同步练习 解析几何初步(二)

合集下载

高中数学 基础知识篇 第二章解析几何初步同步练测 北师大版必修2

高中数学 基础知识篇 第二章解析几何初步同步练测 北师大版必修2

高中数学 基础知识篇 第二章解析几何初步同步练测 北师大版必修2一、选择题(本题包括12小题,每小题5分,共60分.每小题给出的四个选项中,只有一个选项正确) 1.已知圆22:40C x y x +-=,l 是过点(3,0)P 的直线,则( )( )A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能 2.设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB =( ) ( ) A.1 B.2C.3D.23.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( ) ( ) A.内切 B.相交C.外切D.相离 4.将圆平分的直线是( ) ( )A .B .C .D .5.过点(1,1)P 的直线,将圆形区域{}22(,)|4x y xy +≤分两部分,使得这两部分的面积之差最大,则该直线的方程为( ) ( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=6.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( )( )A .33B .23C.3D.17.直线220x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长度等于( )A.25B.23C.3D.18.对任意的实数,直线与圆222=+y x 的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心 9.直线:和2l :互相垂直,则A.-3或-1B.3或1C.-3或1D.-1或310.直线与圆相交于两点,若弦的中点,则直线的方程为( ) A. B. C. D. 11.过点A (2,3)且垂直于直线052=-+y x 的直线方程为 A.042=+-y xB.072=-+y xC.032=+-y xD.052=+-y x12.在空间直角坐标系中,点)1,0,1(A 与点)1,1,2(-B 之间的距离为( )建议用时 实际用时满分 实际得分120分钟150分A .6B . 6C .3D . 2二、填空题(本题共4小题,每小题5分,共20分.请将正确的答案填到横线上) 13.直线l过点)04(,且与圆25)2()1(22=-+-y x 交于B A 、两点,如果8=AB ,那么直线l 的方程为____________.14.直线ax +y +1=0与连结A (2,3),B (-3,2)的线段相交,则a 的取值范围是________.15.已知两直线a 1x +b 1y +1=0与a 2x +b 2y +1=0的交点是P (2,3),则过两点Q 1(a 1,b 1),Q 2(a 2,b 2)的直线方程是______________________.16.在长方体1111D C B A ABCD -中,若)3,0,5(),0,4,5(),0,0,5(),0,0,0(1A B A D ,则对角线1AC 的长为______________.三、计算题(本题共5小题,共70分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位) 17.(12分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,求k 的最大值. 18.(12分)若直线l 过点P (3,0)且与两条直线l 1:2x -y -2=0,l 2:x +y +3=0分别相交于两点A 、B ,且点P 平分线段AB ,求直线l 的方程. .19.(15分)已知直线l:ay=(3a-1)x-1.(1)求证:无论a为何值,直线l总过第三象限.(2)a取何值时,直线l不过第二象限?20.(15分)已知直线方程为(2+m)x+(1-2m)y +4-3m=0.(1)证明:直线恒过定点M;(2)若直线分别与x轴、y轴的负半轴交于A、B两点,求△AOB面积的最小值及此时直线的方程.21.(16分)已知A(1,2,-1),B(2,0,2).(1)在x轴上求一点P,使|PA|=|PB|;(2)在xOz平面内的点M到A点与到B点等距离,求M点的轨迹.第2章解析几何初步同步测试试卷(数学北师版必修2)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题13. 14. 15. 16.三、计算题17.18.19.20.21.第2章 解析几何初步 同步测试试卷(数学北师版必修2)答案一、选择题1.A 解析: 22304330+-⨯=-<,所以点(3,0)P 在圆内部,故选A. 2.D 解析:直线y x =过圆221x y +=的圆心(0,0)C 则||AB =2. 3.B 解析:两圆心之间的距离为()17)10(2222=-+--=d ,两圆的半径分别为3,221==r r , 则d r r <=-112521=+<r r ,故两圆相交. 应选B.4.C 解析:圆心坐标为(1,2),将圆平分的直线必经过圆心,故选C .5.A 解析:要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.6.B 解析:圆心到直线的距离为225134d ==+,所以弦AB 的长等于22223r d -=.7.B 解析:圆心(0,0),半径2r =,弦长 222|2|||22()2313AB -=-=+.8.C 解析:法一:圆心(0,0)C 到直线10kx y -+=的距离为211211d r k =<<=+,且圆心(0,0)C 不在该直线上.法二:直线10kx y -+=恒过定点(0,1),而该点在圆C 内,且圆心不在该直线上,故选C.9.C 解析:若1=k ,直线3:1=x l ,52:2=y l ,满足两直线垂直.若1≠k ,直线21l l ,的斜率分别为321,121+-=-=k k k k k k ,由121-=⋅k k 得,3-=k ,综上1=k 或3-=k , 10.C 解析:圆心坐标为C (-1,2),设弦AB 中点D (-2,3),由垂径定理有:CD ⊥AB ,32121CD k -==--+,所以AB k =1,直线的方程为:,即,所以选C.11.A 解析:法一:设所求直线方程为02=+-C y x ,将点A 代入得,062=+-C ,所以4=C ,所以直线方程为042=+-y x ,选A.法二:直线052=-+y x 的斜率为2-,设所求直线的斜率为k ,则21=k ,代入点斜式方程得直线方程为)2(213-=-x y ,整理得042=+-y x ,选A.12.A 解析:若),,(),,,(222111z y x B z y x A ,则212212212)()()(z z y y x x AB -+-+-=.二、填空题13.020125=--y x 或4=x解析:圆心坐标为)2,1(M ,半径5=r . 因为8=AB ,所以圆心到直线l 的距离34542222=-=-=r d .当直线斜率不存在时,即直线方程为4=x ,圆心到直线的距离为3满足条件,,所以4=x 成立. 若直线斜率存在,不妨设为k ,则直线方程)4(-=x k y ,即04=--k y kx ,圆心到直线的距离为313214222=++=+--=k k k k k d ,解得125=k ,所以直线方程为)4(125-=x y ,即020125=--y x .综上满足条件的直线方程为020125=--y x 或4=x .14.或解析:∵直线过定点,当直线处在直线与之间时,必与线段相交,故应满足或,即或. 15.2x +3y +1=0解析:由条件可得2a 1+3b 1+1=0,2a 2+3b 2+1=0,显然点(a 1,b 1)与(a 2,b 2)均在直线上. 16.25解析:1C 的坐标为),,(340,253452221=++=AC 或由已知可得该长方体从同一顶点出发的棱长分别为3,4,5.三、计算题17.解:因为圆C 的方程可化为:()2241x y -+=,所以圆C 的圆心为(4,0),半径为1.由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点, 所以存在,使得11AC ≤+成立,即min 2AC ≤. 因为min AC 即为点C 到直线2y kx =-的距离2421k k -+,24221k k -≤+,解得403k ≤≤. 所以k 的最大值是43. 18.解:设A (m,2m -2),B (n ,-n -3).∵线段AB 的中点为P (3,0),∴⎩⎪⎨⎪⎧m +n =6,(2m -2)+(-n -3)=0,∴⎩⎪⎨⎪⎧m +n =6,2m -n =5,∴⎩⎪⎨⎪⎧m =113,n =73.∴A (113,163).∴直线的斜率k =163-0113-3=8,∴直线的方程为y -0=8(x -3),即8x -y -24=0.19.(1)证明:由直线l :ay =(3a -1)x -1,得a (3x -y )+(-x -1)=0,由⎩⎪⎨⎪⎧ 3x -y =0-x -1=0,得⎩⎪⎨⎪⎧x =-1y =-3, 所以直线l 过定点(-1,-3),因此直线总过第三象限.(2)解:直线不过第二象限,应有斜率k =3a -1a ≥0且-1a≤0.∴时直线l 不过第二象限.20.(1)证明:(2+m )x +(1-2m )y +4-3m =0可化为(x -2y -3)m =-2x -y -4.由⎩⎪⎨⎪⎧ x -2y -3=0-2x -y -4=0得⎩⎪⎨⎪⎧x =-1y =-2,∴直线必过定点(-1,-2). (2)解:设直线的斜率为k ,则其方程为y +2=k (x +1),∴OA =2k-1,OB =k -2,S △AOB =12·|OA |·|OB |=12|(2k -1)(k -2)|=12|-(k -2)2k|.∵k <0,∴-k >0,∴S △AOB =12[-(k -2)2k ]=12[4+(-4k)+(-k )]≥4.当且仅当-4k=-k ,即k =-2时取等号,∴△AOB 的面积最小值是4,直线的方程为y +2=-2(x +1),即y +2x +4=0.21.解:(1)设,则由已知,得(a -1)2+(-2)2+12=(a -2)2+22,即a 2-2a +6=a 2-4a +8.解得a =1.所以P 点的坐标为(1,0,0).(2)设M (x,0,z ),则有(x -1)2+(-2)2+(z +1)2=(x -2)2+(z -2)2. 整理得,即.故M 点的轨迹是xOz 平面内的一条直线.。

北师大版数学必修二同步课时作业:第2章 解析几何初步2.1.3

北师大版数学必修二同步课时作业:第2章 解析几何初步2.1.3

第二章 §1 1.3A 级 基础巩固一、选择题1.下列说法中正确的是( B )A .平行的两条直线的斜率一定存在且相等B .平行的两条直线的倾斜角一定相等C .垂直的两直线的斜率之积为-1D .只有斜率相等的两条直线才一定平行[解析] A ,C ,D 三项均没有考虑到斜率不存在的情况.2.已知直线l 1的斜率为13,直线l 2经过两点M (3,-4),N (1,2),则直线l 1与l 2的位置关系是( D )A .平行B .相交不垂直C .重合D .垂直[解析] kl 2=k MN =-4-23-1=-3,所以kl 1·kl 2=-1.所以直线l 1与l 2垂直.3.如果直线l 1的斜率为a ,l 1⊥l 2,则直线l 2的斜率为( D ) A .1aB .aC .-1aD .-1a 或不存在[解析] 若a =0,则l 2的斜率不存在;若a ≠0,则l 2的斜率为-1a .4.过点(1,0)且与直线x -2y -2=0平行的直线方程是( A ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0[解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0.解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A .5.已知两点A (2,0)、B (3,4),直线l 过点B ,且交y 轴于点C (0,y ),O 是坐标原点,且O 、A 、B 、C 四点共圆,那么y 的值是( B )A .19B .194C .5D .4[解析] 由于A 、B 、C 、O 四点共圆,所以AB ⊥BC ,∴4-03-2·4-y 3-0=-1,∴y =194.故选B .6.直线x +a 2y +6=0和直线(a -2)x +3ay +2a =0没有公共点,则a 的值是( D ) A .1 B .0 C .-1D .0或-1[解析] 两直线无公共点,即两直线平行, ∴1×3a -a 2(a -2)=0,∴a =0或-1或3,经检验知a =3时两直线重合. 二、填空题7.原点在直线l 上的射影是P (-2,3),则直线l 的方程为__2x -3y +13=0__. [解析] l 与原点和P 点连线垂直 ∴l 的斜率k =--2-03-0=23,∴l 的方程为y -3=23(x +2).即2x -3y +13=0.8.直线l 与直线3x -2y =6平行,且直线l 在x 轴上的截距比在y 轴上的截距大1,则直线l 的方程为__15x -10y -6=0__.[解析] 由题意知直线l 的斜率k =32,设直线l 的方程为y =32x +b .令y =0,得x =-2b3.∴-2b3-b =1,解得b =-35.∴直线l 的方程为y =32x -35,即15x -10y -6=0. 三、解答题9.已知A (2,2)和直线l :3x +4y -20=0,求: (1)过A 点且和直线l 平行的直线的方程; (2)过A 点且和直线l 垂直的直线的方程. [解析] ∵直线l 的方程为3x +4y -20=0,∴k 1=-34.(1)设过A 点且与l 平行的直线为l 1.∵k 1=kl 1, ∴kl 1=-34,∴直线l 1的方程为y -2=-34(x -2),即3x +4y -14=0为所求.(2)设过A 且与l 垂直的直线为l 2.∵k 1·kl 2=-1, ∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0为所求.本题可以设与直线l 平行的直线方程为3x +4y +c =0与直线l 垂直的直线方程为4x -3y +λ=0,确定c ,λ的值即可.10.直线l 1经过点A (m ,1),B (-3,4),直线l 2经过点C (1,m ),D (-1,m +1),当l 1∥l 2或l 1⊥l 2时,分别求实数m 的值.[解析] 当l 1∥l 2时,由于直线l 2的斜率存在,则直线l 1的斜率也存在.设直线l 1的斜率为k AB ,直线l 2的斜率为k CD ,则k AB =k CD ,即4-1-3-m =m +1-m-1-1,解得m =3;当l 1⊥l 2时,由于直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k AB ·k CD =-1, 即4-1-3-m ·m +1-m -1-1=-1,解得m =-92.B 级 素养提升一、选择题1.已知A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥AD ;③AC ∥BD ;④AC ⊥B D .其中正确的个数是( C )A .1B .2C .3D .4[解析] 根据判定两直线平行或垂直的方法进行判定. ∵k AB =-4-26+4=-35,k CD =12-62-12=-35,∴AB 方程为y -2=-35(x +4),即3x +5y +2=0.∴C (12,6)不在AB 上.∴AB ∥C D .又∵k AD =12-22+4=53,∴k AB ·k AD =-1.∴AB ⊥A D .∵k AC =6-212+4=14,k BD =12+42-6=-4,∴k AC ·k BD =-1,∴AC ⊥B D .∴四个结论中①、②、④正确.故选C .2.已知直线x +3y -7=0,kx -y -2=0与x 轴,y 轴围成的四边形有外接圆,则实数k 等于( B )A .-3B .3C .-6D .6[解析] 因四边形有外接圆,且x 轴与y 轴垂直,则直线x +3y -7=0和kx -y -2=0垂直,∴k ·(-13)=-1,解得k =3.二、填空题3.若直线l 经过点(a -2,-1)和(-a -2,1)且与经过点(-2,1),斜率为-23的直线垂直,则实数a 的值为__-23__.[解析] 由题意知两直线的斜率均存在,且直线l 与斜率为-23的直线垂直,则直线l 的斜率为32,于是32=1-(-1)(-a -2)-(a -2)=2-2a =-1a ,解得a =-23.4.若三条直线2x -y +4=0,x -y +5=0和2mx -3y +12=0,围成直角三角形,则m =__-34或-32__.[解析] 设l 1∶2x -y +4=0,l 2∶x -y +5=0,l 3∶2mx -3y +12=0,l 1不垂直于l 2,要使围成的三角形为直角三角形,则l 3⊥l 1或l 3⊥l 2. 由l 3⊥l 1得2×23m =-1,∴m =-34;由l 3⊥l 2得1×23m =-1,∴m =-32.三、解答题5.已知点M (2,2)和N (-6,-2),试在y 轴上求一个点P ,使∠MPN 为直角. [解析] 解法一:∵点P 在y 轴上, ∴设点P (0,y ). ∵∠MPN 为直角,∴PM ⊥PN .设直线PM 的斜率为k PM ,直线PN 的斜率为k PN , 则k PM ·k PN =-1, 即y -20-2·y +20+6=-1. 解得y =±4.∴点P 的坐标是(0,4)或(0,-4). 解法二:设P (0,y )为所求因为∠MPN 为直角,所以有|MP |2+|NP |2=|MN |2,即(0-2)2+(y -2)2+(0+6)2+(y +2)2=(-6-2)2+(-2-2)2,整理得y 2=16,所以y =±4. 故所求的点P 坐标为(0,-4)或(0,4).6.求经过点A (2,1)且与直线2x +ay -10=0垂直的直线l 的方程.[解析] ①当a =0时,已知直线化为x =5,此时直线斜率不存在,则所求直线l 的斜率为0.∵直线l 过点A (2,1),∴直线l 的方程为y -1=0(x -2),即y =1. ②当a ≠0时,已知直线2x +ay -10=0的斜率为-2a.∵直线l 与已知直线垂直,设所求直线斜率为k ,∴k ·⎝⎛⎭⎫-2a =-1,∴k =a 2. ∵直线l 过点A (2,1),∴所求直线l 的方程为y -1=a2(x -2),即ax -2y -2a +2=0.综上所述,所求直线l 的方程为y =1或ax -2y -2a +2=0.C 级 能力拔高已知A (1,-1),B (2,2),C (3,0)三点. (1)求点D ,使直线CD ⊥AB ,且BC ∥AD ; (2)判断此时四边形ACBD 的形状. [解析] (1)如图,设D (x ,y ),则由CD ⊥AB ,BC ∥AD 可知⎩⎪⎨⎪⎧k CD ·k AB =-1,k CB =k AD,得⎩⎪⎨⎪⎧y x -3·2+12-1=-1,2-02-3=y +1x -1,解得⎩⎪⎨⎪⎧x =0,y =1,即D 点坐标为(0,1).(2)∵k AC =0-(-1)3-1=12,k BD =2-12-0=12,∴k AC =k B D .∴AC ∥B D .∴四边形ACBD 为平行四边形. 而k BC =2-02-3=-2,∴k BC ·k AC =-1.∴AC ⊥B C .∴四边形ACBD 是矩形. 又DC ⊥AB ,∴四边形ACBD 是正方形.由Ruize收集整理。

第二章《平面解析几何初步》同步练习二(新人教B版必修2)[1]

第二章《平面解析几何初步》同步练习二(新人教B版必修2)[1]

第二章《平面解析几何初步》一、选择题(解析:选D.由3a (a -23)+(-1)×1=0,得a =-13或a =1.2.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是图中的( )解析:选C.直线l 1:ax -y +b =0,斜率为a ,在y 轴上的截距为b ,设k 1=a ,m 1=b .直线l 2:bx -y +a =0,斜率为b ,在y 轴上的截距为a , 设k 2=b ,m 2=a .由A 知:因为l 1∥l 2,k 1=k 2>0,m 1>m 2>0,即a =b >0,b >a >0,矛盾. 由B 知:k 1<0<k 2,m 1>m 2>0,即a <0<b ,b >a >0,矛盾. 由C 知:k 1>k 2>0,m 2>m 1>0,即a >b >0,可以成立. 由D 知:k 1>k 2>0,m 2>0>m 1,即a >b >0,a >0>b ,矛盾. 3.解析:选 B.点A 关于x 轴对称点A ′(-1,-1),A ′与圆心(5,7)的距离为5+12+7+12=10.∴所求最短路程为10-2=8.4.解析:选D.圆x 2+y 2=1的圆心为(0,0),半径为1,圆x 2+y 2=4的圆心为(0,0),半径为2,则圆心距0<2-1=1,所以两圆内含.5.解析:选B.圆心(a,2)到直线l :x -y +3=0的距离d =|a -2+3|2=|a +1|2,依题意⎝ ⎛⎭⎪⎫|a +1|22+⎝ ⎛⎭⎪⎫2322=4,解得a =2-1. 6.解析:选D.∵所求直线平行于直线2x +3y -6=0, ∴设所求直线方程为2x +3y +c =0, 由|2-3+c |22+32=|2-3-6|22+32,∴c =8,或c =-6(舍去),∴所求直线方程为2x +3y +8=0. 7.解析:选B.数形结合答案容易错选D ,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.解析:选C.直线y =ax +1过定点(0,1),而该点一定在圆内部. 9.解析:选B.∵圆C 的圆心为(1,1),半径为 5. ∴|PC |=5-12+4-12=5,∴|PA |=|PB |=52-52=25,∴S =12×25×5×2=10.10. 解析:选C.圆x 2+y 2-4x -2y -4=0可化为(x -2)2+(y -1)2=9,直线mx +2ny -4=0始终平分圆周,即直线过圆心(2,1),所以2m +2n -4=0,即m +n =2,mn =m (2-m )=-m2+2m =-(m -1)2+1≤1,当m =1时等号成立,此时n =1,与“m ≠n ”矛盾,所以mn <1.11解析:选C. 曲线y =1-x 2表示单位圆的上半部分,画出直线l 与曲线在同一坐标系中的图象,可观察出仅当直线l 在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l 与曲线有两个交点.当直线l 过点(-1,0)时,m =1;当直线l 为圆的上切线时,m =2(注:m =-2,直线l 为下切线). 12.解析:选A.∵点P 在圆上,∴切线l 的斜率k =-1k OP =-11-42+2=43∴直线l 的方程为y -4=43(x +2),即4x -3y +20=0. 又直线m 与l 平行,∴直线m 的方程为4x -3y =0.故两平行直线的距离为d =|0-20|42+-32=4.二、填空题13解析:易求得AB 的中点为(0,0),斜率为-1,从而其垂直平分线为直线y =x ,根据圆的几何性质,这条直线应该过圆心,将它与直线x +y -2=0联立得到圆心O (1,1),半径r =|OA |=2.答案:(x -1)2+(y -1)2=414.解析:过P 作圆的切线PC ,切点为C ,在Rt △POC 中,易求|PC |=3,由切割线定理,|PA |·|PB |=|PC |2=3.答案:3 15.解析:已知直线斜率k 1=-2,直线ax +2y +c =0的斜率为-a2.∵两直线垂直,∴(-2)·(-a 2)=-1,得a =-1.圆心到切线的距离为5,即|c |5=5,∴c =±5,故ac =±5.答案:±5 16..解析:将圆x 2+y 2-2x +4y +4=0化为标准方程,得(x -1)2+(y +2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d =|3×1+4×-2+m |32+42=|m -5|5>1,∴m <0或m >10.答案:(-∞,0)∪(10,+∞)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤) 17.解:AC 边上的高线2x -3y +1=0,所以k AC =-32.所以AC 的方程为y -2=-32(x -1),即3x +2y -7=0,同理可求直线AB 的方程为x -y +1=0. 下面求直线BC 的方程, 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得顶点C (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得顶点B (-2,-1).所以k BC =-23,直线BC :y +1=-23(x +2),即2x +3y +7=0.18.解:圆C 的方程可化为(x -2)2+(y -2)2=1.(1)圆心C 关于x 轴的对称点为C ′(2,-2),过点A ,C ′的直线的方程x +y =0即为光线l 所在直线的方程.(2)A 关于x 轴的对称点为A ′(-3,-3), 设过点A ′的直线为y +3=k (x +3).当该直线与圆C 相切时,有|2k -2+3k -3|1+k2=1,解得k =43或k =34,所以过点A ′的圆C 的两条切线分别为y +3=43(x +3),y +3=34(x +3).令y =0,得x 1=-34,x 2=1,所以在x 轴上反射点M 的横坐标的取值范围是[-34,1].19.解:(1)方程x 2+y 2-2x -4y +m =0,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0. 设M (x 1,y 1),N (x 2,y 2),则 ⎩⎪⎨⎪⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125.∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45,∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |=⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165.20.解:(1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2 =1+|PA |2,所以a 2+b 2=1+(a -2)2+(b -1)2, 故2a +b -3=0.(2)由(1)知,P 在直线l :2x +y -3=0上, 所以|PQ |min =|PA |min ,为A 到直线l 的距离,所以|PQ |min =|2×2+1-3|22+12=255.(或由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2-12a +8=5(a -1.2)2+0.8,得|PQ |min =255.)(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1, 又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.21.有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程.解:法一:由题意可设所求的方程为(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l ,得⎩⎪⎨⎪⎧3-a 2+6-b 2=r 2,5-a 2+2-b 2=r 2,b -6a -3×43=-1,解得⎩⎨⎧a =5,b =92r 2=254.所以所求圆的方程为(x -5)2+(y -92)2=254.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0,由CA ⊥l ,A (3,6),B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.法四:设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 的方程为y -6=-34(x -3),即3x +4y -33=0.又因为k AB =6-23-5=-2,所以k BP =12,所以直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.所以P (7,3).所以圆心为AP 的中点(5,92),半径为|AC |=52.所以所求圆的方程为(x -5)2+(y -92)2=254.22.如图在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被C 2截得的弦长相等.试求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为圆C 1被直线l 截得的弦长为23,所以d =22-32=1.由点到直线的距离公式得d =|1-k -3-4|1+k2,从而k (24k +7)=0,即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).因为圆C 1和C 2的半径相等,且圆C 1被直线l 1截得的弦长与圆C 2被直线l 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k -3-a -b |1+k2=|5+1k4-a -b |1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0,b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =52,b =-12,或⎩⎪⎨⎪⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭-32,132.经检验点P 1和P 2满足题目条件.。

备课参考高一数学北师大必修二同步练习:第2章 解析几何初步 2 含答案

备课参考高一数学北师大必修二同步练习:第2章 解析几何初步 2 含答案

解析几何小题训练一、选择题:1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支2.参数方程2tan cot x y θθ=⎧⎨=+⎩(θ为参数)所表示的曲线是( )A .圆B .直线C .两条射线D .线段3.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )A .4B .5C .1D .4.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+ 的最小值为( )A .1B .5C .D .3+5.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m( )A . 2-B .1-C .1D .46. 设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线1l ,则直线1l 的倾斜角为( ). A .︒+α45 B .︒-α135 C .α-︒135D .当︒<α≤︒1350时为︒+α45,当︒<α≤︒180135时为︒-α1357. 直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)113y x =-+ (B)1133y x =-+ (C)33y x =- (D)113y x =+8.将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-= 相切,则实数λ的值为 ( ) (A )-3或7 (B )-2或8 (C )0或10 (D )1或11选择题答题卡二、填空题: 9. 已知两点A B ()()-2002,,,,点C 是圆x y x 2220+-=上的任意一点,则∆ABC 的面积最小值是 .10. 已知直线l :x y +-=20与圆C :x y ax ay a 2224240++-+=,设d 是圆C 上的点到直线的距离,且圆C 上有两点使d 取得最大值,则此时a = ,d =11. 直线()()a x b y +++=110与圆x y 222+=的位置关系是_________.12. 在直角坐标系中,射线OA ,OB 的方程是x y x -=≥00(),x y x +=≥00()。

北师大版高中数学必修二解析几何初步同步练习(精品试题)

北师大版高中数学必修二解析几何初步同步练习(精品试题)

解析几何初步一、 选择题1.直线236x y -=在x 轴、y 轴上的截距分别是( )()A 3,2()B 3,2- ()C 3,2- ()D 3,2--2.已知直线l 经过点(3,2)A 、(3,2)B -,则直线l 的斜率为( ) ()A 0()B 1()C 1- ()D 不存在3.直线22(252)(4)50a a x a y a -+--+=的倾斜角为45o ,则a 的值为( )()A 3-()B 2- ()C 2 ()D 34.直线0Ax By C ++=通过第二、三、四象限,则系数,,A B C 需满足条件( )()A ,,A B C 同号 ()B 0,0AC BC << ()C 0,0C AB =<()D 0,0A BC =<5.已知直线12y x b =+与x 轴、y 轴的交点分别为A 、B ,如果AOB ∆的面积(O 为坐标原点)不大于1,那么b 的范围是( )()A 1b ≥-()B 11b -≤≤ ()C 1b ≤且0b ≠ ()D 11b -≤≤且0b ≠6.设,,a b c 是两两不等的实数,直线l 经过点(,)P b b c +与点(,)Q a a c +,则直线l 的斜率是( )()A 0()B ()C 1()D7.三点(3,1)A ,(2,)B m ,(8,11)C 在同一直线上,则实数m 的值是 ( )()A 4-()B 3- ()C 2- ()D 1-8.直线的倾斜角为060,直线2l 垂直于直线1l ,则直线2l 的斜率是( )AB C3D3-9.已知A (0,8),B (4,0)-,C(m ,-4)三点共线,则实数m 的值是( ) A6-B 6C 5-D 510.以A (1,1)- B (2,1)-C (1,4)为顶点的三角形是( )A 锐角三角形B 直角三角形C 钝角三角形D 以上都不对11.过点(6,)P m 和点Q (,3)m 的直线与直线250x y -+=平行,则m 的值为( ) A 3B 4C 5D 612.两直线3430x y --=和68190x y -+=之间的距离为( )A 2 B32 C 52D 3 13.下列直线中,斜率为43-,且不经过第一象限的是()()A 3470x y ++= ()B 4370x y ++= ()C 43420x y +-=()D 44420x y +-=14.已知直线l :0Ax By C ++=(,A B 不全为0),点00(,)P x y 在l 上,则l 的方程可化为( )()A 00()()0A x x B y y C ++++= ()B 00()()0A x x B y y +++= ()C 00()()0A x x B y y C -+-+=()D 00()()0A x x B y y -+-=15.直线l 经过点(1,0)-,且通过一、二、三象限,它与两坐标轴所围成的三角形的面积为2,则直线l 的方程是( )()A 440x y +-=()B 440x y ++=()C 440x y --=()D 440x y -+=16.在直线x y =到)1,1(-A 距离最短的点是 ( )A .(0,0)B .(1,1)C .(-1,-1)D .(21,21-)17.x 轴上点到)2,2(),1,2(-B A 两点距离的最小值为( ) A .3B .17C .5D .1718.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足 ( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m19.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为 M (1,-1),则直线l 的斜率为( )A .23 B .32C .-23 D . -3220.△ABC 中,点A(4,-1),AB 的中点为M(3,2),重心为P(4,2),则边BC 的长为( )A .5B .4C .10D .821.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点( )A .(0,0) B.(0,1)C .(3,1)D .(2,1)22.如果AC <0且BC <0,那么直线Ax +By +C =0不通过 ( )A .第一象限B .第二象限C .第三象限D .第四象限23.两直线22x ay a +=+与1ax y a +=+平行时,a 的值是( )()A 12a =()B 12a =-()C 1a = ()D 1a =-24.如图,若直线123,,l l l 的斜率分别为123,,k k k ,则( )()A 123k k k <<()B 132k k k <<()C 312k k k << ()D 321k k k <<25.下列说法的正确的是 ( )A .经过定点的直线都可以用方程表示3B .经过定点()b A ,0的直线都可以用方程表示C .不经过原点的直线都可以用方程表示D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程表示26.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .B .-3C .D .327.直线在轴上的截距是( )A .B .-C .D .28.若点),4(a 到直线0134=--y x 的距离不大于3,则a 的取值范围为 ( )A .)10,0(B .]10,0[C .]331,31[ D .),(+∞-∞29.已知两定点A(-3,5),B(2,15),动点P 在直线3x -4y +4=0上,当PA +PB 取 最小值时,这个最小值为 ( )A .513B .362C .155D .5+10230.圆222420x y x y ++-+=的圆心坐标和半径分别为( )()A (1,2),3- ()B (1,2),3- ()C (1,-()D (1,-31.圆的方程为22220x y kx y k ++++=,当圆面积最大时,圆心坐标为( )()A (1,1)-()B (1,1)-()C (1,0)-()D (0,1)-32.如果圆220x y Dx Ey F ++++=关于直线2y x =对称,则( )()A 2D E = ()B 2E D = ()C 20E D += ()D D E =33.圆心为(2,1)-的圆,在直线10x y --=上截得的弦长为那么,这个圆的方程为( ) A 22(2)(1)4x y -++=B 22(2)(1)2x y -++=C22(2)(1)4x y ++-= D22(2)(1)2x y ++-=34.圆2268240x y x y +-++=关于直线0y =对称的圆的方程是( ) A 22(3)(4)1x y ++-=B 22(4)(3)1x y -++=C22(4)(3)1x y ++-=D 22(3)(4)1x y -+-=35.方程1x -= )A 一个圆B 两个圆C 半个圆D 两个半圆36.直线l 经过点A (2,1),且与直线x – y -4 = 0和x 轴围成等腰三角形,则这样的直线的条数共有 ( ) A 、1条B 、2条C 、3条D 、4条37.在空间直角坐标系中,点(1,2,3)A 关于xoy 平面对称点为B ,关于原点的对称点为C ,则B,C 间的距离为( ) AB C D 38.直线1x y +=与圆222220x y x y +-+-=的位置关系是( ) A 相切 B 相交但直线不过圆心 C 相离 D相交且直线过圆心 39.直线0x my m ++=(1)m ≠±与圆22(1)1x y +-=的位置关系 是( )()A 相离 ()B 相交 ()C 相切()D 根据m的值而定40.已知半径为1的动圆与定圆22(5)(7)16x y -++=相切,则动圆圆心的轨迹方程是( ) A .22(5)(7)25x y -++=B .22(5)(7)3x y -++= 或22(5)(7)15x y -++=C .22(5)(7)9x y -++=D .22(5)(7)25x y -++= 或22(5)(7)9x y -++=41.若圆x 2+ y 2- 2x - 4y=0的圆心到直线x – y + a = 0的距离为2,则a 的值( )A 、-2或2B 、12或32C 、2或0D 、-2或042.圆x 2+ y 2=9与圆(x-1)2+(y+1)2=16的位置关系是( ) A 、相交 B 、内切 C 、外切 D 、相离 43.若点A(2a , a-1)在圆x 2+ y 2– 2y-4=0的内部,则a 的取值范围是( )A 、-1<a<1B 、0<a<1C 、-1<a<15D 、15-<a<144、直线x-2y-3=0与圆(x-2)2+(y+3)2=9交于E 、F 两点,则△EOF(o 为原点)的面积为( )A 、32B 、34C 、 D45、圆:x 2+ y 2– 4x + 6y = 0和圆::x 2+ y 2– 6x = 0交于A 、B 两点,则AB 的垂直平分线的方程是( )A 、x+y+3=0B 、2x-y-5=0C 、3x-y-9=0D 、4x-3y+7=046、圆:x 2+y 2- 2x - 2y + 1 =0上的点到直线x – y = 2的距离最大值是( )A 、2B 、C 、1+2D 、1+47、与直线2x+3y-6=0关于点(1,-1)对称的直线方程是( ) A 、3x-2y+2 =0 B 、2x+3y+7=0 C 、3x-2y-12=0 D 、2x+3y+8=048、以点(2,-1)为圆心且与直线3x - 4y + 5 = 0相切的圆的方程为( )A 、(x-2)2+ (y+1)2= 3 B 、(x+2)2+ (y-1)2= 3 C 、(x-2)3+ (y+1)2= 9 D 、(x+2)2+ (y-1)2= 9 49、若直线ax + by = 4与圆C :x 2+ y 2= 4有两个不同交点,则点P( a,b)圆C 的位置关系是( )A 、在圆内B 、在圆外C 、在圆上D 、不确定 50、已知圆C :x 2+ y 2- 2x + 4y = 0,则通过原点且与圆C 相切的直线方程为( )A 、y=-2xB 、y=-12x C 、y=12x D 、y= 2x二、填空题1、直线l 的倾斜角为-60αo ,则α的范围为__________2、若A(1),B(3,直线l 过原点,且与线段AB 有公共点,则直线l斜率的范围是________3、已知直线l的倾斜角为45o,且在y轴上的截距为-4,则直线l的斜截式方程为______4、过两点(-2,2),(2,3)的直线的点斜式方程为________5、直线l的y轴与x轴上的截距分别为12与-12,则直线l的方程为_______6、经过两点A(1,2)B(3,-2)的直线,在y轴与x轴上的截距分别为a,b,则a+b=______7、将方程2x+3y+4=0,化为截距式方程,其结果为________8、与直线x+y=1斜率相等,且过点(1,2)的直线方程的一般式为________9、已知A(0,-1),B(-2a,0 ),C(1,1),D(2,4),若直线AB与直线CD 平行,则a的值为_______10、过点P(m,n)引一直线,使其倾斜角为直线l:x – y – 3 = 0的倾斜角的两倍,则该直线的方程是_______11、若直线l1:x+by=1与直线l2:x-y=a的交点坐标是(0,2),则a+b=_______12、在平面直角坐标系中,若直线x+y+a=0与直线x-3y=0的交点在第三象限,则a的取值范围是_______13、已知点M(x,-4)与N(2,3)间的距离为,则x的值为__________14、与直线3x+4y=4平行,并且距离等于2的直线方程是__________15、圆(x-1)2+(y+1)2=2的周长为_________16、已知点A(-4,-5),B( 6,-1), 则以线段AB为直径的圆的标准方程是_________17、圆x2 + y2 - 4x + 6y + m = 0的直径为6,则m=________18、过点O(0,0),A(1,1)B(1,-5)的圆的一般方程是__________19、若圆(x-a)2 + (y-b)2 = r2与y轴相切,则a与r的关系为________20、已知直线x=a与圆(x-1)2+y2=1相切,则a=__________21、过圆x2 + y2 = 1和圆x2 + y2- 2x - 2y + 1=0的交点的直线方程是_________22、圆x2 + y2 = 1与圆x2 + y2 - 6x - 8y +9 = 0的公切线有______条23、点P(2,3,4)在xOy 平面内的射影的坐标为_______24、点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于________,25、已知点A在x轴上,点B的坐标为(1,2,0),且|AB|=26、直线3x + 4y - 13 = 0与圆(x-2)2 + (y-3)2 = 1的位置关系是_______27、直线y=x-1上的点到圆x2 + y2 + 4x - 2y + 4 =0的最近距离是______28、与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有______条29、圆心在直线2x-y-3=0上,且过点(5,2)和(3,-2)的圆的方程为________30、已知直线l的斜率为k(≠0),它在x轴、y轴上的截距分别为k、2k,则直线l的方程为______三、解答题1、已知三角形的顶点为A(2,4)、B(0,-2)、C(-2,3)求:(1)AB边上的中线CM所在直线的方程;(2)△ABC的面积。

2021-2022年高中数学 第二章解析几何初步之直线与圆同步练习 北师大版必修2

2021-2022年高中数学 第二章解析几何初步之直线与圆同步练习 北师大版必修2

2021-2022年高中数学 第二章解析几何初步之直线与圆同步练习 北师大版必修21.(北师大版必修2 第93 页A 组第1题)已知点,求直线的斜率.变式1:已知点,则直线的倾斜角是( )A. B. C. D.解:∵,∴,∵,∴,故选(C ).变式2:(xx 年北京卷)若三点)0)(,0(),0,(),2,2(≠ab b C a B A 共线,则的值等于 .解:∵、、三点共线,∴,∴,∴,∴.变式3:已知点,直线的倾斜角是直线的倾斜角的一半,求直线的斜率.解:设直线的倾斜角为,则直线的倾斜角为,依题意有,∴,∴,∴或.由,得,∴,∴,∴直线的斜率为.2.(人教A 版必修2 第111页A 组第9题)求过点,并且在两轴上的截距相等的直线方程.变式1:直线在轴上的截距为,在轴上的截距为,则( )A. B. C. D.解:令得,∴直线在轴上的截距为;令得,∴直线在轴上的截距为,故选(B ).变式2:过点,且在两坐标轴上的截距互为相反数的直线方程是 .解:依题意,直线的斜率为1或直线经过原点,∴直线的方程为或,即或.变式3:直线经过点,且与两坐标轴围成一个等腰直角三角形,求直线的方程.解:依题意,直线的斜率为±1,∴直线的方程为或,即或.3.(人教A 版必修2 第124页A 组第3题)求直线与坐标轴围成的三角形的面积.变式1:过点(-5,-4)且与两坐标轴围成的三角形面积为5的直线方程是 .解:设所求直线方程为,依题意有,∴(无解)或,解得或.∴直线的方程是或.变式2:(xx 年上海春季卷)已知直线过点,且与轴、轴的正半轴分别交于、两点,为坐标原点,则△OAB 面积的最小值为 .解:设直线的方程为, 则4])1()4(24[21)]1()4(4[2114421)21)(12(21=-⋅-+≥-+-+=--=--=∆kk k k k k k k S OAB ,当且仅当即时取等号,∴当时,有最小值4.变式3:已知射线和点,在射线上求一点,使直线与及轴围成的三角形面积最小.解:设,则直线的方程为0)4)(6()6)(44(00=-----y x x x .令得,∴]211)1[(101]1)1[(101104)15(2100020020000+-+-=-+-=-=⋅-=x x x x x x x x x S 40]211)1(2[1000=+-⋅-≥x x ,当且仅当即时取等号,∴当为(2,8)时,三角形面积最小.4.(北师大版必修2 第117页A 组第10题)求过点,且与直线平行的直线的方程.变式1:(xx 年全国卷)已知过点和的直线与直线平行,则的值为( )A.0B.-8C.2D.10解:依题意有,解得,故选(B ).变式2:与直线平行,且距离等于的直线方程是 .解:设所求直线方程为,则,解得或,∴直线方程为或.变式3:已知三条直线0,0134,0532=-=+-=++y mx y x y x 不能构成三角形,求实数的取值集合.解:依题意,当三条直线中有两条平行或重合,或三条直线交于一点时,三条直线不能构成三角形,故或或,∴实数的取值集合是.5.(北师大版必修2 第117页A 组第7题)若直线和直线0)1()1(2=-+++a y a a x 垂直,求的值.变式1:(1987年上海卷)若直线与直线0)1()1(:22=-+-+a y a x l 平行但不重合,则等于( )A.-1或2B.-1C.2D.解:∵,∴且,∴且,解得,故选(B ).变式2:(xx 年北京春季卷)“”是“直线与直线03)2()2(=-++-y m x m 相互垂直”的( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解:由20)2(3)2)(2(0212121-=⇔=++-+⇔=+⇔⊥m m m m m B B A A l l 或,知由可推出,但由推不出,故是的充分不必要条件,故选(B ).变式3:设直线与圆相交于点、两点,为坐标原点,且,求的值.解:∵圆经过原点,且,∴是圆的直径,∴圆心(1,-2)在直线上,∴.6.(人教A 版必修2 第110页A 组第3题)已知,,求线段的垂直平分线的方程.变式1:已知关于直线的对称点为,则直线的方程是( )A. B. C. D.解:依题意得,直线是线段的垂直平分线.∵,∴,∵的中点为(1,1),∴直线的方程是即,故选(B ). 变式2:已知圆与圆关于直线对称 ,则直线的方程是 .解:依题意得,两圆的圆心与关于直线对称,故直线是线段的垂直平分线,由变式1可得直线的方程为. 变式3:求点关于直线的对称点的坐标.解:设.由,且的中点在直线上,得⎪⎪⎩⎪⎪⎨⎧=--⋅-+⋅-=⋅-+0124527615674y x x y ,解得,∴.7.(北师大版必修2 第118页B 组第2题)光线自点射到点后被轴反射,求反射光线所在直线的方程.变式1:一条光线从点射出,经轴反射,与圆相切,则反射光线所在直线的方程是 .解:依题意得,点关于轴的对称点在反射光线所在的直线上,故可设反射光线所在直线的方程为,即.由反射光线与圆相切得,解得或,∴反射光线所在直线的方程是或,即或.变式2:(xx 年全国卷)已知长方形的四个顶点、、和,一质点从的中点沿与夹角为的方向射到上的点后,依次反射到、和上的点、和(入射角等于反射角).设的坐标为.若,则的取值范围是( )A. B. C. D.解:用特例法,取,则、、、分别为、、、的中点,此时.依题意,包含的选项(A )(B )(D )应排除,故选(C ). 变式3:已知点,在直线上求一点P ,使最小.解:由题意知,点A 、B 在直线的同一侧.由平面几何性质可知,先作出点关于直线的对称点,然后连结,则直线与的交点P 为所求.事实上,设点是上异于P 的点,则PB PA B A B P A P B P A P +=>+=+''''''. 设,则⎪⎪⎩⎪⎪⎨⎧=++⋅--⋅-=⋅+-0425423314335y x x y ,解得,∴,∴直线的方程为.由,解得⎪⎩⎪⎨⎧==338y x ,∴.8.(人教A 版必修2第144页A 组 3)求以为圆心,并且与直线相切的圆的方程.变式1:(xx 年重庆卷)过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为( ) A.或 B.或C.或D.或解:设直线方程为,即.∵圆方程可化为,∴圆心为(2,-1),半径为.依题意有,解得或,∴直线方程为或,故选(A ).变式2:(xx 年湖北卷)已知直线与圆相切,则的值为 .解:∵圆的圆心为(1,0),半径为1,∴,解得或.变式3:求经过点,且与直线和都相切的圆的方程.解:设所求圆的方程为,则⎪⎩⎪⎨⎧=+=-=-+r b a b a r b a 5252)5(222,解得⎪⎩⎪⎨⎧===531r b a 或⎪⎩⎪⎨⎧===55155r b a ,∴圆的方程为或.9.(人教A 版必修2 第144页 A 组 第5题)求直线被圆截得的弦的长.变式1:(xx 年全国卷)直线截圆得的劣弧所对的圆心角为( )A. B. C. D.解:依题意得,弦心距,故弦长,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为,故选(C ). 变式2:(xx 年天津卷)设直线与圆相交于、两点,且弦的长为,则 .解:由弦心距、半弦长、半径构成直角三角形,得,解得.变式3:已知圆6)2()1(:22=-++y x C ,直线.(1)求证:不论取什么实数,直线与圆恒交于两点;(2)求直线被圆截得的弦长最小时的方程.解:(1)∵直线恒过定点,且,∴点在圆内,∴直线与圆恒交于两点.(2)由平面几何性质可知,当过圆内的定点的直线垂直于时,直线被圆截得的弦长最小,此时,∴所求直线的方程为即.10.(北师大版必修2第117页A 组 第14题)已知直线和圆,判断此直线与已知圆的位置关系.变式1:(xx 年安徽卷)直线与圆)0(0222>=-+a ay y x 没有公共点,则的取值范围是( )A. B. C. D.解:依题意有,解得.∵,∴,故选(A ).变式2:(xx 年湖北卷)若直线与圆有两个不同的交点,则的取值范围是 .解:依题意有,解得,∴的取值范围是.变式3:若直线与曲线有且只有一个公共点,求实数的取值范围.解:∵曲线表示半圆,∴利用数形结合法,可得实数的取值范围是或.11.(北师大版必修2第101页例8)判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,并画出图形.变式1:(1995年全国卷)圆和圆的位置关系是( )A.相离B.外切C.相交D.内切解:∵圆的圆心为,半径,圆的圆心为,半径,∴1,3,5122121=-=+=r r r r O O .∵,∴两圆相交,故选(C ). 变式2:若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数的取值集合是 .解:∵圆的圆心为,半径,圆的圆心为,半径,且两圆相切,∴或,∴或,解得或,或或,∴实数的取值集合是. 变式3:求与圆外切于点,且半径为的圆的方程.解:设所求圆的圆心为,则所求圆的方程为.∵两圆外切于点,∴,∴,∴,∴所求圆的方程为.12.(人教A 版必修2 第145页B 组第2题)已知点)2,4(),6,2(),2,2(----C B A ,点在圆上运动,求的最大值和最小值.变式1:(xx 年湖南卷)圆0104422=---+y x y x 上的点到直线的最大距离与最小距离的差是( )A.36B.18C.D.解:∵圆的圆心为(2,2),半径,∴圆心到直线的距离,∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是262)()(==--+r r d r d ,故选(C ).变式2:已知,,点在圆上运动,则的最小值是 .解:设,则828)(2)2()2(222222222+=++=+-+++=+OP y x y x y x PB PA .设圆心为,则,∴的最小值为.变式3:已知点在圆上运动.(1)求的最大值与最小值;(2)求的最大值与最小值.解:(1)设,则表示点与点(2,1)连线的斜率.当该直线与圆相切时,取得最大值与最小值.由,解得,∴的最大值为,最小值为.(2)设,则表示直线在轴上的截距. 当该直线与圆相切时,取得最大值与最小值.由,解得,∴的最大值为,最小值为.13.(人教A 版必修2第135页B 组第3题)已知点与两个定点,的距离的比为,求点的轨迹方程.变式1:(xx 年四川卷)已知两定点,,如果动点满足,则点的轨迹所包围的面积等于( )A. B. C. D.解:设点的坐标是.由,得2222)1(2)2(y x y x +-=++,化简得,∴点的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为,故选(B ).变式2:(xx 年全国卷)由动点向圆引两条切线、,切点分别为、,=600,则动点的轨迹方程是 .解:设.∵=600,∴=300.∵,∴,∴,化简得,∴动点的轨迹方程是.变式3:(xx 年北京春季卷)设为两定点,动点到点的距离与到点的距离的比为定值,求点的轨迹.解:设动点的坐标为.由,得,化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a . 当时,化简得01)1(222222=+-+++c x a a c y x ,整理得222222)12()11(-=+-+-a ac y c a a x ; 当时,化简得.所以当时,点的轨迹是以为圆心,为半径的圆;当时,点的轨迹是轴.14.(人教A 版必修2第133页例5)已知线段的端点的坐标是(4,3),端点在圆上运动,求线段的中点的轨迹方程.变式1:已知定点,点在圆上运动,是线段上的一点,且,则点的轨迹方程是( )A. B.C. D.解:设.∵,∴),3(31),(11y x y y x x --=--, ∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413411.∵点在圆上运动,∴,∴,即,∴点的轨迹方程是,故选(C ). 变式2:已知定点,点在圆上运动,的平分线交于点,则点的轨迹方程是 .解:设.∵是的平分线,∴, ∴.由变式1可得点的轨迹方程是.变式3:已知直线与圆相交于、两点,以、为邻边作平行四边形,求点的轨迹方程.解:设,的中点为.∵是平行四边形,∴是的中点,∴点的坐标为,且.∵直线经过定点,∴,∴0)12(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得.∴点的轨迹方程是.15.(人教A 版必修2第144页练习第3题)某圆拱桥的水面跨度20,拱高4.现有一船宽10,水面以上高3,这条船能否从桥下通过?变式1:某圆拱桥的水面跨度是20,拱高为4.现有一船宽9,在水面以上部分高3,故通行无阻.近日水位暴涨了1.5,为此,必须加重船载,降低船身.当船身至少应降低时,船才能通过桥洞.(结果精确到0.01)解:建立直角坐标系,设圆拱所在圆的方程为.∵圆经过点(10,0),(0,4),∴,解得.∴圆的方程是)40(5.14)5.10(222≤≤=++y y x . 令,得.故当水位暴涨1.5后,船身至少应降低,船才能通过桥洞.变式2:据气象台预报:在城正东方300的海面处有一台风中心,正以每小时40的速度向西北方向移动,在距台风中心250以内的地区将受其影响.从现在起经过约,台风将影响城,持续时间约为 .(结果精确到0.1)解:以为原点,正东方向所在直线为轴,建立直角坐标系,则台风中心的移动轨迹是,受台风影响的区域边界的曲线方程是222250)()(=++-a y a x . 依题意有,解得14251501425150+-≤≤--a . ∴6.64014502402,0.240142515024021211≈⨯=-=∆≈+-==a a t a t . ∴从现在起经过约2.0,台风将影响城,持续时间约为6.6.变式3:有一种商品,、两地均有出售,且两地价格相同.某地区的居民从两地购买此种商品后往回贩运时,单位距离的运费地是地的3倍.已知、两地的距离是10,顾客购买这种商品选择地或地的标准是:包括运费在内的总费用比较便宜.求、两地的售货区域的分界线的曲线形状,并指出在曲线上、曲线内、曲线外的居民如何选择购货地点.解:以的中点为原点,所在直线为轴,建立直角坐标系,则,.设是售货区域分界线上的任意一点,单位距离的运费为元,则,∴2222)5()5(3y x a y x a +-=++,化简得.∴、两地售货区域的分界线是以为圆心,为半径的圆.因此在曲线内的居民选择去地购货,在曲线外的居民选择去地购货,在曲线上的居民去、两地购货均可.31253 7A15 稕35440 8A70 詰Y23300 5B04 嬄22323 5733 圳0.J[<31422 7ABE 窾34016 84E0 蓠40714 9F0A 鼊22938 599A 妚35718 8B86 讆。

暑假作业解析几何初步(二)

暑假作业解析几何初步(二)

解析几何初步(二)一、选择题1.方程7|3||5|=+--x x 的解为( )A .25-B .23-C .3-D .252.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a y b+=1表示D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示4.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为 ( )A .032=--y xB .2=xC .032=--y x 或2=xD .都不对5.若三条直线l 1:x -y =0;l 2:x +y -2=0; l 3:5x -ky -15=0围成一个三角形,则k 的取值范围是 ( ) A .k ∈R 且k ±≠5且k ≠1 B .k ∈R 且k ±≠5且k ≠-10 C .k ∈R 且k ±≠1且k ≠0 D .k ∈R 且k ±≠ 56.直线l 1与l 2关于直线x +y = 0对称,l 1的方程为y = ax + b ,那么l 2的方程为 ( )A .ab ax y -=B .ab ax y +=C .bax y 1+=D .b ax y +=7.方程052422=+-++m y mx y x 表示圆的充要条件是( )A .141<<mB .141><m m 或 C .41<m D .1>m8.若方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,必有( )A .E F =B .D F =C .DE =D .,,DEF 两两不相等9.如果圆x 2+y 2+D x +E y +F=0与x 轴相切于原点,则( )A .E ≠0,D=F=0B .D ≠0,E ≠0,F=0C .D ≠0,E=F=0D .F ≠0,D=E=010.直线x -y +3=0被圆(x +2)2+(y -2)2=2截得的弦长等于( )A .26 B .3 C .23D .611.直线032=--y x 与圆9)3()2(22=++-y x 交于E 、F 两点,则EOF ∆(O 为原点)的面积为 ( )A .32B .34C 5D 512.直线b x y +=与曲线21yx -=有且只有一个交点,则b 的取值范围是( )A .2=bB .11≤<-b 或2-=bC .11≤≤-bD .非A 、B 、C 的结论二、填空题 13.一直线过点(-3,4),并且在两坐标轴上截距之和为12,这条直线方程是_____ _____.14.直线016112=++y x 关于点)1,0(P 的对称直线的方程是 . 15.求圆221x y +=上的点到直线8x y -=的距离的最小值 . 三、解答题16.已知:直线l :330x y -+=,求:点P (4,5)关于直线l 的对称点.17. 自点A(-3,3)发出的光线l射到x轴上,被x 轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程。

2019_2020学年高中数学第二章解析几何初步2.2圆的一般方程练习(含解析)北师大版必修2

2019_2020学年高中数学第二章解析几何初步2.2圆的一般方程练习(含解析)北师大版必修2

2.2 圆的一般方程填一填二元二次方程x 2+y 2+Dx +Ey +F =0表示的图形(1)变形:把方程x 2+y 2+Dx +Ey +F =0配方可得⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4.(2)结论:①当D 2+E 2-4F >0时,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,以12D 2+E 2-4F 为半径的圆.②当D 2+E 2-4F =0时,方程只有一组解⎩⎪⎨⎪⎧x =-D 2,y =-E2,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E2.③当D 2+E 2-4F <0时,方程无实数解,所以不表示任何图形.当D 2+E 2-4F >0时,称二元二次方程x 2+y 2+Dx +Ey +F =0为圆的一般方程.判一判1.2.圆的一般方程和圆的标准方程可以互化.(√)3.若方程x 2+y 2-2x +Ey +1=0表示圆,则E ≠0.(√)4.二元二次方程x 2+y 2+Dx +Ey +F =0一定是某个圆的方程.(×)5.圆x 2+y 2+ax -2ay =0过原点.(√)6.圆x 2+y 2-Dx -Ey +F =0的圆心是⎝ ⎛⎭⎪⎫-D 2,-E 2.(×)7.若D 2+E 2-4F <0,则方程x 2+y 2+Dx +Ey +F =0不表示任何图形.(√)8.若直线l 将圆x 221).(√)想一想1.提示:x 2+y 2+F =02.若二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆,需满足什么条件?提示:①A =C ≠0;②B =0;③D 2+E 2-4AF >0. 3.待定系数法求圆的一般方程的步骤是什么?提示:(1)根据题意设所求的圆的一般方程为x 2+y 2+Dx +Ey +F =0. (2)根据已知条件,建立关于D ,E ,F 的方程组. (3)解此方程组,求出D ,E ,F 的值.(4)将所得的值代回所设的圆的方程中,就得到所求的圆的一般方程. 4.求与圆有关的轨迹问题的方法有哪些?提示:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等. 思考感悟:练一练1.若方程x 2+y 2+x -y +m =0表示的曲线是一个圆,则m 的取值范围是( )A .m ≤12B .m =12C .m >12D .m <12答案:D2.圆x 2+y 2+2x -3y =0的圆心坐标为( )A.⎝ ⎛⎭⎪⎫-1,32B.⎝ ⎛⎭⎪⎫1,32 C .(2,3) D.⎝⎛⎭⎪⎫1,-32 答案:A 3.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253 D.43 答案:B4.圆x 2+y 2-2x +2y =0的周长为________. 答案:22π5.圆心在y 轴上,半径为1,且过点(1,2)的圆的一般方程为________.答案:x 2+y 2-4y +3=0知识点一 二元二次方程与圆的关系1.(1)x 2+y 2+x +1=0;(2)x 2+y 2+2ax +a 2=0(a ≠0).解析:(1)D =1,E =0,F =1,D 2+E 2-4F =1-4=-3<0,所以方程(1)不表示任何图形.(2)D =2a ,E =0,F =a 2,D 2+E 2-4F =4a 2-4a 2=0,所以方程(2)表示点(-a,0). 2.下列方程能表示圆吗?若能表示圆,求出圆心坐标和半径.(1)2x 2+y 2-7x +5=0;(2)x 2-xy +y 2+6x +yt =0.解析:(1)不能表示圆,因为方程中x 2,y 2的系数不相同. (2)知识点二 求圆的一般方程3.与圆x 2A .x 2+y 2-4x +6y -8=0B .x 2+y 2-4x +6y +8=0C .x 2+y 2+4x -6y -8=0D .x 2+y 2+4x -6y +8=0解析:设所求圆的方程为x 2+y 2-4x +6y +m =0,由该圆过点(1,-1),得m =8,所以所求圆的方程为x 2+y 2-4x +6y +8=0.答案:B4.已知圆过A (2,2),C (3,-1),且圆关于直线y =x 对称,求圆的一般方程.解析:设所求的圆的方程为x 2+y 2+Dx +Ey +F =0,由题意得⎩⎪⎨⎪⎧22+22+2D +2E +F =0,9+1+3D -E +F =0,-D 2=-E 2,得⎩⎪⎨⎪⎧D =1,E =1,F =-12.所以所求的圆的方程为x 2+y 2+x +y -12=0.知识点三 求动点的轨迹方程(或轨迹)5.已知圆C :(x -a )2+(y -b )2=1过点A (1,0),则圆C 的圆心的轨迹是( ) A .点 B .直线 C .线段 D .圆解析:∵圆C :(x -a )2+(y -b )2=1过点A (1,0),∴(1-a )2+(0-b )2=1,即(a -1)2+b 2=1,∴圆C 的圆心的轨迹是以(1,0)为圆心,1为半径长的圆. 答案:D 6.如图,经过圆x 2+y 2=4上任意一点P 作x 轴的垂线,垂足为Q .求线段PQ 的中点M 的轨迹方程.解析:设M (x ,y ),P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又点P (x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4.所以x 2+2综合知识 圆的一般方程7.已知A 解析:方法一 设所求的圆的方程为x 2+y 2+Dx +Ey +F =0,由题意得⎩⎪⎨⎪⎧2D +2E +F +8=0,5D +3E +F +34=0,3D -E +F +10=0,解得⎩⎪⎨⎪⎧D =-8,E =-2,F =12.所以△ABC 外接圆的方程为x 2+y 2-8x -2y +12=0. 方法二 设所求的圆的方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧2-a 2+2-b 2=r 2,5-a2+3-b2=r 2,3-a2+-1-b 2=r 2,解得⎩⎪⎨⎪⎧a =4,b =1,r 2=5.故所求的圆的方程为(x -4)2+(y -1)2=5.8.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解析:如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 当点P 在直线OM 上时,有x =-95,y =125或x =-215,y =285.因此所求轨迹为圆(x +3)2+(y -4)2=4,除去点⎝ ⎛⎭⎪⎫-95,125和点⎝ ⎛⎭⎪⎫-215,285.基础达标一、选择题1.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A.⎝ ⎛⎭⎪⎫-32,1和4 B .(3,2)和4 C.⎝ ⎛⎭⎪⎫-32,1和192 D.⎝ ⎛⎭⎪⎫-32,1和19解析:由一般方程的圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =12D 2+E 2-4F ,易知圆心的坐标为⎝ ⎛⎭⎪⎫-32,1,半径为192.答案:C2.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( ) A .圆内 B .圆外C .圆上D .圆上或圆外解析:先化成标准方程(x -a )2+(y -1)2=2a ,因为0<a <1,所以(0-a )2+(0-1)2=a 2+1>2a ,即原点在圆外.答案:B3.若动圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( ) A .x -y =0 B .x +y =0C .x 2+y 2=0D .x 2-y 2=0解析:圆心M 的坐标(x ,y )应满足y =x 或y =-x ,等价于x 2-y 2=0. 答案:D4.已知点P (2,1)在圆C :x 2+y 2+ax -2y +b =0上,点P 关于直线x +y -1=0的对称点也在圆C 上,则圆C 的圆心坐标为( )A .(0,1)B .(1,0)C .(2,1)D .(1,2) 解析:由题意圆心C ⎝ ⎛⎭⎪⎫-a2,1在直线x +y -1=0上,从而有-a2+1-1=0,所以a =0,所以圆C 的圆心坐标为(0,1),故选A.答案:A5.下列四条直线中,将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0解析:由题意,知圆心是(1,2),将圆平分的直线必过圆心,所以将圆心的坐标代入各选项验证知选C.答案:C6.若圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0和直线l 2:x +3y =0都对称,则D +E 的值为( )A .-4B .-2C .2D .4解析:由题知直线l 1,l 2过已知圆的圆心,所以⎩⎪⎨⎪⎧-D 2-⎝ ⎛⎭⎪⎫-E 2+4=0,-D 2+3⎝ ⎛⎭⎪⎫-E 2=0,所以⎩⎪⎨⎪⎧D =6,E =-2,所以D +E =4.答案:D7.已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0解析:设圆心为C (m,0)(m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2, 整理,得|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,故选A. 答案:A 二、填空题8.圆x 2+y 2+2ax =0(a ≠0)的圆心为________,半径为________.解析:圆x 2+y 2+2ax =0(a ≠0)化为(x +a )2+y 2=a 2其圆心为(-a,0),半径为|a |. 答案:(-a,0) |a |9.已知圆x 2+y 2-2x -8y +1=0的圆心到直线ax -y +1=0的距离为1,则a =________.解析:圆x 2+y 2-2x -8y +1=0的圆心C (1,4),因为圆x 2+y 2-2x -8y +1=0的圆心到直线ax -y +1=0的距离为1,所以d =|a -4+1|a 2+1=1,解得a =43.答案:4310.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x +2y =0上任意一点,则△ABC 面积的最小值为________.解析:圆x 2+y 2-2x +2y =0化为(x 2-2x +1)+(y 2+2y +1)=2,即(x -1)2+(y +1)2=2,由题意即为在圆上找一点到线段AB 的距离最小即可,k AB =2-00--2=1,直线AB :y -2=x ,所以线段AB :y =x +2(-2≤x ≤0),圆心(1,-1)到其距离d =|1+2--1|12+12=22, 所以圆上某点到线段AB 的距离最小值为22-2=2,因为|AB |=-2-02+0-22=22,所以S △ABC min =12|AB |×2=12×22×2=2.答案:211.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为________.解析:由题意,得直线l 过圆心M (-2,-1),则-2a -b +1=0,则b =-2a +1,所以(a -2)2+(b -2)2=(a -2)2+(-2a +1-2)2=5a 2+5≥5,所以(a -2)2+(b -2)2的最小值为5.答案:512.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程为________.解析:设动圆圆心为(x ,y ),由题意得⎩⎪⎨⎪⎧x =4m +22=2m +1,y =2m2=m ,整理得x -2y -1=0.答案:x -2y -1=0三、解答题13.判断下列方程是否表示圆,若是,求出圆心和半径.(1)x 2+y 2-x +14=0;(2)x 2+y 2+2ax =0(a ≠0);(3)x 2+y 2+2ay -1=0.解析:方程x 2+y 2+Dx +Ey +F =0是否表示圆,关键看将该方程配方转化为圆的标准方程的形式⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4后,D 2+E 2-4F 是否大于0,若大于0则表示圆,否则不表示圆.方法一 (1)将原方程转化为⎝ ⎛⎭⎪⎫x -122+y 2=0,表示一个点,坐标为⎝ ⎛⎭⎪⎫12,0.(2)将原方程转化为(x +a )2+y 2=a 2(a ≠0), 表示圆,圆心为(-a,0),半径r =|a |.(3)将原方程转化为x 2+(y +a )2=1+a 2,表示圆,圆心为(0,-a ),半径r =1+a 2.方法二 (1)因为D 2+E 2-4F =(-1)2+02-4×14=0,所以表示一个点,其坐标为⎝ ⎛⎭⎪⎫12,0. (2)因为D 2+E 2-4F =4a 2+0-0=4a 2>0(a ≠0),所以表示圆.又因为-D 2=-a ,-E 2=0,12D 2+E 2-4F =12·4a 2=|a |,所以圆心为(-a,0),半径r =|a |.(3)因为D 2+E 2-4F =02+(2a )2+4=4(1+a )2>0, 所以表示圆.又因为-D 2=0,-E2=-a ,12D 2+E 2-4F =1+a 2, 所以圆心为(0,-a ),半径r =1+a 2.14.一个等腰三角形底边上的高等于5,底边两端点的坐标分别是(-4,0),(4,0),求它的外接圆的方程.解析:由题意得,等腰三角形顶点的坐标为(0,5)或(0,-5).当顶点坐标为(0,5)时,设三角形外接圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧25+5E +F =0,16-4D +F =0,16+4D +F =0,解得⎩⎪⎨⎪⎧D =0,E =-95,F =-16.所以圆的方程为x 2+y 2-95y -16=0.当顶点坐标是(0,-5)时,同理可得圆的方程为x 2+y 2+95y -16=0.综上,它的外接圆的方程为x 2+y 2-95y -16=0或x 2+y 2+95y -16=0.能力提升15.已知曲线C :(1+a )x (1)当a 取何值时,方程表示圆;(2)求证:不论a 为何值,曲线C 必过两定点; (3)当曲线C 表示圆时,求圆面积最小时a 的值.解析:(1)当a =-1时,方程为x +2y =0,为一条直线;当a ≠-1时,⎝ ⎛⎭⎪⎫x -21+a 2+⎝ ⎛⎭⎪⎫y +4a 1+a 2=4+16a 21+a 2表示圆. (2)证明:方程变形为x 2+y 2-4x +a (x 2+y 2+8y )=0.令⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+8y =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =165,y =-85.故C 过定点A (0,0),B ⎝ ⎛⎭⎪⎫165,-85.(3)因为圆恒过点A ,B ,所以以AB 为直径的圆面积最小,则圆心为⎝ ⎛⎭⎪⎫85,-45.所以21+a =85,解得a =14.16.已知直角△ABC 的斜边为AB ,且A (-1,0),B (3,0),求: (1)直角顶点C 的轨迹方程;(2)直角边BC 中点M 的轨迹方程.解析:(1)方法一 设顶点C (x ,y ),因为AC ⊥BC ,且A ,B ,C 三点不共线,所以x ≠3且x ≠-1.又k AC =y x +1,k BC =yx -3,且k AC ·k BC =-1, 所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0. 因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1). 方法二 同方法一得x ≠3且x ≠-1.由勾股定理得|AC |2+|BC |2=|AB |2,即(x +1)2+y 2+(x -3)2+y 2=16,化简得x 2+y 2-2x-3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1).方法三 设AB 中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知,|CD |=12|AB |=2,由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,以2为半径长的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).设C (x ,y ),则直角顶点C 的轨迹方程为(x -1)2+y 2=4(x ≠3且x ≠-1).(2)设点M (x ,y ),点C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32(x ≠3且x ≠1),y =y 0+02,于是有x 0=2x -3,y 0=2y .由(1)知,点C 在圆(x -1)2+y 2=4(x ≠3且x ≠-1)上运动,将x 0,y 0代入该方程得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(x ≠3且x ≠1).。

北师大数学必修二导学同步课时作业:第2章 解析几何初步2 含解析

北师大数学必修二导学同步课时作业:第2章 解析几何初步2 含解析

第二章 §1 1.5A 级 基础巩固一、选择题1.已知A (3,7),B (2,5),则A ,B 两点间的距离为( B ) A .5 B .5 C .3D .29[解析] 由平面内两点间的距离公式可知|AB |=(3-2)2+(7-5)2=5.2.点(1,-1)到直线x -y +1=0的距离是( C ) A .12B .32C .322D .22[解析] 由点到直线的距离公式可得|1-(-1)+1|2=322.3.已知点P (a ,b )是第二象限的点,那么它到直线x -y =0的距离是( C ) A .22(a -b ) B .b -a C .22(b -a ) D .a 2+b 2[解析] ∵P (a ,b )是第二象限点, ∴a <0,b >0.∴a -b <0.∴点P 到直线x -y =0的距离d =|a -b |2=22(b -a ).4.已知线段AB 的两个端点分别在x 轴和y 轴上,且线段AB 的中点为C (1,1),则|AB |等于( D )A .2B . 2C .4D .2 2[解析] 设A (a ,0),B (0,b ),则⎩⎪⎨⎪⎧1=a +02,1=0+b 2,即⎩⎪⎨⎪⎧a =2,b =2,所以A (2,0),B (0,2),所以|AB |=22+(-2)2=22.5.点P (x ,y )在直线x +y -4=0上,O 是坐标原点,则|OP |的最小值是( C ) A .7 B . 6 C .2 2D . 5[解析] |OP |最小即OP ⊥l 时, ∴|OP |min =|0+0-4|2=22.6.已知两直线2x +3y -3=0与mx +6y +1=0平行,则它们间的距离等于( C ) A .21313B .51326C .71326D .4 [解析] ∵直线2x +3y -3=0的斜率k 1=-23,直线mx +6y +1=0的斜率k 2=-m6,∴-23=-m6,得m =4.∴它们间的距离d =|-6-1|42+62=71326.二、填空题7.在直线x +3y =0上求一点,使它到原点的距离和到直线x +3y +2=0的距离相等,则此点坐标是__⎝⎛⎭⎫-35,15或⎝⎛⎭⎫35,-15__. [解析] 设所求点为P (a ,b ),则a +3b =0.① 由题意可得a 2+b 2=|a +3b +2|12+32② 解得⎩⎨⎧ a =35b =-15或⎩⎨⎧a =-35b =15,即所求点为⎝⎛⎭⎫35,-15或⎝⎛⎭⎫-35,15. 8.直线2x -y -1=0与直线6x -3y +10=0的距离是15.[解析] 方法一:在方程2x -y -1=0中令x =0,则y =-1,即(0,-1)为直线上的一点.由点到直线的距离公式,得所求距离为|6×0-3×(-1)+10|62+32=13515.方法二:直线2x -y -1=0可化为6x -3y -3=0,则所求距离为|-3-10|62+32=1335=13515.三、解答题9.求与直线l :5x -12y +6=0平行且到l 的距离为2的直线的方程. [解析] 设所求直线的方程为5x -12y +C =0. 在直线5x -12y +6=0上取一点P 0⎝⎛⎭⎫0,12, 点P 0到直线5x -12y +C =0的距离为d =⎪⎪⎪⎪-12×12+C 52+(-12)2=|C -6|13,由题意得|C -6|13=2,则C =32或C =-20.所以所求直线的方程为5x -12y +32=0和5x -12y -20=0.10.过点P (1,2)引一直线,使它与两点A (2,3)、B (4,-5)的距离相等,求这条直线方程. [解析] 方法一:设所求直线为y -2=k (x -1),即 kx -y +2-k =0,由已知得|2k -3-k +2|k 2+1=|4k +5-k +2|k 2+1,解得k =-4或-32,故所求直线为3x +2y -7=0或4x +y -6=0.方法二:因为A (2,3),B (4,-5)到这条直线的距离相等, 所以这条直线与AB 平行或过AB 的中点. 当与直线AB 平行时,k =k AB =3-(-5)2-4=-4, 直线方程为y -2=-4(x -1),即4x +y -6=0. 当直线过AB 的中点(3,-1)时,由两点式得方程为y -(-1)2-(-1)=x -31-3,即3x +2y -7=0.故所求直线方程为4x +y -6=0或3x +2y -7=0.B 级 素养提升一、选择题1.已知△ABC 的三个顶点坐标分别为A (2,6)、B (-4,3)、C (2,-3),则点A 到BC 边的距离为( B )A .92B .922C .255D .4 3[解析] BC 边所在直线的方程为y -3-3-3=x +42+4,即x +y +1=0;则d =|2×1+6×1+1|2=922.2.直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离d 的取值范围为( B )A .(0,+∞)B .(0,5]C .(0,5)D .(0,17)[解析] 画出图形,可得0<d ≤|PQ |, 又|PQ |=(-1-2)2+(3+1)2=5.所以0<d ≤5. 二、填空题3.过点A (2,1)的所有直线中,距离原点最远的直线方程为__2x +y -5=0__. [解析] 如图所示,只有当直线l 与OA 垂直时,原点到l 的距离最大,此时k OA =12,∴k l =-2,∴方程为y -1=-2(x -2),即2x +y -5=0.4.若直线l 经过点A (5,10),且坐标原点到直线l 的距离为10,则直线l 的方程是__4x +3y -50=0或y =10__.[解析] ①k 存在时,设直线方程为y -10=k (x -5), ∴10=|10-5k |1+k 2.∴k =-43或k =0.∴y -10=-43(x -5)或y =10.②k 不存在时,x =5不符合题意.综上所述,4x +3y -50=0或y =10为所求. 三、解答题5.已知点A (1,3),B (3,1),C (-1,0),求△ABC 的面积. [解析] 设AB 边上的高为h ,则S △ABC =12|AB |·h ,|AB |=(3-1)2+(1-3)2=22,AB 边上的高h 就是点C 到AB 的距离, AB 边所在直线方程为:y -31-3=x -13-1,即:x +y -4=0. 点C 到x +y -4=0的距离 h =|-1+0-4|12+12=52.因此S △ABC =12×22×52=5.6.直线l 经过A (2,4),且被平行直线x -y +1=0与x -y -1=0所截得的线段的中点在直线x +y -3=0上,求直线l 的方程.[解析] 解法1:设所求的直线的斜率为k ,则所求直线l 的方程为y -4=k (x -2).由⎩⎪⎨⎪⎧y -4=k (x -2),x -y +1=0,可解得P (2k -3k -1,3k -4k -1);由⎩⎪⎨⎪⎧y -4=k (x -2),x -y -1=0,可解得B (2k -5k -1,k -4k -1).∴P 、B 的中点D 的坐标为(2k -4k -1,2k -4k -1).又∵D 在直线x +y -3=0上, ∴2k -4k -1+2k -4k -1-3=0,解之得k =5. 所以,所求直线的方程为y -4=5(x -2), 即5x -y -6=0.解法2:与x -y -1=0及x -y +1=0等距离的直线必定与它们是平行的,所以设x -y +c =0,从而|c +1|1+1=|c -1|1+1,解之得,c =0,∴x -y =0,又截得的线段的中点在x +y -3=0上,∴由⎩⎪⎨⎪⎧x -y =0,x +y -3=0,可解得中点坐标为(32,32),所以直线l 过点(2,4)和(32,32),从而得l 的方程为5x -y -6=0.C 级 能力拔高已知点P (2,-1),求:(1)过点P 且与原点的距离为2的直线方程;(2)过点P 且与原点的距离最大的直线方程,并求出最大值;(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.[解析] (1)当斜率不存在时,方程x =2适合题意当直线的斜率存在时,设为k ,则直线方程应为y +1=k (x -2),即kx -y -2k -1=0. 根据题意|2k +1|k 2+1=2,解得k =34.∴直线方程为3x -4y -10=0.∴所求直线方程应为x -2=0或3x -4y -10=0.(2)过点P 且与原点的距离最大的直线方程应为过点P 且与OP 垂直的直线,易求其方程2x-y-5=0,且最大距离d=5.(3)由于原点到过点(2,-1)的直线的最大距离5,而6>5.∴这样的直线不存在.。

最新北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)

最新北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)

一、选择题1.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .322.动圆M 与定圆22:40C x y x ++=相外切,且与直线:2l x =相切,则动圆M 的圆心(),x y 满足的方程为( )A .212120y x -+=B .212120y x +-=C .280y x +=D .280y x -=3.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为 A .4B 355C 1255D 6554.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3C .22D .325.已知圆1C :221x y +=与圆2C :()()22124x y -++=交于A 、B 两点,则线段AB 的垂直平分线方程为( )A .210x y --=B .20x y -=C .20x y +=D .210x y -+=6.若直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6,则4b aab+的最小值为( ) A .32+B .322+C .5D .77.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m8.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .3 C .33 D .1169.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .210.设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α11.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A 2B .22C .12D 312.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .2二、填空题13.已知平面向量a ,b ,c ,满足1a =,2b =,3c =,01λ<<,若0b c ⋅=,则()1a b c λλ---所有取不到的值的集合为______.14.已知点(),P x y 是直线()300kx y k +-=≠上一动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的最小面积是1,则k 的值为__________.15.在平面直角坐标系xOy 中,过点(0,3)M -的直线l 与圆223x y +=交于A ,B 两点,且2MB MA =,则直线l 的方程为________.16.光线从点()0,5P -出发,经直线210x y -+=反射后到达点()2,0Q ,则光线从P 反射到Q 的总行程为______.17.函数2291041y x x x +-+_________.18.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.19.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面,ABC AD PB ⊥,垂足为,D DE PC ⊥,垂足为E ,若23,2PA AC ==,则三棱锥P ADE -体积的最大值是_________.20.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 的最小值为31-,利用张衡的结论可得该正方体的内切球的表面积为___________.21.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.22.三棱锥P ABC -三条侧棱两两垂直,正四面体D ABC -与三棱锥相接且棱长为2,P 与D 在面ABC 异侧,则所成多面体外接球的体积是_________.23.已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在同一球面上),圆锥的高是底面半径的3倍,圆锥的侧面积为910π,则球O 的表面积为________.24.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题25.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.26.如图,平行四边形ABCD 中,45DAB ∠=,PD ⊥平面ABCD ,PA BD ⊥,BD PD =,4AB =.(1)求证:平面PBC ⊥平面PBD ;(2)若点,M N 分别是,PA PC 的中点,求三棱锥P MBN -的体积.27.如图所示,在长方体1111ABCD A BC D -中,11,2AD AAAB ===,点E 是AB 的中点.(1)证明:1//BD 平面1A DE ; (2)证明:11D E A D ⊥;(3)求二面角1D EC D --的正切值.28.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE : (2)求四棱锥E ABCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是2113244323⨯⨯⨯=,选A. 2.B解析:B 【分析】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r ,则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ,从而|MC|﹣d=2,由此能求出动圆圆心轨迹方程. 【详解】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r , 则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ∴|MC|﹣d=22﹣x )=2, 化简得: y 2+12x -12=0.∴动圆圆心轨迹方程为y 2+12x -12=0. 故选B . 【点睛】本题考查动圆圆心轨迹方程的求法,考查直线方程、圆、两点间距离公式、两圆相外切、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.3.C解析:C 【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长. 【详解】∵两圆为x 2+y 2+4x ﹣4y=0①,x 2+y 2+2x ﹣8=0,② ①﹣②可得:x ﹣2y+4=0.∴两圆的公共弦所在直线的方程是x ﹣2y+4=0,∵x 2+y 2+4x ﹣4y=0的圆心坐标为(﹣2,2),半径为∴圆心到公共弦的距离为=∴公共弦长==故答案为:C 【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.4.C解析:C 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.5.C解析:C 【分析】先写出两圆的圆心的坐标,再求出两圆的连心线所在直线的方程即得解. 【详解】圆1C :221x y +=的圆心坐标为(0,0),圆2C :()()22124x y -++=的圆心为(1,2)-,由题得线段AB 的垂直平分线就是两圆的连心线, 所以02201AB k +==--, 所以线段AB 的垂直平分线为02(0),20y x x y -=--∴+=. 所以线段AB 的垂直平分线为20x y +=. 故选:C 【点睛】方法点睛:求直线的方程常用的方法是:待定系数法,先定式,后定量.要根据已知条件灵活选择方法求解.6.B解析:B 【分析】由题意结合直线与圆的位置关系可得直线经过圆心即12ab +=,再由基本不等式即可得解. 【详解】由题得圆的方程可以化为22(2)(1)9x y -++=,所以圆心为(2,1)-,半径为3r =, 因为直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6, 所以直线经过圆心,所以2440a b +-=,即12ab +=, 所以44144332322222b a a b a b a b ab a b a b a b +⎛⎫⎛⎫=++=++≥+⋅=+ ⎪⎪⎝⎭⎝⎭, 当且仅当422,21a b =-=-时取等号, 所以4b aab+的最小值为322+. 故选:B. 【点睛】本题考查了直线与圆位置关系、基本不等式求最值的应用,考查了运算求解能力与转化化归思想,属于中档题.7.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.8.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 3EFFED DE ∠===.所以异面直线AB 与DE 所成角的余弦值为36.故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.9.C解析:C【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+ ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.10.D解析:D 【分析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交; 在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α.【详解】由直线m 、n ,和平面α、β,知: 对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误;对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误; 对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确.故选:D . 【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.11.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为2211111514MB MC C B =+=+=221514MA MC CA =+=+, 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为1111211222B N AB ==+=,所以点1B 到截面1A BM 的距离为22, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.12.C解析:C 【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果. 【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2; 且侧棱AD ⊥底面BCD ,1AD =, 所以112=221=323V ⨯⨯⨯⨯, 故选:C. 【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称; (2)根据三视图还原几何体; (3)利用椎体体积公式求解即可.二、填空题13.【分析】设由于则在线段上又在以为圆心1为半径的圆上问题转化为求线段上的点到圆上点的距离的最大值和最小值然后可得结论【详解】∵∴可取∵∴是单位圆上如图设由于则在线段上易得直线方程是即到线段的距离为斜边解析:613,1(4,)13⎛-∞-+∞ ⎝⎭【分析】()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设,,OA a OB b OC c ===,()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,又A 在以O 为圆心,1为半径的圆O 上,问题转化为求线段BC 上的点P 到圆O 上点A 的距离的最大值和最小值,然后可得结论. 【详解】∵0b c ⋅=,2b =,3c =,∴可取(2,0)b OB ==,(0,3)c OC ==,a OA =,∵1a =,∴A 是单位圆O 上,如图,()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,()()11a b c a b c PA λλλλ⎡⎤---=-+-=⎣⎦,易得直线BC 方程是123x y+=即3260x y +-=,O 到线段BC 的距离为OBC 斜边BC 边上高,即236131323d ==+,∴min 61311PA d =-=-,又3OC =,∴min314PA=+=,∴PA 的取值范围是6131,413, ∴()1a b c λλ---所有取不到的值的集合为613,1(4,)⎛⎫-∞-+∞ ⎪ ⎪⎝⎭. 故答案为:613,1(4,)⎛⎫-∞-+∞ ⎪ ⎪⎝⎭.【点睛】本题考查求向量模的取值范围,解题关键是取(2,0)b OB ==,(0,3)c OC ==,把所有向量的起点都移到原点,由几何意义得出动点所成轨迹,从而由几何意义得出模的范围,最后求其在实数集上的补集即可.14.【分析】先求圆的半径四边形的最小面积是1转化为三角形的面积是求出切线长再求的距离也就是圆心到直线的距离可解的值【详解】解:圆的圆心半径是由圆的性质知:四边形的最小面积是1是切线长)圆心到直线的距离就 解析:±1【分析】先求圆的半径,四边形PACB 的最小面积是1,转化为三角形PBC 的面积是12,求出切线长,再求PC 的距离也就是圆心到直线的距离,可解k 的值. 【详解】解:圆22:20C x y y +-=的圆心(0,1),半径是1r =,由圆的性质知:2PBC PACB S S ∆=四边形,四边形PACB 的最小面积是1, ()min 1122PBC rd S ∆==∴(d 是切线长) min 1d ∴=圆心到直线的距离就是PC 的最小值,2222111k+==+1k ∴=±故答案为:±1【点睛】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,属于中档题.15.【分析】根据题意知点为的中点设再由得利用韦达定理建立方程解得即可【详解】由题知点为的中点设直线设将直线带入圆的方程得则由得即所以解得故直线方程为:故答案为:【点睛】本题考查直线和圆的位置关系属于基础题 解析:33y x =±-【分析】根据题意知,点A 为MB 的中点,设()11,A x y ,()22,B x y ,再由2MB MA =得122x x =,利用韦达定理建立方程,解得即可.【详解】由题知,点A 为MB 的中点,设直线:3l y kx =-,设()11,A x y ,()22,B x y ,将直线带入圆的方程得()221660k x kx +-+=,则12261k x x k +=+,12261x x k ⋅=+,由2MB MA =,得122x x =,即2221k x k =+,1241kx k =+, 所以,21222246111k k x x k k k ⋅=⨯=+++,解得k =3y =-.故答案为:3y =-. 【点睛】本题考查直线和圆的位置关系,属于基础题.16.【分析】计算出点关于直线的对称点的坐标则光线的总行程为利用两点间的距离公式可得出结果【详解】设点关于直线的对称点为则解得即点因此光线从反射到的总行程为故答案为:【点睛】本题考查光线反射的问题一般要求【分析】计算出点P 关于直线210x y -+=的对称点P '的坐标,则光线的总行程为P Q ',利用两点间的距离公式可得出结果. 【详解】设点P 关于直线210x y -+=的对称点为(),P a b ',则5102512b a b a -⎧-+=⎪⎪⎨+⎪=-⎪⎩,解得245135a b ⎧=-⎪⎪⎨⎪=-⎪⎩,即点2413,55P ⎛⎫'-- ⎪⎝⎭, 因此,光线从P 反射到Q的总行程为P Q '==【点睛】本题考查光线反射的问题,一般要求出点关于直线的对称点,考查计算能力,属于中等题.17.【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】本题考查【分析】将yy =,设()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =++-+=+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值; 【详解】解:()22222291041354y x x x x x =++-+=++-+,设()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =++-+=+,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴=故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题.18.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =, 所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.19.【分析】由已知证明再由三角形相似列比例式可得证明利用基本不等式求得的最大值可得三棱锥体积的最大值【详解】由平面得又平面得又平面得而平面可得在中由得由得则由得又得即(当且仅当时等号成立)三棱锥体积的最解析:34【分析】由已知证明AE PC ⊥,再由三角形相似列比例式可得PE ,证明AD DE ⊥,利用基本不等式求得AD DE ⋅的最大值,可得三棱锥P ADE -体积的最大值. 【详解】由PA ⊥平面ABC ,得PA BC ⊥,又BC AB ⊥,PA AB A =,BC ∴⊥平面PAB ,得BC AD ⊥,又AD PB ⊥,PB BC B ⋂=, AD ∴⊥平面PBC ,得AD PC ⊥,而DE PC ⊥,AD DE D ⋂=,PC ∴⊥平面ADE ,可得AE PC ⊥.在Rt PAC △中,由2PA AC ==,得4PC =.由Rt PEA Rt PAC ∽,得PE PA PA PC =,则21234PA PE PC ===,由3PE =,PA =23AE =,又AD DE ⊥,2223AD DE AE ∴+==,得2232AD DE AD DE =+≥⋅, 即32AD DE⋅(当且仅当AD DE =时等号成立), ∴三棱锥P ADE -体积的最大值是1111333323224AD DE PE ⨯⨯⨯=⨯⨯⨯=.故答案为:34. 【点睛】方法点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.20.【分析】设正方体的棱长为正方体的内切球半径为正方体的外接球半径再由已知条件和球的表面积公式可得答案【详解】设正方体的棱长为正方体的内切球半径为正方体的外接球半径满足:则由题意知:则该正方体的内切球的解析:【分析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径2R =,再由已知条件和球的表面积公式可得答案. 【详解】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R 满足:22222a R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,则R =.由题意知:12aR r -=-=,则2a =,R = 该正方体的内切球的表面积为4π,又因为圆周率的平方除以十六等于八分之五,即25168π=,所以π=所以内切球的表面积为故答案为:410 【点睛】关键点点睛:本题考查正方体的外接球和内切球问题,考查空间几何新定义,解决本题的关键点是利用正方体的外接球半径,内切球半径和正方体面对角线的一半组成勾股定理,得出正方体内切球半径,进而得出表面积,考查学生空间想象能力和计算能力,属于中档题.21.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,3x ∴=, 所以,球O 的半径为232x =O 的表面积为2231643S ππ=⨯=⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.22.【分析】根据几何体的几何关系可将几何体放在正方体中多面体的外接球和正方体的外接球是同一外接球由此可求外接球的体积【详解】如图所示并且两两互相垂直所以所以正四面体与三棱锥相接且棱长为所以如图所示将此多 解析:3π 【分析】 根据几何体的几何关系,可将几何体放在正方体中,多面体的外接球和正方体的外接球是同一外接球,由此可求外接球的体积.【详解】如图所示,AB AC BC ==,并且,,PA PB PC 两两互相垂直,所以222222PA PB PA PC PB PC +=+=+,所以PA PB PC ==,正四面体D ABC -与三棱锥相接且棱长为2,所以如图所示,将此多面体放在正方体中,多面体的外接球就是此正方体的外接球,并且棱长为1,正方体外接球的半径22221113R =++=,得3R =,则外接球的体积3433V R ππ==. 故答案为:3π2【点睛】关键点点睛:本题的关键点是根据多面体的几何关系可采用补体,转化为求正方体的外接球的体积,这样计算就容易了.23.【分析】设圆锥的底面半径为球的半径为根据勾股定理可得根据圆锥的侧面积公式可得再根据球的表面积公式可得结果【详解】设圆锥的底面半径为球的半径为则圆锥的高为则球心到圆锥的底面的距离为根据勾股定理可得化简 解析:100π【分析】设圆锥的底面半径为r ,球O 的半径为R ,根据勾股定理可得53R r =,根据圆锥的侧面积公式可得3,5r R ==,再根据球的表面积公式可得结果.【详解】设圆锥的底面半径为r ,球O 的半径为R ,则圆锥的高为3r ,则球心O 到圆锥的底面的距离为3r R -, 根据勾股定理可得()2223R r r R =+-,化简得53R r =, 因为圆锥的高为3r ,母线长为()22310r r r +=,所以圆锥的侧面积为21010r r r ππ⨯=,所以210910r ππ=,解得r =3,所以5353R =⨯=, 所以球O 的表面积为24425100R πππ=⨯=.故答案为:100π【点睛】关键点点睛:利用圆锥的侧面积公式和球的表面积公式求解是解题关键. 24.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平 解析:o 60.【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD因为侧面PBC 和底面ABC 都是边长为2的正三角形而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角由侧面PBC 和底面ABC 都是边长为2的正三角形得AD PD ==PA =所以PAD ∆为等边三角形,则=PAD ∠o 60即侧棱PA 与底面ABC 所成的角为o 60故答案为:o 60【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题25.(1)证明见解析;(2)2. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCDBC ∴⊥面PAB ,又PA ⊂面PABPA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD 由11 33BCE E PBC P BCE PBC BCE PBCS POV V S h SPO h S --=⇒=⇒=,由已知可求得1PO =,1BCE S =,PBC S ,所以h =. 所以点E 到平面PBC .【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解.26.(1)证明见解析;(2)223. 【分析】(1)可由PD BD ⊥,PA BD ⊥证得BD ⊥平面PAD ,故BD AD ⊥,再由BD BC ⊥和PD BC ⊥可得BC ⊥平面PBD ,从而面PBC ⊥面PBD(2)可利用1144P MBN B PMN B PAC P ABC V V V V ----===,进行转化求体积. 【详解】解:(1)因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥.又PA BD ⊥,PA PD P =,平面PD ⊂平面PAD ,PA ⊂平面PAD ,所以BD ⊥平面PAD ,而AD ⊂平面PAD ,所以BD AD ⊥.在平行四边形ABCD 中,//AD BC ,所以BD BC ⊥.由PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,而BD PD D =,PD ⊂平面PBD ,BD ⊂平面PBD ,所以BC ⊥平面PBD . 又BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .(2)由(1)可知,BD AD ⊥,而45DAB ∠=,则ADB △为等腰直角三角形,又4AB =,所以22PD BD AD ===,连接AC ,由点,M N 分别是,PA PC 的中点,所以PMN PAC 且12MN AC =, 所以14PMN PAC S S =,则1144P MBN B PMN B PAC P ABC V V V V ----===, 在平行四边形ABCD 中,1222242ABC ABD S S ==⨯⨯=, PD 为三棱锥P ABC -的高,所以1182422333P ABC ABC V S PD -=⨯=⨯⨯=, 所以三棱锥P MBN -的体积为12243P MBN P ABC V V --==. 【点睛】 求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.27.(1)证明见解析;(2)证明见解析;(3)2. 【分析】(1)连接1AD 交1A D 于点O ,连接EO ,易得1//OE BD,再利用线面平行的判定定理证明.(2)由长方体的特征得到1AB AD ⊥,再由11A D AD ⊥,利用线面垂直的判定定理证得1A D ⊥平面1AD E 即可.(3)易得CE DE ⊥,再由1D D ⊥平面,ABCD CE ⊂平面ABCD ,得到1CE D D ⊥,可得CE ⊥平面1D DE ,由1D ED ∠是二面角1D EC D --的平面角求解.【详解】(1)如图所示:连接1AD 交1A D 于点O ,连接EO ,则O 为1AD 的中点.∵E 是AB 的中点,∴1//OE BD又OE ⊂平面1A DE ,1BD ⊄平面1A DE ,∴1//BD 平面1A DE .(2)由题意可知,四边形11ADD A 是正方形,∴11A D AD ⊥.∵AB ⊥平面11ADD A ,1A D ⊂平面11ADD A ,∴1AB AD ⊥.∵AB 平面1AD E ,1AD ⊂平面1AD E ,1AB AD A =,∴1A D ⊥平面1AD E .又1D E ⊂平面1AD E ,∴11A D D E ⊥,即11D E A D ⊥.(3)在CED 中,2CD =,DE ==,CE == ∴CE DE ⊥∵1D D ⊥平面,ABCD CE ⊂平面ABCD ,∴1CE D D ⊥.∵1D D ⊂平面1D DE ,DE ⊂平面1D DE ,1D D DE D ⋂=,∴CE ⊥平面1D DE .又∵1D E ⊂平面1D DE ,∴1CE D E ⊥.∴1D ED ∠是二面角1D EC D --的平面角.在A 1D ED 中,∵190D DE ∠=︒,11=D D ,DE =∴11tan D D D ED DE ∠===,∴二面角1D EC D --的正切值为2. 【点睛】 方法点睛:几何法求线线角、线面角、二面角的常用方法:(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(3)二面角的求法,二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.28.(1)证明见解析;(2 【分析】(1)证明线面平行,用线面平行的判定定理,在面ACE 内找一条直线与PB 平行;。

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

|a| = |b|
⋯⋯②
由 ①② 解得 a = b = 5 或 a = −1 ,b = 1 ,所以直线方程为 x + y − 5 = 0 或 x − y + 1 = 0. (ii)当 a = b = 0 时,直线过原点和 P (2, 3) ,所以直线方程为 3x − 2y = 0 . 综上可知,所求直线方程为 x + y − 5 = 0 或 x − y + 1 = 0 或 3x − 2y = 0 . 已知三角形的顶点是 A(−5, 0) ,B(3, −3) ,C (0, 2) ,求 AC 边所在直线的方程,以及该边上的 中线所在直线的方程. 解:过点 A(−5, 0) ,C (0, 2) 的两点式方程为
直线的基本量与方程 直线与直线的位置关系 直线的相关计算
三、知识讲解
1.直线的基本量与方程 描述: 直线的倾斜角 当直线l 与x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直 线l 的倾斜角(angle of inclination).直线倾斜角α 的取值范围为0 ∘ ≤ α < 180 ∘ .
2 y − (−3) x−3 由两点式得直线 BD 的方程为 ,整理可得 8x + 11y + 9 = 0 ,这就是 = 1 − (−3) −5 − 3 2 AC 边上的中线所在直线的方程.
⎪ ⎩
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 =#43; B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ; 当 l 1 与 l 2 相交时,则 A 1 B 2 ≠ A 2 B 1 ,特别地,若两直线垂直,则 A 1 A 2 + B 1 B 2 = 0 . 例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交. )

必修2 第二章 平面解析几何初步 2.1平面直角坐标系中的基本公式专题训练

必修2 第二章 平面解析几何初步 2.1平面直角坐标系中的基本公式专题训练

必修2 第二章 平面解析几何初步 2.1平面直角坐标系中的基本公式专题训练学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列各组点:①()M a 和()3N a -;②()A b 和()1B b +;③()C x 和()D x a +;④()E x 和()3F x .其中后面的点一定位于前面的点的右侧的是( )A.①B.②C.③D.④2.已知点()3,4A ,在 x 轴上有一点(),0P x ,使得||5PA =,则实数 x 等于( )A.0B.6C.0或6D.0或-63.已知两点()()2,5A B -,则AB 及AB 的值为( )A.3,3B.-7,-7C.-7,7D.-3,34.m R ∈, 动直线1:10l x my +-=过定点A , 动直线2:230l mx y m --+=过定点B , 若1l 与2l 交于点P (异于点,A B ), 则PA PB +的最大值为( )A. 5B. 210C. 10D. 255.直线2y x =关于x 轴对称的直线方程为( )A. 12y x =-B. 12y x = C. 2y x =-D. 2y x =6.设点A 在x 轴上,点B 在y 轴上, AB 的中点为(2,1)P -,则AB 等于( )A. 5B. 42C. 25D. 2107.如下图所示,是数轴上的个向量, O 是原点 , 则下列各式中不成立的是( )A.B.C. AB OB OA =-D. BA OA OB =-8.已知(5,21),(1,4)A a B a a -+-,当AB 取最小值时,实数a ( ) A. 72-B. 12-C.12D. 72 二、填空题9.若|3||2|x x a -++≥恒成立,则实数a 的取值范围是__________.10.已知两圆()()221:539C x y -+-=和()()222:215C x y -++=,则两圆圆心间的距离为__________.11.过原点 O 作圆2268200x y x y +--+=的两条切线,设切点分别为,?P Q ,则线段P Q 、的长为__________12.6. 已知(1,2),(3,)A B b -两点的距离等于则b =__________.13.已知数轴上两点 ()A a , (5.5)B ,并且 (),7.5d A B =,则 a =__________,若7.5AB =,则a =__________.三、解答题14.在数轴上求一点的坐标,使它到点()3A 的距离是它到点()9B -的距离的2倍.15.已知函数()25f x x x =--- ,若关于x 的不等式()f x k ≥有解,求k 的最大值.参考答案1.答案:B解析:对于②,∵()11AB b b =+-=,∴点B 一定在点A 的右侧.2.答案:C解析:由||5PA =,得()()2230425x -+-=,解得 6x =或0?x =. 3.答案:C解析:527,|||52|7AB AB =--=-=--=,选C.4.答案:D解析:5.答案:C解析:在直线2y x =上选取一点()1,2,此点关于x 轴对称的点的坐标为()1,2-.又因为直线2y x =与x 轴的交点坐标为()0,0,此点也在对称轴上,所以所求直线上有两点()()0,0,1,2-,将这两点坐标代入四个选项,可知只有选项C 符合.6.答案:C解析:设点(,0),(0,)A a B b ,则由题意知4,2a b ==-, 所以224225AB =+=.7.答案:B解析:由于点A 在原点的右侧,点B 在原点的左侧,可知点A 表示的数1x 比点B 表示的数2x 大,且所以10OA x =>,20OB x =<,所以11x x ==,, 21AB x x OB OA =-=-,12BA x x OA OB =-=-.故B 不成立. 8.答案:C 解析:222(15)(421)2225AB a a a a a =+-+--+=-+∴当12a =时, AB 取得最小值. 9.答案:(,5]-∞ 解析:32x x -++表示数轴上的点 x 到点()3A 和到点()2B -的距离之和, 结合数轴可得()min |3||2|5x x -++=,故实数a 的取值范围是(,5]-∞.10.答案:5解析:()()125,3,2,1C C -,根据两点间距离公式得()()125C C =-+=+225231.11.答案:4解析:12.答案:6或-2 22(13)(2)42b +--=解得6b =或2b =-.13.答案:-2或13; -2解析:∵(,)7.5d A B =,∴5.57.5a -=,解得2a =-或13a =.若7.5AB =,则5.57.5a -=,解得2a =-.14.答案:设该点为()N x ,则()(),|3|,,|9|d A N x d N B x =-=--,根据题意有|3|2|9|x x -=+,所以3182x x -=+或3182x x -=--,解得21x =-或 5x =-.所以该点的坐标是21-或 5-.解析:15.答案:2x -为x 与2的距离, 5x -为x 与5的距离, ()25f x x x =---为与两点的距离之差,当2x ≤时, ()f x 为-3;当25x <<时, ()f x 的范围为(-3,3);当5x ≥时, ()f x 为3, ∴3253x x -≤---≤.要使不等式()f x k ≥有解,则33k -≤≤,∴max 3k =.解析:。

高中数学第二章平面解析几何初步2.2.4点到直线的距离练习(含解析)新人教B版必修2

高中数学第二章平面解析几何初步2.2.4点到直线的距离练习(含解析)新人教B版必修2

对应学生用书P59【知识点一点到直线的距离高中数学第二章平面解析几何初步点到直线的距离练习(含解析)新人教B 版必修21.若点(1,a)到直线x -y +1=0的距离是322,则实数a 为( ) A .-1 B .5,C .-1或5D .-3或3 答案 C解析 由点到直线的距离公式得|1-a +1|2=322,∴a =-1或5.2.已知两点A(3,2)和B(-1,4)到直线mx +y +3=0的距离相等,则m 为( );A .0或-12B .12或-6 C .-12或12 D .0或12 答案 B解析 由题意知直线mx +y +3=0与AB 平行或过AB 的中点,则有-m =4-2-1-3或m×3-12+2+42+3=0,∴m =12或m =-6.{知识点二两平行线间的距离…A .1110B .85C .157D .45 答案 A解析 由两直线平行,得m =6,所以mx -8y +5=0可化成3x -4y +52=0,因此两条平行线间的距离d =⎪⎪⎪⎪-3-5232+42=1110,故选A .4.已知直线l 与两直线l 1:2x -y +3=0和l 2:2x -y -1=0平行且距离相等,则l 的方程为________.答案 2x -y +1=0.解析 设所求的直线方程为2x -y +c =0(c≠3,c≠-1),分别在l 1:2x -y +3=0和l 2:2x -y -1=0上取点A(0,3)和B(0,-1),则此两点到2x -y +c =0的距离相等,即|-3+c|22+-12=|1+c|22+-12,解得c =1,故直线l 的方程为2x -y +1=0.】知识点三距离公式的综合应用5.已知点P(m ,n)是直线2x +y +5=0上任意一点,则m 2+n 2的最小值为________. 答案5,解析 因为m 2+n 2是点P(m ,n)与原点O 间的距离,所以根据直线的性质,原点O 到直线2x +y +5=0的距离就是m 2+n 2的最小值.根据点到直线的距离公式可得d =522+12=5.故答案为5.6.已知直线l 1:x +y -1=0,现将直线l 1向上平移到l 2的位置,若l 1,l 2和两坐标轴围成的梯形的面积为4,求直线l 2的方程(如图).解 ∵l 1∥l 2,可设l 2的方程为x +y -m =0. l 2与x 轴,y 轴分别交于B ,C , [l 1与x 轴,y 轴分别交于A ,D ,得A(1,0),D(0,1),B(m,0),C(0,m).∵l2在l1的上方,∴m>1.∵S梯形ABCD=S△OBC-S△AOD,∴4=12m2-12,解得m=3或m=-3(舍去).)故所求直线的方程为x+y-3=0.~对应学生用书P59一、选择题,1.到直线3x-4y-1=0的距离为2的点的轨迹方程是()A.3x-4y-11=0B.3x-4y+11=0C.3x-4y-11=0或3x-4y+9=0D.3x-4y+11=0或3x-4y+9=0:答案C解析到直线3x-4y-1=0的距离为2的点的轨迹是与3x-4y-1=0平行的直线,设直线方程为3x-4y+C=0,则|C+1|32+-42=2,∴C=9或C=-11.2.点P(x,y)在直线x+y-4=0上,则x2+y2的最小值是() A.8 B.2 2 C. 2 D.16答案A-解析由题知所求即为原点到直线x+y-4=0的距离的平方,即0+0-4212+12=162=8.故选A .3.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -11=0和l 2:x +y -1=0上移动,则AB 中点M 所在直线的方程为( )A .x -y -6=0B .x +y +6=0C .x -y +6=0D .x +y -6=0答案 D ·解析 由题意,得点M 所在的直线与直线l 1,l 2平行,所以设为x +y +n =0,此直线到直线l 1和l 2的距离相等,所以|n +11|2=|n +1|2,解得n =-6,所以所求直线的方程为x +y-6=0.故选D .4.若直线l 1:y =k(x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2) 答案 B(解析 由于直线l 1:y =k(x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k(x -4)与直线l 2关于点(2,1)对称,∴直线l 2恒过定点(0,2).5.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2C . 2D .4 答案 A解析 由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=32.、二、填空题6.如果已知两点O(0,0),A(4,-1)到直线mx +m 2y +6=0的距离相等,那么m 可取不同实数值的个数为________.答案 3解析 解方程6m 2+m 4=|4m -m 2+6|m 2+m 4(m≠0),得m =6或m =-2或m =4.7.直线l 在x 轴上的截距为1,又点A(-2,-1),B(4,5)到l 的距离相等,则l 的方程为________.\答案 x -y -1=0或x =1解析 显然l ⊥x 轴时符合要求,此时l 的方程为x =1.设l 的斜率为k ,则l 的方程为y =k(x -1),即kx -y -k =0.∵点A ,B 到l 的距离相等, ∴|-2k +1-k|k 2+1=|4k -5-k|k 2+1,∴|1-3k|=|3k -5|,∴k =1,∴l 的方程为x -y -1=0.:8.已知平面上一点M(5,0),若直线上存在点P 使|PM|=4,则称该直线为“切割型直线”.下列直线是“切割型直线”的有________.①y =x +1 ②y =2 ③y =43x ④y =2x +1 答案 ②③解析 可通过求各直线上的点到点M 的最小距离,即点M 到直线的距离d 来分析.①d =5+12=32>4,故直线上不存在点到点M 的距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点,使之到点M 的距离等于4,是“切割型直线”;③d =2032+42=4,直线上存在一点,使之到点M 的距离等于4,是“切割型直线”;④d =115=1155>4,故直线上不存在点到点M 的距离等于4,不是“切割型直线”.故填②③.三、解答题:9.已知直线l 1:ax +by +1=0(a ,b 不同时为0),l 2:(a -2)x +y +a =0. (1)若b =0且l 1⊥l 2,求实数a 的值;(2)当b =3且l 1∥l 2时,求直线l 1与l 2间的距离.解 (1)当b =0时,l 1:ax +1=0,由l 1⊥l 2知a -2=0,解得a =2. (2)当b =3时,l 1:ax +3y +1=0, .当l 1∥l 2时,联立⎩⎪⎨⎪⎧a -3a -2=0,3a -1≠0,解得a =3,此时,l 1的方程为3x +3y +1=0,l 2的方程为x +y +3=0,即3x +3y +9=0,则 它们之间的距离为d =|9-1|32+32=423. 10.过点M(2,4)作两条互相垂直的直线,分别交x ,y 轴的正半轴于点A ,B ,若四边形OAMB 的面积被直线AB 平分,求直线AB 的方程.解 设直线AB 的方程为x a +yb =1(a>0,b>0), ∴A(a ,0),B(0,b). ∵MA ⊥MB ,∴(a -2)×(-2)+(-4)×(b -4)=0, 即a =10-2b .∵a>0,b>0,∴0<b<5,0<a<10.∵直线AB 的一般式方程为bx +ay -ab =0, ∴点M 到直线AB 的距离d =|2b +4a -ab|a 2+b 2.∴△MAB 的面积S 1=12d|AB|=12|2b +4a -ab|=|b 2-8b +20|=b 2-8b +20, △OAB 的面积S 2=12ab =5b -b 2. ∵直线AB 平分四边形OAMB 的面积, ∴S 1=S 2,可得2b 2-13b +20=0,解得⎩⎪⎨⎪⎧b =4,a =2或⎩⎪⎨⎪⎧b =52,a =5.∴所求直线AB 的方程为x +2y -5=0或2x +y -4=0.。

新版高中数学北师大版必修2习题:第二章解析几何初步 2.2.1

新版高中数学北师大版必修2习题:第二章解析几何初步 2.2.1

§2圆与圆的方程2.1圆的标准方程1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1解析:设圆心C(0,m),则有√1+(m-2)2=1,解得m=2,所以圆的方程是x2+(y-2)2=1.答案:A2.如图所示,已知ACB为一弓形,且点A,B,C的坐标分别为(-4,0),(4,0),(0,2),则弓形所在圆的方程为()A.x2+y2=16B.x2+y2=4C.x2+(y+2)2=20D.x2+(y+3)2=25解析:∵圆心在弦AB的中垂线上,∴圆心在y轴上,可设P(0,b).∵|AP|=|CP|,∴√16+b2=|2-b|,解得b=-3,∴圆心P(0,-3).半径r=|CP|=5,∴圆的标准方程为x2+(y+3)2=25.答案:D3.若点P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0解析:设圆心为C(1,0),则AB⊥CP,∵直线CP的斜率k CP=-1,∴直线AB的斜率k AB=1.∴直线AB的方程是y+1=x-2,即x-y-3=0.答案:A4.若△ABC三个顶点的坐标分别是A(1,0),B(3,0),C(3,4),则该三角形外接圆的方程是()A.(x-2)2+(y-2)2=20B.(x-2)2+(y-2)2=10C.(x-2)2+(y-2)2=5D.(x-2)2+(y-2)2=√5解析:在平面直角系中作出A,B,C三点,并连接AB,BC,AC,易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点(2,2),半径是斜边长的一半,即r=√5,所以外接圆的方程为(x-2)2+(y-2)2=5.答案:C5.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100解析:线段AB的中点为C(-1,1),|AB|=√(3+5)2+(-2-4)2=10,所以以AB为直径的圆即是以C为圆心,以5为半径的圆,圆的方程为(x+1)2+(y-1)2=25.答案:B6.若直线x+y-3=0始终平分圆(x-a )2+(y-b )2=2的周长,则a+b=( )A.3B.2C.5D.1 解析:由题意知,圆心(a ,b )在直线x+y-3=0上,所以a+b-3=0,即a+b=3.故选A .答案:A7.若圆C 与圆(x+2)2+(y-1)2=1关于原点对称,则圆C 的标准方程为 . 解析:已知圆的圆心为点(-2,1),它关于原点的对称点为(2,-1),即C (2,-1),所以圆C 的标准方程为(x-2)2+(y+1)2=1.答案:(x-2)2+(y+1)2=18.圆心为直线x-y+2=0与直线2x+y-8=0的交点,且过原点的圆的标准方程是 .解析:由{x -y +2=0,2x +y -8=0,解得{x =2,y =4, 所以圆心为(2,4),半径r=√22+42=√20.所以圆的方程为(x-2)2+(y-4)2=20.答案:(x-2)2+(y-4)2=209.设P 是圆(x-3)2+(y+1)2=4上的动点,Q 是直线x=-3上的动点,则|PQ|的最小值为 . 答案:410.根据下列条件,求圆的标准方程:(1)圆经过点A (1,1),B (-1,3)且面积最小;(2)圆经过点A (1,-1),B (-1,1),且圆心在直线x+y-2=0上.解(1)过A ,B 两点且面积最小的圆就是以线段AB 为直径的圆,可知所求圆的圆心坐标为(0,2),半径r=12|AB|=12√(1+1)2+(1-3)2=12×√8=√2, 故所求圆的标准方程为x 2+(y-2)2=2.(2)设点A (1,-1),B (-1,1)的中点为O (0,0),过A ,B 两点的直线的斜率k AB =-1,∴线段AB 的垂直平分线为y=x.由{y =x ,x +y -2=0,可知所求圆的圆心坐标为(1,1),半径r=√(1-1)2+(1+1)2=2,故所求圆的标准方程为(x-1)2+(y-1)2=4.11.已知平面直角坐标系中有四个点A (0,1),B (2,1),C (3,4),D (-1,2),判断这四个点能否在同一个圆上,为什么?解设经过A ,B ,C 三点的圆的标准方程为(x-a )2+(y-b )2=r 2(r>0).代入三点的坐标得{a 2+(b -1)2=r 2,(a -2)2+(b -1)2=r 2,(a -3)2+(b -4)2=r 2,解方程组,得{a =1,b =3,r 2=5.所以经过A ,B ,C 三点的圆的标准方程为(x-1)2+(y-3)2=5.将点D 的坐标代入圆的标准方程,左边=右边,所以点D 在圆上,故A ,B ,C ,D 四点能在同一个圆上. ★12.已知圆C :(x-√3)2+(y-1)2=4和直线l :x-y=5,求圆C 上的点到直线l 的距离的最大值与最小值. 解∵圆(x-√3)2+(y-1)2=4的圆心为(√3,1),半径为2,且圆心到直线l :x-y=5的距离d=√3-√1+1=√3√2=6√2-√62. ∴圆C 上的点到直线l 的距离的最大值为d+r=6√2-√62+2=4+6√2-√62,最小值为d-r=6√2-√62-2=6√2-√6-42.。

(全国通用版)2018-2019高中数学 第二章 平面解析几何初步 2.2.4 点到直线的距离练习

(全国通用版)2018-2019高中数学 第二章 平面解析几何初步 2.2.4 点到直线的距离练习

2.2.4 点到直线的距离1点(3,1)到直线y=2x的距离为()A.5B.C.D.解析:直线方程化为2x-y=0,故所求距离d=.答案:B2已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a的值是()A. B.2- C.-1 D.+1解析:由点到直线的距离公式,得=1,因为|a+1|=,所以a=±-1.又因为a>0,所以a=-1.答案:C3已知直线3x+2y-3=0和6x+my+1=0互相平行,那么它们之间的距离是()A.4B.C.D.解析:因为两直线平行,所以3m=12,即m=4,6x+my+1=0可化为3x+2y+=0,由两平行直线间的距离公式得d=.答案:D4已知点P(a,b)是第二象限的点,那么它到直线x-y=0的距离是()A.(a-b)B.b-aC.(b-a)D.解析:因为P(a,b)是第二象限的点,所以a<0,b>0.所以a-b<0.所以点P到直线x-y=0的距离d=(b-a).答案:C5若P,Q分别为3x+4y-12=0与3x+4y+3=0上任一点,则|PQ|的最小值为()A. B. C.3 D.6解析:|PQ|的最小值即两条平行线间的距离,则根据两条平行线间的距离公式得|PQ|==3.答案:C6已知x,y满足3x+4y-10=0,则x2+y2的最小值为()A.2B.4C.0D.1解析:因为x2+y2视为原点到直线上的点P(x,y)的距离的平方,所以x2+y2的最小值为原点到直线3x+4y-10=0的距离的平方.因为d==2,所以x2+y2的最小值为4.答案:B7过点M(1,5)和点N(-2,9)分别作两条平行直线,使它们之间的距离等于5,则满足条件的直线共有()A.0组B.1组C.2组D.3组解析:因为|MN|==5,所以满足条件的直线有且仅有1组,它们与线段MN所在的直线垂直.答案:B8已知定点A(0,1),点B在直线x+y=0上运动,当线段AB最短时,点B的坐标是.解析:可设B(x,-x),所以d(A,B)=,又d(A,B)min=,这时x=-,点B的坐标为.答案:9已知点M(1,4)到直线l:mx+y-1=0的距离为3,则实数m=.解析:由已知可得=3,即|m+3|=3,解得m=0或m=.答案:0或10与直线l:5x-12y+6=0平行且到l的距离为2的直线m的方程为.解析:设所求直线为5x-12y+c=0,则由两平行直线间的距离公式得2=,解得c=32或c=-20.故所求直线的方程为5x-12y+32=0或5x-12y-20=0.答案:5x-12y+32=0或5x-12y-20=011已知直线l过直线y=-x+1和y=2x+4的交点,(1)若直线l与直线x-3y+2=0垂直,求直线l的方程;(2)若原点O到直线l的距离为1,求直线l的方程.解(1)由得交点(-1,2),因为直线x-3y+2=0的斜率是,直线l与直线x-3y+2=0垂直,所以直线l的斜率为-3,所以所求直线l的方程为y-2=-3(x+1),即3x+y+1=0.(2)如果l⊥x轴,则l的方程为x=-1符合要求.如果l不垂直于x轴,设l的方程为y-2=k(x+1),即kx-y+2+k=0,原点O到直线l的距离=1,解之,得k=-,此时l:y-2=-(x+1).综上,直线l的方程为3x+4y-5=0或x=-1.12两条互相平行的直线分别过A(6,2),B(-3,-1)两点,并且各自绕着A,B点旋转(但始终保持平行关系).如果两条平行线间的距离为d.(1)求d的变化范围;(2)求当d取得最大值时两条直线的方程.解(1)根据题意可知,当两平行线均与线段AB垂直时,距离d=|AB|=3最大;当两平行线重合,即都过A,B点时,距离d=0最小.但平行线不能重合,所以0<d≤3.(2)当d=3时,所求的两条直线的斜率相同,且k=-3,所以两条直线的方程分别为3x+y-20=0和3x+y+10=0.★13已知点P(2,-1),求:(1)过点P且与原点O距离为2的直线l的方程;(2)过点P且与原点O距离最大的直线l的方程,并求此最大距离.解(1)点P的坐标为(2,-1),由题意知可分两种情况:①若直线l的斜率不存在,则其方程为x=2,原点到直线x=2的距离为2,满足题意;②若直线l的斜率存在,设为k,则l的方程为y+1=k(x-2),即kx-y-2k-1=0.由已知,得=2,解得k=.此时l的方程为3x-4y-10=0.综上,可得直线l的方程为x=2或3x-4y-10=0.(2)过点P且与原点O距离最大的直线是过点P且与PO垂直的直线,故设直线l、直线OP的斜率分别为k l,k OP.由题意知k OP=-,由l⊥OP,得k l·k OP=-1,即k l=-=2.由直线方程的点斜式得y+1=2(x-2),即2x-y-5=0.即直线l:2x-y-5=0是过点P且与原点O距离最大的直线,且最大距离为.★14已知在△ABC中,A(1,1),B(m,)(1<m<4),C(4,2),则当m为何值时,△ABC的面积S最大? 解∵A(1,1),C(4,2),∴|AC|=.又直线AC的方程为x-3y+2=0,根据点到直线的距离公式可得点B(m,)到直线AC的距离d=,∴S=|AC|·d=|m-3+2|=.∵1<m<4,∴1<<2⇒-.∴0≤,∴S=.∴当=0,即m=时,S最大.故当m=时,△ABC的面积S最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习 解析几何初步(二)
学校: 姓名: 班级:
一、选择题
1.下列命题正确的是( )
A. 棱柱的侧面都是长方形
B. 棱柱的所有面都是四边形
C. 棱柱的侧棱不一定相等
D. 一个棱柱至少有五个面
2.若某多面体的三视图(单位:cm)如图所示,且此多面体的体积3
6cm V =,则a =( )
A.9
B.3
C.6
D.4
3.直线1x =的倾斜角和斜率分别是( ). A .
π
4
,1
B .

4
,-1
C .π
2
,不存在
D .π,不存在
4.已知平行直线1
2
:210,
:210x y x y +-=++=,则12
,
的距离( )
25
B.
5
C.
5
D. 255.已知实数x ,y 满足012462
2
=+--+y x y x ,则2
2)2(++y x 的最大值为( )
A .4
B . 5
C .6
D .7
6.若直线2=0x y --与圆
22
()2x a y -+=相切,则a 等于( ) A. 0或4
B. 0或4-
C. 1或3
D. 1-或3
二、填空题
7. 若直线l 与直线2x -y -1=0垂直,且不过第一象限,试写出一个直线l 的方程: .
8. 圆Q 1:x 2+y 2=9与圆Q 2:(x ﹣3)2+(y ﹣4)2
=1的公切线条数为 . 三、解答题
9. 求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程。

10. 已知圆心C (1,2),且经过点(0,1)
(Ⅰ)写出圆C 的标准方程; (Ⅱ)过点P (2,﹣1)作圆C 的切线,求切线的方程及切线的长.
同步练习 解析几何初步(二) 答案
1. D
2. A
3. C ∵直线1x =垂直于x 轴,∴倾斜角为π
2,斜率不存在,故选C .
4. A
5. C
6. A 【详解】由题意知:圆心为
(),0a ,半径2
r =
直线与圆相切
∴圆心到直线距离
22
2
a d -=
= 即:
22
a -=,解得:0a =或4本题正确选项:A
7. 1
12y x =--
(答案不唯一)
8. 4 解:∵圆Q 1:x 2+y 2=9与圆Q 2:(x ﹣3)2+(y ﹣4)2=1, Q 1(0,0),Q 2(3,4)
∴|Q 1Q 2|=5,R 1=3, R 2=1,∴|Q 1Q 2|>R 1+R 2=4,∴圆Q 1圆Q 2相离,圆Q 1圆Q 2公切线的条数为4,故答案为:4
9. 解:1x =显然符合条件;当(2,3)A ,(0,5)B -在所求直线同侧时,4AB k =
24(1),420y x x y ∴-=---= 420x y --=,或1x =
10. 解(Ⅰ)∵圆心C (1,2),且经过点(0,1)
圆C 的半径
,∴圆C 的标准方程:(x ﹣1)2+(y ﹣2)2=2
(Ⅱ)设过点P (2,﹣1)的切线方程为y+1=k (x ﹣2),即kx ﹣y ﹣2k ﹣1=0,有:,
∴k 2﹣6k ﹣7=0,解得k=7或k=﹣1,∴所求切线的方程为7x ﹣y ﹣15=0或x+y ﹣1=0,由圆的性质可知:。

相关文档
最新文档