合下列运算规律: 向量积符合下列运算规律:
三、向量的混合积
r r r r r r 定义 设已知三个向量a 、b 、c ,数量(a × b ) c rrr 称为这三个向量的混合积 混合积, 称为这三个向量的混合积,记为[ab c ]. r r r r r r r r 设 a = a x i + a y j + a z k , b = bx i + b y j + bz k , r r r r c = c x i + c y j + cz k , ax ay az r rr r r r [abc]= (a ×b) c = bx by bz
r r r r r r r r 设 a = a x i + a y j + a z k , b = bx i + b y j + bz k r r r r r r r r a × b = (a x i + a y j + a z k ) × (bx i + b y j + bz k ) r r r r r r r Q i × i = j × j = k × k = 0, r r r r r r r r r Q i × j = k, j × k = i , k × i = j, r r r r r r r r r j × i = k , k × j = i , i × k = j . r r r = (aybz azby )i + (azbx axbz ) j + (axby aybx )k
数量积的坐标表达式
r r ab r r r r a b =| a || b | cosθ cos θ = r r , | a || b | axbx + ayby + azbz cosθ = 2 2 2 2 2 2 ax + ay + az bx + by + bz
两向量夹角余弦的坐标表示式 由此可知两向量垂直的充要条件为
结论 两向量的数量积等于其中一个向量的 模和另一个向量在这向量的方向上的投影的 乘积. 乘积. 数量积也称为“点积” 内积” 数量积也称为“点积”、“内积”.
θ
r r r r a b =| a || b | cosθ
关于数量积的说明: 关于数量积的说明:
r r r 2 (1) a a =| a | . r r r r r 2 证 Qθ = 0, ∴ a a =| a || a | cosθ =| a | . r r r r ( 2) a b = 0 a⊥b . r r r r 证 () Q a b = 0, | a |≠ 0, | b |≠ 0, r r π ∴ a ⊥b . ∴ cosθ = 0, θ = , 2 π r r () Q a⊥b , ∴θ = , ∴ cosθ = 0, 2 r r r r a b =| a || b | cosθ = 0.
r r r r (1) a × b = b × a . ) r r r r r r r (2)分配律: (a + b ) × c = a × c + b × c . )分配律: r r r r r r 为数: (3)若 λ ) 为数: (λa ) × b = a × (λb ) = λ (a × b ).
第二节 向量的乘法运算
一、两向量的数量积 二、两向量的向量积 三、向量的混合积 四、小结
一、两向量的数量积
r 实例 一物体在常力 F 作用下沿直线从点 M 1 移动 r r 表示位移, 到点 M 2 ,以 s 表示位移,则力 F 所作的功为 r r r r 的夹角) (其中θ 为 F 与 s 的夹角 其中 W =| F || s | cosθ
右手系. 右手系.
Байду номын сангаас
关于向量积的说明: 关于向量积的说明:
r r r (Qθ = 0 sinθ = 0) (1) a × a = 0. r r r r r r r r r ( 2) a // b a × b = 0. (a ≠ 0, b ≠ 0)
r r r 证 ( ) Q a × b = 0,
r r r r r r r r 设 a = a x i + a y j + a z k , b = bx i + b y j + bz k r r r r r r r r a b = (a x i + a y j + a z k ) (bx i + b y j + bz k ) r r r r r r r r r Q i ⊥ j ⊥ k , ∴ i j = j k = k i = 0, r r r Q| i |=| j |=| k |= 1, r r r r r r ∴ i i = j j = k k = 1. r r a b = axbx + ayby + azbz
=0
r r r r r r r ∴ [(a c )b (b c )a ]⊥c
r r r r r r r 例2:设a ≠ 0, ≠ 0, c ≠ 0,并且有a c = b c b r r 能否推出a = b
r r r r r r 例 3:设 a =2i-j+2k,向 量 x与 a共 线 ,且 r r r a x=-9,求 x .
例5
解
在顶点为 A(1,1,2) 、 B(5,6,2)和
C (1,3,1) 的三角形中,求 AC 边上的高 BD . 的三角形中,