统计学知识点总结

合集下载

统计学的知识点

统计学的知识点

统计学的知识点统计学是一门研究数据收集、整理、分析和解释的科学。

它在各个领域都有着广泛的应用,从社会科学到自然科学,从商业决策到医学研究,都离不开统计学的支持。

接下来,让我们一起深入了解一些重要的统计学知识点。

一、数据的类型数据可以分为定性数据和定量数据两大类。

定性数据是描述事物性质或类别的数据,例如性别(男、女)、职业(教师、医生、工程师等)。

定量数据则是可以用数字来度量的数据,又进一步分为离散数据和连续数据。

离散数据只能取有限个或可数个值,比如班级里的学生人数;连续数据可以在某个区间内取任意值,例如身高、体重等。

二、数据收集方法常见的数据收集方法包括普查和抽样调查。

普查是对研究对象的全体进行调查,能得到全面、准确的信息,但往往成本高、耗时费力。

抽样调查则是从总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。

抽样方法有简单随机抽样、分层抽样、系统抽样等。

简单随机抽样保证了每个个体被抽到的概率相等;分层抽样将总体按某些特征分成若干层,然后在各层中独立抽样;系统抽样则是按照一定的规律抽取样本。

三、数据的整理与展示收集到数据后,需要对其进行整理和展示,以便更直观地理解数据的分布和特征。

常用的图表有柱状图、折线图、饼图、直方图等。

柱状图用于比较不同类别之间的数据量;折线图适合展示数据随时间或其他顺序变量的变化趋势;饼图用于展示各部分在总体中所占的比例;直方图则能展示数据的分布情况。

四、集中趋势的度量描述数据集中趋势的统计量主要有平均数、中位数和众数。

平均数是所有数据的总和除以数据的个数,它容易受到极端值的影响。

中位数是将数据从小到大排序后位于中间位置的数值,如果数据个数为偶数,则中位数是中间两个数的平均值。

众数是数据中出现次数最多的数值。

五、离散程度的度量离散程度反映了数据的分散程度。

常见的度量指标有极差、方差和标准差。

极差是最大值与最小值之间的差值,它只考虑了极端值。

方差是每个数据与平均数之差的平方的平均值,标准差则是方差的平方根。

统计学知识点

统计学知识点

统计学第三章1.数值型数据的分组方法有哪些?简述组距分组的步骤。

(1)数据分组的方法有单变量值分组和组距分组两种。

①单变量值分组是把每一个变量值作为一组,这种分组通常只适合离散变量,且变量值较少的情况下使用②在连续变量或变量值较多的情况下,通常采用组距分组。

它是将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。

在组距分组中,一个组的最小值称为下限;一个组的最大值称为上限。

(2)组距分组步骤①确定组数。

组数的确定应以能够显示数据的分布特征和规律为目的。

一般情况下,一组数据所分的组数不应少于5组且不多于15组,即5≤K≤15;②确定各组的组距。

组距是一个组的上限与下限的差。

组距可根据全部数据的最大值和最小值及所分的组数来确定,即组距=(最大值一最小值)÷组数;③根据分组编制频数分布表。

2.直方图与条形图有何区别?①条形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义;②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列③条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。

3.茎叶图与直方图相比有什么优点?它们的应用场合是什么?优点:(1)茎叶图类似于横置的直方图,与直方图相比,茎叶图既能给出数据的分布状况,又保留了原始数据。

而直方图虽然能很好地显示数据的分布,但不能保留原始的数值。

应用场合:(2)直方图通常适用于大批量数据,茎叶图通常适用于小批量数据。

第四章:1.一组数据的分布特征可以从哪几个方面进行测度?从三个方面进行测度和描述:(1)分布的集中趋势,反映各数据向其中心值聚集的程度(2)分布的离散程度,反映各数据远离其中心值的趋势;(3)分布的形状,反映数据分布的偏态和峰态。

2.简述众数、中位数和平均数的特点和应用场合。

统计的知识点总结

统计的知识点总结

统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。

描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。

2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。

推论统计包括了参数估计和假设检验两个主要方法。

在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。

推论统计方法在科学研究和决策制定中具有重要的应用价值。

3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。

概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。

4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。

它包括了简单线性回归、多元线性回归、非线性回归等。

回归分析的方法对于预测和决策具有重要的应用价值。

5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。

它包括了单因素方差分析、双因素方差分析、多因素方差分析等。

方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。

6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。

它包括了生存函数、风险集与危险比、生存曲线、生存比较等。

生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。

以上是统计学的一些基本知识点总结。

统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。

统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。

统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。

高中数学统计学总结知识点

高中数学统计学总结知识点

高中数学统计学总结知识点一、统计学的基本概念统计学是研究数据收集、整理、分析和解释的学科。

它在现代社会中具有重要的应用价值,可以帮助人们更好地理解事物发展规律,做出更科学的决策。

统计学的基本概念包括总体和样本、参数和统计量、频数和频率、统计图示等内容。

1. 总体和样本总体是指研究对象的全部个体,而样本是从总体中选取的一部分个体。

对于大规模的研究对象,通常采用抽样的方法选择样本,然后通过对样本的研究结果推断总体的性质。

样本的选择应该具有代表性,以确保研究结果的可靠性。

2. 参数和统计量参数是用来描述总体特征的数值,统计量是用来描述样本特征的数值。

常见的参数包括平均值、标准差、方差等,而统计量则包括样本均值、样本标准差、样本方差等。

通过对统计量的分析可以推断出总体参数的性质。

3. 频数和频率频数是指某一数值在样本中出现的次数,而频率是指某一数值出现的相对次数。

频率可以用来描述数据的分布规律,可以是相对频率、累积频率等形式。

4. 统计图示统计图示是指用图形的方式表示数据的分布规律。

常见的统计图示包括直方图、折线图、饼状图等,通过图示可以直观地了解数据的分布情况,方便研究和分析。

二、数据的描述性统计描述性统计是统计学中重要的内容,主要包括数据的集中趋势和离散程度的描述。

常见的描述性统计指标包括均值、中位数、众数、标准差、方差等。

1. 均值均值是一个样本或总体的平均数值,通常用符号表示,可以用来描述数据的集中趋势。

2. 中位数中位数是一组数据中间数值,可以用来描述数据的中间位置。

它不受极端值的影响,通常用来描述数据的分布。

3. 众数众数是一组数据中出现次数最多的数值,可以用来描述数据的集中趋势。

它在一些特定情况下比均值更具有代表性。

4. 标准差和方差标准差和方差是用来描述数据的离散程度,可以用来度量数据的波动性。

它们的计算需要借助均值,可以帮助研究者更全面地了解数据的分布。

三、概率统计概率统计是统计学中的另一个重要内容,主要包括概率的定义、概率的性质、离散型随机变量、连续型随机变量、概率分布函数等。

统计学知识点梳理

统计学知识点梳理

统计学第一章导论1.1.1 什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。

数据分析所用的方法分为描述统计方法和推断统计方法。

1.2 统计数据的类型1.2.1 分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。

分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。

例如:支付方式、性别、企业类型等。

顺序数据:只能归于某一有序类别的非数字型数据。

例如:员工对改革措施的态度、产品等级、受教育程度等。

数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。

例如:年龄、工资、产量等。

统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。

1.2.2 观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。

观测数据:通过调查或观测而收集的数据。

例如:降雨量、GDP、家庭收入等。

实验数据:在实验中控制实验对象而收集到的数据。

例如:医药实验数据、化学实验数据等。

1.2.3 截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。

截面数据:在相同或近似相同的时间点上收集的数据。

例如:2012年我国各省市的GDP。

时间序列数据:同一现象在不同的时间收集的数据。

例如:2000-2012年湖北省的GDP。

1.3.1 总体和样本总体:包含所研究的全部个体(数据)的集合。

样本:从总体中抽取的一部分元素的集合。

1.3.2 参数和统计量参数:用来描述总体特征的概括性数字度量。

统计量:用类描述样本特征的概括性数字度量。

例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。

这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。

第二章数据的搜集2.1 数据的来源2.1.1 数据的间接来源间接来源的数据:如果与研究内容有关的原信息已经存在,我们只是对这些原信息重新加工、整理,使之成为我们进行统计分析可以使用的数据。

统计学期末知识点总结

统计学期末知识点总结

1.多重共线性:当回归模型中存在两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性。

2.相关关系:变量之间存在的不确定的数量关系,称为相关关系。

3.五个相关关系:正线性相关,负线性相关,完全正线性相关,完全负线性相关,非线性相关,不相关。

若 0<r≤1,表明 x 与 y 之间存在正线性相关关系;若-1≤r <0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与 y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。

|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。

4.回归直线的拟合优度:回归直线与各观测点的接近程度称为回归直线对数据的拟合优度。

判定系数 R2测度了回归直线对观测数据的拟合程度。

5.最小二乘估计法:通过使因变量的观测值 yi 与估计值yi ∧之间的离差平方和,即残差平方和,达到最小来估计β0和β1的方法。

6. F 检验和 t 检验各有什么作用:F 检验是检验自变量 x 和因变量 y 之间的线性关系是否显著;t 检验是检验自变量对因变量的影响是否显著,也就是回归系数的检验。

7.8.正态分布—Z分布:大样本或小样本总体标准差σ已知。

9.N-1的T分布:小样本σ未知。

10.参数估计:点估计与区间估计11.置信区间:由样本统计量所构造的总体参数的估计区间。

12.置信水平:置信区间中包含总体参数真值的次数所占的比例。

置信水平越大,所需的样本量也就越大,置信区间越宽。

13.评价估计量的标准:无偏性:是指估计量抽样分布的数学期望等于被估计的总体参数有效性:是指对同一参数的两个无偏估计量,有更小方差的估计量越有效。

一致性:是指随着样本量n的增大,估计量的值越来越接近总体参数的真值。

14.样本量越大,样本均值的抽样标准差就越小。

15.总体数据的方差越大,估计时所需的样本量越大。

16.数据概括性度量:(数据分布特征的测量)集中趋势,离散程度,分布形态(偏态与峰态)17.三个分布:对称分布—众数=中位数=平均数左偏分布—平均数<中位数<众数右偏分布—众数<中位数<平均数18.标准分数的用途:①变量值与其平均数的离差除以标准差后的值称为标准分数,用Z表示。

统计学总结知识点

统计学总结知识点

统计学总结知识点1. 总体和样本在统计学中,总体是指研究对象的全部个体,而样本是从总体中选取的一部分个体。

总体和样本是统计学研究的基本单位,研究者通常会通过对样本进行研究来推断总体的特征。

2. 描述统计描述统计是对数据进行整理、汇总和展示的过程,常用的描述统计方法包括平均数、中位数、众数、标准差等。

通过描述统计,研究者可以更好地理解数据的特征和分布情况。

3. 推断统计推断统计是根据样本数据对总体参数进行推断的过程,常用的推断统计方法包括假设检验、置信区间估计和方差分析等。

推断统计能够帮助研究者对总体特征进行推断,并做出相应的决策。

4. 概率分布概率分布是描述随机变量取值规律的数学函数,常见的概率分布包括正态分布、泊松分布、指数分布等。

概率分布在统计学中有着重要的应用,能够帮助研究者对随机现象进行建模和分析。

5. 方差分析方差分析是一种用于比较多个总体均值是否相等的统计方法,通过方差分析可以判断不同处理组之间的平均差异是否显著。

方差分析在实验设计和市场调研中有着重要的应用,能够帮助研究者理解不同因素对结果的影响。

6. 回归分析回归分析是一种用于研究变量之间关系的统计方法,常见的回归分析包括简单线性回归和多元线性回归。

通过回归分析可以揭示变量之间的相关性和因果关系,对预测和决策提供重要参考。

7. 抽样方法抽样是从总体中选取样本的过程,常见的抽样方法包括随机抽样、系统抽样、分层抽样和群集抽样等。

合适的抽样方法能够保证样本的代表性和可靠性,对统计推断和结论的准确性具有重要影响。

8. 数据可视化数据可视化是利用图表、图像和地图等形式将数据进行直观展示的过程,常见的数据可视化方法包括柱状图、折线图、散点图和地理信息系统等。

数据可视化能够帮助研究者更直观地理解数据特征和规律。

9. 统计软件统计软件是进行数据分析和统计推断的重要工具,常见的统计软件包括SPSS、SAS、R和Python等。

统计软件能够帮助研究者进行复杂的数据处理和分析,提高工作效率和结果质量。

统计学知识点(完整)

统计学知识点(完整)

基本统计方法第一章概论1. 总体(Population):根据研究目的确定的同质对象的全体(集合);样本(Sample):从总体中随机抽取的部分具有代表性的研究对象。

2. 参数(Parameter):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。

3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。

第二章计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR=P75-P25)、标准差(或方差)、变异系数(CV)3. 正态分布特征:①X轴上方关于X=μ对称的钟形曲线;②X=μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。

4. 医学参考值范围的制定方法:正态近似法:;百分位数法:P2.5-P97.5。

第三章总体均数估计和假设检验1. 抽样误差(Sampling Error):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。

抽样误差不可避免,产生的根本原因是生物个体的变异性。

2. 均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:。

反映样本均数间的离散程度,说明抽样误差的大小。

3. 降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。

4. t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当ν逼近∞,逼近, t分布逼近u分布,故标准正态分布是t分布的特例。

5. 置信区间(Confidence Interval, CI):按预先给定的概率(1-α)确定的包含总体参数的一个范围,计算公式:或。

统计学基础知识点总结

统计学基础知识点总结

统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。

在统计学中,常用的变量类型有两种:定量变量和定性变量。

定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。

2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。

中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。

3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。

概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。

4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。

点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。

5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。

参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。

6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。

7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。

在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。

8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。

常用的实验设计方法有完全随机设计、区组设计和受试者设计等。

以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。

统计学知识点总结

统计学知识点总结

统计学知识点总结统计学是研究如何收集、分析、解释和展示数据的科学。

以下是一些常见的统计学知识点的总结。

1. 描述性统计学:描述性统计学是指通过概括和总结数据来描述数据集的统计方法。

描述性统计学中包括中心趋势(如平均数、中位数和众数)、离散程度(如方差、标准差和极差)和分布形态(如偏态和峰态)等基本概念。

2. 推论统计学:推论统计学是指通过对抽样数据的分析来推断出总体的特征和性质。

推论统计学中主要包括参数估计和假设检验两个方面。

参数估计是指通过样本数据推断总体参数的值,如用样本均值估计总体均值。

假设检验是指通过对样本数据进行统计检验来判断总体假设是否成立,如判断两组样本是否存在差异。

3. 概率论:概率论是研究随机现象的概率规律的数学分支学科。

概率论的核心是概率分布和随机变量。

其中概率分布包括离散型概率分布(如二项分布和泊松分布)和连续型概率分布(如正态分布和指数分布),随机变量包括离散型随机变量和连续型随机变量。

4. 回归分析:回归分析是用于研究自变量和因变量之间关系的统计方法。

在回归分析中,通常使用线性回归模型来描述两个变量之间的线性关系,如y = a + bx,其中y是因变量,x是自变量,a和b是参数。

回归分析还包括多元线性回归、非线性回归等方法。

5. 方差分析:方差分析是一种用于比较多组数据之间差异的统计方法。

方差分析通常用于分析实验数据,其中自变量通常是一个分类变量,如不同的治疗方案,因变量通常是一个连续型变量,如某种疾病的治愈率或生长速度。

6. 时间序列分析:时间序列分析是研究时间序列数据的统计方法。

时间序列数据是指一组按照时间顺序排列的数据,如某个地区每月的销售额、某股票每日的收盘价等。

时间序列分析包括趋势分析、季节性分析、周期性分析等方法。

以上是统计学的一些常见知识点的总结,其中每个知识点都有其独特的应用和技巧。

在实际应用中,可以根据具体问题选择合适的方法和技巧来解决问题。

统计知识点归纳总结

统计知识点归纳总结

统计知识点归纳总结一、基本概念1. 总体与样本总体是指研究对象的全部个体或事物的集合,而样本是从总体中选取的部分个体或事物的集合。

在统计学中,通常通过对样本进行分析来达到对总体的推断。

2. 参数与统计量参数是总体特征的度量值,而统计量是样本特征的度量值。

统计量通常用来估计参数,并且可以用来进行统计检验。

3. 变量变量是指调查或实验中收集的数据的特性或属性,它可以分为定性变量和定量变量。

定性变量是指不同品种或者不同性质的变量,例如性别、国籍等;定量变量是指可以进行数值化的变量,例如年龄、体重等。

4. 数据类型数据可以分为定性数据和定量数据。

定性数据是指非数值型的数据,通常用来描述特征或属性,例如颜色、品种等;定量数据是指数值型的数据,它包括离散型数据和连续型数据。

离散型数据是指可以列举的有限个数的数据,例如人数、数量等;连续型数据是指可以取某一区间内任意值的数据,例如时间、长度等。

二、数据的描述统计1. 中心趋势度量中心趋势度量可以帮助人们了解数据的集中程度。

常见的中心趋势度量包括均值、中位数和众数。

- 均值是指所有数据值的平均数,它是所有数据值总和除以数据的个数。

- 中位数是指将数据值按大小排列,取中间位置的数值。

- 众数是指在一组数据中出现次数最多的数值。

2. 离散程度度量离散程度度量可以帮助人们了解数据的离散程度。

常见的离散程度度量包括极差、方差和标准差。

- 极差是指一组数据中最大值与最小值的差值。

- 方差是指数据值与均值之差的平方和的平均值- 标准差是指方差的平方根。

3. 分布形态度量分布形态度量可以帮助人们了解数据的分布形式。

常见的分布形态度量包括偏度和峰度。

- 偏度是指数据分布的不对称程度,可以用来描述数据的偏斜程度。

- 峰度是指数据分布的峰态,可以用来描述数据分布的陡峭程度。

三、概率1. 概率的基本概念概率是研究随机试验结果的可能性的数学工具。

它是从统计学的角度研究随机现象的可能性的概率。

完整版)统计学知识点总结

完整版)统计学知识点总结

完整版)统计学知识点总结统计学知识点总结统计学是研究数据收集、分析和解释的学科。

以下是一些统计学的知识点总结:1.数据类型:统计学中有两种数据类型,即定量数据和定性数据。

定量数据可以用数字表示,如年龄、身高等;定性数据则描述了某些特征,如性别、颜色等。

2.数据收集:统计学使用多种方法收集数据,包括调查问卷、实验设计和观察等。

在数据收集过程中,要注意样本的代表性和随机性,以获得可靠的结果。

3.描述统计学:描述统计学用于总结和描述数据。

常用的描述统计学方法包括平均数、中位数、众数和标准差等。

这些统计量可以帮助我们理解数据的分布和变异程度。

4.推论统计学:推论统计学用于从样本数据推断总体特征。

常用的推论统计学方法包括假设检验和置信区间。

通过这些方法,我们可以根据样本数据对总体进行推断。

5.概率:概率是统计学的基础概念,用于描述事件发生的可能性。

统计学中的概率可以分为经典概率和统计概率两种类型。

6.线性回归:线性回归是一种常见的统计学方法,用于建立自变量与因变量之间的关系模型。

通过最小二乘法,可以找到最佳拟合线,从而预测因变量的取值。

7.假设检验:假设检验用于对统计推断进行验证。

通过比较观察到的样本数据与假设的总体参数,可以判断假设是否成立。

8.方差分析:方差分析用于比较多个样本之间的差异。

通过分析组间方差和组内方差之间的关系,可以得出是否存在显著差异。

9.抽样方法:抽样方法用于从总体中选择样本。

常用的抽样方法有简单随机抽样、分层抽样和系统抽样等。

总结以上可以看出,统计学是一门重要的学科,对数据分析和决策具有重要意义。

掌握统计学的基本知识和方法可以帮助我们更好地理解数据,并做出可靠的推断和预测。

参考资料:1] ___。

陳黎明。

& 陳應洪。

(2015)。

統計學。

___.2] Moore。

D。

S。

& McCabe。

G。

P。

(2005)。

___。

统计学类知识点总结

统计学类知识点总结

统计学类知识点总结统计学是一门研究数据收集、分析、解释和展示的学科,其应用广泛,涵盖了从政府决策到商业分析的多个领域。

统计学是基于概率和数学原理的,能够帮助研究人员更好地理解和利用数据,从而做出更准确的决策。

以下是统计学的一些重要知识点总结:1. 描述统计学描述统计学是统计学的一个重要分支,它主要关注数据的收集和总结。

描述统计学的主要任务包括:数据的收集、整理,数据分布的测量和描述,以及数据的展示和解释。

描述统计学使用了一些基本的统计量来描述数据的特征,比如均值、中位数、众数、标准差等。

它也使用了一些图表来展示数据的分布和特征,比如频数分布图、直方图、饼图等。

2. 排列组合与概率排列组合和概率是统计学的重要内容。

排列组合是研究不同元素的选择和排列方式,而概率则是研究随机事件的发生概率。

排列组合和概率在统计学中被广泛应用,比如在研究样本的选择方式、样本的排列方式等。

概率理论也可以用来解释随机事件的发生规律,从而帮助研究人员更好地理解数据的特征。

3. 统计推断统计推断是统计学的一个核心内容,它主要关注通过样本数据对总体数据进行推断。

统计推断分为参数估计和假设检验两个部分。

参数估计是研究如何通过样本数据来估计总体参数,比如平均值、比例等。

假设检验则是研究如何通过样本数据来对总体参数进行推断,比如判断总体参数是否符合某种假设。

统计推断是统计学的一个重要分支,它可以帮助研究人员通过样本数据对总体数据进行推断,从而做出更准确的判断和决策。

4. 回归分析回归分析是统计学的一个重要内容,它用来研究自变量和因变量之间的关系。

回归分析可以帮助研究人员了解自变量对因变量的影响程度,从而进行预测和决策。

回归分析可以分为线性回归和非线性回归两种,其中线性回归是最为常见的一种回归分析方法。

回归分析在很多领域都有广泛的应用,比如在经济学、生物学、医学等领域中都有重要的应用。

5. 方差分析方差分析是用来研究不同组别之间差异的统计方法。

统计学知识点汇总

统计学知识点汇总

统计学知识点汇总第一章:统计学是收集、处理、分析、解析数据并从数据中得出结论的科学。

分类:描述统计、推断统计。

描述统计是研究数据收集、处理和描述的统计学方法. 推断统计是研究如何利用样本数据来推断总体特征的统计学方法(内容包括参数估计和假设检验)。

变量:每次观察都会得到不同结果的某种特征. 分类变量:又称无序分类变量,观测结果表现为某种类别的变量. 顺序变量:又称有序分类变量,观测结果表现为某种有序类别的变量。

数值变量:又称定量变量,观测结果表现为数字的变量。

数据:1、分类数据2、顺序数据3、数值型数据总体:包含所研究的全部个体(数据)的集合.样本:从总体中抽取的一部分元素的集合.样本量:构成样本元素的数目。

抽样方法:1、简单随机抽样2、分层抽样3、系统抽样4、整群抽样简单随机抽样:从含有N个元素的总体中,抽取n个元素组成一个样本,使得总体中的每一个元素都有相同的机会(概率)被抽中。

分层抽样:也称分类抽样,在抽样之前先将总体的元素划分为若干层(类),然后从各个层中抽取一定数量的元素组成一个样本。

软件应用:用Excel抽取简单随机样本.第二章:一、定性数据的图示:1、条形图2、帕累托图3、饼图4、环形图条形图:是用宽度相同的条形来表示数据多少的图形,用于观察不同类别的多少或分布状况。

帕累托图:是按各类别出现的频数多少排序后绘制的条形图.通过对条形的排序,容易看出哪类频数出现的多,哪类出现的少。

饼图:主要用于表示一个样本(或总体)中各类别的频数占全部频数的比例。

用图表展示定量数据:生成定量数据的频数分布表时,需要先将原始数据按照某种标准分成不同的组别,然后统计出各组别的数据频数即可。

一组数据所分的组数K应不少于5组且不多于15组。

组距=(最大值—最小值)/组数组数=全距 /组距每组组距均相等称为等距数列,反之则为异距数列在比较等距数列与异距数列的次数分布时常用:次数密度=本组次数/本组组距2。

组中值 class midpoint组中值=(本组上限+本组下限)/2或组中值=(本组假定上限+本组假定下限)/2二、定量数据的图示:1、分组数据看分布:直方图2、未分组数据看分布:茎叶图和箱线图、垂线图和误差图最小值 25%四分位数中位数 75%四分位数最大值箱线图的示意图:Array3、两个变量间的关系:散点图是用二维坐标展示两个变量之间关系的一种图形。

统计学知识点

统计学知识点

第一章1、什么是统计学:收集、处理、分析、解释数据并从数据中得出结论的科学2、统计方法:(1)描述统计(知道总体数据)①含义:研究数据收集、整理和描述的统计学方法②内容:搜集数据、整理数据、展示数据、描述性分析③目的:描述数据特征、找出数据的基本规律(2)推断统计①含义:研究如何利用样本数据来推断总体特征的统计学方法②内容:参数估计、假设检验③目的:对总体特征作出推断3、统计应用上的两个极端:不用或几乎不用统计;简单问题复杂化4、统计的滥用:不好的样本;过小的样本;误导性图表;局部描述;故意曲解5、什么是变量:从一次观察到下一次观察会出现不同结果的某种特征6、数据:观察到的变量的结果7、数值变量:又称定量变量,观测结果表现为数字的变量8、分类变量:又称无序分类变量,观测结果表现为某种类别的变量,分类变量和顺序变量统称为定性变量9、顺序变量:又称有序分类变量,观测结果表现为某种有序类别的变量10、总体:包含所研究的全部个体(数据)的集合11、样本:从总体中抽取的一部分元素的集合12、样本量:构成样本的元素的数目13、概率抽样:根据一个已知的概率来抽取样本单位,也称随机抽样特点:按一定的概率以随机原则抽取样本;抽取样本时使每个单位都有一定的机会被抽中;每个单位被抽中的概率是已知的,或是可以计算出来的;当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率14、简单随机抽样含义:从总体N个单位(元素)中随机地抽取n个单位作为样本,使得总体中每一个元素都有相同的机会(概率)被抽中方法:抽取元素的具体方法有重复抽样和不重复抽样特点:简单、直观,在抽样框完整时,可直接从中抽取样本;用样本统计量对目标量进行估计比较方便局限性:当N很大时,不易构造抽样框;抽出的单位很分散,给实施调查增加了困难;没有利用其他辅助信息以提高估计的效率15、分层抽样含义:将总体单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点:保证样本的结构与总体的结构比较相近,从而提高估计的精度;组织实施调查方便;既可以对总体参数进行估计,也可以对各层的目标量进行估计16、系统抽样含义:将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难17、整群抽样含义:将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点:抽样时只需群的抽样框,可简化工作量;调查的地点相对集中,节省调查费用,方便调查的实施;缺点是估计的精度较差第二章18、频数:落在各类别中的数据个数19、比例:某一类别数据个数占全部数据个数的比值20、百分比:将对比的基数作为100而计算的比值21、比率:不同类别数值个数的比值22、定性数据与定量数据的表示方法(表+图)定性数据:频数分布表、条形图、帕累托图、饼图、环形图定量数据:频数分布表、直方图、茎叶图、箱线图、垂线图、误差图、散点图、雷达图、轮廓图23、环形图与饼图的区别:饼图只能显示一个总体各部分所占的比例;环形图则可以同时绘制多个样本或总体的数据系列,每一个样本或总体的数据系列为一个环24、生成频数分布表的步骤:确定组数、确定组距、统计出各组的频数25、直方图是用于展示分组数据分布的一种图形,用矩形的宽度和高度来表示频数分布(本质上是用矩形的面积来表示频数分布),在直角坐标中,用横轴表示数据分组,纵轴表示频数或频率,各组与相应的频数就形成了一个矩形,即直方图;直方图下的总面积等于1 26、直方图与条形图的区别:①条形图中的每一矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距;②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列;③条形图主要用于展示定性数据,而直方图则主要用于展示定量数据27、茎叶图与直方图的区别:①直方图可观察一组数据的分布状况,但没有给出具体的数值;②茎叶图既能给出数据的分布状况,又能给出每一个原始数值,保留了原始数据的信息;③直方图适用于大批量数据,茎叶图适用于小批量数据28、箱线图:用于显示未分组的原始数据的分布29、垂线图:用于展示多个变量或多个样本取值的分布状况30、散点图:用于展示两个变量之间的关系;用横轴代表变量x,纵轴代表变量y,每组数据(x i,y i)在坐标系中用一个点表示,n组数据在坐标系中形成的n个点称为散点,由坐标及其散点形成的图31、雷达图:也称为蜘蛛图;用于研究多个样本在多个变量上的相似程度;当多个变量的取值相差较大或量纲不同时,可进行变换(线性变换或对数变换)处理后再做图。

统计学知识点总结

统计学知识点总结

1、统计的含义(1)统计工作:即统计实践,是指很据科学的方法从事统计设计、收集、整理、分析研究和提供各种统计资料和统计咨询意见的活动的总称。

其成果是统计资料(原始调查资料和加工处理后的系统资料);(2)统计资料:即统计工作过程中所获得的各种有关数字资料以及与之相关的其他资料的总称。

通常以统计表、统计图和统计报告的形式变现,用以反映社会经济现象的规模、水平、速度、结构和比例关系等信息的数字和文字资料;(3)统计科学:即统计理论,是指统计工作实践的理论概括和科学总结。

2、统计学统计学:是一门搜集、整理、分析数据方法的科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。

3、统计学的研究对象统计学研究的对象是:社会经济现象总体的数量特征和数量关系。

其根本特征:在质与量的辩证统一中,研究大量社会经济现象总体的数量方面,反映社会现象发展变化的规律性在具体时间、地点和条件下的数量表现,揭示事物的本质、相互联系、变动规律和发展趋势。

4、统计学研究特点数量性、总体性、具体性、社会性5、统计工作的过程及基本职能统计工作的过程:统计设计、统计调查、统计整理、统计分析(定性—定量—定性:循环往复)统计设计:指根据统计研究对象的特点和研究的目的、任务,对统计工作的各个方面和各个环节的通盘考虑和安排,是统计认识过程的第一个阶段,即定性认识的阶段;统计调查:指根据统计研究对象和目的要求,依据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的收集原始资料的工作过程,即由定性到定量认识的阶段;统计整理:指根据统计研究的目的,将统计调查得到的原始资料和通过各种方法得到的次级资料进行科学的分类和汇总,使其条理化、系统化的工作过程,即为统计分析准备在一定程度上可以反映总体特征的统计资料;统计分析:指在统计整理的基础上,根据研究的目的和任务,应用各种科学的统计方法,从静态和动态两个方面对研究对象的数量方面进行计算、分析研究,认识和揭示所研究对象的本质和规律性,做出科学的结论,进而提出建议和可预测性的意见的工作过程,即从定量到定性深入认识的阶段。

统计学知识点总结

统计学知识点总结

统计学知识点总结统计学是一门应用广泛的学科,它涉及到数据的收集、处理、分析和解释。

以下是统计学的一些关键知识点:1. 数据收集:统计学的基础是数据。

数据可以通过实验、调查、观察等方式收集。

数据收集的准确性直接影响到后续分析的有效性。

2. 数据分类:数据可以分为定性数据和定量数据。

定性数据包括分类和顺序数据,而定量数据则包括间隔和比率数据。

3. 数据描述:描述性统计学用于描述和总结数据集的特征。

这包括使用平均数、中位数、众数、方差、标准差等统计量来描述数据的中心趋势和离散程度。

4. 概率论:概率是统计学的核心概念之一,它提供了一个框架来量化不确定性。

概率论包括随机事件的基本概念、概率分布、期望值和方差等。

5. 概率分布:数据的分布可以通过概率分布来描述。

常见的概率分布包括二项分布、正态分布、泊松分布等。

6. 抽样分布:当从总体中抽取样本时,样本统计量(如样本均值)的分布称为抽样分布。

抽样分布对于推断统计学至关重要。

7. 推断统计:推断统计学使用样本数据来推断总体的特征。

这包括点估计、区间估计和假设检验。

8. 假设检验:假设检验是一种统计方法,用于确定样本数据是否足以支持或反对某个假设。

常见的假设检验包括t检验、卡方检验、ANOVA 等。

9. 回归分析:回归分析是一种预测和解释变量之间关系的方法。

线性回归是最基本的回归分析形式,它研究一个因变量和一个或多个自变量之间的关系。

10. 非参数统计:非参数统计不依赖于数据的分布假设,适用于样本量较小或数据分布未知的情况。

常见的非参数方法包括Wilcoxon符号秩检验、Kruskal-Wallis检验等。

11. 多变量分析:多变量分析涉及多个变量的分析,包括多元回归、主成分分析、因子分析等。

12. 数据可视化:数据可视化是将数据以图形或图表的形式展示出来,以帮助理解和解释数据。

常见的数据可视化工具包括条形图、折线图、散点图、箱线图等。

13. 统计软件:统计分析通常需要使用统计软件,如SPSS、R、Stata、SAS等,这些软件提供了强大的数据处理和分析功能。

统计学基础必学知识点

统计学基础必学知识点

统计学基础必学知识点1. 数据的类型:数据可以分为定量数据和定性数据。

定量数据是以数字形式表示的数据,可以进行运算和统计分析,例如身高、体重等;定性数据是以非数字形式表示的数据,通常是描述性的,例如性别、颜色等。

2. 数据的分布:数据的分布描述了数据的值在取值上的分布情况。

常见的数据分布有正态分布、均匀分布、偏态分布等。

3. 描述统计学:描述统计学是研究如何使用统计方法来描述和总结数据的学科。

常用的描述性统计方法包括测量中心趋势的平均数、中位数、众数,以及测量数据分散程度的标准差、方差等。

4. 统计推断:统计推断是研究如何利用样本数据对总体进行推断的学科。

常用的统计推断方法包括参数估计和假设检验。

参数估计是利用样本数据估计总体参数的值,例如利用样本均值估计总体均值;假设检验是对总体参数假设进行推断的方法,例如检验总体均值是否等于某个特定值。

5. 概率:概率是描述事件发生可能性的数值,介于0和1之间。

概率论是研究随机现象的数学理论。

常用的概率计算方法包括计数法、频率法、几何法等。

6. 抽样方法:抽样是从总体中选择部分个体进行观察和分析的方法。

常用的抽样方法包括随机抽样、系统抽样、整群抽样等。

7. 参数和统计量:参数是指总体的某种特征值,例如总体均值、总体方差等;统计量是根据样本数据计算得到的总体参数的估计值,例如样本均值、样本方差等。

8. 假设检验:假设检验是通过比较样本数据与给定假设之间的差异来判断假设是否成立的方法。

常用的假设检验方法有正态总体均值的检验、两个总体均值的检验、总体方差的检验等。

9. 相关分析:相关分析是研究两个或多个变量之间关系的方法。

常用的相关分析方法包括皮尔逊相关系数、斯皮尔曼相关系数等。

10. 回归分析:回归分析是研究变量之间关系的方法,可以用于预测和解释变量之间的关联关系。

常用的回归分析方法包括简单线性回归分析、多元线性回归等。

以上是统计学基础中的一些必学知识点,通过学习和掌握这些知识点,可以帮助我们理解和分析数据,从而做出科学的统计推断。

统计学知识点汇总

统计学知识点汇总

统计学知识点汇总一、统计学统计学是一门关于数据资料的收集、整理、分析和推断的科学。

三、统计的特点(1)数量性:社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。

(2)总体性:社会经济统计的认识对象是社会经济现象的总体的数量方面。

例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。

(3)具体性:社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。

这是统计与数学的区别。

(4)社会性:社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。

四、统计工作过程(1)统计设计根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。

同时提出收集、整理和分析数据的方案和工作进度等。

(2)收集数据统计数据的收集有两种基本方法,实验法和调查法。

(3)整理与分析描述统计是指对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用的统计信息。

推断统计是在对样本数据进行描述的基础上,利用一定的方法根据样本数据去估计或检验总体的数量特征。

(4)统计资料的积累、开发与应用对于已经公布的统计资料需要加以积累,同时还可以进行进一步的加工,结合相关的实质性学科的理论知识去进行分析和利用。

五、统计总体的特点(1)大量性大量性是指构成总体的总体单位数要足够的多,总体应由大量的总体单位所构成,大量性是对统计总体的基本要求;(2)同质性同质性是指总体中各单位至少有一个或一个以上不变标志,即至少有一个具有某一共同标志表现的标志,使它们可以结合起来构成总体,同质性是构成统计总体的前提条件;(3)变异性变异性就是指总体中各单位至少有一个或一个以上变异标志,即至少有一个不同标志表现的标志,作为所要研究问题的对象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

众 数 频数最多的观察值
不拘分布形式,概略分析
调和均数 基于倒数变换的平均值 正偏峰分布资料
变 异 度 全 距 观察值取值范围
不拘分布形式,概略分析
标准差 (方 差) 四分位数 间距
观察值平均离开均数的 程度
居中半数观察值的全距
对称分布,特别是正态分布资料
①非对称分布;②半定量资料;③末端开 口资料;④分布不明
Ⅰ类错误的概率,从而降低了置信度。为了同时减小 和 ,只有通过增加样本含量,减少
抽样误差大小来实现。
5.试述检验功效的概念和主要影响因素。
答:拒绝不正确的 H0 的概率,在统计学中称为检验功效(power of test),记为1 。检
验功效的意义是:当两个总体参数间存在差异时(如备择假设 H1 : 0 成立时),所使用的
4、 正态分布应用 ① 估计变量值的频数分布 ② 制定参考值范围 ③ 质量控制 ④ 正态分布是很多统计方法的基础
5. 正态分布特征 ① 以均数为中心,左右对称 ② 正态曲线在横轴上方均数处取得最高点 ③ 正态分布有两个参数,即均数(位置参数)和标准差(变异度参数) ④ 正态曲线下面积有一定规律
第 4 章 参数估计
第 5 章 假设检验
1.试述假设检验中 α 与 P 的联系与区别。 区别:(1) 值是事先确定的一个小的概率值。为一次检验中,甘愿冒的风险。
(2)P 值是在 H0 成立的条件下,出现当前检验统计量以及更极端状况的概率。为一次
检验中,实际冒的风险。
联系:以 t 检验为例,P、a 都可以用 t 分布尾部面积大小表示。P≤ 时,拒绝 H0 假设。
①不同量纲的变量间比较;②量纲相同但 变异系数 标准差与均数的相对比
数量级相差悬殊的变量间比较
定性资料:阳性事件的概率,概率分布,强度和相对比。
2. 应用相对数时应注意哪些问题?
答:(1)防止概念混淆 相对数的计算是两部分观察结果的比值,根据这两部分观察结果的 特点,就可以判断所计算的相对数属于前述何种指标。
第 2 章 统计描述
1. 对定量资料进行统计描述时,如何选择适宜的指标?
定量资料统计描述常用的统计指标及其适用场合
描述内容 指 标 意 义
适用场合
平均水平 均 数 个体的平均值
对称分布
几何均数 平均倍数
取对数后对称分布
中 位 数 位次居中的观察值
①非对称分布;②半定量资料;③末端开 口资料;④分布不明
(2)精密度是置信区间宽度的一半,意指置信区间的两端点值离样本统计量(如 X 、p)的
距离。从精密度的角度看,置信区间宽度愈窄愈好。 (3)在抽样误差确定的情况下,两者是相互矛盾的。为了同时兼顾置信区间的准确度与精密 度,可适当增加样本含量。 3、参考值范围估计的基本步骤 ① 从正常人的总体中进行随机抽样 ② 对选定的正常人进行准确的测定 ③ 确定取单侧还是双侧范围 ④ 确定范围 常用 95%。 ⑤ 根据资料的分布类型选用恰当的界值估计方法
联系 1.标准误大小与标准差成正比;2.n 一定时,标准差越大,标准误也越大。
3. 简述置信区间与医学参考值范围的区别。
区别 含义
用途 计算公式
置信区间 总体参数的波动范围,即按事先给
定的概率 100(1)%所确定的包 含未知总体参数的一个波动范围
估计未知总体均数所在范围
参考值范围 个体值的波动范围,即按事先给
组间数量对比
用直条高度表示数量大小
定量资料的分布 用直条的面积表示各组段的频数或频率
百分条图 饼图 线图
构成比
用直条分段的长度表示全体中各部分的构成比
构成比
用圆饼的扇形面积表示全体中各部分的构成比
定量资料数值变动 线条位于横、纵坐标均为算术尺度的坐标系
半对数线图 定量资料发展速度 线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系
③各次试验独立。
Poisson 分布成立的条件:除二项分布成立的三个条件外,还要求试验次数 n 很大,而所 关心的事件发生的概率 很小。
2. 二项分布、Poisson 分布分别有什么特征? ①二项分布、Poisson 分布都是离散型分布。 ②二项分布的形状取决于 π 与 n 的大小。π=0.5 时,不论 n 大小,对称分布。π≠0.5 时,图形 呈偏态,随 n 增大而逐渐对称。当 n 足够大,π 或 1-π 不太小,二项分布近似正态。 ③Poisson 分布 μ 越小,分布越偏。μ 越大,分布越对称。当 n 足够大时,分布接近正态。
4.配对定量资料的比较 (1)配对资料的 t 检验(差值服从正态) (2)符号秩和检验(不正){p 值确定类似于 t 检验}
5.两 poisson 分布资料的比较 Z 检验
第 7 章 多组定量资料的比较
1. 方差分析的基本思想和应用条件是什么? 基本思想 将处理间平均变异与误差平均变异比较。根据试验设计的类型和研究目的,将全部观测值总 的离均差平方和及其自由度分解为两个或多个部分,除随机误差作用外,每个部分的变异可 由某个因素的作用加以解释,通过比较不同变异来源的均方,借助 F 分布做出统计推断,从 而推论各种研究因素对试验结果有无影响。 应用条件 ① 各样本是相互独立的随机样本,均服从正态分布; ② 各样本的总体方差相等,即方差齐性。 2.方差分析的步骤 ① 建立假设检验和检验水准(H0:总体均数都相等) ② 计算统计量 F ③ 确定 P 值和作出推断结论 ④ 作两两均数之间的比较(若 P>0.05,可省略此步) 3. 多组定量资料比较时,统计处理的基本流程是什么? 多组定量资料比较时首先应考虑用方差分析。 (1)若方差齐性,且各样本均服从正态分布,选单因素方差分析。 (2)若方差不齐,或某样本不服从正态分布,选 Kruskal-Wallis 秩和检验,或通过某种形式的 数据变换使其满足方差分析的条件。 若方差分析或秩和检验结果有统计学意义,则需选择合适的方法(如 Bonferonni、LSD 法等) 进行两两比较。
散 点 图 双变量间的关联 点的密集程度和形成的趋势,表示两现象间的相关关系
箱 式 图 定量资料取值范围 用箱体、线条标志四分位数间距及中位数、全距的位置
茎 叶 图 定量资料的分布 用茎表示组段的设置情形,叶片为个体值,叶长为频数
第 3 章 概率分布
1. 服从二项分布及 Poisson 分布的条件分别是什么? 二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;
统计检验能够发现这种差异(拒绝零假设 H0 : 0 )的概率,一般情况下要求检验功效应
在 0.8 以上。
影响检验功效的四要素为总体参数的差异 、总体标准差 、检验水准 及样本量 n。
6.简述假设检验的基本思想。
假设检验是在 H0 成立的前提下,从样本数据中寻找证据来拒绝 H0 、接受 H1 的一种
第6章 两样本定量资料的比较
1. 对于完全随机设计两样本定量资料的比较,如何选择统计方法? 答:完全随机设计两样本定量资料比较统计方法的选择最关键的是看是否满足正态性
(样本量较大时不必进行正态性检验)和方差齐性。如果资料来自正态总体且总体方差齐,采 用 t 检验;如果满足正态性但总体方差不齐,采用 t′检验;当两者都不满足时,才考虑选用秩 和检验。当然,我们也可采用变量变换的方法使其满足 t 或 t′检验的条件。
标准误的用途: ① 衡量样本均数的可靠性 ① 与样本均数结合,估计总体均数的置信区间 ① 可用于进行均数的假设检验
描述个体观察值的离散程度 反应总体参数被估计的精确程度
范畴 统计描述
统计推断
用途 估计参考值范围
估计置信区间
n n 越大,标准差越稳定
n 越大,标准误越小
不拒绝 H0 (纳伪)的结论,此时就犯了Ⅱ类错误。Ⅱ类错误的概率用 表示。
在假设检验时,应兼顾犯Ⅰ类错误的概率( )和犯Ⅱ类错误的概率( )。犯Ⅰ类错误
的概率( )和犯Ⅱ类错误的概率( )成反比。如果把Ⅰ类错误的概率定得很小,势必增加
犯Ⅱ类错误的概率,从而降低检验效能;反之,如果把Ⅱ类错误的概率定得很小,势必增加犯
1.分布未知或偏态分布资料 2.总体
方差不齐 3.等级资料 4.开口资料
检验方法
1.t 检验 2.u 检验 3.方差分析
1.符号秩和检验(配对资料) 2.秩和检验 3.K-W检验(多组资料)
优点:充分利用原始数据信息,检验效 能高 缺点:受资料总体分布限定
优点:不受资料总体分布限定 缺点:只利用秩次,损失原始数据,检 验效能低。
2. 试述假设检验与置信区间的联系与区别。 联系:区间估计与假设检验是由样本数据对总体参数做出统计学推断的两种主要方法。 区别:置信区间用于说明量的大小,即推断总体参数的置信范围;
假设检验用于推断质的不同,即判断两总体参数是否不等。 3. 怎样正确运用单侧检验和双侧检验?
需要根据数据的特征及专业知识进行确定。若比较甲、乙两种方法有无差异,则应选用 双侧检验。若需要区分何者为优,,则应选用单侧检验。在没有特殊专业知识说明的情况下, 一般采用双侧检验即可。 4. 试述两类错误的意义及其关系。
1. 标准误与标准差的区别
(1)标准差反映个体值散布的程度;标准误反映精确知道总体参数的程度。
(2)标准误小于标准差。
(3)样本含量越大,标准误越小,其样本均数更有可能接近于总体均数,随着样本含量的增大, 标准差有可能增大,也有可能减小。
(4)用途不同。
标准差的用途: ① 反映一组资料的离散程度 ① 计算变异系数 ① 结合均数与正态分布的规律,估计参考值范围
H0 ,即有足够证据推断差异具有统计学意义。
7. 建设检验四步骤:
① 建立检验假设 H0 和备择假设 H1(判断是单侧检验还是双侧检验再作假设) ① 确定检验水准
① 选定检验方法和计算检验统计量
① 确定 P 值和作出推断结论
相关文档
最新文档