《圆》第一节圆导学案
2.5.2 圆与圆的位置关系 导学案正文
2.5.2 圆与圆的位置关系【学习目标】1.能描述圆与圆的位置关系.2.能根据给定两圆的方程判断两个圆的位置关系.◆ 知识点 圆与圆的位置关系1.两圆的位置关系主要包括:外离、 、 、 和内含.2.两圆的位置关系的判断:(1)代数法:已知圆C 1:x 2+y 2+D 1x+E 1y+F 1=0(D 12+E 12-4F 1>0),圆C 2:x 2+y 2+D 2x+E 2y+F 2=0(D 22+E 22-4F 2>0),由{x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,消元后得到一元二次方程(若得到的是一元一次方程,则要求出方程组的解进行判断),计算判别式Δ的值,按下表中判断标准进行判断.(2)几何法:两圆的半径分别为r 1,r 2,计算两圆的圆心距d ,按下表中判断标准进行判断. (3)判断标准:位置关系 外离外切相交内切内含图示公共点个数 0 121 0 Δ的值 Δ<0Δ=0Δ<0 d 与r 1,r 2 的关系d= r 1+r 2d< |r 1-r 2|【诊断分析】 判断正误.(请在括号中打“√”或“×”) (1)两圆的方程联立,若方程组有两个解,则两圆相交. ( )(2)若两个圆没有公共点,则两圆一定外离. ( )(3)若两圆外切,则两圆有且只有一个公共点;反之也成立. ( ) (4)当两圆的方程组成的方程组无解时,两圆一定外离.( )◆ 探究点一 两圆位置关系的判断及应用例1 (1)已知圆C 1:x 2+y 2-2x+4y+4=0和圆C 2:4x 2+4y 2-16x+8y+19=0,则这两个圆的公切线的条数为( )A .1或3B .4C .0D .2(2)已知圆O1:(x+1)2+(y-1)2=1与圆O2:(x-3)2+(y+2)2=r2(r>0)相内切,则r= ( )A.4B.5C.6D.√13变式 (1)若圆C1:x2+y2=4与圆C2:x2+y2-2mx+m2-m=0外切,则实数m的值为( )A.-1B.1C.1或4D.4(2)已知圆C1:x2+y2=m2(m>0)与圆C2:x2+y2-2x-4y-15=0恰有两条公切线,则实数m的取值范围是.◆探究点二两圆公共弦问题例2 (1)已知圆C1:x2+(y-2)2=5和C2:(x+2)2+y2=5交于A,B两点,则|AB|=( )A.√3B.2√3C.√23D.2√23(2)已知圆O1:x2+y2=1与圆O2:x2+y2-2x+2y+F=0(F<1)相交所得的公共弦的长为√2,则圆O2的半径r=( )A.1B.√3C.√5或1D.√5变式已知圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程;(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.[素养小结]解决两圆公共弦问题的方法如下:(1)当两圆相交时,利用两圆方程相减,可得公共弦所在直线的方程;(2)在由半径、弦心距、弦长的一半为三边边长的直角三角形中,利用勾股定理可求弦长;(3)根据公共弦的中垂线过两圆圆心,可得公共弦的中垂线所在直线的方程.◆探究点三圆与圆的位置关系的综合问题例3 (1)(多选题)在平面直角坐标系中,已知点A(2,0),B(0,2),圆C:(x-a)2+y2=1.若圆C上存在点M,使得|MA|2+|MB|2=12,则实数a的值可能是( )A.-1B.0C.1+2√2D.-2(2)已知圆C与两圆C1:x2+(y+4)2=1,C2:x2+(y-2)2=1均外切,求圆C的圆心的轨迹方程.变式已知线段AB的端点B的坐标是(6,5),端点A在圆C1:(x-4)2+(y-3)2=4上运动.(1)求线段AB的中点P的轨迹C2的方程;(2)设圆C1与曲线C2的两个交点为M,N,求线段MN的长.[素养小结]1.圆与圆的位置关系的综合问题常见的类型有公切线问题、公共弦问题、轨迹问题等,要注意利用图形的几何性质优化思路、减少运算量.2.圆与圆的位置关系问题有时需要通过建立适当的平面直角坐标系,求得满足条件的动点的轨迹方程,从而得到动点的轨迹,通过研究它的轨迹方程与圆的方程的关系,判断所得的轨迹与圆的位置关系.。
《圆》整理和复习(导学案)
5.培养学生的团队协作能力,通过小组讨论、合作探究,加深对圆的知识点的理解和应用。
三、教学难点与重点
1.教学重点
-圆的基本概念:圆心、半径、直径、周长、面积的定义及其相互关系;
-圆的性质:半径相等、直径垂直、弧相等、圆心角相等的特点及其应用;
《圆》整理和复习(导学案)
一、教学内容
《圆》整理和复习(导学案)
1.圆的基本概念:圆心、半径、直径、周长、面积;
2.圆的性质:半径相等、直径垂直、弧相等、圆心角相等;
3.圆的方程:圆的相交、相离;
5.圆与圆的关系:相切、相交、相离;
6.圆的切线、割线;
7.圆的扇形、圆心角、圆周角;
举例解释:
-通过实际测量和计算,让学生掌握圆的周长和面积的计算方法,并理解其在生活中的应用,如计算车轮的行驶距离;
-通过几何作图,让学生直观感受圆的性质,如半径相等、圆心角相等,并应用于解决实际问题,如设计等分圆的图形。
2.教学难点
-圆的方程推导:理解圆的标准方程和一般方程的推导过程,尤其是从标准方程到一般方程的转换;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是由一组等距离于圆心的点组成的几何图形。它是平面几何中最重要的图形之一,具有许多独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆在实际中的应用,以及它如何帮助我们解决问题,如计算车轮的周长和面积。
-在计算扇形、圆心角、圆周角时,通过实际案例和公式推导,使学生能够熟练掌握计算方法,并应用于实际测量和设计问题。
四、教学流程
(一)导入新课(用时5分钟)
2022年北师大版小学《圆的周长(1)》精品教案(word版)
三、达标检测
师:同学们对于今天的知识掌握的怎么样?让我来考考你。
〔1〕圆周率是一个〔〕。
A.有限小数
B.无限小数
C.循环小数
师:对选B,因为圆周率是一个无限不循环小数。
〔2〕求车轮滚动一周前进的距离,是求车轮〔〕。
A.半径
B.直径
C.周长
师:答复的真棒,求车轮滚动一周前进的距离,就是求车轮的周长。
〔3〕圆的周长是直径的〔〕倍。
B.π
师:圆的周长时直径的π。
这里同学们一定要注意:周长是直径的多少倍应说“π倍〞而不是“倍〞哦!
易错举例
〔1〕圆的周长一定比半圆的周长大。
〔〕
教师提示:直径不确定,无法比拟。
〔2〕半径不相等的两个圆,周长一定不相等。
〔〕
教师提示:圆的半径不相等,直径就不相等,圆周率是一定的,所以,半径不相等的两个圆,周长一定不相等。
手脑结合:画一个直径为10cm的圆。
(1)想一想,怎样得到它的周长?
(2)把圆剪下来,量一量。
(3)多量几次,算出测量结果的平均数。
〔学生自主练习,然后找几个同学用展台展示给同学们,让同学们评价〕
师:有误差是难免不了的,属于正常情况。
多测量几次。
典题精练:看图思考下面的问题,然后填空。
正方形周长是圆的直径的〔〕倍,
所以圆周长÷直径一定小于〔〕
四百分数。
人教版数学六年级上册圆的认识导学案(精选3篇)
人教版数学六年级上册圆的认识导学案(精选3篇)〖人教版数学六年级上册圆的认识导学案第【1】篇〗一、教学目标(一)知识与技能根据生活实际,通过观察、操作、自学教材等活动认识圆,掌握圆的特征,了解圆的各部分名称并能用字母表示对应的名称。
(二)过程与方法了解可以应用不同的工具画圆,掌握用圆规画圆的方法,会用圆规正确地画圆。
运用画、折、量等多种手段,理解同圆或等圆中半径和直径的特征和关系。
(三)情感态度和价值观通过对圆的了解,进一步体会数学和日常生活的密切联系,提高数学学习的兴趣。
二、教学重难点教学重点:圆的各部分名称和特征,用圆规正确地画圆。
教学难点:归纳并理解半径和直径的关系。
三、教学准备多媒体课件、学具(圆规、尺子、剪刀、绳、钉子、各种物体表面有圆形的实物等)。
四、教学过程(一)情境创设,揭示课题1.谈话引入。
教师:我们学过的平面图形有哪些?(1)学生回忆交流:有长方形、正方形、三角形、平行四边形、圆……(2)今天我们要更深入地来认识“圆”。
(板书课题:圆的认识。
)2.列举生活实例。
教师:在生活中,圆形的物体随处可见。
(1)展示教材:从奇妙的自然界到文明的人类社会,从手工艺品到各种建筑……到处都可以看到大大小小的圆。
(2)教师:你能说说自己所见过的圆吗?(学生列举回答。
)【设计意图】通过简短的“平面图形有哪些”的谈话直接引出课题,简洁明了,同时无形中也巩固了“圆是平面图形”这一知识点;学生对圆已有一定的认识,因此通过主题图欣赏生活中的圆,让学生找找自己生活中见过的圆,使学生对圆有了初步的了解,激发了进一步学习圆的兴趣。
(二)利用素材,尝试画圆1.尝试运用不同的工具画圆。
教师:如果请你在纸上画出一个圆,你会怎样画?预设:(1)利用圆形的实物模型的外框画圆;(2)用线绕钉子旋转画圆;(3)用三角尺;(4)用圆规……2.运用圆规画圆。
(1)认识圆规。
课件出示圆规,帮助学生认识圆规。
圆规的组成:一只“带有针尖的脚”,一只“装有铅笔的脚”。
圆的相关概念 导学案
圆的相关概念导学案第页姓名:一、圆的定义定义1:定义2:表示:半径:,圆心:确定圆的条件:什么是等圆?二、相关概念1、弧:表示:优弧:劣弧:等弧:弧的度数:;弧的长度:2、半圆:3、弦:4、直径:5、过圆上一点最短的弦:过圆上一点最长的弦:6、弦心距:7、圆周角:8、圆心角:9、点与圆的位置关系10、过圆内一点最长的弦:过圆内一点最短的弦:11、过圆内外一点最长的线段:过圆外一点最短的线段:3、下列图形能称为圆周角的为:A、B、C、D、一.选择题(共32小题)1.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧2.如图,在⊙O中,弦的条数是()2题11题12题3.下列说法错误的是()A.圆上的点到圆心的距离相等B.过圆心的线段是直径C.直径是圆中最长的弦D.半径相等的圆是等圆4.下列说法:(1)长度相等的弧是等弧,(2)半径相等的圆是等圆,(3)等弧能够重合,(4)半径是圆中最长的弦,其中正确的有()个5.下列结论正确的是()A.长度相等的两条弧是等弧B.半圆是弧C.半径是弦D.弧是半圆6.下列说法正确的是()A.长度相等的弧是等弧B.相等的圆心角所对的弧相等C.面积相等的圆是等圆D.劣弧一定比优弧短7.下列判断结论正确的有()个(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.8.下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.长度相等的两条弧是等弧9.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为()10.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆11.如图所示,MN为⊙O的弦,∠N=50°,则∠MON的度数为()12.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()13.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()14.如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πr B.2πr C.πr D.2r15.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等16.已知,在同圆中有两条互相平分的弦,那么下列结论中正确的是()A.这两条弦都是直径B.这两条弦最多有一条是直径C.这两条弦都不是直径D.这两条弦至少有一条是直径17.下列语句中,不正确的有()A.①③④B.②③C.②D.②④①直径是弦;②弧是半圆;③经过圆内一定点可以作无数条弦;④长度相等的弧是等弧.18.到圆心的距离不大于半径的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆19.下列说法错误的是()A.面积相等的两个圆是等圆B.半径相等的两个半圆是等弧C.直径是圆中最长的弦D.长度相等的两条弧是等弧20.下面说法正确的是()(1)直径是弦;(2)弦是直径;(3)半圆是弧;(4)弧是半圆.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(3)21.下列语句正确的有()个①直径是弦;②半圆是弧;③长度相等的弧是等弧;④经过圆内一定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.22.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦23.下列说法中,正确的是()A.弦是直径B.半圆是弧C.过圆心的线段是直径D.圆心相同半径相同的两个圆是同心圆24.如图,在⊙O中,点A,O,D在一条直线上,点B,O,C在一条直线上,那么图中有弦()条25.下列说法正确的是()A.半圆是弧,弧也是半圆B.过圆上任意一点只能做一条弦,且这条弦是直径C.弦是直径D.直径是同一圆中最长的弦26.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()个27.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的有()个28.下列说法正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.不同的圆中不可能有相等的弦D.直径是弦且同一个圆中最长的弦29.下列说法错误的是()A.直径相等的两个圆是等圆B.圆中最长的弦是直径C.半圆是弧D.连接圆上两点,所得到的线段叫做直径30.下列说法:①直径是弦;②弦是直径;③过圆上任意一点有无数条弦,且这些弦都相等;④直径是圆中最长的弦.其中正确的是()个31.下列说法正确的有()个①半径相等的两个圆是等圆;②半径相等的两个半圆是等弧;③过圆心的线段是直径;④分别在两个等圆上的两条弧是等弧.32.下列说法正确的个数是()个①直径是圆中最长的弦;②弧是半圆;③过圆心的直线是直径;④半圆不是弧;⑤长度相等的弧是等弧.二.填空题(共9小题)33.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.34.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.35.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为°.36.如图,若点O为⊙O的圆心,则线段是圆O的半径;线段是圆O的弦,其中最长的弦是;是劣弧;是半圆.37.半径为5的⊙O中最大的弦长为.38.下列说法:①弦是直径;②直径是弦;③过圆心的线段是直径;④一个圆的直径只有一条.其中正确的是(填序号).39.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.40.已知⊙O中最长的弦为16cm,则⊙O的半径为cm.41.半径为1的圆中最长的弦长等于.。
小学数学六年级上册《圆的认识》2课时导学案设计
【学习重点难点】认识圆的轴对称特征,能设计图案。
【知识链接】轴对称图形
1、如果一个图形沿着一条直线对折,两侧的图形()重合,这个图形就是(),折痕所在的这条直线叫做()。
2、判断下面图形,哪些是轴对称图形,哪些不是?
【自主学习】
1、回忆想一想:以前学过的哪些图形是轴对称图形?分别有多少条对称轴?
圆的认识
编制人:张文芳审核人:涂轩龙张文芳王宗会
课题:圆的认识课型:探究课课时:第1课时
教师复备栏
【学习目标】
1、学会用圆规画圆,认识圆的各部分名称。
2、掌握圆的特征,理解和掌握在同一圆里,半径和直径的关系。
3、通过分组学习,动手操作,主动探索等活动培养创新意识,及抽象概括能力,进一步发展空间观念。
【学习重点难点】
重点:初步学会用圆规画圆,掌握圆的点。
难点:熟练操作圆规,能按要求画出各种圆。
【知识链接】
我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?
长方形正方形平行四边形三角形梯形
引出课题。
【自主学习】
出示教学情境图。
1)看一看:这些物体上都有什么几何图形?
2)说一说:日常生活中哪里见到了圆?
4、完成58页“做一做”。
探究三:圆的特点
1、提出小组探索的目标:用圆规画出几个大小不同的圆,沿着直径折一折,画一画,量一量,会有什么发现?
2、小组操作活动。
3、组织汇报交流。
引导学生通过交流,明白以下知识:
1)把圆沿任何一条直径对折,两边可以重合。
2)一个圆的半径有无数条,直径也有无数条。
3)在同一个圆内,所有半径都相等,所有的直径都相等,直径的长度是半径的2倍,半径的长度是直径的 。也就是“d=2r或r= ”
人教版九年级数学第24章《圆》24.1. 1-4导学案
第1课时 24.1.1 圆一、新知导学1.圆的定义:把线段op 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心 的圆记作 .2.圆的集合定义:圆是到 的点的集合. 3、从圆的定义中归纳:①圆上各点到定点(圆心O )的距离都等于____ __;②到定点的距离等于定长的点都在____ _.4、圆的表示方法:以O 点为圆心的圆记作______,读作______.5、要确定一个圆,需要两个基本条件,一个是______,另一个是_____,其中_____确定圆的位置,______确定圆的大小.6;如图1,弦有线段 ,直径是 ,最长的弦是 ,优弧有 ;劣弧有 。
二、合作探究1.判断下列说法是否正确,为什么?(1)直径是弦.( ) (2)弦是直径.( ) (3)半圆是弧.( ) (4) 弧是半圆.( )(5) 等弧的长度相等.( ) (6) 长度相等的两条弧是等弧.( )2.⊙O 的半径为2㎝,弦AB 所对的劣弧为圆周长的61,则∠AOB = ,AB = 3.已知:如图2,OA OB 、为O 的半径,C D 、分别为OA OB 、的中点,求证:(1);A B ∠=∠ (2)AE BE =4.对角线互相垂直的四边形的各边的中点是否在同一个圆上?并说明理由.三、自我检测1.到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆.2.正方形的四个顶点在以 为圆心,以 为半径的圆上.3.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是4.下列说法正确的有( )①半径相等的两个圆是等圆; ②半径相等的两个半圆是等弧;③过圆心的线段是直径; ④ 分别在两个等圆上的两条弧是等弧. A. 1个 B. 2个 C. 3个 D. 4个5.如图3,点A O D 、、以及点B O C 、、分别在一条直线上,则圆中有 条弦. 6、下列说法正确的是 (填序号)①直径是弦 ②弦是直径 ③半径是弦 ④半圆是弧,但弧不一定是半圆 ⑤半径相等的两个半圆是等弧 ⑥长度相等的两条弧是等弧 ⑦等弧的长度相等 7.圆O 的半径为3 cm ,则圆O 中最长的弦长为8.如图4,在ABC ∆中,90,40,ACB A ∠=︒∠=︒以C 为圆心,CB 为半径的圆交AB 于点D ,求ACD ∠的度数.9、已知:如图5,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.(图1)ED CB A (图2) D BCA(图4) DC ABE(图3) (图5)第2课时 24.1.2 垂直于弦的直径一、新知导学1.阅读教材p80有关“赵州桥”问题,思考能用学习过的知识解决吗?2. 阅读教材p80“探究”内容,自己动手操作,发现了什么?由此你能得到什么结论? 归纳:圆是__ __对称图形, ____________ ________都是它的对称轴;3. 阅读教材p80“思考”内容,自己动手操作: 按下面的步骤做一做:(如图1)第一步,在一张纸上任意画一个⊙O ,沿圆周将圆剪下,作⊙O 的一条弦AB ; 第二步,作直径CD ,使CD AB ⊥,垂足为E ; 第三步,将⊙O 沿着直径折叠. 你发现了什么?归纳:(1)图1是 对称图形,对称轴是 .(2)相等的线段有 ,相等的弧有 .二、合作探究活动1:(1)如图2,怎样证明“自主学习3”得到的第(2)个结论. 叠合法证明:(2)垂径定理:垂直于弦的直径 弦,并且 的两条弧. 定理的几何语言:如图2CD 是直径(或CD 经过圆心),且CD AB ⊥____________,____________,_____________∴推论:___________________________________________________________________________. 活动2 :垂径定理的应用垂径定理的实际应用怎样求p80赵州桥主桥拱半径? 解:如图3小结:(1)辅助线的常用作法:连半径,过圆心向弦作垂线段。
初三数学圆导学案圆
圆的导学案3.1圆(1)一、导入新知:1、说出几个与圆有关的成语和生活中与圆有关的物体。
思考:车轮为什么做成圆形?2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A 、B 、C 三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好? 二、学习内容:1、圆的定义:_______________ (运动的观点)2、画圆并体会确定一个圆的两个要素是 和3、点和圆的位置关系点P 到圆心O 的距离为d ,那么:点P 在圆 d r 点P 在圆 d r 点P 在圆 d r4、圆的集合定义(集合的观点)(1)思考:平面上的一个圆把平面上的点分成哪几部分?(2)圆是到定点距离 定长的点的集合.圆的内部是到 的点的集合;圆的外部是 的点的集合 。
三、典型例题1·如图,Rt △ABC 的两条直角边BC=3,AC=4,斜边AB 上的高为CD ,若以C 为圆心,分别以r 1=2cm ,r 2=2.4cm ,r 3=3cm 为半径作圆,试判断D点与这三个圆的位置关系.2·如何在操场上画出一个很大的圆?说一说你的方法.⇔⇔⇔rrr PPP3·已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别为OA、OB的中点.求证:MC=NC.4·设⊙O的半径为2,点P到圆心的距离OP=m,且m使关于x的方程2x2-22x+m-1=0有实数根,试确定点P的位置.5·由于过渡采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向移动(如图3-1-5),距沙尘暴中心300km的范围内将受到影响,问A市是否会受到这次沙尘暴的影响?四、课堂达标1、正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A ;点C在⊙A ;点D在⊙A 。
西师版六年级数学上册2单元圆导学案
西师版六年级数学上册第二单元《圆》导学案第一部分圆的认识第1课时主备人:XXX 审核人:XXX 分课时:第一课时学习目标:一、使学生认识圆,知道圆的各部分名称,掌握圆的特征,认识扇形,了解扇形的大小与它的圆心角的关系。
二、积极参与教师组织的课堂教学活动。
三、使学生对周围环境中与圆有关的某些事物具有好奇心。
重点难点:一、圆的半径、直径的意义及之间的关系。
二、圆的半径、直径的意义及之间的关系。
教学时间安排:1课时过程设计:一、读书自学,自主探究:1、出示图形:2、提问:如果把以上图形按某一种特征分成两类,你想应该怎样分?(分成圆和不是圆)3、揭示课题:今天,我们就一起来学习圆的知识。
二、分组合作,讨论解疑:12、你能画一个圆吗?3、我们可以用什么工具来画圆?(圆规)4、指导学生用圆规画圆。
5o6、试想一下,圆有多少条对称轴?谁是它的对称轴?7、什么是扇形?扇形的大小与什么有关?三、展示点评,总结升华:1、用圆规画圆时,用圆规的一只脚固定一点,另一只脚绕着这个点旋转一圈。
画圆时,固定的一点是圆心,一般用字线o 表示。
2、从圆心到圆上任意一点的线段是半径,半径一般用字母r 表示。
通过圆心且两端都在圆上的线段是直径,直径一般用字母d 表示。
3、直径和半径的关系:试一试:在圆中能画几条半径和几条直径,量一量它]们的长度,看看有什么发现?小结:圆的直径有无数条,半径有无数条,在同一个圆中所有的半径都相等,所有的直径都相等,在同一个圆中,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示:d=2r 或r=21d 。
圆是轴对称图形,直径所在的直线是对称轴。
4、看课本18页例3:由圆心角的两条半径和圆心角所对的弧围成的图形,叫做扇形。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
四、清理过关,效果检测:1、用圆规画圆:(1)画几个圆心在同一个点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。
人教版九年级数学上册 24-1-3 弧、弦、圆心角导学案
人教版九年级数学上册导学案第二十四章圆24.1.3 弧、弦、圆心角【学习目标】1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角。
2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系的证明和计算。
3.能利用圆心角、弦、弧之间的关系解决有关问题。
【课前预习】1.在半径为1的弦所对的弧的度数为()A.90°B.145度C.90°或270°D.270度或145度2.一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm3.下列命题①若a>b,则am²>bm²②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形是±4.其中真命题的个数是()A.0B.1C.2D.34.若AB和CD的度数相等,则下列命题中正确的是()A.AB=CD B.AB和CD的长度相等C.AB所对的弦和CD所对的弦相等D.AB所对的圆心角与CD所对的圆心角相等5.下列说法中错误的有()①过弦的中点的直线平分弦所对的两条弧;②弦的垂线平分它所对的两条弧;③过弦的中点的直径平分弦所对的两条弧;④平分不是直径的弦的直径平分弦所对的两条弧.A.1个B.2个C.3个D.4个6.下列说法错误的是()A.垂直于弦的直径平分这条弦B.平分弦的直径垂直于这条弦C.弦的垂直平分线经过圆心D.同圆或等园中相等的弧所对的圆周角相等7.下列命题正确的是( )A .点(1,3)关于x 轴的对称点是(1,3)-B .函数23y x =-+中,y 随x 的增大而增大C .若一组数据3,x ,4,5,6的众数是3,则中位数是3D .同圆中的两条平行弦所夹的弧相等8.如图,扇形AOB 中,90AOB ∠=︒,半径6,OA C =是AB 的中点,//CD OA ,交AB 于点D ,则CD 的长为()A .2BC .2D .69.如图,△ABC 中,AB=5,AC=4,BC=2,以A 为圆心AB 为半径作圆A ,延长BC 交圆A 于点D ,则CD 长为()A .5B .4C .92 D .10.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【学习探究】自主学习阅读课本,完成下列问题1、填空:(1)圆心角的概念:顶点在_______的角叫做圆心角。
圆利用圆设计图案六上,导学案
第五单元圆
自学情况
课题:利用圆设计图案课型:新授课课时:第2课时
班级:组名:组号:姓名:
学习目标
1、预习书本第59页,观察这些图案是由哪些图形组成的,是如何组成的。
想想这些美丽的图案是怎么画出来的?
2、模仿教材上提供的步骤,利用圆规和直尺画出美丽的图案。
3、自己尝试着用圆规和直尺设计一些与圆有关的图案。
【温故知新】
1、回顾旧知
(1)圆有哪些特征?
(2)在本子上任意画一个圆,然后在圆上画出两条互相垂直的直
径?这两条直径在圆上交出了四个点,请以这四个点为圆心再画出
与原来的圆大小相等的四个圆。
2、认真观察画出的圆,你会发现这些圆组成了一个漂亮的图案。
【探究实践】
1、书本第59页中的第一个图案是由哪些图形组成的?说一说它是
怎样一步步利用圆规和直尺画出来的?
2、拿出圆规和直尺,动手试着画一画。
3、想一想:第59页最下方的两个图案是怎样借助圆规和直尺画出来的?试着画一画。
4、你在预习中碰到了什么问题?
【反馈训练】
1、利用圆规和直尺画出下边的图案
2、
3、
【应用拓展】
试着利用直尺和圆规画出书第61页第10题中的几个图案。
高中数学必修二导学案-圆的一般方程
4. 1.2 圆的一般方程【教学目标】1.使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.【教学重难点】教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.教学难点:圆的一般方程的特点.【教学过程】(一)情景导入、展示目标前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.(二)检查预习、交流展示1.写出圆的标准方程.2.写出圆的标准方程中的圆心与半径.(三)合作探究、精讲精练探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹将方程x2+y2+Dx+Ey+F=0左边配方得:(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程半径的圆;(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.2.引出圆的一般方程的定义当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?启发学生归纳结论.当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.例1 求下列圆的半径和圆心坐标:(1)x 2+y 2-8x+6y=0, (2)x 2+y 2+2by=0.解析:先配方,将方程化为标准形式,再求圆心和半径.解:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b . 点拨:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握. 变式训练1:1.方程x 2+y 2+2kx +4y +3k +8=0表示圆的充要条件是( ) A.k >4或者k <-1 B.-1<k <4 C.k =4或者k =-1 D.以上答案都不对2.圆x 2+y 2+Dx +Ey +F =0与x 轴切于原点,则有( ) A.F =0,DE ≠0 B.E 2+F 2=0,D ≠0 C.D 2+F 2=0,E ≠0 D.D 2+E 2=0,F ≠0 答案:1.A 2.C例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.解析:已知圆上的三点坐标,可设圆的一般方程,用待定系数法求圆的方程. 解:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由O 、A 、B 在圆上,则有解得:D=-8,E=6,F=0, 故所求圆的方程为x 2+y 2-8x+6=0. 点拨:1.用待定系数法求圆的方程的步骤: (1)根据题意设所求圆的方程为标准式或一般式; (2)根据条件列出关于a 、b 、r 或D 、E 、F 的方程;(3)解方程组,求出a 、b 、r 或D 、E 、F 的值,代入所设方程,就得要求的方程. 2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.变式训练2: 求圆心在直线 l :x+y=0上,且过两圆C 1∶x 2+y 2-2x+10y-24=0和C 2∶x 2+y 2+2x+2y-8=0的交点的圆的方程.解:解方程组⎩⎨⎧=+++=++08-2y 2x y x 024-10y 2x -y x 2222,得两圆交点为(-4,0),(0,2).设所求圆的方程为(x-a)2+(y-b)2=r 2,因为两点在所求圆上,且圆心在直线l 上所以得方程组为⎪⎩⎪⎨⎧--a+b=0=r+(2-b)a=r+ba222222)4( 解得a=-3,b=3,r=10. 故所求圆的方程为:(x+3)2+(y-3)2=10. (四)反馈测试 导学案当堂检测(五)总结反思、共同提高1.圆的一般方程的定义及特点; 2.用配方法求出圆的圆心坐标和半径; 3.用待定系数法,导出圆的方程. 【板书设计】一:圆的一般方程的定义1.分析方程x 2+y 2+Dx+Ey+F=0表示的轨迹 2.圆的一般方程的定义 二:圆的一般方程的特点 (1) (2) (3) 例1 变式训练1: 例2 变式训练2: 【作业布置】 导学案课后练习与提高4. 1. 2 圆的一般方程课前预习学案一.预习目标回顾圆的标准方程,了解用圆的一般方程及其特点.二.预习内容1.圆的标准方程形式是什么?圆心和半径呢?2.圆的一般方程形式是什么?圆心和半径呢?3.圆的方程的求法有哪些?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.学习重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.学习难点:圆的一般方程的特点.二.学习过程前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+E y+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹2.引出圆的一般方程的定义探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?例1 求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.变式训练1:1.方程x2+y2+2kx+4y+3k+8=0表示圆的充要条件是()A.k>4或者k<-1 B.-1<k<4C.k=4或者k=-1 D.以上答案都不对2.圆x2+y2+Dx+Ey+F=0与x轴切于原点,则有()A.F=0,DE≠0 B.E2+F2=0,D≠0C.D2+F2=0,E≠0 D.D2+E2=0,F≠0例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.变式训练2:求圆心在直线l:x+y=0上,且过两圆C1∶x2+y2-2x+10y-24=0和C2∶x2+y2+2x+2y-8=0的交点的圆的方程.三.反思总结四.当堂检测 1.方程342-+-=x x y 表示的曲线是( )A.在x 轴上方的圆 B.在y 轴右方的圆 C.x 轴下方的半圆 D.x 轴上方的半圆2.以(0,0)、(6,-8)为直径端点的圆的方程是 . 3.求经过两圆x 2+y 2+6x-4=0和x 2+y 2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.参考答案:1.D 2.x 2+y 2-6x+8y=0 3.x 2+y 2-x+7y-32=0 课后练习与提高1.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值范围是( )A.-71<m <1 B.-1<m <71C.m <-71或m >1 D.m <-1或m >712.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( )A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 3.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( )A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =04.方程220x y x y k +-++=表示一个圆,则实数k 的取值范围是 . 5.过点A (-2,0),圆心在(3,-2)的圆的一般方程为 . 6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.。
人教版初四数学上册全册导学案
第一章 二次根式第一节 二次根式.....................1 第二节二次根式的乘除...............3 第三节二次根式的加减. (7)第二章 一元二次方程第一节 一元二次方程 ............ 11 第二节解一元二次方程 ..................13 第三节 实际问题与一元二次方程.. (21)第三章 图形的旋转第一节 图形的旋转 (27)第二节 中心对称图形 (29)第四章 圆第一节 圆 ...........................35 第二节 点、直线、圆和圆的位置关系.............................................41 第三节 正多边形和圆 (51)第四节 弧长与扇形面积 (53)第五章 概率第一节 概率.....................55 第一节 用列举法求概率.........59 第三节用频率估计概率 (63)21.1二次根式一、明确目标:1a ≥0)的意义解答具体题目2a ≥02=a (a ≥0),(a ≥0)并利用它们进行计算和化简。
二、自主学习:(一)、自学课本2—3页,完成课本中的思考题,并回答下列问题:1、下列式子,哪些是二次根式,哪些不是二次根式:1xx>01x y +(x ≥0,y•≥0).2、(1)-1有算术平方根吗?(2) 0的算术平方根是多少? (3)当a<03、(1)当x(2)当x 11x +在实数范围内有意义?(二)、自学课本3—5页,完成课本中的探究题,并回答下列问题:a ≥02=(a ≥0(a ≥0) 自我检测:1、下列式子中,不是二次根式的是( )A D .1x2、当x 在实数范围内有意义?3、(12 (2)(2 (3)2 (4)(2)24、(1(2(3(4三、展示交流 :互助互学 展示观点 1、交流自我检测,尝试解决疑问。
2、在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3四、合作探究第:深入学习 质疑问难________________________________.课堂小结(本节课你收获了些什么,应该需注意些什么): 五、:达标拓展达标:1、下列式子中,是二次根式的是( ) A ..x 2、x 是怎样的实数时,下列各式实数范围内有意义? (1)x 43- (21 ) 2)1(+x ( 3 ) 11-x3、计算:(1)(7)2 (2)⎥⎦⎤⎢⎣⎡43 2 (3)2)23( (4)2)(b a (b ≥0)拓展:源于教材 一展身手1.2、.x 有( )个.21.1二次根式的乘除(1)一、明确目标:1.掌握二次根式的乘法运算法则。
导学案:圆-切线长定理
第8课时 切线长定理、三角形的内切圆修改者:杨佳容【学习目标】1.理解切线长定理的条件和结论. 2.会作三角形的内切圆,了解内切圆的一些特性.【学习重点】切线长定理的应用. 【学习过程】一、学习准备1.直线与圆的三种位置关系有: 、 、 .2.直线和圆有 交点时,这条直线叫做圆的切线.当直线和圆相切时,圆心到直线的距离等于 . 3.切线的性质:圆的切线垂直于 . 二、教材解读 1.切线长定理圆的切线上某一点与切点之间的线段的长度,叫做这点到圆的切线长.如图1,PA ⊙O 的切线,A 为切点,则线段PA 就是点P 到⊙O 的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.已知:如图1,PA 、PB 是⊙O 的切线,A 、B 为切点, 求证:PA = PB ,∠OPA =∠OPB . 证明:, 即时练习1:如图2,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠BAC = 20°,求∠P 的度数.2.三角形的内切圆 思考:有一张三角形的铁皮,如何在它上面截出一个面积最大的圆形铁皮? 为了尽量应用这块铁皮,我们画出的圆与铁皮的边要刚刚相切才好.那么,会不会存在这样一个圆,它与这个三角形的三边都相切?如果存在,我们就可以最大化利用了这块三角形铁皮了.图1图2如图3,我们假设这样一个与三角形三边都相切的圆存在,我们看能不能找到它的圆心和半径.设点D 、E 、F 是切点,则有: OD ⊥AB ,OE ⊥AC ,OF ⊥BC , 又根据切线长定理,则有:AD = AE ,BD = BF ,CF = CE ,而OD = OE = OF ,∴R t △ADO ≌Rt △AEO ,R t △BDO ≌Rt △BFO ,R t △CEO ≌Rt △CFO , ∠DAO = ∠EAO ,∠DBO = ∠FBO ,∠ECO = ∠FCO ,∴AO 、BO 、CO 是△ABC 三条角平分线.∴圆心O 是就是三角形三条角平分线的交点,半径就是交点O 到三边的距离. 故存在这样的一个圆,它与三角形的三边都相切.定义:与三角形各边都相切的圆叫做这个三角形的内切圆. 内切圆的圆心叫三角形的内心,它是三角形三条内角平分线的交点. 即时练习2:(1)如图4,⊙O 是△ABC 的内切圆,与AB 、BC 、CA 分别相切于点D 、E 、F ,∠DOE =120°,∠EOF = 150°,则∠A = ,∠B = ,∠C = .(2)如图5,△ABC 的内切圆⊙O 与AC 、AB 、BC 分别相切于点D 、E 、F ,且AB = 5cm ,BC = 9cm ,AC = 6cm ,求AE 、BF 和CD 的长.(3)如图5,设△ABC 的内切圆半径为r ,△ABC 的的周长为l 、面积为S ,求证:S =rl 21.A BCDEF O 图4图3 ABC DE FO A CB D E F O · 图5图5 ABCDE FO三、反思小结1、切线的性质:2、切线的判定_______________________ 3.弦切角的特征: 4. 切线长定理: 5. 三角形的“几心”知识回顾和整理:(1)三角形三个内角平分线的交点叫三角形的 心,它的特点是: 心到 距离相等;(2)三角形三条边的垂直平分线的交点叫三角形的 心,它的特点是: 心到 距离相等;(3)三角形三条中线的交点叫三角形的 心,它的特点是: .(4)三角形三条高的交点叫三角形的 心.ABCDEF O内心外心 ABC重心DEF 垂心A BCD E F OO ┐ ∥∥本课时达标检测一、基础巩固1.请你用尺规作图,作出三角形MNP 的内切圆.2.如图,△ABC 的内切圆⊙O 切AC 、AB 、BC 分别为D 、E 、F ,若AB = 9,AC = 7,CD = 2,求 BC 的长.二、知识拓展3.正三角形的内切圆半径为1,那么这个正三角形的边长为( ). A. 2 B. 3 C.3 D. 234.如图,⊙O 是Rt △ABC 的内切圆,∠C = 90°,若AC = b ,BC = a ,AC = c ,则⊙O 的半径r 与a 、b 、c 的关系式为 .5. 如图,AB 是⊙O 的直径,BC 是⊙O 的一条切线,过点C 另引一条⊙O 的切线交⊙O 于点D ,连接AD 、OC . 求证:AD ∥OC .三、能力提升6. △ABC 的周长为20cm ,面积为35cm 2,那么△ABC 的内切圆半径为 . 7.如图,PA 是⊙O 的切线,PO 的延长线交⊙O 于点E ,已知⊙O 的半径为3,PC = 4.求弦CE 的长.ABC· O 5题图DM 1题图 APECO· 7题图C A BD FE O · 2题图 ABbCO· 4题图┐c a。
人教版九年级上册数学《圆》导学案
等弧:能够的弧叫做等弧
4、如果四边形ABCD是矩形,它的四个顶点在同一个圆上吗?如果在,这个圆的圆心在哪里?
5、已知:如图,在⊙ 中,AB,CD为直径
求证:
(三)、归纳总结:
1、在平面内任意取一点P,点与圆有哪几种位置关系?若⊙O的半径为r,
点P到圆心O的距离为d,那么:
点P在圆dr
点P在圆dr
点P在圆dr
2、圆的集合定义(集合的观点)
(1)思考:平面上的一个圆把平面上的点分成哪几部分?
(2)圆的内部是到的点的集合;
圆的外部是的点的集合。
(四)自我尝试:
1、如何在操场上画一个半径是5m的圆?说出你的理由。
2、你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年轮。把树木的年轮看成是圆形的,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径平均每年增加多少?
2、如图,在⊙O中,圆周角∠BAC=90°,弦BC经过圆心吗?为什么?
(三)、归纳总结:
1、归纳自己总结的结论:
(1)
2)
注意:(1)这里所对的角、90°的角必须是圆周角;
(2)直径所对的圆周角是直角,在圆的有关问题中经常遇到,同学们要高度重视.
(四)自我尝试:
1、如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,
二、教师点拔
1、两条性质:
2、直径所对的圆周角是直角是圆中常见辅助线.
三、课堂检测
1、如图,AB是⊙O的直径,∠A=10°,则∠ABC=________.
2、如图,AB是⊙O的直径,CD是弦,∠ACD=40°,则∠BCD=_______,∠BOD=_______.
九年级数学上册-《圆》整章导学案
BC Q P 圆(1)【自主学习】 (一) 新知导学1.圆的运动定义:把线段OP 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心的圆记作 .2圆的集合定义:圆是到 的点的集合. 3.点与圆的位置关系:如果⊙O 的半径为r ,点P 到圆心的距离为d ,那么 点P 在圆内⇔ ;点P 在圆上⇔ ; 点P 在圆外⇔ .【合作探究】1.如图,已知:点P 、Q ,且PQ=4cm. (1)画出下列图形: ①到点P 的距离等于2cm 的点的集合; ②到点Q 的距离等于3cm 的点的集合;(2)在所画图中,到点P 的距离等于2cm ;且到点Q 的距离等于3cm 的点有几个?请在图中将它们画出来.(3)在所画图中,到点P 的距离小于或等于2cm ;且到点Q 的距离大于或等于3cm 的点的集合是怎样的图形?把它画出来. 【自我检测】 一、填空题1.到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆.2.正方形的四个顶点在以 为圆心,以 为半径的圆上.3.矩形ABCD 边AB=6cm,AD=8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A______,点C 在⊙A_______,点D 在⊙A________,AC 与BD 的交点O 在⊙A_________;(2)若作⊙A ,使B 、C 、D 三点至少有一个点在⊙A 内,至少有一点在⊙A 外,则⊙A 的半径r 的取值范围是_______.4.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是 二、解答题5.已知:如图,BD 、CE 是△ABC 的高,试说明点B、C 、D 、E 在同一个圆上.6.如图,已知在⊿ABC 中,∠ACB=900,AC=12,AB=13,CD ⊥AB,以C 为圆心,5为半径作⊙C ,试判断A,D,B 三点与⊙C 的位置关系圆(2)【自主学习】(一)复习巩固:1.圆的集合定义: . 2.点与圆的三种位置关系: 、 、 . 3.已知⊙O 的半径为5cm ,点P 是⊙O 外一点,则OP 的长可能是( ) A. 3 cm B. 4cm C. 5cm (二)新知导学 1.与圆有关的概念①弦:连结圆上任意两点的 叫做弦. ②直径:经过 的弦叫做直径.③弧分为:半圆( 所对的弧叫做半圆)、劣弧(小于 的弧)和优弧(大于 的弧).④圆心角:定点在 的角叫做圆心角.⑤同心圆: 相同, 不相等的两个圆叫做同心圆. ⑥等圆:能够互相 的两个圆叫做等圆.⑦等弧:在 或 中,能够互相 的弧叫做等弧. 2同圆或等圆的性质:在同圆或等圆中,它们的 相等. 【合作探究】1.圆心都为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( ) A. 甲圆内 B.乙圆外 C. 甲圆外、乙圆内 D. 甲圆内、乙圆外2.下列判断:①直径是弦;②两个半圆是等弧;③优弧比劣弧长,其中正确的是( ) A. ① B.②③ C. ①②③ D.①③ 【自我检测】 一、填空题1.已知⊙O 中最长的弦为16cm ,则⊙O 的半径为________cm . 2.过圆内一点可以作出圆的最长弦_____条. 二、选择题3.下列语句中,不正确的个数是( )①直径是弦;②弧是半圆;③长度相等的弧是等弧;•④经过圆内任一定点可以作无数条直径.A .1个B .2个C .3个D .4个4.下列语句中,不正确的是( )A .圆既是中心对称图形,又是旋转对称图形B .圆既是轴对称图形,又是中心对称图形C .当圆绕它的圆心旋转89°57′时,不会与原来的圆重合D .圆的对称轴有无数条,对称中心只有一个5.等于23圆周的弧叫做( )A .劣弧B .半圆C .优弧D .圆6.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• ) A .2条 B .3条 C .4条 D .5条第6题A7.以已知点O 为圆心,已知线段a 为半径作圆,可以作( ) A .1个 B .2个 C .3个 D .无数个 三、解答题8.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.9.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.A圆的对称性(1)【自主学习】(一)复习巩固:1.直径、弦、弧、圆心角、同心圆、等圆、等弧的概念.2.同圆或等圆的性质: .(二)新知导学1.圆的旋转不变性圆具有旋转不变的特征,即一个圆绕着它的圆心旋转一个角度后,仍与原来的圆 .2.圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧,所对的弦 .在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量,那么它们所对应的其他各组量都分别 .3.圆心角度数的性质①10的角:将定点在圆心的角分成360份,每一份的圆心角是 .②10的弧:所对的弧叫10的弧.③圆心角的和它对的弧的相等.【合作探究】1.如图:⊙O1和⊙O2是等圆,P是O1O2的中点,过P作直线AD交⊙O1于A、B,交⊙O2于C、D,求证:AB=CD.2.如图所示,点O是∠EPF平分线上的一点,以点O为圆心的圆与角的两边分别交于点A、B和C、D.(1)求证:AB=CD;(2)若角的顶点P在圆上或在圆内,(1)的结论还成立吗?若不成立,请说明理由;•若成立,请加以证明.【自我检测】一、填空题1.如图,AB、CE是⊙O的直径,∠COD=60°,且弧AD=弧BC,•那么与∠AOE•相等的角有_____,与∠AOC相等的角有_________.2.一条弦把圆分成1:3两部分,则弦所对的圆心角为________.3.弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.4.如图,AB为圆O的直径,弧BD=弧BC,∠A=25°,则∠BOD=______.5.如图,AB、CD是⊙O的两条弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM,•AB=6,则CD=_______.6.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中B点坐标为(4,4),•则该圆弧所在圆的圆心坐标为_________.7.如图所示,已知C为弧AB的中点,OA⊥CD于M,CN⊥OB于N,若OA=r,ON=•a,•则CD=_______.二、选择题10.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为()A.42 B.82 C.24 D.1611.如图6,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立.....的是( •)A.∠COE=∠DOE B.CE=DE C.OE=BE D.弧BD=弧BC12.如图7所示,在△ABC中,∠A=70°,⊙O截△ABC•的三边所得的弦长相等,•则∠BOC=()A.140° B.135° C.130° D.125°13.如图所示,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB,•求证:弧AC=弧BD.圆的对称性(2)【自主学习】(一)复习巩固:1.圆的旋转不变性: . 2.圆心角的性质: .3.已知如图,在⊙O 中,AD 是直径,BC 是弦,D 为弧BC 的中点,由这些条件你能推出哪些结论(要求:不添加辅助线,不添加字母,不写推理过程,写出六条以上结论)(二) 新知导学 1. 圆的对称性圆是 图形,过 的任意一条直线都是它的对称轴. 2. 垂径定理垂直于弦的直径平分 ,并且平分 . 【合作探究】1. 已知,在⊙O 中,半径OD ⊥直径AB ,F 是OD 的中点,弦BC 过F 点,若⊙O 的半径为2, 求BC 的长.2.已知⊙O 的半径为5cm ,弦AB ∥CD ,AB=6cm,CD=8cm,求AB 和CD 之间的距离.【自我检测】 一、填空题 1.已知⊙O•中,•弦AB•的长是8cm ,•圆心O•到AB•的距离为3cm ,•则⊙O•的直径是_____cm . 2.如图1,已知⊙O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP•的取值范围是_______.BAPOBACEDO(1) (2) (3) 3.如图2,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE=3厘米,则OD=•___cm . 4.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短弦长是_______,最长的弦长_______. 5.如图3,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D ,若AC=8cm ,DE=2cm ,则OD 的长为________cm . 6.⊙O 的直径是50cm ,弦AB ∥CD ,且AB=40cm ,CD=48cm ,则AB•与CD•之间的距离为_______. 二、选择题8.下列命题中错误的命题有( ) (1)弦的垂直平分线经过圆心;(2)平分弦的直径垂直于弦;(3)•梯形的对角线互相平分;(4)圆的对称轴是直径.A .1个B .2个C .3个D .4个9.如图4,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB•的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B 5:2C .52D .5:4BCDOB CEDOONMF(4) (5) (6)10.如图5,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中错误的是( ) A .∠COE=∠DOE B .CE=DE C .AE=BE D .弧BD=弧BC11.如图6,EF 是⊙O 的直径,OE=5,弦MN=8,则E 、F 两点到直线MN 的距离之和( ) A .3 B .6 C .8 D .12 12.如图8,方格纸上一圆经过(2,6)、(-2,2)、(2,-2)、(6,2)四点•则该圆圆心的坐标为( )A .(2,-1)B .(2,2)C .(2,1)D .(3,1)DC B A O 30DC A O圆周角和圆心角的关系(1)【自主学习】(一)复习巩固:1.垂径定理: .2.已知点P 是半径为5的⊙O 内的一点,且OP=3,则过P 点且长小于8的弦有( ) 条 条 C. 2条 D.无数条 (二) 新知导学 1. 圆周角的定义顶点在 ,并且两边都和圆 的角叫做圆周角. 2.圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角 ,都等于该弧所对的圆心角的 .【合作探究】1.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.2.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长. 【自我检测】一、选择题:1.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) ° °或150° ° °或120°2.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数( ) ° ° ° °3.如图1,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) ° ° ° °4.如图2,A 、B 、C 、D 四点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )对 对 对 对5.如图3,D 是弧AC 的中点,则图中与∠ABD 相等的角的个数是( ) 个 个 个 个6.如图4,∠AOB=100°,则∠A+∠B 等于( ) ° ° ° °7.如图⊙O 中弧AB 的度数为60°,AC 是⊙O 的直径,那么∠BOC 等于 ( ) A .150° B .130° C .120° D .60°圆周角和圆心角的关系(2)【自主学习】(一)复习巩固:1.圆周角的定义: .2.圆周角定理: .3.在半径为R的圆内,长为R的弦所对的圆周角为 .(二)新知导学1.直径(或半圆)所对的圆周角是 .的圆周角所对的弦是 .【合作探究】1.如图,AB是半圆的直径,AC为弦,OD⊥AB,交AC于点D,垂足为O,⊙O的半径为4,OD=3,求CD的长.2.如图,AB是⊙O的直径,AB=AC,D、E在⊙O上.求证:BD=DE.【自我检测】一、填空题1.如图,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD= .2.如图,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON= .3.如图,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M.若∠BAC=60°,∠ABC=50°,则∠CBM= ,∠AMB= .4.⊙O中,若弦AB长22cm,弦心距为2,则此弦所对的圆周角等于.5.如图,⊙O中,两条弦AB⊥BC,AB=6,BC=8,求⊙O的半径=.二、选择题6.下列说法正确的是()A.顶点在圆上的角是圆周角 B.两边都和圆相交的角是圆周角C.圆心角是圆周角的2倍 D.圆周角度数等于它所对圆心角度数的一半7.下列说法错误的是()A.等弧所对圆周角相等 B.同弧所对圆周角相等C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等8.在⊙O中,同弦所对的圆周角()A.相等B.互补C.相等或互补 D.都不对9.如图,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数是()A.5对 B.6对 C.7对D.8对BA确定圆的条件【自主学习】(一)复习巩固:1.已知AB是⊙O的直径,C是⊙O上一点,若AB=4cm,AC=3cm,则BC= .2.下列命题:①直径所对的角是900 ;②直角所对的弦是直径;③相等的圆周角所对的弧相等;④对同一弦的两个圆周角相等.正确的有()A. 0个B. 1个个个(二)新知导学1.过不在同一直线上的三个点确定圆.2.经过三角形的三个顶点的圆叫做三角形的,外接圆的圆心叫做三角形的,这个三角形叫圆的三角形.【合作探究】1.要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆心和半径(写出找圆心和半径的步骤).【自我检测】一、填空题:1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上, 则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.2.边长为6cm的等边三角形的外接圆半径是________.3.△ABC的三边为设其外心为O,三条高的交点为H,则OH的长为_____.4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等.5.已知⊙O的直径为2,则⊙O的内接正三角形的边长为_______.6.如图,MN所在的直线垂直平分线段AB,利用这样的工具,最少使用________ 次就可以找到圆形工件的圆心.二、选择题:7.下列条件,可以画出圆的是( )A.已知圆心B.已知半径;C.已知不在同一直线上的三点D.已知直径8.三角形的外心是( )A.三条中线的交点;B.三条边的中垂线的交点;C.三条高的交点;D.三条角平分线的交点9.下列命题不正确的是( )A.三点确定一个圆B.三角形的外接圆有且只有一个C.经过一点有无数个圆D.经过两点有无数个圆10.一个三角形的外心在它的内部,则这个三角形一定是( )A.等腰三角形B.直角三角形;C.锐角三角形D.等边三角形11.等腰直角三角形的外接圆半径等于( )A.腰长B.腰长的2倍; C.底边的2倍 D.腰上的高12.平面上不共线的四点,可以确定圆的个数为( )个或3个个或4个个或3个或4个个或2个或3个或4个直线和圆的位置关系(1)【自主学习】(一)复习巩固:1.若△ABC的外接圆的圆心在△ABC的外部,则△ABC是()A.锐角三角形B. 直角角三角形C. 钝角三角形D. 等腰直角三角形2.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A.三角形三条角平分线的交点B. 三角形三边垂直平分线的交点C. 三角形中位线与高线的交点D. 三角形中位线与中线的交点(二)新知导学1.直线与圆的位置关系①定义:直线与圆有个公共点时,叫做直线与圆相交,这条直线叫做圆的线.直线与圆有个公共点时,叫做直线与圆相切,这条直线叫做圆的线.这个公共点叫做点.直线与圆有个公共点时,叫做直线与圆相离. 2.直线与圆的位置关系的性质与判定设⊙O的半径为r,圆心O到直线的距离为d,那么直线与圆相交⇔;直线与圆相切⇔;直线与圆相离⇔ .【合作探究】1.在△ABC中,∠A=450,AC=4,以C为圆心,r为半径的圆与直线AB有交点,试确定r的范围.【自我检测】一、选择题1.命题:“圆的切线垂直于经过切点的半径”的逆命题是()A.经过半径的外端点的直线是圆的切线.B.垂直于经过切点的半径的直线是圆的切线.C.垂直于半径的直线是圆的切线.D.经过半径的外端并且垂直于这条半径的直线是圆的切线.2.如图,AB、AC与⊙O相切于B、C,∠A=500,点P是圆上异于B、C的一个动点,则∠BPC 的度数是()或1150或5003.已知正三角形的边长为6,则该三角形外接圆的半径为()A.4.如图,BC是⊙O直径,P是CB延长线上一点,PA切⊙O于A,如果PA OB=1,那PBA么∠APC 等于( )A. 1505.如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,∠B =300,直线BD 与⊙O 切于点D ,则∠ADB 的度数是( )6.在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆,必与( )A. x 轴相交B. y 轴相交C. x 轴相切D. y 轴相切 7.如图,⊙O 的直径AB 与弦AC 的夹角为︒30,切线CD 与AB 的延长线交于点D ,若⊙O 的半径为3,则CD 的长为( )B.36 D.33直线和圆的位置关系(2)【自主学习】(一)复习巩固:1.直线与圆的三种位置关系: 、 、 . 2. 如图,已知AB 是⊙O 的直径,BC 切⊙O 于点B ,AC 交⊙O 于点D ,AC =10,BC =6,求AB 和CD 的长.(二)新知导学1.切线的判定定理:经过半径的 并且 这条半径的直线是圆的切线.2.切线的性质定理:圆的切线 于经过切点的 .3.与三角形各边都 的圆叫做三角形的 圆, 圆的 叫做三角形的 ,这个三角形叫做圆的 三角形. 【合作探究】1.如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径.2.已知锐角△ABC ,作△ABC 的内切圆.【自我检测】 一、选择题1.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C ,下列结论错误的是( ) A. ∠1=∠2 =PB ⊥OP D.2PA PC PO =⨯2.如图,⊙O 内切于△ABC ,切点为D 、E 、F ,若∠B =500,∠C =600,连结OE 、OF 、DE 、DF ,则∠EDF 等于( )3.边长分别为3、4、5的三角形的内切圆与外接圆半径之比为( ) :5 :5 :5 :54.如图,PA 、PB 是⊙O 的两条切线,切点是A 、B. 如果OP =4,23PA =AOB 等于( )A. 90°B. 100°C. 110°D. 120°5.如图,已知⊙O 过边长为正2的方形ABCD 的顶点A 、B ,且与CD 边相切,则圆的半径为( )DOA .34 B .45 C .25D .16.如图,⊙O 为△ABC 的内切圆,∠C =900,AO 的延长线交BC 于点D ,AC =4,CD =1,则⊙O 的半径等于( )A.45B.54C.34D.56二填空题7. 直角三角形有两条边是2,则其内切圆的半径是__________.8. 正三角形的内切圆半径等于外接圆半径的__________倍.9.如图,PA 、PB 是⊙O 的切线,点A 、B 为切点,AC 是⊙O 的直径,∠BAC =200,则∠P 的大小是___度.10.等边三角形ABC 的内切圆面积为9π,则△ABC 的周长为_________.11.已知三角形的三边分别为3、4、5,则这个三角形的内切圆半径是 .12.三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 .三、解答题:13.已知如图,过圆O 外一点B 作圆O 的切线BM, M 为切点.BO 交圆O 于点A,过点A 作BO 的垂线,交BM 于点=3,圆O 半径为1.求MP 的长.14.等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径.15.如图,AB 是半圆O 的直径,点M 是半径OA 的中点,点P 在线段AM 上运动(不与点M 重合),点Q 在半圆O 上运动,且总保持PQ =PO ,过点Q 作⊙O 的切线交BA 的延长线于点C. (1) 当∠PQA =600时,请你对△QCP 的形状做出猜想,并给予证明; (2) 当QP ⊥AB 时,△QCP 的形状是__________三角形;(3) 由(1)、(2)得出的结论,请进一步猜想当点P 在线段AM 上运动到任何位置时, △QCP 一定是_________三角形.圆和圆的位置关系21B O C P A O B D C EF A第4题图 第2题图 第1题图 第5题图 O 第6题图P AB C O 第9题图A MO B P Q【自主学习】(一)复习巩固:1圆的切线的性质定理: .2.圆的切线的判定定理: .3.三角形的内心是它的圆的圆心,它是三角形的交点.4.内心到三角形的距离相等,到三角形三边距离相等的点是 .5.已知三角形的面积为12,周长为24,则内切圆的半径为 .(二)新知导学圆与圆的五种位置关系的性质与判定如果两圆的半径为R、r,圆心距为d,那么两圆外离⇔;两圆外切⇔;两圆相交⇔;两圆内切⇔;两圆内含⇔ .(位置关系)(数量关系)【合作探究】1.已知两圆相切,一个圆的半径为5,圆心距d=2,求另一个圆的半径.2.半径为1、2、3的三个圆两两外切,求这三个圆的圆心的连线构成的三角形的面积.【自我检测】一、填空题:1.已知两圆半径分别为8、6,若两圆内切,则圆心距为______;若两圆外切,则圆心距为___.2.已知两圆的圆心距d=8,两圆的半径长是方程x2-8x+1=0的两根,则这两圆的位置关系是______.3.圆心都在y轴上的两圆⊙O1、⊙O2,⊙O1的半径为5,⊙O2的半径为1,O1的坐标为(0,-1),O2的坐标为(0,3),则两圆⊙O1与⊙O2的位置关系是________.4.⊙O1和⊙O2交于A、B两点,且⊙O1经过点O2,若∠AO1B=90°,那么∠AO2B 的度数是__.5.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在⊙C内, 点B在⊙C 外,那么圆A的半径r的取值范围是__________.6.两圆半径长分别是R和r(R>r),圆心距为d,若关于x的方程x2-2rx+(R-d)2=0 有相等的两实数根,则两圆的位置关系是_________.二、选择题7.⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以P为圆心,且与⊙O 相切的圆的半径一定是( ) 或5 或48.直径为6和10的两上圆相外切,则其圆心距为( )9.如图1,在以O为圆心的两个圆中,大圆的半径为5,小圆的半径为3, 则与小圆相切的大圆的弦长为( )(1) (2) (3)10.⊙O1、⊙O2、⊙O3两两外切,且半径分别为2cm,3cm,10cm,则△O1O2O3 的形状是( )A.锐角三角形B.等腰直角三角形;C.钝角三角形D.直角三角形11.如图2,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线, 切点为A,则O1A 的长为( )12.半径为1cm和2cm的两个圆外切,那么与这两个圆都相切且半径为3cm 的圆的个数是( )个个个个13.如图3,⊙O的半径为r,⊙O1、⊙O2的半径均为r1,⊙O1与⊙O内切,沿⊙O 内侧滚动m圈后回到原来的位置,⊙O2与⊙O外切并沿⊙O外侧滚动n圈后回到原来的位置,则m、n的大小关系是( )>n =n <n D.与r,r1的值有关正多边形和圆【自主学习】 (一)复习巩固1. 等边三角形的边、角各有什么性质? .2. 正方形的边、角各有什么性质? . (二)新知导学1.各边 ,各角 的多边形是正多边形.2.正多边形的外接圆(或内切圆)的圆心叫做 ,外接圆的半径叫做 ,内切圆的半径做 .正多边形各边所对的外接圆的圆心角都 .正多边形每一边所对的外接圆的圆心角叫做 .正n 边形的每个中心角都等于 . 3. 正多边形都是 对称图形,正n 边形有 条对称轴;正 数边形是中心对称图形,对称中心就是正多边形的 ,正 数边形既是中心对称图形,又是轴对称图形. 【合作探究】1.问题:用直尺和圆规作出正方形,正六多边形.思考:如何作正三角形、正十二边形?【自我检测】1.正方形ABCD 的外接圆圆心O 叫做正方形ABCD 的______.2.正方形ABCD 的内切圆⊙O 的半径OE 叫做正方形ABCD 的______.3.若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.4.正n 边形的一个外角度数与它的______角的度数相等. 5.设一直角三角形的面积为8㎝2,两直角边长分别为x ㎝和y ㎝. (1)写出y(㎝)和x(㎝)之间的函数关系式 (2)画出这个函数关系所对应的图象 (3)根据图象,回答下列问题: ① 当x =2㎝时,y 等于多少?② x 为何值时,这个直角三角形是等腰直角三角形?6.已知三角形的两边长分别是方程0232=+-x x 的两根,第三边的长是方程03522=+-x x 的根,求这个三角形的周长.7.如图,PA 和PB 分别与⊙O 相切于A ,B 两点,作直径AC ,并延长交PB 于点D .连结OP ,CB .(1)求证:OP ∥CB ;(2)若PA=12,DB:DC=2:1,求⊙O的半径.弧长及扇形面积【自主学习】(一)复习巩固:1.圆与圆的五种位置关系:、、、、 .2.已知两圆的半径分别3cm和2cm,若两圆没有公共点,则圆心距d的取值范围为()A. d>5或d<1B. d>5C. d<1 <d<5(二)新知导学1.弧长计算公式在半径为R的圆中,n0的圆心角所对的弧长l的计算公式为:l=2.扇形面积计算公式①定义:叫做扇形.②在半径为R的圆中,圆心角为n0的扇形面积的计算公式为:S扇形=由弧长l= 和S扇形= 可得扇形面积计算的另一个公式为:S扇形=【合作探究】1.已知:扇形的弧长为29πcm,面积为9πcm2 ,求扇形弧所对的圆心角.2.已知:AC是半圆的直径,BC与半圆切于C,AB交半圆于D,BC=3 cm BD cm,求半圆的面积.【自我检测】一、选择题1.如果以扇形的半径为直径作一个圆,这个圆的面积恰好与已知扇形的面积相等,则已知扇形的中心角为()°°° °2.如果圆柱底面直径为6cm,母线长为4cm,那么圆柱的侧面积为()πcm2 πcm2 πcm2 πcm23.圆锥的母线长为5cm,底面半径为3cm,则圆锥侧面展开图的面积是()A. 254πcm2 πcm2 πcm2 πcm24.如果正四边形的边心距为2,那么这个正四边形的外接圆的半径等于()C. 2D.5.圆的外切正六边形边长与它的内接正六边形边长的比为()A.:3B. 2:3 :3 D.:26.圆的半径为3cm,圆内接正三角形一边所对的弧长为()πcm或4πcm πcm πcm πcm7.在半径为12cm的圆中,150°的圆心角所对的弧长等于()πcm πcm πcm πcm8.如图,设AB=1cm,,则长为()A. B. C. D.9.圆锥的母线长为5cm,高为3cm,则其侧面展开图中,扇形的圆心角是()° ° ° °二、计算题10.如图,已知菱形ABCD中,AC,BD交于O点,AC=23,BD=2cm,分别以 A,C为圆心,OA长为半径作弧,交菱形四边于E,F,G,H四点.求阴影部分的面积.11.已知△ABC中,∠C=90°,AC=3cm,BC=4cm,⊙O内切于△ABC.求△ABC在⊙O外部的面积.12.已知等腰梯形ABCD有一个内切圆O.若AB=CD=6cm,BC=2AD,求圆O的面积.圆锥的侧面积和全面积【自主学习】(一)复习巩固:1.弧长的计算公式: .2.扇形面积的计算公式: .3.已知扇形的面积为4cm 2,弧长为4cm ,求扇形的半径.(二)新知导学1.圆锥的侧面展开图圆锥的侧面展开图是一个 .圆锥的母线就是扇形的 .圆锥底面圆的周长就是扇形的 .2.如果圆锥的母线长为l ,底面的半径为r ,那么S 侧= ,S 全= .【合作探究】1.已知圆锥的母线长6 cm ;底面半径为 3 cm ,求圆锥的侧面展开图中扇形的圆心角.2.已知:一个圆锥的侧面展开图是圆心角为36°的扇形,扇形面积为10 cm 2.求这圆锥的表面积.【自我检测】一、选择题1.已知圆锥的高为5,底面半径为2,则该圆锥侧面展开图的面积是( ) A .25π B .2π C .5π D .6π2.圆锥的高为3cm , 母线长为5cm , 则它的表面积是( )cm2.A .20pB .36pC .16pD .28p3.已知圆锥的底面半径为 3 , 母线长为12 , 那么圆锥侧面展开图所成扇形的圆角为( )A .180°B .120°C .90°D .135°4.如果圆锥的高与底面直径相等 , 则底面面积与侧面积之比为( )A .1∶5B .2∶5C .∶D .2∶35.边长为a 的等边三角形 , 绕它一边上的高所在直线旋转180° , 所得几何体的表面积CB A 为( )A .243aB .243a πC .243a πD .π2a6.若底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高是( )cm .A .8B .91C .6D .47.在一个边长为4cm 正方形里作一个扇形(如图所示) , 再将这个扇形剪下卷成一个圆锥的侧面 , 则这个圆锥的高为( )cm . A .253B .15C .7D .138.用圆心角为120° , 半径为6cm 的扇形围成圆锥的侧面 , 则这个圆锥的高为( )A .4B .42C .22D .329.△ABC 中 , AB=6cm , ∠A=30° , ∠B=15° , 则△ABC 绕直线AC 旋转一周所得几何体的表面积为( )cm2.A .(18+92)πB .18+92C .(36+182)πD .36+18210.圆锥的母线长为10cm , 底面半径为3cm , 那么圆锥的侧面积为( )cm2.A .30B .30pC .60pD .15p11.粮仓的顶部是圆锥形,这个圆锥的底面直径是4 m ,母线长3 m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A .6 m2B .6πm2C .12 m2D .12πm212.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为( )A .aB .a 33C .a 3D .a 23。
圆的认识单元导学案2
5 6 6 r=( 4 填表:
半径 厘米 ) ( 直径 厘米 ) (
)
d=(
)
r=(
)
d=(
)
2.5 12
1.5 4.8
【我会质疑】 你有哪些疑惑?提出 1~2 个你认为有价值的问题:
执笔: 刘兴起
六年级上册数学导学案 审核 : 姓名:
班级:
小组:
因为长方形的面积=( )×( ) 所以圆的面积=( )×( )=( ) 如果用 S 表示圆的面积,那么圆的面积计算公式就是: 探究(二) : 例1、 圆形花坛的直径是 20 米,它的面积是多少平方米? 想:要计算圆的面积,必须知道( )? 列式计算:半径: 面积: 答: 。 【达标检测】 1、 一个圆形茶几桌面的直径是 1 米,它的面积是多少平方厘米? S=∏r2
3、练习十六第 1~3 题。
【我会质疑】 你有哪些疑惑?提出 1~2 个你认为有价值的问题:
执笔: 刘兴起
审核 :
六年级上册数学导学案 姓名: 班级:
小组: 教师复 备 学生笔 记
课题:圆的面积 课型 :练习 课时: 第三课时 【学习目标】 通过练习活动,加深对圆的特征的认识,能运用所学知识解释有关自 然现象。 【学习重点】 对圆的特征的认识,灵活运用圆的有关知识。 【学法指导】 通过自主学习,合作探究、加深对圆的特征的认识,学会运用所学知 识解释有关自然现象。 【知识链接】 平面图形的面积及计算公式。 【自主学习】 1、 计算下面各圆的周长。(单位:厘米)
六年级上册数学导学案 执笔: 刘兴起 审核 : 姓名: 班级: 小组: 课题:圆的认识 课型 : 新授 课时: 第一课时 教师复备 【学习目标】 学生笔记 1、 通过画一画、折一折等活动,观察、体会圆的特征,认识圆的各 部分名称,理解在同圆或等圆中直径与半径之间的关系,并初步 学会用圆规画圆。 2、 在活动中进一步积累认识图形的学习经验,增强空间观念,发展 数学思考。 【学习重点】 通过观察、操作、画图等活动,观察、体会圆的特征,认识圆的 各部分名称,理解在同圆或等圆中直径与半径之间的关系。 【学法指导】 通过自主学习,合作探究体会圆的特征,认识圆的各部分名称,理解 在同圆或等圆中直径与半径之间的关系。独立完成导学案。 【知识链接】 平面图形的有关知识。 【自主学习】 (一) 自学课本 P56~57 的内容。 (二) 填一填。 1、我们以前学过的平面图形有( )( 、 ) 、 ( )( 、 ) 、 ( ) 。它们都是由( )围成的。 2、圆这种平面图形是由( )围成的。 3、你在( )( 、 )( 、 )看到过圆形。 【合作探究】 探究(一) : 你能想办法在纸上画一个圆吗? 用自己想到的方法在右侧画一个圆。 探究(二) : 把在纸上画好的圆剪下来,对折,再换个方向对折,再打开,反复折 几次。并仔细观察: 这些折痕相交于圆中心的一点,这一点叫做( ) ,一般用字母 ( )表示。连接圆心和圆上任意一点的线段叫做( ) ,一 般用字母( )表示。通过圆心并且两端都在圆上的线段叫做 ( ) ,一般用字母( )表示。 探究(三) : 在同一个圆内, 有多少条直径、 多少条半径?直径和半径有的长度有 什么关系? 1、动手画一画,圆的直径和半径,尽量多画。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》第一节圆导学案1
学习目标:
【知识与技能】
理解圆的定义及弧、弦、半圆、直径等相关概念。
【过程与方法】
经历动手实践、观察思考、分析概括的学习过程,养成自主探究、合作交流的良好习惯。
【情感、态度与价值观】
利用我国悠久的数学研究历史,对学生进行爱国主义熏陶;通过圆的完美性,让学生进
行美的体验。
【重点】
与圆有关的概念Array【难点】
圆的概念的理解
学习过程:
一、自主学习
(一)复习巩固
1、举出生活中的圆的例子
2、圆既是对称图形,
又是对称图形。
3、圆的周长公式C= 圆的面积公式S=
(二)自主探究
1、圆的定义○1:在一个平面内,线段OA绕它固定的一个端点O旋转,另一个端点所
形成的图形叫做.固定的端点O叫做,线段OA叫做.以点O为圆心的圆,记作“”,读作“”
决定圆的位置,决定圆的大小。
圆的定义○2:到的距离等于的点的集合.
2、弦:连接圆上任意两点的叫做弦
直径:经过圆心的叫做直径
3、弧:任意两点间的部分叫做圆弧,简称弧
半圆:圆的任意一条 的两个端点把圆分成两条弧,每一条 都叫做半圆
优弧: 半圆的弧叫做优弧。
用 个点表示,如图中 叫做优弧
劣弧: 半圆的弧叫做劣弧。
用 个点表示,如图中 叫做劣弧
等圆:能够 的两个圆叫做等圆
等弧:能够 的弧叫做等弧
4、 如果四边形ABCD 是矩形,它的四个顶点在同一个圆上吗?如果在,这个圆的圆心在哪
里?
5、 已知:如图,在⊙O 中,AB ,CD 为直径
求证:BC AD //
(三)、归纳总结: 1、在平面内任意取一点P
r ,
点P 到圆心O 的距离为d ,那么:
点P 在圆 d r
点P 在圆 d r
点P
在圆 d r
2
、圆的集合定义(集合的观点)
(1)思考:平面上的一个圆把平面上的点分成哪几部分?
(2)圆的内部是到 的点的集合;
圆的外部是 的点的集合 。
(四)自我尝试:
1、如何在操场上画一个半径是5m 的圆?说出你的理由。
2、你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年轮。
把树木的年⇔⇔⇔
轮看成是圆形的,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径平均每年增加多少?
二、教师点拔
1、圆心决定圆的,而半径决定圆的;直径是圆中经过的特殊的弦,
是的弦,并且等于的2倍,是在研究圆的问题中出现次数最多的重要线段但弦不一定是直径,过圆上一点和圆心的直径一条;半圆是的弧,而弧是半圆;“同圆”是指圆,“同心圆”“等圆”指的是两个圆的位置、大小关系;判定两个圆是否是等圆,常用的方法是看其是否相等,相等的两个圆是等圆;“等弧”是能够的两条弧,而长度相等的两条弧是等弧。
2、想一想:角的平分线可以看成是哪些点的集合?线段的垂直平分线呢?
三、课堂检测
1.以点O为圆心作圆,可以作()
A.1个 B.2个 C.3个 D.无数个
2.确定一个圆的条件为()
A.圆心 B.半径 C.圆心和半径 D.以上都不对.
3.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知DE
=,
AB2
若COD
∠的度数为()
∆为直角三角形,则E
A.︒5.
45 D.︒
15
30 C.︒
22 B.︒
4、⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与
⊙O的位置关系是:点A在;点B在;点C在
5、⊙O的半径6cm,当OP=6时,点P在;当OP 时点P在圆内;当OP
时,点P不在圆外。
四、课外拓展
1.如图,OA、OB为⊙O的半径,C、D为OA、OB
上两点,且BD
AC=
求证:BC
AD=
2.如图,四边形ABCD是正方形,对角线AC、BD
交于点O.
求证:点A、B、C、D在以O为圆心的圆上.
3.如图,在矩形ABCD中,点E、F、G、H分别为OA、OB、OC、OD的中点.
求证:点E、F、G、H四点在同一个圆上.。