多元函数微分学单元测试题

合集下载

第八章 多元函数微分学及其应用测试题

第八章 多元函数微分学及其应用测试题

多元函数微分学及其应用(时间:150分钟)一、选择题(每小题3分,共15分)1、二重极限21lim 1x x y x y a x +→∞→⎛⎫- ⎪⎝⎭之值为( ).(A ) 0; (B ) 1; (C ) 1e -; (D ) e .2、设函数),(y x f 在),(00y x 处的偏导数),(y x f x 与),(y x f y 存在,则( ).(A ) ),(y x f 在),(00y x 处可微;(B ) ),(y x f 在),(00y x 处连续;(C ) ),(y x f 在),(00y x 处沿任意方向的方向导数存在;(D ) 以上三个结论都不正确.3、已知矩形的周长为2p ,将它绕其一边旋转而形成一个旋转体,当此旋转体的体积为最大时,矩形两边长分别为( ).(A ),22p p ; (B )2,33p p ; (C ) 3,44p p ; (D ) 23,55p p . 4、假设曲线2121522y x z x =-⎧⎪⎨=-⎪⎩在点(1,-1,-2)处的切线与直线533903210,x y z x y z -+-=⎧⎨-+-=⎩的夹角ϕ=( ).(A ) 0 ; (B )4π; (C ) 3π; (D )2π. 5、设(),()f x g x 是可微函数,且满足(,)(25)(25)u x y f x y g x y =++-, (,0)sin 2u x x =,(,0)0y u x =,则(,)u x y =( ).(A )sin 2cos5x y ; (B )sin 5cos 2x y ; (C )cos5sin 2x y ; (D )cos 2sin 5x y .二、填空题(每小题3分,共15分)1、设y x e u xsin -=,则y x u ∂∂∂2在点)1,2(π处的值为 . 2、设y x y x y x z -+++=arctanln 22,则dz = . 3、函数z y x u 1⎪⎪⎭⎫ ⎝⎛=在点(1,1,1)处的梯度为 . 4、已知⎪⎭⎫ ⎝⎛=z y z x ϕ,其中ϕ为可微分函数,则=∂∂+∂∂yz y x z x . 5、已知曲面xy z =上点p 处的法线l 平行于直线2121326:1-=--=-z y x l ,则法线l 的方程为 . 三、计算题(每小题6分,共30分)1、设)sin ,2(x y y x f z -=,其中),(v u f 具有连续的二阶偏导数,求yx z ∂∂∂2. 2、已知),(),,(z y x y x f z ϕ==,其中ϕ,f 均为可微分函数,求dxdz . 3、假设函数(,,)w f x y z =,其中f 具有二阶连续偏导数,(,)z z x y =由方程5551z xy z -+=所确定,求w x ∂∂,22w x ∂∂. 4、设n 是曲面222y x z +=在P (1,2,3)处指向外侧的法向量,求函数xz y x u 22233++=在点P 处沿方向n 的方向导数.5、在曲面222316x y z ++=上求一点,使曲面在此点处的切平面平行于下列两条直线:1361:458x y z l --+==,2:l x y z ==.四、(8分) 设),,(z y x f u =有连续偏导数,且ϕϕθϕθcos ,sin sin ,cos sin r z r y r x ===, 证明:若0=∂∂+∂∂+∂∂z u z y u y x u x ,则u 与r 无关. 五、(8分)一正圆锥的半径以每分钟7厘米的速度增大,而它的高以每分钟20厘米的速度减小,求当半径45r =厘米,高100h =厘米时该正圆锥的体积的变化率,此时体积是在增大还是减小?六、(8分)设椭圆12322=+y x 的内接等腰三角形之底边平行于椭圆长轴,求其最大面积.七、(8分) 试证光滑曲面0),(=--z y x z F 的所有切平面均与一固定非零向量平行.八、(8分)已知,,x y z 为实数,且2||3x e y z ++=,证明不等式2||1x e y z ⋅⋅≤.。

多元函数微分学练习题及答案

多元函数微分学练习题及答案

三. 设Lx, y, z, ln x ln y 3ln z (x2 y2 z2 5R2 )
求得此函数定义域内唯一的稳定点R,,R 3R , 也是所 求函数的最大值点, 所求最大值为f R, R, 3R ln 3 3R5 .
ln x ln y 3ln z ln 3 3R5
u y xf2 ( xz xyz y ) f 3
.
3、f x ( x, y)
(
x
2 xy 3 2 y2
)2
,
x
2
0, x 2 y 2 0
y2
0 ,
f y (x,
y)
x2(x2 (x2
y2 y2 )2
)
,
x2
o, x 2 y 2 0
y2
0
五、(
f1
f2 )dx
y (z) 1
f2 (z) dy. y (z) 1
六、 xe2 y fuu e y fuy xe y f xu f xy e y fu.
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
8、
9 2
a
3

9、(1,2);10、 1 ; 8
二、(1)当 x y 0时,在点( x, y)函数连续;
(2)当 x y 0时,而( x, y)不是原点时,
则( x, y)为可去间断点,(0,0)为无穷间断点.
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微

(完整版)多元函数微积分复习试题

(完整版)多元函数微积分复习试题

多元函数微积分复习题一、单项选择题1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B )(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件.2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D )(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件.3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ).(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( C ).A. 若0lim x xy y A →→=, 则必有0lim (,)x x f x y A →=且有0lim (,)y y f x y A →=; B. 若在00(,)x y 处zx∂∂和z y ∂∂都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处zx∂∂和z y ∂∂存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ∂∂和22z y ∂∂都存在, 则. 22z x ∂∂=22zy ∂∂.5.二元函数(,)z f x y =在点00(,)x y 处满足关系( C ).A. 可微(指全微分存在)⇔可导(指偏导数存在)⇒连续;B. 可微⇒可导⇒连续;C. 可微⇒可导, 或可微⇒连续, 但可导不一定连续;D. 可导⇒连续, 但可导不一定可微.6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 25.已知三点M (1,2,1),A (2,1,1),B (2,1,2) ,则→→•AB MA = ( C ) (A) -1; (B) 1; (C) 0 ; (D) 2;6.已知三点M (0,1,1),A (2,2,1),B (2,1,3) ,则||→→+AB MA =( B )(A);2-(B) (C)2; (D)-2;7.设D 为园域222x y ax +≤ (0)a >, 化积分(,)DF x y d σ⎰⎰为二次积分的正确方法是_____D____.A. 20(,)aa adx f x y dy -⎰⎰B. 202(,)adx f x y dy ⎰C. 2cos 0(cos ,sin )a a ad f d θθρθρθρρ-⎰⎰D. 2cos 202(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰8.设3ln 1(,)x Idx f x y dy =⎰⎰, 改变积分次序, 则______.I= BA. ln30(,)y e dy f x y dx ⎰⎰B. ln330(,)y edy f x y dx ⎰⎰C. ln33(,)dy f x y dx ⎰⎰ D. 3ln 1(,)x dy f x y dx ⎰⎰9. 二次积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可以写成___________. DA. 1(,)dy f x y dx ⎰⎰B. 100(,)dy f x y dx ⎰C. 11(,)dx f x y dy ⎰⎰ D. 10(,)dx f x y dy ⎰10. 设Ω是由曲面222x y z +=及2z =所围成的空间区域,在柱面坐标系下将三重积分(,,)I f x y z dx dy dz Ω=⎰⎰⎰表示为三次积分,________.I = CA . 22120(cos ,sin ,)d d f z dz ρπθρρθρθ⎰⎰⎰B. 22220(cos ,sin ,)d d f z dz ρπθρρθρθρ⎰⎰⎰C . 22222(cos ,sin ,)d d f z dz πρθρρθρθρ⎰⎰⎰D . 222(cos ,sin ,)d d f z dz πθρρθρθρ⎰⎰⎰11.设L 为y x 0面内直线段,其方程为d y c a x L ≤≤=,:,则()=⎰Ldx y x P , ( C )(A ) a (B ) c(C ) 0 (D ) d12.设L 为y x 0面内直线段,其方程为d x c a y L ≤≤=,:,则()=⎰Ldy y x P , ( C )(A ) a (B ) c (C ) 0 (D ) d13.设有级数∑∞=1n n u ,则0lim =∞→n n u 是级数收敛的 ( D )(A) 充分条件; (B) 充分必要条件; (C) 既不充分也不必要条件; (D) 必要条件;14.幂级数∑∞=1n n nx 的收径半径R = ( D )(A) 3 (B) 0 (C) 2 (D) 115.幂级数∑∞=11n n x n的收敛半径=R ( A )(A) 1 (B) 0 (C) 2 (D) 316.若幂级数∑∞=0n nn x a 的收敛半径为R ,则∑∞=+02n n n x a 的收敛半径为 ( A )(A) R (B) 2R(C) R (D) 无法求得17. 若lim 0n n u →∞=, 则级数1n n u ∞=∑( ) DA. 收敛且和为B. 收敛但和不一定为C. 发散D. 可能收敛也可能发散18. 若1n n u ∞=∑为正项级数, 则( B )A. 若lim 0n n u →∞=, 则1n n u ∞=∑收敛 B. 若1n n u ∞=∑收敛, 则21n n u ∞=∑收敛C. 若21n n u ∞=∑, 则1n n u ∞=∑也收敛 D. 若1n n u ∞=∑发散, 则lim 0n n u →∞≠19. 设幂级数1n n n C x ∞=∑在点3x =处收敛, 则该级数在点1x =-处( A )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不定 20. 级数1sin (0)!n nx x n ∞=≠∑, 则该级数( B )A. 是发散级数B. 是绝对收敛级数C. 是条件收敛级数D. 可能收敛也可能发散二、填空题1.设22(,)sin (1)ln()f x y x y x y =+-+,则 =')1,0(x f ___1___.2.设()()()22ln 1cos ,y x y x y x f +-+=,则)1,0('x f =____0______.3.二重积分的变量从直角坐标变换为极坐标的公式是()()⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρsin ,cos ,4.三重积分的变量从直角坐标变换为柱面坐标的公式是()()⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f ϕρρϕρϕρ,sin ,cos ,,5.柱面坐标下的体积元素 z d d d dv θρρ=6.设积分区域222:D x y a +≤, 且9Ddxdy π=⎰⎰, 则a = 3 。

第八章 多元函数微分练习题

第八章 多元函数微分练习题

5、已知函数 z f (sin x, y 2 ) ,其中 f (u, v) 有二阶连续偏导数,求 z 、 2 z 。 x xy
6、设
z
xf
(x2,
xy)
其中
f
(u, v)
的二阶偏导数存在,求
z y

2z yx

7、设 z f (2x 3y, xy) 其中 f 具有二阶连续偏导数,求 2 z 。 xy
z x
三、计算题
1、设 z f (x2 , x ) ,其中 f 具有二阶连续偏导数,求 z 、 2 z 。
y
x xy
2、已知 z ln x x2 y 2 ,求 z , 2 z 。 x xy
3、求函数 z tan x 的全微分。 y
4、设 z f (x y, xy) ,且具有二阶连续的偏导数,求 z 、 2 z 。 x xy
x1 (
y0
)
A、-1
B、 0
C、 1
D、 2
8、 函数 z ( x y)2 ,则 dz x1, y0 =(

A、 2dx 2dy B、 2dx 2dy
C、 2dx 2dy D、 2dx 2dy
二、填空题
1、函数 z x y 的全微分 dz 2、设 u e xy sin x ,则 u
y
xy
17、设 z f (x2 y, y2 x) ,其中 f 具有二阶连续偏导数,求 2 z 。 xy
18、设
z
z(x,
y)
是由方程
z
ln
z
xy
0
确定的二元函数,求
2z x2
19、设 z yf ( y2, xy) ,其中函数 f 具有二阶连续偏导数,求 2z 。 xy

《高等数学》多元函数微分学部分 练习题答案

《高等数学》多元函数微分学部分 练习题答案

八、多元函数的微积分: (一)求下列函数的偏导数:(1)33xy y x z -=解:233zx y y x ∂=-∂, 323z x xy y ∂=-∂.(2))ln(xy z =解:()12ln()z xy =,()1211ln()()2z xy y x xy -∂==∂ ()1211ln()()2z xy x y xy -∂==∂.(3)2arcsin()cos ()z xy xy =+,2arcsin()cos ()z xy xy =+;2cos()[sin()]sin(2)z y xy xy x y xy x ∂=+-=-∂,2cos()[sin()]sin(2)z x xy xy x x xy y ∂=+-=-∂.(4)yxy z )1(+=解:关于x 是幂函数故:121(1)(1)y y zy xy y y xy x--∂=+=+∂, 关于y 是幂指函数,将其写成指数函数ln(1)y xy z e+=,故:ln(1)1[ln(1)](1)(ln(1))11y xy y z xy e xy y x xy xy y xy xy+∂=++=+++∂++ 解II: 两边取对数得ln ln(1)z y xy =+,因此11z y y z x xy ∂=∂+ , 1l n (1)1z xxy y z y xy ∂=++∂+, 即21(1)y zy xy x-∂=+∂, 1(1)ln(1)(1)y y z xy xy xy xy y -∂=++++∂. (二)求下列函数的全微分:(1) xz x yy=+ , 因为1z y x y ∂=+∂,2z x x y y ∂=-∂.所以21()d ()d z z xdz dx dy y x x y x y y y ∂∂=+=++-∂∂ . (2)2x yz e -=,因为2x y ze x -∂=∂,22x y z e y -∂=-∂.所以2(d 2d )x y z zdz dx dy e x y x y-∂∂=+=-∂∂. (3)z =因为()()()()13322222222232221[]()22z xyy x y y x y x xy x y x x xy---∂∂-=+=-+⋅=-+=∂∂+,()23222z x yxy∂==∂+所以()()233222222)z zxyx dz dx dy dx dy xdy ydx x yxyxy∂∂-=+=+=-∂∂++(4)yzu x = 因为11()yz yz u yz x yzx x --∂==∂,ln ln yz yz u x x z zx x y ∂=⋅=∂,ln ln yz yz u x x y yx x z ∂=⋅=∂ 所以u u udu dx dy dz x y z∂∂∂=++∂∂∂=1ln ln )yz yz yz yzx dx yx xdy yx xdz -++ (ln ln )yz yzx dx y xdy y xdz x=++(三)求下列函数的偏导数和微分: (1)设2ln ,,32,x z u v u v x y y ===-,求,z z x y∂∂∂∂. 解:212ln 3z f u f v u u v x u x v x y v ∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂()()22223ln 3232x x x y y x y y =-+-, z f u f v y u y v y ∂∂∂∂∂=+∂∂∂∂∂222ln ()(2)x u u v y v =⋅-+⋅-()()223222ln 3232x x x y y x y y=---- (2)设32 ,sin ,t y t x e z y x ===-,求dz ;3222sin 22cos (2)(3)(cos 6)x y x y t t dz z dx z dye t e t e t t dt x dt y dt---∂∂=+=+-=-∂∂ dz 3sin 22(cos 6)d t t e t t t -=-.(四)设下列方程所确定的函数为()y f x =,求dxdy.(1)ln 0xy y -=解: 设(,)ln .F x y xy y =- 则,x F y = 1y F x y=-, x yF dydx F =-1yx y=--21y xy =--21y xy =-.(2) 0sin 2=-+xy e y x解I : 设2(,)sin .xF x y y e xy =+-则2,xx F e xy =- cos 2y F y xy =-,2d d cos 2xx y F y y e x F y xy-=-=-.解II :22cos d d d 2d 0(cos 2)d ()d x xy y e x y x xy y y xy y y e x +--=⇒-=-2d d cos 2xy y e x y xy-⇒=-.(3) ln ln 0xy x y ++= 解: 设(,)ln ln .F x y xy x y =++ 则1,x F y x=+1y F x y =+,x y F dy dx F =-11y x x y+=-+(1)(1)y xy x xy +=-+y x =-.(五)对下列隐函数, 求x z ∂∂,y z ∂∂,xy∂∂及dz .(1)20x y z ++-解:设(,,)2F x y z x y z =++-则1x F =21y z F F =-=,x z F z x F ∂=-====∂y zF z y F ∂=-====∂y xF x y F ∂=-====∂.dz =+解II :(隐函数法)两边关于x求导:10z x ∂+=∂,得xyxyz xyzyz x z --=∂∂两边关于y求导:20z y ∂+=∂得xyxyz xyzxz y z --=∂∂2两边关于y求导:20x y ∂+=∂得x y ∂=∂.dz =+解III:令(),,2F x y z x y z =++-则1x F =,2y F =1z F =故1x z F zx F ∂=-==∂-,1y z F z y F ∂=-==∂1y x F xy F ∂=-===∂.dz =+(2) 0ze xyz -=解: 设(,,).zF x y z e xyz =-则,x F yz =- ,z y z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- ,y z z F z xz y F e xy ∂=-=∂-.Fx x yF yy x∂∂∂=-=-∂∂∂ .z z yz xz dz dx dy e xy e xy=+--(3)yz z x ln = (3) 设),(y x z z =是由方程y zz x ln =所确定的隐函数,求x z ∂∂和yz ∂∂. 解I : 用隐函数求导公式(),,ln ln x F x y z z y z=-+,,1z x F =∂∂∴,1y y F =∂∂z z x z F 12--=∂∂ ,112z x z z z x z x z +=---=∂∂∴)(1122z x y z zz x yy z +=---=∂∂,11Fx z y yF yy xz∂∂∂=-=-=-∂∂∂. 2.()z z dz dx dy x z y x z =+++解II : 将z 看作y x ,的函数,两边对x 求导,得:xz z z x zxz ∂∂=∂∂-12 即zx zx z +=∂∂,同理两边对y 求导得)(2z x y z y z +=∂∂ 将x 看作,y z 的函数,两边对y 求导,得:1xyz y∂∂=-即.x z y y∂=-∂ 2.()z z dz dx dy x z y x z =+++解III : 将方程两边求全微分,得:y dyz dz z xdz zdx -=-2,解出dz 得:()dy z x y z dx x z z dz +++=2 zx zx z +=∂∂∴,)(2z x y z y z +=∂∂, 将方程两边求全微分,得:y dy z dz z xdz zdx -=-2,解出dx 得:z x z dx dy dz y z +=-+ .x z y y∂∴=-∂ (六)1、设333,z xyz a -= 求2zx y∂∂∂.解I : 设33(,,)3,.F x y z z xyz a =--则3,x F yz =- 23,33y z F xz F z xy =-=-,2,x z F z yz x F z xy ∂=-=∂- 2.y z F z xzy F z xy∂=-=∂- 2222()()(2)()()z zz yz xy yz z x z z y yx y y x z xy ∂∂+---∂∂∂∂∂==∂∂∂∂- 22222()()(2)()xz xzz y z xy yz z x z xy z xyz xy +-----=-22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y z z xy z xy --+--==--.解II :利用隐函数求导 方程两边同时对x 求导23330,z z zyz xy x x ∂∂--=∂∂20,z zz yz xy x x∂∂--=∂∂ 2,z yz x z xy ∂=∂-同理2,z xzy z xy∂=∂-对方程20,z zzyz xy x x∂∂--=∂∂两边同时再对y 求导 22220,z z z z z z z z z y x xy y x x y y x x y∂∂∂∂∂∂+----=∂∂∂∂∂∂∂∂ 22()2z z z z z z xy z x y zx y x y x y ∂∂∂∂∂-=++-∂∂∂∂∂∂22222yz xz yz xzz x y z z xy z xy z xy z xy =++-----33222z 2()z xy xyz z xy z xy +=---522322z 2()z x y xyz z xy --=-, 所以2522323z 2.()z z x y xyz x y z xy ∂--=∂∂-解III :333,z xyz a -=方程两边同时微分,23d 3(d d d )0z z yz x xz y xy z ---=,2()d d d z xy z yz x xz y -=+, 22d d d .yz xzz x y z xy z xy =+--所以 22,z yz z xz x z xy y z xy∂∂==∂-∂-. 222222222()()(2)()()(2)()()z z xz xz z y z xy yz z x z y z xy yz z x z y y z xy z xyx y z xy z xy ∂∂+---+---∂∂∂--==∂∂--22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y zz xy z xy --+--==--.2、设0ze xyz -=, 求22zx ∂∂.解: 设(,,).z F x y z e xyz =-则,x F yz =- ,zy z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- .y z z F z xzy F e xy∂=-=∂- 2222()()()()()()z z z z z z z z ze xy z e y e ze xy zyz z x x x y y x x x e xy e xy ∂∂∂-----+∂∂∂∂∂∂===∂∂∂-- 2()()z z z z yze ze xy zye xyy e xy --+-=-3()()()z z z z e ze xy yz zy e xy y e xy --+-=-22322()z z z yze yz e xy z y e xy --=-2223322.()z z z y ze y z e xy z e xy --=-十二、计算下列二重积分:1.22()Dx y d σ+⎰⎰其中D 是矩形区域:1,1x y ≤≤; 解: 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是11222211()()Dx y d dx x y dy σ--+=+⎰⎰⎰⎰1231111[]3x y y dx --=+⎰ 1212(2)3x dx -=+⎰31122[]33x x -=+=8.3= 2.22()Dxy x d σ+-⎰⎰其中D 由直线22y y x y x ===、与所围成;解: 积分区域可表示为1,:202,y x y D y ⎧≤≤⎪⎨⎪≤≤⎩原式()222102yy dy x y x dx =+-⎰⎰132201211()32yyx y x x dx =+-⎰232019313().2486y y dy =-=⎰ 3.2Dxy d σ⎰⎰其中D 2y x y x ==由抛物线和直线所围成; 解: 积分区域可表示为201,:,x D x y x ≤≤⎧⎨≤≤⎩21220xx Dxy d dx xy dy σ=⎰⎰⎰⎰21301[]3x x xy dx =⎰ 14701()3x x dx =-⎰1111[].35840=-= 1题图 2题图 3题图11。

多元函数的微分学典型例题

多元函数的微分学典型例题

多元函数的微分学典型例题例 1 设 2 2 y xy x z + - = .求它在点 ) 1 , 1 ( 处沿方向v = ) sin , cos ( a a 的方向导 数,并指出:(1) 沿哪个方向的方向导数最大? (2) 沿哪个方向的方向导数最小? (3) 沿哪个方向的方向导数为零?解 1 ) 1 , 1 ( = x z , 1 ) 1 , 1 ( = y z . ) 1 , 1 (v z¶ ¶ a a sin cos + = .因此(1) 函数 a a a j sin cos ) ( + = 在 4pa = 取最大值,即沿方向 ) 1 , 1 ( 的方向导数最大.(2) 函数 a a a j sin cos ) ( + = 在 4 pa - = 取最小值,即沿方向 ) 1 , 1 ( - - 的方向导数最小.(3) 43pa - = 是函数 a a a j sin cos ) ( + = 的零点,即沿方向 ) 1 , 1 (- 的方向导数为零.例 2 如果函数 ) , ( y x f 在点 ) 2 , 1 ( 处可微, 且从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 方向的方向 导数为2,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 方向的方向导数为 2 - .求 (1) 该函数在点 ) 2 , 1 ( 处的梯度;(2) 该函数在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向导数. 解 (1) 设 x f 和 y f 分别表示函数 ) , ( y x f 在点 ) 2 , 1 ( 处关于x 和 y 的偏导 数,从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 的方向为 1 l ,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 的方向为 2 l ,则 1 l 和 2 l 的方向余弦分别为 ) 0 , 1 ( 和 ) 1 , 0 ( - ,于是就有x f l f = ¶ ¶ 12 0 1 = × + × y f ,故 2 = x f ; 2 1 0 2 - = × - × = ¶ ¶ y x f f l f ,故 2 = y f . 因此 ) 2 , 2 ( ) 2 , 1 ( = gragf .(2) 在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向余弦为 ÷ ø öç è æ 5 4,5 3 ,设该方向为l ,则 l f ¶ ¶ ) 2 , 1 ( 5145 4 2 5 3 2 = ´ + ´ = .例 3 验证函数) , ( y x f ïî ï í ì = + ¹ + + = . 0 ,0 , 0 , 2 2 22 22 y x y x yx xy 在原点 ) 0 , 0 ( 连续且可偏导,但它在该点不可微.验证 注意不等式 | | 2 2 xy y x ³ + ,就有0 | | 0 2 2 22 2 2 22 ® + = + + £ + £y x y x y x y x xy , ) , ( y x ® ) 0 , 0 ( .故而 0 ) , ( lim)0 , 0 ( ) , ( = ® y x f y x f = ) 0 , 0 ( .因此, ) , ( y xf 在原点 ) 0 , 0 ( 连续. x f ) 0 , 0 ( = 0lim® x 0 )0 , 0 ( ) 0 , ( = - xf x f ,由变量对称性得 y f ) 0 , 0 ( 0 = .即该函数在原点 ) 0 , 0 ( 可偏导.假如 ) , ( y x f 在原点 ) 0 , 0 ( 可微,就应有) , ( y x f = - ) 0 , 0 ( f x f ) 0 , 0 ( + x y f ) 0 , 0 ( ) ( 2 2 y x y + +o ,即 ) , ( y x f = ) ( 2 2 y x + o .但这是不可能的,因为沿路径 ) 0 ( ¹ = k kx y ,就有= + ® 2 2 )0 , 0 ( ) , ( ), ( limyx y x f kx x = + ® 2 2 ) 0 , 0 ( ) , ( lim y x xykx x 0 1 lim 2 2 2 2 2 0 ¹ + = + ® k k x k x kx x .可见, ) , ( y x f ¹ ) ( 2 2 y x + o .因此, ) , ( y x f 在原点 ) 0 , 0 ( 不可微. 例 4 验证函数) , ( y x f ï îï íì = + ¹ + + + = . 0 , 0 , 0 , 1 sin ) ( 2 2 22 22 2 2 y x y x y x y x 的偏导函数 ) , ( y x f x 和 ) , ( y x f y 在原点 ) 0 , 0 ( 不连续,但它却在该点可微.验证x f ) 0 , 0 ( = 0lim® x 0 1sin lim ) 0 , 0 ( ) 0 , ( 2 0 = = - ® xx x f x f x ; ) , ( y x ¹ ) 0 , 0 ( 时,) , ( y x f x 22 2222222121 2sin()cos () x x x y x y x y x yæö =++- ç÷ +++ èø 2 2 2 2 2 2 1cos2 1 sin2 y x y x x y x x + + - + = .因此, ) , ( y x f x ï î ï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x x y x x 由变量对称,得) , ( y x f y ï îï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x y y x y ) , ( y x f x 在点 ) 0 , 0 ( 不连续.事实上,沿路径 x y = , ® ) , ( x x ) 0 , 0 ( 时,2 2 2 2 1 cos 2 2 2 1 sin2 ) , ( x x x x x x x f x - = 中,第一项趋于零,而第二项 22 1cos 1 x x - 的极限不存在(比如取 pk x k 2 1=, +¥ ® k 时有 0 ® k x ,而2 2 1cos 1 kk x x -¥ ® ).可见, x y x f ) 0 , 0 ( ) , ( lim ® ) , ( y x 不存在,因此 ) , ( y xf x 在点 ) 0 , 0 ( 不连续.同理可证 ) , ( y x f y 在点 ) 0 , 0 ( 不连续. 但由于0 1sin ) , ( 0 2 2 22 2 2 22 ® + £ + + =+ £y x y x y x y x y x f ,® ) , ( y x ) 0 , 0 ( ,就有 0 ) , ( 22® + yx y x f ,于是就有0 ) , ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2222® + =+ - - - yx y x f yx yf x f f y x f y x , ® ) , ( y x ) 0 , 0 ( ,即 ) ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2 2 y x y f x f f y x f y x + + + = - o . 可见 f 在点 ) 0 , 0 ( 可微. 例 5 证明函数) , ( y x f ï îïí ì = + ¹ + + = . 0 , 0 , 0 , 2 22 22 42 2 y x y x y x xy 在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在,但它在该点不连续,因此不可 微.证 设 ) sin , cos ( a a = l 则= - = ¶ ¶ ® tf t t f l f t )0 , 0 ( ) sin , cos ( lim 0 a a 32 2244 0 2cos sin lim ( cos sin )t t t t t a a a a ® = +3 0 , , , 22 2tan sin , , . 22p p a p p a a a ì= ï ï = íï ¹ ï î 可见在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在.但沿路径 2y x = ,有 = ® ) , ( lim )0 , 0 ( ) , ( 2y x f y y f y y y y y ¹ = + ® 1 2 lim 4 4 22 0 ) 0 , 0 ( 可见 f 在 原点 ) 0 , 0 ( 并不连续,因此不可微. 例 6 计算下列函数的高阶导数或高阶微分: (1) x yz arctan = ,求 2 2 x z ¶ ¶ , y x z ¶ ¶ ¶ 2 22 y z ¶ ¶ ;解 x z ¶ ¶ 2 2 2 2 2 1 y x y x y x y + - = + -= , y z ¶ ¶ 22 22 1 1 y x x xy x + = + =. 2 2 x z ¶ ¶ 2 2 2 ) ( 2 y x xy + = , y x z ¶ ¶ ¶ 2 2 2 2 2 2 ) ( y x x y + - = , 2 2 y z ¶ ¶ = 22 2 )( 2 y x xy+ - . (2) xyxe z = ,求 y x z ¶ ¶ ¶ 2 3 和 23 y x z¶ ¶ ¶ .解 x z ¶ ¶ = ) 1 ( xy e xye e xyxy xy + = + , 2 2 x z ¶ ¶ ) 2 ( ) 1 ( xy ye y e xy ye xy xy xy + = + + = ;yx z¶ ¶ ¶ 2 ) 2 ( ) 1 ( xy xe xe xy xe xy xy xy + = + + = . y x z ¶ ¶ ¶ 2 3 = = ¶ ¶ ¶¶ x y x z 3 = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ y x z x 2 xyxy xy xy e xy xye xye xy e ) 2 3 ( ) 2 ( + = + + + ;2 3 y x z ¶ ¶ ¶ = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ = y x z y 2 ( )= + + xy xy xe xy xe x ) 2 ( xye y x x x ) 3 ( 2 + . (3) ) ln(xy x z = ,求 z d 2 ; 解 x z 1 ) ln( ) ln( + = + = xy xy xy xy, xy z y xy x 1 = = , x xy y z xx 1= = ;y z y x xy x = = 2 , yy z 2 yx- = .2222222 2 12 xx xy yy d z dx dy z z dx z dxdy z dy x y x dx dxdy dy x y yæö¶¶ =+=++ ç÷ ¶¶ èø =+- .(4) ) ( sin 2 by ax z + = ,求 z d 3 .解 x z ) ( 2 sin by ax a + = , xx z ) ( 2 cos 2 2 by ax a + = , = 3x z ) ( 2 sin 4 3 by ax a + - ,) ( 2 sin 4 2 axby b a z xxy - = ; y z ) ( 2 sin by ax b + = , ) ( 2 cos 2 2 by ax b z yy + = ,= = yyx xyy z z ) ( 2 sin 4 2 by ax ab + - . = 3 y z ) ( 2 sin 4 3 by ax b + - .z d 3 = = ÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ z y dy x dx 33223322333 x x y xy y z dx z dx dy z dxdy z dy +++ ) ( 2 sin 12 ) ( 2 sin 4 2 3 by ax b a by ax a + - + - = ) ( 2 sin 12 2 by ax ab + - 3 4sin 2()b ax by -+ ) ( 2 sin ) ( 4 3 by ax b a + + - = .例 7 利用链式规则求偏导数 :(1) ÷ ÷ øö ç ç è æ = , y x xy f u .求 x u¶ ¶ , y u ¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 y u ¶ ¶ .解 设 xy t = , yxs = .x u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = x s s f x t t f s f y t f y ¶ ¶ + ¶ ¶ 1 , y u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = y s s f y t t f sfy x t f x ¶ ¶ - ¶ ¶ 2 ;y x u ¶ ¶ ¶ 2 ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ = y s s t f y t t f y t f 2 2 2 22 22 11 f f t f s y s y s t y s y æö¶¶¶¶¶ -++ ç÷ ¶¶¶¶¶¶ èø = ÷ ÷ øö ç ç è æ ¶ ¶ ¶ - ¶ ¶ + ¶ ¶ s t f y x t f x y t f 2 2 2 2 22 222 11 f f x f x y s y s t y s æö¶¶¶ -+- ç÷ ¶¶¶¶ èø 2 2 t f xy ¶ ¶ = s t f y x ¶ ¶ ¶ - 2 3 s fy t f ¶ ¶ - ¶ ¶ + 2 1 .2 2 y u ¶ ¶ ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ = y u y 2 f x f x y t y s æö ¶¶¶ =- ç÷ ¶¶¶èø 23 2 2 2 2 y xs f y x y s s t f y t t f x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = = ÷ ÷ øöç ç è æ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ ¶ y s s f y t t s f 2 2 2 23 2 2 2 2 2 y xs f y x s t f y x tf x x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ - ¶ ¶ = = ÷ ÷ ø ö ç ç è æ ¶ ¶ - ¶ ¶ ¶ 2 2 2 2 s f y x t sf x s f y x s f y x s t f y x t f x ¶¶ +¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 3 2 2 2 2 2 2 2 2 2 22 2 . (2) ) ( 222z y x f u + + = .求 x u ¶ ¶ , y u ¶ ¶ , z u¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 xu ¶ ¶ .解 设 2 2 2 z y x t + + = .x u ¶ ¶ ( 2 ) ( f x x tt f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + , y u ¶ ¶ ( 2 ) ( f y yt t f ¢ = ¶ ¶ ¢= ) 2 2 2 z y x + + , z u ¶ ¶ ( 2 ) ( f z zt t f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + ;y x u ¶ ¶ ¶ 2 = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ( )= + + ¢ ¶ ¶) ( 2 2 2 2 z y x f x y 4( xyf ¢¢ ) 2 2 2 z y x + + ; 22 xu ¶ ¶ = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u x ( ) 222 2() xf x y z x ¶¢ ++ ¶ 2( f ¢ = ) 2 2 2 z y x + + 2 4x + ( f ¢¢ ) 2 2 2 z y x + + . 例 8 设函数 ) , ( y x f z = 具有二阶连续导数.写出 2 2 x z ¶ ¶ 2 2 y z ¶ ¶ + 在坐标变换2 2 y x u - = , xy v 2 = 下的表达式.解x z ¶ ¶ = u z ¶ ¶ x u ¶ ¶ + v z ¶ ¶ x v ¶ ¶ x 2 = u z ¶ ¶ + y 2 vz¶ ¶ ,2 2 x z ¶ ¶ 2 = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + x v v u z x u u z x 2 2 2 2 22 2 2 z u z v y v u x v x æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø 2 2 24 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 222 4 v z y ¶ ¶ + 2 + u z ¶ ¶ .y z ¶ ¶ = u z ¶ ¶ y u ¶ ¶ + v z ¶ ¶ y v ¶ ¶ y 2 - = u z ¶ ¶ + x 2 vz¶ ¶ ,2 2 y z ¶ ¶ 2 - = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ - y v v u z y u u z y 2 2 2 2 22 2 2 z u z v x v u y v y æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø u z vz x v u z xy u z y ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 2 4 8 4 222 2 2 2 2. 则2 2 x z ¶ ¶ 22 y z ¶ ¶ + 2 2 2 4 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 2 22 4 v z y ¶ ¶ + 2 + u z ¶ ¶ = ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ + u z v z x v u z xy u z y 2 4 8 4 2 2 2 2 2 2 2÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ + 2 2 2 22 2 ) ( 4 v z u z y x . 例 9 (1)写出函数 ) , ( y x f 9 8 6 2 23 2 2 3 3 + - - - - + = y x xy y x y x 在点 ) 2 , 1 ( 的Taylor 展开式.解= ) 2 , 1 ( f 16 - , = ) 2 , 1 ( x f 13 - , = ) 2 , 1 ( y f 6 - ; = ) 2 , 1 ( xx f 10, = ) 2 , 1 ( xy f 12 - , = ) 2 , 1 ( yy f 8;= ) 2 , 1 ( 3 x f 18, = ) 2 , 1 ( xxy f 4 - , 4 ) 2 , 1 ( - = xyy f , 6 ) 2 , 1 ( 3 = y f .更高阶的导数全为零 .因此, ) , ( y x f = + ) 2 , 1 ( f + - ) 1 )( 2 , 1 ( x f x ( 1 , 2 )(2)y f y - + - + 2 ) 1 )( 2 , 1 ( x f xx + - - ) 2 )( 1 )( 2 , 1 ( 2 y x f xy 2( 1 , 2 )(2) yy f y - 3 3 ( 1 , 2 )(1) x f x +- 3 ) 2 ( ) 1 )( 2 , 1 ( 3 2 + - - + y x f xxy 2) 2 )( 1 )( 2 , 1 ( - - y x f xyy 3 3 ( 1 , 2 )(2)y f y +- 22 1613(1)6(2)5(1)12(1)(2)4(2)x y x x y y =-----+----+- 3 2 2 3 ) 2 ( ) 2 )( 1 ( 2 ) 2 ( ) 1 ( 2 ) 1 ( 3 - + - - - - - - - + y y x y x x .(2) 求函数 ) , ( y x f y x e + = 在点 ) 0 , 0 ( 的n 阶Taylor 展开式,并写出余项.解x f ¶ ¶ y x e + = , y f ¶ ¶ yx e + = ,一般地,有 k h k h yx f ¶ ¶ ¶ + y x e + = ,则 1 ) 0 , 0 ( 00 = = ¶ ¶ ¶ + + e yx f kh k h . 因此, ) , ( y x f 在点 ) 0 , 0 ( 的n 阶Taylor 展开式为) , ( y x f å = + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ = n k kf y y x x k 0 ) 0 , 0 ( ! 1 )! 1 ( 1 + n 1( , )n x y f x y x y q q + æö ¶¶ + ç÷ ¶¶ èø å = + + = nk k y x k 0 ) ( ! 1 )! 1 ( 1 + n yx n e y y x x 1q q + + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ , ) 1 0 ( < <q .例 10 求下列方程所确定的隐函数的导数或偏导数:(1) 0 arctan = - + a y a y x ,求 dx dy 和 2 2 dxy d ;解 0 1 1 2 = ¢ - ÷ øöç è æ + + ¢+ a y a y x a y ,即 a y y x a y a ¢ = + + ¢ + 2 2 ) ( ) 1 ( ,即 dx dy 22 ) ( y x a + = . 由 2 2 ) ( y x y a + ¢ = ,再求导 0 ) 1 )( ( 2 ) ( 2 = ¢ + + ¢ + + ¢ ¢ y y x y y x y ,解得 2 ) ( ) 1 )( ( 2 y x y y x y y + ¢ + + ¢ - = ¢ ¢ ,代入 = ¢ y 22)( y x a + ,得 2 2 dx y d 22 23 () () x y a a x y ++ = + . (2) 0 = -xyz e z,求 x z ¶ ¶ 、 y z ¶ ¶、 2 2 xz ¶ ¶ 和 y x z ¶ ¶ ¶ 2 ;解 方程 0 = -xyz e z 两端对x 求导,得 0 = - - x z x xyz yz e z , x z ¶ ¶ xye yzz - = ;方程 0 = -xyz e z 两端对y 求导,得 0 = - - z z y xyz xz e z , y z ¶ ¶ xye xzz - = .0 = - - x z x xyz yz e z 再对x 求导,得 0 2 = - - - - + xx x x zx z xx xyz yz xz z e z e z ,解得2 2 x z ¶ ¶ xy e e z z y x z z zx x - - + + = 2 ) ( 32 2 2 2 ) ( ) ( xy e e z y xy e z y ze zzz z - - - + = . 同理得y x z ¶ ¶ ¶ 2 32 2 2 2 )( ) ( xy e e z x xy e z x ze zzz z - - - + = . (3) 0 ) , , ( = + + + x z z y y x f ,求 x z ¶ ¶ 和 yz ¶ ¶.解 设 y x u + = , z y v + = , x z w + = ,方程 0 ) , , ( = + + + x z z y y x f 两端对x 求导,得 = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x w w f x v v f x u u f 0 1 = ÷ ø ö ç è æ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ x z w f x z v f u f,解得 x z¶ ¶ w v u w f f f f + + - = ;同理得 y z ¶ ¶ wv v u f f f f + + - = .例 11 求下列方程组所确定的隐函数的导数或偏导数 :(1) ï î ï í ì = + + = - - . 4 32 ,0 22 2 2 22 a z y x y x z 求 dx dy , dx dz , 2 2 dx y d 和 2 2 dx z d ; 解 方程对x 求导,注意 y 和z 是x 的函数,就有 î íì = ¢ + ¢ + = ¢ - - ¢ . 0 6 4 2 , 0 2 2 z z y y x y yx z *) 解得 dx dy ) 3 1 ( 2 6 z y xz x + + - = , dx dzzx z y xy 3 1 ) 3 1 ( 2 2 + = + = .方程 *)在对x 求导,有 ï î ï íì = ¢ + ¢ ¢ + ¢ + ¢ ¢ + = ¢ - ¢ ¢ - - ¢ ¢ . 0 6 6 4 4 , 0 2 2 2 2 2 2 z z z y y yx y y y z 解得 2 2 dx yd ) 3 1 ( 4 12 6 ) 3 1 ( 4 2 2 z y z z z y x + + ¢ + + ¢ + - = , 2 2 dxz d ) 3 1 ( 2 6 ) 1 ( 4 4 2 2 z y z y xy y y y + ¢ - - + ¢ + = ;代入 dx dy 和 dxdz的表达式,即得2 2 dx y d 2 22 3 ) 3 1 ( 2 3 ) 3 1 ( 4 ) 6 1 ( 4 ) 3 1 ( 4 12 z y x z y z x z y z x + -+ + - + + - = , 2 2 dx z d 222 3 ) 3 1 ( 3 ) 3 1 ( 2 ) 6 )( 1 ( ) 4 (2 1 z x z y xz x y x + - + + + + - = . (2) î í ì - = + = . ) , (, ) , , ( 2y v x u g v y v x u f u 求 x u ¶ ¶ 和 y v ¶ ¶ . 解 设 y v s + = , x u t - = , y v r 2 = ,方程对x 求导,注意u 和v 是x 的函 数,就有î íì + = + + = . ) , ( ) , (, ) , , ( ) , , ( ) , , (2 x r x t x x s x x u x r r t g t y v t g v s s x u f s x u f u s x u f u 即î íì + - = + + = . 2 ) , ( ) 1 )( , (, ) , , ( ) , , ( ) , , ( x r x t x x s x x u x yvv r t g u r t g v v s x u f s x u f u s x uf u 解得x u¶ ¶ ), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( r t g s x u f r t yvg s x u f r t g s x u f r t yvg s x u f t s r u t s r x - - - + - - = ; 方程对 y 求导,注意u 和v 是x 的函数,就有ï îï í ì + + = + + = . ) 2 )( , ( ) , ( , 1) )( , , ( ) , , ( 2 v yvv r t g u r t g v v s x u f u s x u f u y r y t y y s y u y 解得y v ¶ ¶), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( 2 r t g s x u f r t yvg s x u f r t g s x u f v r t yvg s x u f t s r u r s r s - - - - - -= . 例 12 设函数 ) , ( y x f z = 具有二阶连续偏导数. 在极坐标 q cos r x = , q sin r y = 变换下,求 + ¶ ¶ 2 2 x f 2 2 yf¶ ¶ 关于极坐标的表达式.解2 2 y x r + = , xy arctan = q .所以= ¶ ¶ x f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x f x r r f q q 2 2 2 2 y x y f y x x r f + ¶ ¶ - + ¶ ¶ q qq q ¶ ¶ - ¶ ¶ = f r r f sin cos , = ¶ ¶ y f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ y f y r r f q q 2 2 2 2 y x x f y x y r f + ¶ ¶ + + ¶ ¶ q q q q ¶ ¶ + ¶ ¶ = f r r f cos sin ; 2 2 x f ¶ ¶ ÷ ø ö ç è æ ¶ ¶ - ¶ ¶ ¶¶ = q q q f r r f x sin cos r ¶ ¶ = q cos sin cos f f r r q q q ¶¶ æö - ç÷ ¶¶ èø q q ¶ ¶ -r sin sin cos f f r r q q q ¶¶ æö- ç÷¶¶ èør fr f rf r r f r csos r f ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = q q q q q q q q q q 2 22 2 2 2 2 2 2 2sin cos sin 2 sin sin 2 cos ; 类似有22 yf ¶ ¶ r f r f r f r r f r csos r f ¶ ¶ + ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ + ¶ ¶ = q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2cos cos sin 2 cos sin 2 sin . 于是得 + ¶ ¶ 2 2 x f 2 2 yf ¶ ¶ = r fr f r r f ¶ ¶ + ¶ ¶ + ¶ ¶ 1 1 2 2 2 2 2 q .例 13 证明:通过线性变换 y x u l + = , y x v m + = ,可以北将方程A 2 2 x f ¶ ¶B 2 + y x f ¶ ¶ ¶ 2C + 0 2 2 = ¶ ¶ yf,( 0 2 < - B AC )化简为 0 2 = ¶ ¶ ¶ v u f.并说明此时l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根.证 由 y x u l + = 和 y x v m + = 得x f ¶ ¶ v f u f ¶ ¶ + ¶ ¶ = , y u ¶ ¶ vfu f ¶ ¶ + ¶ ¶ = m l . 2 2 x f ¶ ¶ + ¶ ¶ = 2 2 u f + ¶ ¶ ¶ v u f 2 2 2 v f ¶ ¶ , 2 2 y f ¶ ¶ lm l 2 2 2 2 + ¶ ¶ = u f + ¶ ¶ ¶ v u f 2 222 v f ¶ ¶ m , = ¶ ¶ ¶ v u f 2 ) ( 2 2 m l l + + ¶ ¶ u f + ¶ ¶ ¶ v u f 2 2 22 vf ¶ ¶ m . 代入A 2 2 x f ¶ ¶ B 2 + y x f ¶ ¶ ¶ 2 C + 0 2 2 = ¶ ¶ yf ,化简得) 2 ( 2l l C B A + + 2 2 u f ¶ ¶ + ) 2 ( 2 m m C B A + + 2 2 vf ¶ ¶] 2 ) ( 2 2 [ lm m l C B A + + + + 0 2 = ¶ ¶ ¶ vu f.可见,当且仅当l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根时,方 程就化成 0 2 = ¶ ¶ ¶ vu f.例 14 求椭球面 498 3 2 2 2 2 = + + z y x 的平行于平面 7 5 3 = + + z y x 的切平面.解 所求切平面的法向量为 ) 6 , 4 , 2 ( z y x ,应有 56 3 4 1 2 z y x = = k 令== ,就有 2 k x = , k y 4 3 = , k z 6 5 = ,代入方程 498 3 2 2 2 2 = + + z y x ,有 498 2483 2 = k ,得12 ± = k . 在点M ) 10 , 9 , 6 ( 和N ) 10 , 9 , 6 ( - - - 的切平面与平面 7 5 3 = + + z y x 平 行.在点M ) 10 , 9 , 6 ( 的法向量为 ) 60 , 36 , 12 ( ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = - + - + - z y x ,即 0 83 5 3 = - + + z y x ;在点N ) 10 , 9 , 6 ( - - - 的法向量为 ) 60 , 36 , 12 ( - - - ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = + - + - + - z y x ,即 0 83 5 3 = + + + z y x .综上,椭球面 498 3 2 2 2 2 = + + z y x 上,平行于平面 7 5 3 = + + z y x 的切平面 有两块,它们是 0 83 5 3 = ± + + z y x .例15 证明曲面 a z y x = + + ) 0 ( > a 上任一点的切平面在各坐标轴上的 截距之和等于a .证 设M ) , , ( 0 0 0 z y x 为曲面 a z y x = + + 上任的一点,曲面在该点的切面为0 2 2 2 00 00 00 = - + - + - z z z y y y x x x ,即0 ) ( 0 0 0 0 00 = + + - + + z y x z z y y x x , 亦即0 0 0 0 = - + + a z z y y x x .化为截距式即为 1 0 0 0= + + az zay y ax x . 可见在各坐标轴上的截距之和为a az ay ax = + + 0 0 0 = + + ) ( 0 0 0 z y x a .例 16 在 ] 1 , 0 [ 上用怎样的直线 b ax + = x 来代替曲线 2 x y = ,才能使它在平方 误差的积分 = ) , ( b a J ò - 10 2 ) ( dx y x 为极小意义下的最佳近似.解 = ) , ( b a J = - - ò 10 22) ( dx b ax x 51 32 23 2 2 + - - + + b a ab b a .现求其中极小值.ï ï îï ï íì- + = - + = .3 2 2 ,2 1 3 2 a b J b a J b a 解得有唯一驻点M ÷ ø ö ç èæ- 6 1 , 1 .0 3 1 1 2 3 2 | ) ( > = - ´ = - M ab bb aa J J J ,又 0 32| > = Maa J ,因此, ) , ( b a J 在点 M ÷ ø ö ç è æ- 6 1 , 1 取极小值.因为 ) , ( b a J 在R 2 中仅有唯一的极小值,可见该极小值还是最小值.因此,在 ] 1 , 0 [ 上用直线 61- = x x 来代替曲线 2 x y = ,才能使它在平方误差的积分为极小的意义下是最佳的近似.例 17 要做一圆柱形帐篷,并给它加一个圆锥形的顶.问在体积为定值时,圆柱的半径R ,高H 及圆锥的高h 满足什么关系时,所用的布料最省?解 设体积为定值V ,则 ÷ ø ö ç èæ+ = h H R V 3 1 2 p ,得 h R V H 3 1 2 - = p .帐篷的全面积为2 2 2 2 322 2 ) , ( h R R Rh R V h R R RH h R S + + - =+ + = p p p p , 0 > R , 0 > H . R S 0 3 2 2 2 2 2 22 2 = + + + + - - = hR R h R h R V p p p ,(*)0 3 2 2 2 = + + - = hR RhR S h p p .(**)由(**)式的得 h h R 232 2 = + ,代入(*)式,有R S 0 6 4 5 12 242 2 = + + - = h R R h R Vh p p ,由 0 6 2 > h R ,应有 0 12 5 4 2 2 2 = - + Vh h R R p p . 这就是驻点出应满足的关系式.由于该问题在于有最小值,这也是帐篷的全面 积 ) , ( h R S 取最小值时,圆柱的半径R 与圆锥的高h 所应满足的关系式. 例 18 抛物面 2 2 y x z + = 被平面 1 = + + z y x 截成一椭圆.求原点到这个椭圆的 最长距离与最短距离.解 这是求函数 2 2 2 ) , , ( z y x z y x d + + = 在约束条件 0 2 2 = - - y x z 与0 1= - + + z y x 之下的条件极值问题 .构造 Lagrange 函数= ) , , , , ( m l z y x L l - + + 2 2 2 z y x m + - - ) ( 2 2 y x z ) 1 ( - + + z y x .(5) . 0 1 (4) , 0 (3) , 0 2) 2 ( , 0 2 2 ) 1 ( , 0 2 2 2 2 ï ï ï î ïï ïí ì = - + + = = - + = = + - = = + + = = + + = z y x Lz y x L z L y y Lx x L z y x m l m l m l m l 由(1)和(2)有 0 ) 1 )( ( 2 = + - l y x ,由于 1 - ¹ l (否则由(1)得 0 = m ,据(3)得 2 1 - = z ,代入(4) ,导致 0 212 2 = + + y x 无解),得 y x = .把 y x = 代入(4)和(5) ,解得 2 3 1 2 , 1 ± - =x , 231 2, 1 ± - = y , 3 2 2 1 m = - = x z .即得两个 驻点A ÷ ÷ ø ö ç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 和B ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 . 而该 问题必有最大值和最小值,因此,点A 和B 就是最大和最小值点.由于d ÷ ÷ ø öç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 3 5 9- = ; d ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 3 5 9+ = . 可见点A 和B 分别是最小和最大值点.即原点到这个椭圆的最长距离为 3 5 9+ ,最短距离为 3 5 9- .例 19 求椭圆 12 3 2 2 = + y x 的内接等腰三角形,其底边平行于椭圆的长轴,而使面积最大.解 所指内接等腰三角形的一半(如图) 是 ABC D ,设C 的坐标为(,) x y ,则三角(0,2)A yx(0,)B y o(,)C x y形 ABC D 面积为 ) 2 ( y x - 之半,于是所求内接等腰三角形的面积为 ) 2 ( y x - .问题是求函数 ) 2 ( ) , ( y x y x S - = 在约束条件 12 3 2 2 = + y x 之下的条件极值. 设Lagrange 函数为) 12 3 ( ) 2 ( ) , , ( 2 2 - + + - = y x y x y x L l l ,( 0 > x , 2 2 < < - y ),则ï î ïí ì = - + = = + -= = + - = (3) . 0 12 3 (2) , 0 6 ) 1 ( , 0 22 2 2 y x L y x L x y L y x ll l 从方程(1)和(2)中消去l ,得 y y x 6 3 2 2 - = ,代入(3) ,得 0 2 2 = - - y y ,解得 231± = y . 2 = y 时, 0 ) 2 , ( = x S .因此,得唯一的驻点 ) 1 , 3 ( - .该问题有最大值,当底边右端点的坐标为 ) 1 , 3 ( - 时,所得内接等腰三角形的面 积最大.。

(多元函数微分学)测试卷解答

(多元函数微分学)测试卷解答

B
).

在点( 0, 1, 2 )处 n Fx , Fy , Fz



( 0 , 1, 2 )
2, 2, 1
∴切平面方程为: 2( x 0) 2( y 1) ( z 2) 0
标题 上页 下页 返回 结束
5.设函数 u xz 3 yz x z , 则函数 u 在点 (1,-2, 1)处方向导数的最大值为(
2. 设曲面 z = x y上点 P 的切平面平行于平面4 x
+2 y +z =16, 则 P 点到已知平面的距离为( 24 1 ( A)21 ( B) 21 (C ) ( D) 21 21 分析:切平面Π1的法向量为 )
n 1 Fx , Fy , Fz y, x , 1
已知平面Π2的法向量为 n 2 4, 2, 1
z 2 y x 2 y f y f1 ( xe ) y f 2 ( ) y x g (sin y ) y y y
x y 2 y f y f1 xe f 2 2 x g cos y y
2 2 2
Fx 6 x , Fy 4 y , Fz 6z ∴曲面在已知点处的指向外侧的法向量为
n ( Fx , Fy , Fz )
( 0, 3 , 2 )
( 0, 4 3, 6 2 )
1 故所求向量为 n 0, 2, 3 5
0


标题 上页 下页 返回 结束
8.椭球面 3x 2 y2 z 2 16上点( -1, -2, 3 )处
(D)不能确定
分析:A f xx (0, 0) 2, B f xy (0, 0) 1, C f yy (0, 0) 2

多元函数微分学单元测试题及答案解析

多元函数微分学单元测试题及答案解析

多元函数微分学单元测试题A一、选择题1. 极限24200limy x y x yy x x +→→= ( )A.等于0;B.不存在;C.等于 12;D.存在且不等于0或12. 2.设),(b a f y '存在,则yy b a f y b a f y ),(),(lim 0--+→= ( )A.),(b a f y ';B. 0; C . 2),(b a f y '; D.21),(b a f y '. 3. 若函数) ,(y x f 在点) ,(00y x 处不连续,则 ( ) A.) ,(lim 00y x f y y x x →→必不存在; B.) ,(00y x f 必不存在;C. ) ,(y x f 在点) ,(00y x 必不可微;D.) ,(), ,(0000y x f y x f y x 必不存在.4.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( ) A. 充分而不必要条件; B. 必要而不充分条件; C. 必要而且充分条件; D. 既不必要也不充分条件.5.函数xy xyz +=arcsin的定义域是 ( ) A.{}0,|),(≠≤x y x y x ; B.{}0,|),(≠≥x y x y x ;C.{}0,0|),(≠≥≥x y x y x {}0,0|),(≠≤≤⋃x y x y x ;D.{}{}0,0|),(0,0|),(<<⋃>>y x y x y x y x .6、函数22(,)ln()f x y x y =-的定义域是( )(A) 220x y +>; (B )220x y ->; (C )220x y +<; (D )220x y -<.7、二元函数333()z x y x y =+--的极值点是 ( D ) A 、(1,2) B 、(1,-2) C 、(-1,2) D 、(-1,-1) 二、判断题1. 点集E 的内点必属于E. ( )2. 设y x z ln 2+=,则yx x z 12+=∂∂. ( ) 3. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则该函数在P 点处未必连续 ( )4.二阶混合偏导数与求偏导的次序无关 ( )5.具有偏导数的函数的驻点必定是极值点. ( ) 6、若(,)(,)xy yx f x y f x y 和都在点00(,)x y 连续,则0000(,)(,)xy yx f x y f x y =。

多元函数的微分和积分单元测试

多元函数的微分和积分单元测试

多元函数的微分和积分单元测试1. 本题考查多元函数的偏导数计算。

给定函数$f(x,y)=3x^2y-2xy^3$,求$f_x$和$f_y$。

2. 计算二重积分$\iint_D e^{x+y} \,dx\,dy$,其中积分区域$D$为$0\leq x \leq 2, 0 \leq y \leq 1$。

3. 利用二重积分的性质计算$\iint_D (x^2+y^2) \,dx\,dy$,其中积分区域$D$为$x^2+y^2 \leq 1$。

4. 求曲线积分$\int_C x\,dy$,其中曲线$C$由$y=x^2$和$y=1$所围成。

5. 计算三重积分$\iiint_E xyz \,dx\,dy\,dz$,其中积分区域$E$为$0\leq x \leq 1, 0 \leq y \leq 2, 0 \leq z \leq 3$。

6. 计算球体$x^2+y^2+z^2 \leq 1$的体积。

7. 求梯度算子$\nabla f$,其中$f(x,y,z)=x^2y^2z^2$。

8. 利用Green公式计算曲线积分$\oint_C (x^2+y^2) \,dx+(xy^2) \,dy$,其中曲线$C$为$x^2+y^2=1$。

9. 求二重积分$\iint_D (x+y) \,dx\,dy$,其中积分区域$D$由曲线$y=x^2$和$y=2x$所围成。

10. 计算曲面积分$\iint_S z \,dS$,其中曲面$S$为$z=x^2+y^2, 0 \leqx \leq 1, 0 \leq y \leq 1$。

以上为多元函数的微分和积分单元测试题目,希朇考生认真答题,对于不会的题目可以在草稿纸上作答。

祝各位考生顺利完成考试!。

高等数学:第八章多元函数微分学自测题答案

高等数学:第八章多元函数微分学自测题答案

高等数学:第八章多元函数微分学自测题答案《高等数学》单元自测题答案第八章多元函数微分学一.填空题1.3ln 3xy y ;2.503-; 3.y x z y ++-; 4.x x e e cos ; 5.dy dx 3131+; 6. 3 ; 7.22; 8.k j i 345++.二.选择题1.B ;2.D ;3. C ;4.D ;5.A ;6.B ;7. B ;8.A .三.解答题1. 解 22222222222211)221(1y x yx y x x y x x y x x y x x x z +=+++++=++++=??, 22222222221y x x y x y y x y y x x y z +++=+++=??. 2. 解22222)(11y x y x y x y x z +-=-+=??, 2222111y x x x x y y z +=+=??, 22222222)(2)(2y x xy y x x y x z +=+?--=??, 22222222)(2)(2y x xy y x y x y z +-=+?-=??, 222222222222)()(2)(y x x y y x y y y x x y z y x z +-=+?++-==. 3. 解设z z y x z y x F 4),,(222-++=,有 2422''--=--=-=??z x z x F F x z zx . 4. 证明 rx z y x x x r =++=??22222, 3222211r x r x r r x r x r -=??-=??, 同理 32221r y r y r -==??, 32221r z r z r -=??, 所以 r r r r rz y x r z r y r x r 233323222222222=-=++-=??+??+??.5. 解 '22'1f xy yf x z -=??, )1(1)1(''22''212'22''12''11'12f x xf xy f x f x xf y f y x z +--++= =''223''11'22'11f xy xyf f x f -+-. 6. 解令=+-==-+=,063,09632'2'y y f x x f y x 得驻点 (1,0), (1,2), (-3,0), (-3,2) 又66''+=x f xx , 0''=xy f , 66''+-=y f yy ,在点(1,0)处,0722>=-B AC ,012>=A ,所以5)0,1(-=f 为极小值; 在点(1,2)处,0722<-=-B AC , ,所以)2,1(f 不是极值;在点(-3,0)处,0722<-=-B AC , 所以)0,3(-f 不是极值;在点(-3,2)处,0722>=-B AC ,012<-=A ,所以31)2,3(=-f 为极大值.7. 解设 14),,(222-++=z y x z y x F , 则=n }2,2,2{},,{'''z y x F F F z y x =,}6,4,2{)3,2,1(=n ,切平面方程为0)3(6)2(4)1(2=-+-+-z y x , 即 01432=-++z y x , 法线方程为332211-=-=-z y x . 8. 解设长,宽,高为 z y x ,,,由题设 xyV z =,水箱的表面积 )11(2)(2),(y x V xy z y x xy y x S S ++=++==, 问题成为求 ),(y x S 在区域 0,0:>>y x D 的最小值问题.令=-==-=,02,022'2'y V x S x V y S y x得D 内唯一驻点3002V y x ==,由问题实际意义知 ),(y x S 在D内的最小值一定存在,因此可断定),(00y x S 就是最小值,此时 33304 22V V V Vz =?=.。

多元函数微分学练习试卷1(题后含答案及解析)

多元函数微分学练习试卷1(题后含答案及解析)

多元函数微分学练习试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.正确答案:A 涉及知识点:多元函数微分学2.正确答案:A 涉及知识点:多元函数微分学3.正确答案:B 涉及知识点:多元函数微分学4.正确答案:B 涉及知识点:多元函数微分学5.正确答案:B 涉及知识点:多元函数微分学填空题6.正确答案:涉及知识点:多元函数微分学7.正确答案:涉及知识点:多元函数微分学解答题8.求下列函数的定义域:正确答案:涉及知识点:多元函数微分学9.求下列函数的定义域:正确答案:涉及知识点:多元函数微分学10.求下列函数的定义域:正确答案:涉及知识点:多元函数微分学11.求下列函数的定义域:正确答案:涉及知识点:多元函数微分学12.求下列函数的定义域:正确答案:涉及知识点:多元函数微分学13.求下列函数的定义域:正确答案:涉及知识点:多元函数微分学14.求下列函数的偏导数:正确答案:涉及知识点:多元函数微分学15.求下列函数的偏导数:正确答案:涉及知识点:多元函数微分学16.求下列函数的偏导数:正确答案:涉及知识点:多元函数微分学17.求下列函数的偏导数:正确答案:涉及知识点:多元函数微分学18.求下列函数的偏导数:正确答案:涉及知识点:多元函数微分学19.求下列函数的偏导数:正确答案:涉及知识点:多元函数微分学20.求下列函数在给定的偏导数:正确答案:涉及知识点:多元函数微分学21.求下列函数在给定的偏导数:正确答案:涉及知识点:多元函数微分学22.求下列函数在给定的偏导数:正确答案:涉及知识点:多元函数微分学23.求下列函数在给定的偏导数:正确答案:涉及知识点:多元函数微分学。

第九章多元函数微分法及其应用+单元自测题答案(1)

第九章多元函数微分法及其应用+单元自测题答案(1)

第九章 多元函数微分法及其应用1、 填空题1) 设()xy y x z -+=22arcsin ,其定义域为(){}0,1,22≥>≤+x y y xy x2) 函数223z x xy y =++的偏导数x z =y x 32+,y z =y x 23+3) 函数xyz e =在点(2,1)处的全微分dz =dy e dx e 222+4) 设sin z uv t =+,而,cos t u e v t ==,则dzdt=t t u ve t cos sin +- 5) ()y x f z ,=在点()y x ,的偏导数x z ∂∂及yz ∂∂存在是()y x f ,在该点可微分的 必要 条件 6)()()xy xy y x 42lim0,0,+-→=41-7) 函数xy x y z 2222-+=在(){}02,2=-x y y x 间断8) 设2lnx y z +=,则在点()1,1,10M 的法线方程为111111--=-=-z y x9) 曲面1232222=++z y x 上点()1,2,1-处的切平面方程为()()()0162812=-++--z y x10) 设()222ln zy x u ++=在点()2,2,1-M 处的梯度=M gradu()2,2,192- 11) 设()xz y x z y x f ++=2,,,则()z y x f ,,在()1,0,1沿方向→→→→+-=k j i l 22的方向导数为35 2、 求ln()z x x y =+的二阶偏导数解:y x x y x x z +++=∂∂)ln( yx xy z +=∂∂2222)(2)(1y x y x y x y y x x z ++=+++=∂∂ 222)()(1y x yy x x y x y x z +=+-+=∂∂∂ 22)(y x y x y z +=∂∂∂ 222)(y x xy z +-=∂∂ 3、 sin uz e v =,而,u xy v x y ==+,求z x ∂∂和z y∂∂ 解:)cos()sin(cos sin y x e y x ye v e v ye xv v z x u u z x z xy xy u u +++=+=∂∂∂∂+∂∂∂∂=∂∂ )cos()sin(cos sin y x e y x xe v e v xe yv v z y u u z y z xy xy u u +++=+=∂∂∂∂+∂∂∂∂=∂∂ 4、 已知20xyzez e --+=,求z x ∂∂,z y ∂∂,22xz∂∂解:令z xy e z e z y x F +-=-2),,( 则xy x ye F --= xyy xeF --= z z e F +-=2所以 2-=-=∂∂-z xy z x e ye F F x z 2-=-=∂∂-zxyz y e xe F F y z 322222222)2(])2[()2(2)2()2()2(-+--=-----=-∂∂---=∂∂-------z xy z z xy z z xyz xy z xy z zxyz xye e e e e y e e ye e ye e e y e x z eye e ey x z5、 设0,1,xu yv yu xv -=⎧⎨+=⎩求,,,u u v vx y x y ∂∂∂∂∂∂∂∂ 解:将方程的两边对X 求导并移项,得⎪⎩⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂vx v x xu y u x v y x ux 在条件下022≠+=-y x x y y x 则22y x yv xu xy y x x v yu x u ++-=----=∂∂22y x xvyu xy y x v y u x xv +-=---=∂∂将方程的两边对y 求导并移项,得⎪⎪⎩⎪⎪⎨⎧-=∂∂+∂∂=∂∂-∂∂u y v x yu y v yv y y ux 在条件下022≠+=-y x xy y x22y x yu xv x y y x x u y v y u +-=---=∂∂22y x yvxu xy y x u y vxyv++-=--=∂∂6、 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点()1,1,1处的切线及法平面方程.解:⎪⎩⎪⎨⎧-=+--=+2532322dx dz dx dy x dx dz z dx dyy则z y z x z y z x dx dy 61041015532252223++-=---=z y xy z y xy dx dz 610694532223232+-+-=----=169)1,1,1(=dxdy 161)1,1,1(-=dxdz 故所求切线方程为:1)1(169)1(1611--=-=-z y x 所求法平面方程为:0)1()1(9)1(16=---+-z x x7、 求旋转抛物面221z x y =+-在点(2,1,4)处的切平面及法线方程. 解:令1),,(22--+=z y x z y x F 则}1,2,2{},,{-==y x F F F n z y x}1,2,4{)4,1,2(-=n切平面方程:0)4()1(2)2(4=---+-z y x法线方程:142142--=-=-z y x 8、 求函数2yz xe =在点(1,0)P 处沿从点(1,0)P 到点)1,2(Q 的方向的方向导数.解:}1,1{=PQ 则与PQ 同向的单位向量是}22,22{1)0,1(2)0,1(==∂∂ye xz22)0,1(2)0,1(==∂∂yxe yz故方向导数为223)0,1(=∂∂lz9、 问函数z xy u 2=在点()2,1,1-P 处沿什么方向的方向导数最大?并求此方向导数的最大值.解:→→→+-=k j i g r a d u 42是方向导数取最大值的方向,此方向导数的最大值为21=gradu10、求函数y x y x y x f 44),(22+-+=的极值解:⎩⎨⎧=+==-=042042y f x f yx 得驻点(2,-2)2=xx f 0=xy f 2=yy f 在(2,-2)点002>>-A B AC 且函数在(2,-2)有极小值 -811、欲选一个无盖的长方形水池,已知底部造价为每平方米a 元,侧面造价为每平方米b 元,现用A 元造一个容积最大的水池,求它的尺寸. 解:设长为x 宽为y 高为z问题可看作xyz V =在条件byz bxz axy A 22++=下的最值 令())22(,,,A byz bxz axy xyz z y x F -+++=λλ⎪⎪⎩⎪⎪⎨⎧++==++==++==++=)(22)(022)(02)1(024  3 2 byz bxz axy A y b x b xy F z b x a xz F z b y a yz F z yx λλλλλλ 由(1)—(2)可得 y x =或)-y x (与实际意义矛盾,舍去可推出=-=λa z 将y x =代入(3)得 λb y x 4-==(5) 将(5)代入(1)得到 λa z 2-= (6) 将(5)(6)代入(4)可以得到 2248abA=λ,分别代入(5)(6)可得 a A y x 3==宽长,aA b a z 32=高 12、抛物面22y x z +=被平面1=++z y x 截成一椭圆,求原点到这个椭圆的最长与最短距离.解:问题可看作2222z y x d ++=在条件⎩⎨⎧=+++=122z y x y x z 下的最值,令()()()1,,,,22222-+++-++++=z y x u z y x z y x u z y x F λλ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++==+-==++==++=)(01)()(02)(022)1(022225  4 3 2 z y x y x z u z F u y y F u x x F z y x λλλ 由(1)(2)知 )1(2λμ+-==y x (6),由(3)得 2μλ-=z (7)由(4)(5)得x x 2122-= (8) 将(6)(7)代入(8)得到)31)(1(±-+=λμ (9)将(9)代入(1)得到 231 -==y x (10) 由(5)得到 3221±=-=x z (11)将(10)(11)代入 2222z y x d ++=求得最长距离为:359+,最短距离为:359-。

《微积分(下)》第2章多元函数微分学练习题--参考答案

《微积分(下)》第2章多元函数微分学练习题--参考答案

第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1)()11(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin;x y x y x y →∞∞++(3) ()(,)0,1sin lim;x y xyx →(4)((,)0,0limx y →解: (1) 当1(,)2,2x y ⎛⎫→- ⎪⎝⎭时,10xy +→,因此()[]1112(1)11(,)2,(,)2,22lim2lim1(1)e yxy y xy x y x y xy xy -++⎛⎫⎛⎫→-→- ⎪⎪⎝⎭⎝⎭⎧⎫+=++=⎨⎬⎩⎭。

(2) 当()(,),x y →-∞+∞时,2230x y →+,因此222233sin ~x y x y++, ()()()()22222222(,),(,),33limsinlim 3x y x y x y x y x y x y →∞∞→∞∞+=+⋅=++。

(3) 当()(,)0,1x y →时,0xy →,因此sin ~xy xy ,()()(,)0,1(,)0,1sin limlim 1x y x y xy xyx x →→==。

(4) 当()(,)0,0x y →10,0xy →→,因此,(())())(,)0,0(,)0,0(,)0,01limlimlim12x y x y x y xy xy→→→===。

2.证明:当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。

证明: 取2(0)y kx k =≠,则()()()()()()()444484433334444444(,)0,0(,)0,0(,)0,0limlimlim11x y x y x y x y k x x k k xyxk xk k →→→===++++显然此极限值与k 的取值相关,因此当()(,)0,0x y →时,()44344(,)x y f x y xy=+的极限不存在。

多元函数微分习题-(1)

多元函数微分习题-(1)

多元函数微分习题-(1)多元函数微分法及其应⽤同步测试(2009年4⽉)注:红⾊的题⽬超出范围,不做.测试1⼀、填空题(3分×4=12分)1、设22,y x x y y x f -=??? ?+,则=),(y x f 。

2、=+→222)0,0(),(sin lim y x yx y x 。

3、设xyze z y xf =),,(,则=zy x f 3 。

4、曲线==zx x y 22在点)1,1,1(0P 处的切线⽅程为。

⼆、选择题(4分×3=12分)1、设有⼆元函数=≠+=),0,0(),(,0),0,0(),(,),(242y x y x y x yx y x f 则 [ ]。

A 、),(lim)0,0(),(y x f y x →存在, ),(y x f 在(0,0)处不连续; B 、),(lim )0,0(),(y x f y x →不存在, ),(y x f 在(0,0)处不连续; C 、),(lim )0,0(),(y x f y x →存在, ),(y x f 在(0,0)处连续;D 、),(lim )0,0(),(y x f y x →不存在, ),(y x f 在(0,0)处连续。

2、函数),(y x f 在),(000y x P 连续是),(y x f 在),(000y x P 各⼀阶偏导数存在的[ ]。

A 、必要条件;B 、充分条件;C 、充要条件;D 、既⾮必要也⾮充分条件。

3、点)0,0(O 的函数xyz=的[ ]。

A 、极⼩值点;B 、驻点但⾮极值点;C 、极⼤值点;D 、最⼤值点。

三、计算题(6分×5=30分)1、设=+≠++=.00,0),ln(),(222222y x y x y x x y x f 求),(y x f 各⼀阶偏导数。

2、设+=y x x y x f ln ),(,求此函数在点)1,1(0P 处的全微分。

3、设),(y x f z =由⽅程0=-++++y x z e y x z 所确定,求dz 。

多元函数微积分练习题共6页

多元函数微积分练习题共6页

练习题一 多元函数微分学部分练习题 1 求函数yx yx z -++=11的定义域.2已知xy y x xy y x f 5),(22-+=-,求),(y x f . 3计算下列极限 (1)22)0,1(),()ln(limy x e x y y x ++→ (2) 4422),(),(lim y x y x y x ++∞∞→(3)243lim)0,0(),(-+→xy xy y x (4)xy x xy 1)1,0(),()1(lim +→(5)2222)1,2(),(2lim y x y x xy y x ++→ (6)2222)0,0(),()(2sin lim yx y x y x ++→ 4 证明极限yx yx y x +-→)0,0(),(lim不存在.5 指出函数22),(y x yx y x f -+=的间断点.6计算下列函数的偏导数(1))ln(2y x z = (2)x xy z )1(-= (3)),(2y x f x z = (4))(xy xz ϕ=(5)y xy y x z 2344+-+= (6))ln(22y x z += (7))3cos(22y x e z y x += (8)y xy z )1(+= (9)2221zy x u ++=(10)⎰=220sin y x dt t z7 计算下列函数的二阶偏导数(1)243y xy x z -+= (2))ln(xy y z =(3)y e z xy sin = (4)),(2y x f x z = (5)2(,)z f xy x = 8求下列函数的全微分(1)xy xe z = (2)221yx z +=(3)xy z arcsin = (4)),(y x yf xy z += 9 设⎰=xydt t y x f 12sin ),(,求df .10 (1)22uv v u z -=,其中y x u cos =,x y v sin =,求xz ∂∂,yz ∂∂(2))arctan(),,(z y x z y x f u ++==,其中)cos(xy z =,求xz ∂∂,yz ∂∂(3)v u e z -=, t u sin =,2t v =,dz dt(4)),(22y x yx f z -=,求xz ∂∂,yz ∂∂(5)设),()2(xy x g y x f z +-=,求xz ∂∂,yz ∂∂;11 (1)设0)ln(22=+-+y x xy x ,求dxdy . (2)设xyz e z =,求yz x z ∂∂∂∂,. (3)已知⎩⎨⎧=++=++1022z y x z y x ,求dz dx ,dz dy. 12 求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=211t z t t y t t x 在点1=t 的切线及法平面方程.13求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(0-M 处的切线与法平面方程.14求曲面3=+-xy z e z 在点)0,1,2(M 处的切平面和法线方程. 15求函数22)1(-+=y x z 的极值.16求函数32z xy u =在条件a z y x =++)0,,,(>a z y x 下的极值.17求函数32z xy u =在曲面03222=-++xyz z y x 上点)1,1,1(P 处,沿曲面在该点朝上的法线方向的方向导数.18 设222(,,)3f x y z x y z xy x y z =+++-++,求(1,2,3)gradf . 二 多元函数积分学部分练习题 1、改变下列二次积分的积分次序(1)⎰⎰1102),(x dy y x f dx (2)⎰⎰--yy dx y x f dy 21110),((3)⎰⎰⎰⎰+2242220),(),(y y y dx y x f dy dx y x f dy2、计算下列二重积分(1)⎰⎰Dxyd σ,其中区域D 是曲线xy 1=,2=x 及x y =所围成的区域. (2)⎰⎰+Dd y x σ)(,其中区域D 是曲线x y 42=及x y =所围成的区域.(3)⎰⎰+Dd y x σ)(,其中区域D :1≤+y x .(4)⎰⎰+Dd y x σ)cos(,其中区域D 是曲线x y =,0=y 及2π=x 所围成的区域.(5)⎰⎰--Dy xd e σ22,其中积分区域D 为中心在原点,半径为a 的圆周所围成的闭区域.(6)⎰⎰+Dd y x σ22,其中积分区域为D :122≥+y x ,x y x 222≤+,0≥y .3、设函数),(y x f 连续,且⎰⎰+=Ddxdy y x f xy y x f ),(),(,其中D 是由0=y ,2x y =和1=x 所围成的区域.4、设函数)(u f 具有连续导数,且0)0(=f ,3)0(='f ,求3220222)(limtd y x f t y x t πσ⎰⎰≤+→+.5 计算下列三重积分(1)⎰⎰⎰Ω++dxdydz z y x )sin(,其中Ω是由三个坐标面与平面2π=++z y x 所围成的立体;(2)计算⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面222y x z --= 以及22y x z +=所围成的空间形体.(3)计算积分⎰⎰⎰Ωxyzdxdydz ,其中Ω是球面4222≤++z y x 在第一卦限的部分.6 试计算立体Ω由曲面228y x z --=及22y x z +=所围成的体积. 7计算⎰⎰⎰Ωdxdydz e z ,其中Ω是球面1222≤++z y x .8 计算下列曲线积分(1)LxydS ⎰,其中L 为圆222a y x =+在第一象限内的部分;(2)222()x y z dS Γ++⎰,其中Γ是球面9222=++z y x 与平面0=++z y x 的交线.(3)⎰+-+L dy y x dx y )2()1(3,其中L 是曲线23x y =上从点)0,0(O 到点)1,1(A 的一段弧;(4)计算⎰+Lxdy ydx ,其中L 为圆周θcos r x =,θsin r y =上由0=θ到πθ2=的一段弧.(5)在过点)0,0(O 和)0,(πA 的曲线族)0(sin >=a x a y 中求一条直线L ,使沿该曲线到点O 到点A 的积分⎰+++Ldy y x dx y )2()1(3的值最小.(6)计算⎰⎰∑dS z1,其中∑为球面4222=++z y x 被平面1=z 截出的上半部分.(7)计算⎰⎰∑++dS z y x )(222,其中∑为锥面222y x z +=介于平面0=z 与1=z 之间的部分. (8)计算⎰⎰∑+dxdy y x e z 22,其中∑是锥面22y x z +=夹在平面1=z 和2=z 之间部分的外侧.(9)计算⎰⎰∑++=dxdy z dzdx y dydz x I 333,其中∑为以点)0,0,1(A ,)0,1,0(B ,)1,0,0(C 为顶点的三角形的上侧.9求曲线Γ:a x =,at y =,221at z =(10≤≤t ,0>a )的质量,设其线密度为az2=ρ. 10 (1) 设L 为取正向的圆周922=+y x ,计算曲线积分⎰-+-Ldy x x dx y xy )4()22(2的值.(2)利用Stokes 公式计算曲线积分⎰++=L xdz zdy ydx I ,其中L 是球面2222a z y x =++与平面0=++z y x 的交线,由z 轴的正向看去,圆周沿逆时针方向.(3)计算对坐标的曲线积分⎰++L dy x dx x xy 2)(2,其中L 为222R y x =+的第一象限由),0(R 到)0,(R 的一段弧.(4)已知1)(=πϕ,试确定)(x ϕ,使曲线积分⎰+-BAdy x dx xyx x )()]([sin ϕϕ 与路径无关,并求当A ,B 分别为)0,1(,),(ππ时线积分的值(5)计算⎰⎰∑++=yzdxdy xydzdx xzdydz I ,其中∑是圆柱面222R y x =+与平面0=x ,0=y ,0=z 及h z =)0(>h 所围成的在第一卦限中的立体的表面外侧.11(1)设k z j y i x r ϖϖϖϖ++=,计算r rot ϖ.(2)设()A xyz xi yj zk =++r r r r,计算divA r希望以上资料对你有所帮助,附励志名言3条:1、有志者自有千计万计,无志者只感千难万难。

多元函数微分学单元测试题

多元函数微分学单元测试题

多元函数微分学单元测试题一、填空题(每小题4分,共16分)1、 设u=22444y x x x -+,则=∂∂22x u2、 函数z=ln (x ·lny )的定义域为3、 设u=22y x x +,则在极坐标下,=∂∂θu4、 设f (x ,y )=()⎪⎩⎪⎨⎧=∙≠∙000sin 12y x y x y x xy ,则()='1,0x f二、单项选择题(每题4分,共16分)1、设函数z=1-22y x +,则点(0,0)是函数z 的( )A 、极小值点且是最小值点B 、极大值点且是最大值点C 、极小值点但非最小值点D 、极大值点但非最大值点2、设f (x ,y )=arcsin x y,则()1,2x f '=( )A 、-41B 、41C 、-21D 、213、0)(0,0/=y x z x 和()0,0y x z y '=0是函数z=z (x ,y )在点(0,0y x )处取得极值的()A 、必要条件而非充分条件B 、充分条件而非必要条件C 、充要条件D 、既非必要也非充分条件4、曲线⎩⎨⎧=++=--020z y x z y x 在点(0,1,-1)处的法平面方程为( ) A 、x+y+z=0 B 、y+z=0C 、y-z-2=0D 、x+y=0三、解答下列各题(每题7分,共28分)1、求函数z=()x y x sin sin ++的驻点。

2、设函数z=z (x ,y ),由z+x=dt e xy t ⎰-02所确立,试求x z ∂∂,yz ∂∂3、求极限lim 0→→y x ()xy y x y x sin 11232+-5、 求函数u=32z xy 在点(1,1,1)处方向导数的最大值与最小值四、(9分)设f(x,y)=y e x cos ,g(x,y)=y e x sin ,证明:()()()y x f y x g y x f 2,2,,22=-五、(9分)将已知正数a 分成两个正数x 、y 之和,使得q p y x 为最大,其中p 、q 是已知的正数六、(10分)横截面为长方形的半圆柱形的张口仪器,使其表面积等于s ,当仪器的长度与断面半径个为多少时,有最大体积?七、(12分)设z=xy+f (x+y ,x-y ),而x=ln (s+t ),y=2s-3t,其中f 具有连续偏导数,求sz ∂∂答案:一、1、12228y x - 2、x>0,y>1或x<0,0<y<1 3、-sin θ 4、1 二、B A D C三、1、略 2、略 3、-21 4、当{}3,2,11410-=l 时,l u ∂∂取最小值14-=g 四、略 五、当q p aq y q p ap x +=+=,时,q p y x 的值最大 六、当R=ππs h s 332,3=时,仪器有最大体积 七、略。

多元函数微分学练习题及答案

多元函数微分学练习题及答案

六、设 z (u, x, y), u xe y,其中 f 具有连续的二阶偏导 数,求 2 z . xy
练习题答案
一、1、C(C 为常数); 2、(A)1 x 2 y 2 4; 3、 x (1 y)2 y
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
则 ab3c27abc5 a0,b0,c0
5
四、1、
zx(lyn )xln y1,
zy

ln x y
xln y
2、u x f 1 y 2 . f ( y x zx ) y f 3 ,z u yx2 f(x z xy y )f3 z
.
3、fx(x,y)(x22xyy32)2,x2
练习题 一. 填空:
1、设在区域D上函数 f 存在偏导数,且 fx fy 0
则在D上,f( x,y) ( )
2 、 二 元 函 数 z ln 4 arcsin 1 的 定 义 域 是
x2 y2
x2 y2
( ).
3、设 f ( xy, x ) ( x y)2,则 f ( x, y) ( ). y
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微
的( ).
6、设
f
( x,
y)
( x 2
8、
9 2
a
3

9、(1,2);10、 1 ; 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数微分学单元测试题
一、填空题(每小题4分,共16分)
1、 设u=22444y x x x -+,则=∂∂22x u
2、 函数z=ln (x ·lny )的定义域为
3、 设u=22y x x +,则在极坐标下,=∂∂θu
4、 设f (x ,y )=()⎪⎩⎪⎨⎧
=∙≠∙0
00sin 1
2y x y x y x xy ,则()='1,0x f
二、单项选择题(每题4分,共16分)
1、设函数z=1-22y x +,则点(0,0)是函数z 的( )
A 、极小值点且是最小值点
B 、极大值点且是最大值点
C 、极小值点但非最小值点
D 、极大值点但非最大值点
2、设f (x ,y )=arcsin x y
,则()1,2x f '=( )
A 、-41
B 、41
C 、-21
D 、21
3、0)(0,0/=y x z x 和()0,0y x z y '=0是函数z=z (x ,y )在点(0,0y x )处取得极值的(

A 、必要条件而非充分条件
B 、充分条件而非必要条件
C 、充要条件
D 、既非必要也非充分条件
4、曲线⎩⎨⎧=++=--0
20z y x z y x 在点(0,1,-1)处的法平面方程为( ) A 、x+y+z=0 B 、y+z=0
C 、y-z-2=0
D 、x+y=0
三、解答下列各题(每题7分,共28分)
1、求函数z=()x y x sin sin ++的驻点。

2、设函数z=z (x ,y ),由z+x=
dt e xy t ⎰-02所确立,试求x z ∂∂,y
z ∂∂
3、求极限lim 0
→→y x ()xy y x y x sin 11232+-
5、 求函数u=32z xy 在点(1,1,1)处方向导数的最大值与最小值
四、(9分)设f(x,y)=y e x cos ,g(x,y)=y e x sin ,证明:
()()()y x f y x g y x f 2,2,,22=-
五、(9分)将已知正数a 分成两个正数x 、y 之和,使得q p y x 为最大,其中p 、q 是已知的正数
六、(10分)横截面为长方形的半圆柱形的张口仪器,使其表面积等于s ,当仪器的长度与断面半径个为多少时,有最大体积?
七、(12分)设z=xy+f (x+y ,x-y ),而x=ln (s+t ),y=2s-3t,其中f 具有连续偏导数,求s
z ∂∂
答案:
一、1、1222
8y x - 2、x>0,y>1或x<0,0<y<1 3、-sin θ 4、1 二、B A D C
三、1、略 2、略 3、-
21 4、当{}3,2,114
10-=l 时,l u ∂∂取最小值14-=g 四、略 五、当q p aq y q p ap x +=+=
,时,q p y x 的值最大 六、当R=
π
πs h s 332,3=时,仪器有最大体积 七、略。

相关文档
最新文档