高一数学-三角函数的图像和性质练习题
高一三角函数的图像及性质基础题小测卷
高一数学三基小测1、已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是 ( )A .1B .4C .1或4D .2或42、若sin cos 2sin cos θθθθ+=-,则3sin(5)sin 2πθπθ⎛⎫-⋅- ⎪⎝⎭等于( ) A .34 B .310± C .310 D .310- 3、若,24παπ<<则( ) A. αααtan cos sin >> B. αααsin tan cos >>C. αααcos tan sin >>D. αααcos sin tan >>4、函数23cos()56y x π=-的最小正周期是( ) A.52π B. 25π C. π2 D. π5 5、函数sin()2y x π=+)(x ∈[-,22x ππ⎡⎤∈-⎢⎥⎣⎦是( ) A.增函数 B.减函数C.偶函数D.奇函数 6、函数)252sin(π+=x y 的一条对称轴方程( ) A .2π-=x B .4π-=x C .8π=x D .=x π45 7、若函数cos()3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于 . A .12B .12C .2D .4 8、在下列各区间中,函数sin()4y x π=+的单调递增区间是( )A .,2ππ⎡⎤⎢⎥⎣⎦B .0,4π⎡⎤⎢⎥⎣⎦C .[],0π-D .,42ππ⎡⎤⎢⎥⎣⎦9、函数2cos 3cos 2y x x =-+的最小值为( )A.2B.0C.-41D.610、在[0,2]π上满足1sin 2x ≥的x 的取值范围是 ( )A .[0,6π]B .[6π,65π]C .[6π,32π]D .[65π,π] 11、用五点作图法画出函数1sin()3y x π=-+在一个周期上的图象。
高一数学三基小测1、sin(1560)- 的值为( )A 12-B 12C D2、设α是第二象限角,(P x 为其终边上一点,且cos x α=,则sin α的值是( )A B .4 D . 3、函数sin(2)y x =-的单调递增区间是( ) A.π32π2π()22k k k ⎡⎤++∈⎢⎥⎣⎦Z , B.π3πππ()44k k k ⎡⎤++∈⎢⎥⎣⎦Z , C.[]π2π3π2π()k k k ++∈Z , D.πππππ()44k k k ⎡⎤-++∈⎢⎥⎣⎦Z , 4、函数cos(2)2y x π=-为( )A .奇函数 B.偶函数 C.非奇非偶函数 D.以上都不对5、下列函数中,最小正周期是π且在区间ππ2⎛⎫ ⎪⎝⎭,上是增函数的是( ) A.sin 2y x = B.sin y x = C.tan 2x y = D.cos 2y x = 6、记M 和m 为函数1cos 213y x =-+的最大值和最小值,则M m +=_________. 7、已知tan1a =,tan 2b =,tan 3c =,则 ( )A a b c <<B c b a <<C b c a <<D b a c <<8、已知sin()cos(2)tan()()tan()sin()f παπααπααππα---+=----. (1)化简()f α; (2)若α是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值.9、求函数⎪⎭⎫ ⎝⎛-=32tan πx y 的定义域、值域,并指出它的周期性、奇偶性、单调性(求出单调区间).。
高一数学三角函数图象变换试题答案及解析
高一数学三角函数图象变换试题答案及解析1.为了得到函数的图像,只需将函数的图像( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】先用诱导公式将化为= =,由平移知识知,只需将函数的图像向右平移个长度单位,故选B.考点:诱导公式;平移变换2.为了得到函数的图像,只需把函数的图像()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】B【解析】=sin2(x-),为了得到函数的图象,只需将的图象向右平移个单位即可,故选A.【考点】函数y=Asin(ωx+φ)的图象变换.三角函数图像的平移.3.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A.B.C.D.【答案】C【解析】将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数,再将所得的图象向左平移个单位,得函数,即故选C.【考点】函数y=Asin(ωx+φ)的图象变换.4.函数(其中,的图象如图所示,为了得到的图象,可以将的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】A【解析】由图知,,∴,∴.又由图可得,∵,∴,∴,∴为了得到的图象,可以将的图象向右平移个单位长度,故选A.【考点】1、三角函数的图象;2、函数的图象变换.5.要得到函数y=cos()的图像,只需将y=sin的图像( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】本题考查三角函数的图像平移问题,要注意将函数解析式变为,然后根据“左加右减”的口诀平移即可.【考点】三角函数图像平移.6.函数的图象向右平移个单位后与函数的图象重合.则的解析式是( )A.B.C.D.【答案】C【解析】根据反方向知:的图像向左平移个单位后得到,根据左加右减的平移原理得到:,故选C.【考点】的图像变换7.函数的最小正周期为()A.B.C.D.【答案】【解析】由三角函数的最小正周期得.解决这类问题,须将函数化为形式,在代时,必须注意取的绝对值,因为是求最小正周期.【考点】三角函数的周期计算8.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C.0D.【答案】B【解析】根据题意,由于将函数的图象沿轴向左平移个单位后,得到,故可知的一个可能取值为,故答案为B.【考点】三角函数的图象变换点评:主要是考查了三角函数的图象变换的运用,属于基础题。
高一数学三角函数的图象与性质试题
高一数学三角函数的图象与性质试题1.设函数,为常数.(1)若的图象中相邻两对称轴之间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,又,求的值.【答案】(1);(2)或【解析】(1)利用两角和正弦公式和降幂公式化简,得到的形式,利用公式计算周期,进而求出的取值范围;(2)求三角函数的最小正周期一般化成,,形式,利用周期公式即可.求解较复杂三角函数的最值时,首先化成形式,在求最大值或最小值;(3)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围.试题解析:(1)==由题意知,得的取值范围为(2)若的最小正周期为,得=1=,有在区间上为增函数,所以的最大值为,则,所以=,所以=+=或【考点】(1)三角函数周期的应用;(2)三角函数的化简和求值.2.函数(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则的值是________.【答案】.【解析】由图可知,,因此,由于为第三个点,因此,解得,,.【考点】求三角函数的解析式.3.由函数的图象得到的图象,需要将的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,即函数的图象得到,需要将的图象向左平移个单位,故选择B.【考点】三角函数图象变换.4.函数f(x)=Asin(wx+j)(A>0,w>0,-<j<,x∈R)的部分图象如图所示:,(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.【答案】(1)f(x)=sin(x+);(2)[-1,].【解析】(1)图像离平衡位置最高值为1可知A=1,又从图可看出周期的四分之一为,根据可求得w的值,对于j可通过代入(,1)点求得,但要注意j的范围;(2)本小题考查三角函数求值域问题,由x的范围可先求出x+的范围,结合正弦函数图像可求出sin(x+)的取值范围.试题解析:(1)由图象得A=1,,所以T=2p,则w="1." 将点(,1)代入得sin(+j)=1,而-<j<,所以j=,因此函数f(x)=sin(x+).(2)由于x∈,-≤x+≤,所以-1≤sin(x+)≤,所以f(x)的取值范围[-1,].【考点】由三角函数的图像求函数的解析式,,三角函数的值域问题.5.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为().A.B.C.D.【答案】B【解析】由图像,得,则,所以,又因为图像过,所以,所以可取,得;故选B.【考点】三角函数的图像与性质.6.已知函数 ,其中对恒成立,且,则的单调递增区间是()A.B.C.D.【答案】C【解析】又(1)又由,(2),由(1)、(2)可得,,由,得:的单调增区间是.【考点】1、由y=Asin(ωx+φ)的部分图象确定其解析式;2、函数y=Asin(ωx+φ)的图象变换.7.若函数().A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】D【解析】,是偶函数,且.【考点】二倍角公式的逆用、三角函数的性质.8.已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为– 2 ,求a的值.【答案】(1)(2)(3)【解析】利用正余弦和差角公式以及辅助角公式化简三角函数式.(1)根据求周期;(2)根据化简所得的函数名称,确定单调增区间.根据单调性可求最值.(1)(2)当即函数单调递增,故所求区间为.(3),所以当,即时,函数取最小值,所以,解得.【考点】三角函数的化简;周期;单调性;最值.9.函数的部分图象如图所示,则的值分别是()A.B.C.D.【答案】C【解析】,由,可知,将代入,又,可得.【考点】的图象和性质.10.已知函数.(1)求值;(2)求的最小值正周期;(3)求的单调递增区间.【答案】(1) (2)(3)【解析】(1)中直接带入角求值即可.(2)要求最值及周期,得将函数解析式转化为或.所以化简三角函数.需要用到辅助角公式化简,而后直接判断最小值,利用周期公式求周期.(3)根据(2)中的化简后的函数式,利用三角函数单调性解决.(1) .(2)因为所以所以所以的最小正周期为(3)令所以所以的单调递增区间为【考点】三角函数求特殊值,三角函数化简求最值和周期,三角函数求单调区间.11.知函数,,则是()A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】C【解析】将函数化简为,所以函数是的偶函数.【考点】1.三角函数的化简;2.三角函数的性质.12.若函数在区间上的值域是,则的最大值是.【答案】【解析】结合三角函数图像知,当的点均匀分布在最小值点两边时,区间长度最大.令为函数取最小值点,则分布在其两侧且使的点为和,所以的最大值是【考点】三角函数图像与性质13.为了得到函数的图像,只需将函数图像上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】A【解析】,故要得到的图像,只需将函数的图像向左平移个单位长度,故选A.【考点】三角函数的图像变换.14.函数图像的一条对称轴方程是()A.B.C.D.【答案】A【解析】,由的对称轴可知,所求函数图像的对称轴满足即,当时,,故选A.【考点】1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式.15.已知,(0°<A<90°)求的值。
高一数学三角函数试题
高一数学三角函数试题1.已知向量.(1)若,且,求角的值;(2)若,且,求的值.【答案】(1);(2)【解析】(1)根据向量垂直其数量积为0,可得到的关系式,从而得出的值,再根据角的范围得角的大小。
(2)根据数量积公式可得的关系式,用两角和差公式的逆用即化一公式将其化简为再根据角的范围找整体角的范围,从而可计算出的值。
用凑角的方法将写成的形式,用正弦的两角和公式展开计算即可。
(1)∵ , ∴ , 即 3分∴,又∴∴. 6分(2) 8分∴,又∵ , ∴, ∴ 10分∴. 12分【考点】1数量积公式;2两角和差公式。
2.如图,在中,已知,是上一点,,则【答案】【解析】由余弦定理得:,在三角形中,再由正弦定理得:【考点】正余弦定理综合3.已知,函数.(1)设,将函数表示为关于的函数,求的解析式和定义域;(2)对任意,不等式都成立,求实数的取值范围.【答案】(1),定义域为;(2)实数的取值范围是.【解析】(1)由恒等变换公式可求得,并可以表示出定义域;(2)由求出的取值范围,化简成形式,用函数单调性即可求出实数的取值范围.试题解析:(1)∴2分由可得4分∴6分定义域为 8分(2)∵∴10分∵恒成立∴恒成立化简得又∵∴ 12分令得∴在上为减函数14分∴∴ 16分【考点】恒等变换公式、恒成立问题.4.已知函数(1)用五点法画出它在一个周期内的闭区间上的图象;(2)求函数的单调增区间;(3)若,求的最大值和最小值.【答案】(1)(2)(3),【解析】(1)列表、作图 .4分6303(2)由得所以所以函数的单调增区间为 8分(3)因为所以,所以,所以当即时,当即时, -12分【考点】三角函数的性质点评:主要是考查了三角函数的图象与性质的求解运用,属于基础题。
5.已知函数(1)写出函数的单调递减区间;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)(2)【解析】(1)为所求(2)【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
高一数学三角函数的图象与性质试题
高一数学三角函数的图象与性质试题1.已知函数的周期为,且 ,将函数图像上的所有点的横坐标伸长为原来的倍(纵坐标不变),再将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请求出的值,若不存在,说明理由;(3)求实数与正整数,使得在内恰有2013个零点.【答案】(1);(2)假设存在,当时,,,又,则,所以,即,化简得或与矛盾,所以不存在,使得按照某种顺序成等差数列;(3),.【解析】(1)依题意可求得和,利用三角函数的图像变换可求得;(2)依题意,当时,,和,问题转化为方程在内是否有解,通过求解该方程即可判断是否有解即可;(3)将“函数有零点的问题”转化为“方程有实数根”的问题,可分种情况进行讨论:①当时,由题意知其不成立;②当时,先令将其换元为,然后根据函数的图像及其性质判断在内有解所满足的条件,最后由零点的个数,判断出正整数的取值即可.试题解析:(1)由函数的周期为可得,,又由,得,所以;将函数的图像上所有点的横坐标伸长到原来的2倍(保持纵坐标不变)后可得的图像,再将的图象向右平移个单位长度后得到函数. (2)假设存在,当时,,,又,则,所以,即,化简得或与矛盾,所以不存在,使得按照某种顺序成等差数列.(3)令,即,当时,显然不成立;当时,,令,则当时,.由函数及,的图像可知,当时,在内有3个解.再由可知,,综上所述,,.【考点】函数的图象变换,函数与方程.2.已知函数()的部分图象如图所示,则的解析式是___________.【答案】【解析】由图可知,,得,从而,所以,然后将代入,得,又,得,因此,,注意最后确定的值时,一定要代入,而不是,否则会产生增根.【考点】三角函数的图象与性质.3.是否存在实数a,使得函数在闭区间上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.【答案】存在符合题意.【解析】将原函数化简为,令,0≤t≤1,可将问题转化为一元二次函数中来解决,,其中0≤t≤1,对称轴与给定的范围进行讨论,得出最值,验证最值是否取到1 即可.解:,当0≤x≤时,0≤cos x≤1,令则0≤t≤1,∴,0≤t≤1.当,即0≤a≤2时,则当,即时.,解得或a=-4(舍去).当,即a<0时,则当t=0,即时,,解得 (舍去).当,即a>2时,则当t=1,即时,,解得 (舍去).综上知,存在符合题意.【考点】同角三角函数的基本关系式,二次函数求最值.4.已知函数的最小正周期为,则该函数图象()A.关于直线对称B.关于点对称C.关于点对称D.关于直线对称【答案】B【解析】∵的最小正周期为,∴,即,对于A,B:当时,,∴A错误,B正确;对于C,D:当时,,∴C,D均错误,故选B.【考点】正弦型函数的图像和性质.5.如图是函数的图像,是图像上任意一点,过点A作轴的平行线,交其图像于另一点B(A,B可重合),设线段AB的长为,则函数的图像是 ( )A B C D【答案】A【解析】∵是函数上的一点,由图及诱导公式,可知:,∴当时,,当时,有,故选B.【考点】三角函数的图像与性质.6. [2014·郑州质检]要得到函数y=cos2x的图象,只需将函数y=sin2x的图象沿x轴() A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】B【解析】∵y=cos2x=sin(2x+),∴只需将函数y=sin2x的图象沿x轴向个单位,即得y=sin2(x+)=cos2x的图象,故选B.7.函数和函数在内都是()A.周期函数B.增函数C.奇函数D.减函数【答案】C【解析】由正弦函数与正切函数的性质可知,在是奇函数,减函数,在是奇函数,增函数. 故选C.【考点】正弦函数与正切函数的性质.8.已知函数的一部分图象如图所示,如果,则()A.B.C.D.【答案】C【解析】由图象振幅知,由图象中心位置知,由,知,故,所以选C. 可将代入,可得时,取.【考点】的图象与性质.9.已知函数的部分图象,如图所示.(1)求函数解析式;(2)若方程在有两个不同的实根,求的取值范围.【答案】(1)函数解析式为;(2).【解析】(1)由图知:,∴;把点带入得;(2)当时,,结合的图象,可求的取值范围.解: (1) 5分(2) 9分【考点】三角函数的图象和性质.10.已知函数的最大值为3,最小值为.(1)求的值;(2)当求时,函数的值域.【答案】(1);(2)函数在的值域为.【解析】(1)先由余弦函数的图像与性质及得到函数的最值,从而列出方程组,求解即可得到的值;(2)将(1)求出的值代入得到,将当整体,先算出,进而由正弦函数的图像与性质得到,进而可确定函数的值域.试题解析:(1)由余弦函数的性质可知,又,所以,所以,所以因为函数的最大值为3,最小值为所以,求解得到(2)由(1)可得因为,所以,由正弦函数的性质可得,所以所以函数的值域为.【考点】1.三角函数的图像与性质;2.不等式的性质.11.函数y=sin(πx+)(>0)的部分图象如图所示,设P是图像的最高点,A,B是图像与x轴的交点,记∠APB=θ,则sin2θ的值是( )A.B.C.-D.-【答案】A【解析】由周期公式可知函数周期为2,∴AB=2,过P作PD⊥AB与D,根据周期的大小看出直角三角形中直角边的长度,解出∠APD与∠BPD的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ.【考点】(1)三角函数的性质;(2)解三角形.12.下列函数同时具有“最小正周期是,图象关于点(,0)对称”两个性质的函数是()A.B.C.D.【答案】B【解析】排除C,D,因为这两个选项中函数的周期均为。
高一数学三角函数的图象与性质(二)
三角函数的图象与性质(二)一、基本知识:了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.二、例题分析:【例1】(2004年某某卷)设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=【思路串讲】本题主要考查三角函数的图象与性质以及分析问题与解决问题的能力.“会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型”,此类问题的求解一般是先找出周期,定出A 与是的值,最后确定 的值.【标准答案】A【例2】 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2=3π.得 T=6π,所以ω=13.所以y=2sin(x 3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6).【例3】 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)(2)求这个函数关于直线x=2解:(1)T=13π3- π3=4π.∴ω=2πT = 12.又A=3,由图象可知所给曲线是由y=3sin x2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用. 【例4】 已知函数y=12cos 2x+ 32sinxcosx+1 (x ∈R).(1)当y 取得最大值时,求自变量x 的集合;(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能以及运算能力.解题突破口:利用三角公式进行恒等变形化简为)sin()(ϕω+=t A x f ,(1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.必须搞清A 、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心.解 (1)y= 12·1+cos2x 2 + 32·12 sin2x +1= 12sin(2x+π6)+ 54.当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74.(2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移 54个单位即可.点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化. 【例5】已知函数)cos (sin sin 2)(x x x x f +=.(I )函数)(x f 的最小正周期和最大值;(II )在给出的直角坐标系中,画出函数]2,2[)(ππ-=在区间x f y 上的图象.【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能、“五点”法作图以及运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式. 要画出函数]2,2[)(ππ-=在区间x f y 上的图象.主要用“五点”法作图.【标准答案】(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π- 8π-8π 83π 85π y1 21- 1 21+ 1故函数)(x f y =在区间]2,2[ππ-上的图象是【例6】(2003年卷)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期;(Ⅱ)若]2,0[π∈x ,求)(x f 的最大值、最小值.【思路串讲】本题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】(Ⅰ)因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T ……6分(Ⅱ)因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.2……13分【例7】(2003年春季卷)已知函数)(,2cos 4sin 5cos 6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.【思路串讲】本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力.解题突破口:要求函数数)(x f 的定义域,转化为02cos ≠x ,要求函数数)(x f 的值域,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得.所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos 624x f x f xx x 所以=-+=是偶函数.当xx x x f Z k k x 2cos 4sin 5cos 6)(,,4224-+=∈+≠时ππ1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或. 三、训练反馈:1.将y=cosx 的图象作关于x 轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是 ( D )A .y=cosx+1B .y=cosx -1C .y=-cosx+1D .y=-cosx -12.函数f(x)=sin3x 图象的对称中心的坐标一定是 ( B ) A . (12k π,0), k ∈Z B .(13k π,0), k ∈ZC .(14k π,0), k ∈ZD .(k π,0),k ∈Z3.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( B )A .x=- π2B .x=- π4C .x= π8 D .x=π4.为了得到函数y=3sin(3x+π4),x ∈R 的图象,只需把函数y=3sin(x+π4)的图象上所有点( B )A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变.5.要得到y=sin(2x -π3)的图象,只需将y=sin2x 的图象 ( D )A .向左平移π3个单位B . 向右平移π3个单位C .向左平移π6个单位D . 向右平移π6个单位6.函数y=12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( B )A .θ=2k π+π2B .θ=k π+π2 C .θ=2k π+πD .θ=k π+π(k ∈Z)7.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( D ) A .y=sin(-2x+π3) B .y=sin(-2x -π3)C .y=sin(-2x+ 2π3)D . y=sin(-2x -2π3)8.右图是周期为2π的三角函数y=f(x)的图象,那么f(x)可以写成 ( D )A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)9.y=tan(12x -π3)在一个周期内的图象是 (A )10.已知函数y=2cosx(0≤x ≤2π)的图象与直线y=2围成一个封闭的平面图形,则该封闭图形面积是.4π-BACD11.将y=sin(3x -π6)的图象向(左、右)平移个单位可得y=sin(3x+π3)的图像.左,π612.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值- 12,若A >0,ω>0,|φ|<π2,求该函数的解析表达式. y=12 sin(3x+π6)13.已知函数y=3sinx+cosx ,x ∈R .(1)当y 取得最大值时,求自变量x 的取值集合; (2)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?(1){x |x=π3+2k π,k ∈Z}; (2)将y=sinx 的图象向左平移π6,得到函数y=sin(x+π6)的图象,再将所得图象上各点横坐标不变,纵坐标伸长到原来的2倍,得到函数y=2sin(x+π6)的图象.word 11 / 11。
三角函数的图像与性质专项训练(解析版)
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
专题5.3 三角函数的图象与性质(原卷版)
专题5.3 三角函数的图象与性质题型一 三角函数的值域题型一 三角函数的值域例1.(2023春·重庆铜梁·高一铜梁中学校校考期中)求2()2cos 2sin 3R f x x x x =--+∈()的最小值是_____例2.(2023·上海·高三专题练习)已知函数()1πsin 223f x x ⎛⎫=- ⎪⎝⎭,ππ,44x ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的值域为______.练习1.(2023春·北京·高一清华附中校考期中)当0,2x π⎛⎤∈ ⎥⎝⎦时,()14sin sin f x x x =+的最小值为( ) A .5 B .4C .2D .1练习2.(2023春·江苏镇江·高三江苏省扬中高级中学校联考期中)函数π()cos (sin ),[0,]4f x x x x x =∈的最大值与最小值的和为( )A B C D .3练习3.(2022·高三课时练习)函数y =tan(π-x ),x ∈(,)43ππ-的值域为________.练习4.(2023·全国·高三专题练习)函数()sin 2sin 1cos x xf x x=+的值域__________.练习5.(2023·福建龙岩·统考模拟预测)已知()23sin 8cos2xf x x =-,若()()f x f θ≤恒成立,则sin θ=( )A .35B .35 C .45D .45-题型二 求三角函数的周期性,奇偶性,单调性,对称性例3.(2023春·北京·高三北京一七一中校考期中)下列函数中,最小正周期为π的奇函数是( )A .sin2cos2y x x =+B .sin cos y x x =+C .πsin 22y x ⎛⎫=+ ⎪⎝⎭D .πcos 22y x ⎛⎫=+ ⎪⎝⎭例4.(2023春·海南海口·高三海口一中校考期中)(多选)已知函数()π2sin 26f x x ⎛⎫=-- ⎪⎝⎭则( )A .函数()f x 的最小正周期为2πB .函数()f x 的图像关于直线π6x =-对称 C .函数()f x 为偶函数D .函数()f x 的图像向左平移ϕ个单位后关于y 轴对称,则ϕ可以为5π6练习6.(2023春·全国·高三专题练习)(多选)若函数44()sin cos f x x x =+,则( ) A .函数()f x 的一条对称轴为π4x =B .函数()f x 的一个对称中心为π,04⎛⎫⎪⎝⎭C .函数()f x 的最小正周期为π2D .若函数3()8()4g x f x ⎡⎤=-⎢⎥⎣⎦,则()g x 的最大值为2练习7.(2023春·安徽六安·高三六安市裕安区新安中学校考期中)(多选)函数()π2sin 2f x x =+⎛⎫ ⎪⎝⎭,则以下结论中正确..的是( )A .()f x 在π0,2⎛⎫⎪⎝⎭上单调递减B .直线 π6x =为()f x 图象的一条对称轴C .()f x 的最小正周期为2πD .()f x 在π0,2⎛⎫ ⎪⎝⎭上的值域是(练习8.(2023春·江西·高三校联考期中)(多选)已知函数π()cos 25x f x ⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的图象关于2π,05⎛⎫- ⎪⎝⎭对称B .()f x 的图象关于直线8π5x =对称 C .3π5f x ⎛⎫+ ⎪⎝⎭为奇函数D .()f x 为偶函数练习9.(2023·北京海淀·高三专题练习)函数()cos π6f x x ω=+⎛⎫ ⎪⎝⎭在[]π,π-的图象如图所示.则(1)()f x 的最小正周期为__________; (2)距离y 轴最近的对称轴方程__________.练习10.(2023·北京海淀·高三专题练习)函数()()()cos sin f x x a x b =+++,则( ) A .若0a b +=,则()f x 为奇函数B .若π2a b +=,则()f x 为偶函数C .若π2b a -=,则()f x 为偶函数 D .若πa b -=,则()f x 为奇函数题型三 解三角不等式例5.(2023春·广东佛山·高三佛山一中校考阶段练习)不等式tan 1x >-的解集是________.例6.(2023春·辽宁本溪·高三校考阶段练习)已知函数()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)用五点法画出函数()f x 在2,33ππ⎡⎤-⎢⎥⎣⎦上的大致图像,并写出()f x 的最小正周期;(2)1≤.练习11.(2023秋·广东深圳·高三统考期末)已知函数()()lg 2cos 1f x x =-,则函数()f x 的定义域为( )A .ππ2π,2π,Z 33k k k ⎛⎫-+∈ ⎪⎝⎭B .ππ2π,2π,Z 33k k k ⎡⎤-+∈⎢⎥⎣⎦C .Z ππ,ππ2,266k k k ⎛⎫-+∈ ⎪⎝⎭D .Z ππ,ππ2,266k k k ⎡⎤-+∈⎢⎥⎣⎦练习12.(2023春·广东深圳·高一深圳市光明区高级中学统考期中)已知函数()()2sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若()f x >x 的取值范围.练习13.(2021春·高三课时练习)解不等式1tan x ≤≤-练习14.(2023春·辽宁铁岭·高三铁岭市清河高级中学校考阶段练习)已知某地某天从6时到22时的温度变换近似地满足函数π510sin π2084y x ⎛⎫=-+ ⎪⎝⎭.(1)求该地这一天该时间段内温度的最大温差;(2)若有一种细菌在15C 到25C 之间可以存活则在这段时间内,该细菌最多能存活多长时间?练习15.(2023春·江西南昌·高三校考阶段练习)函数lgsin y x =_________.题型四 由三角函数的值域(最值)求参数例7.(2023·全国·高三专题练习)已知函数()()11sin 06f x a x x a =-≠,且()7π6f x f ⎛⎫≤ ⎪⎝⎭恒成立,则()f x =______例8.(2023春·上海青浦·高三上海市朱家角中学校考期中)设函数sin y x =定义域为[],a b ,值域为11,2⎡⎤--⎢⎥⎣⎦,则b a -的最大值为______练习16.(2023春·江苏镇江·高三江苏省镇江中学校考期中)已知()π0,sin sin3a f x x a x ⎛⎫>=-- ⎪⎝⎭=a __________.练习17.(2023春·辽宁朝阳·高三朝阳市第一高级中学校考期中)已知函数()cos f x x x =-的定义域为[,]a b ,值域为[1,2]-,则b a -的取值范围是( ) A .π,π3⎡⎤⎢⎥⎣⎦B .π5π,26⎡⎤⎢⎥⎣⎦C .π24π,3⎡⎤⎢⎥⎣⎦D .2433ππ,⎡⎤⎢⎥⎣⎦练习18.(2023·上海·高三专题练习)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.练习19.(2023·湖北襄阳·襄阳四中校考模拟预测)若函数()sin cos()f x x x ϕ=++的最小值为ϕ的一个取值为___________.(写出一个即可)练习20.(2023春·北京·高三北师大二附中校考期中)已知函数()ππ2sin 25f x x ⎛⎫=+ ⎪⎝⎭,若对任意的实数x ,总有()()()12f x f x f x ≤≤,则12x x -的最小值是( ) A .2 B .4C .πD .2π题型五 根据单调求参数例9.(2021·高一课时练习)若不等式tan x a >在ππ,42x ⎛⎫∈ ⎪⎝⎭- 上恒成立,则a 的取值范围为( ) A .1a > B .1a ≤ C .1a <- D .1a ≤-例10.(2023·山东烟台·统考二模)已知函数()()()cos 202πf x x ϕϕ=+≤<在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ϕ的取值范围为( ). A .4ππ3ϕ≤≤ B .π4π23ϕ≤≤ C .4π2π3ϕ≤≤ D .4π3π32ϕ≤≤练习21.(2023秋·云南楚雄·高三统考期末)已知函数()()πcos 03f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间3π0,2⎛⎫⎪⎝⎭上为单调函数,则ω的取值范围是______.练习22.(2023春·河南南阳·高三南阳中学校考阶段练习)(多选)若函数cos2y x =与函数()sin 2y x ϕ=+在π0,4⎡⎤⎢⎥⎣⎦上的单调性相同,则ϕ的一个值为( )A .π6B .3π4C .4π3-D .4π3练习23.(2023春·四川成都·高三成都市第二十中学校校考阶段练习)已知函数 tan y x ω=在ππ,22⎛⎫- ⎪⎝⎭内是减函数, 则( ) A .01ω<< B .10ω-≤< C .1ω≥ D .1ω≤-练习24.(2023春·辽宁·高二辽宁实验中学校考阶段练习)若函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎛⎫⎪⎝⎭上不单调,则实数ω的取值范围是______.练习25.(2023·河北承德·统考模拟预测)已知1ω>,函数π()cos 3f x x ω⎛⎫=- ⎪⎝⎭.(1)当2ω=时,求()f x 的单调递增区间; (2)若()f x 在区间ππ,63⎡⎤⎢⎥⎣⎦上单调,求ω的取值范围.题型六 根据对称求参数例11.(2023春·河北石家庄·高三石家庄市第十五中学校考阶段练习)若()ππcos 232f x x ϕϕ⎛⎫⎛⎫=++< ⎪⎪⎝⎭⎝⎭是奇函数,则ϕ=_________.例12.(湖南省名校2023届高三考前仿真模拟(二)数学试题)函数()()()sin cos f x x x ϕϕ=++的图象的一条对称轴方程是π4x =-,则ϕ的最小正值为( )A .π6B .π4C .π3D .π2练习26.(2023·全国·高三专题练习)(多选)若函数()ππsin cos sin sin 36f x x x ϕϕ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的图象关于坐标原点对称,则ϕ的可能取值为( ) A .π3-B .π6-C .π3D .2π3练习27.(2023·重庆·统考模拟预测)已知函数π()sin()(0)3f x x ωω=+>,若对于任意实数x ,都有π()()3f x f x =--,则ω的最小值为( )A .2B .52C .4D .8练习28.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)已知函数()2s πsin co 2f x x x x ⎛⎫=+ ⎪⎝⎭.(1)设[0,π)θ∈,函数()f x θ+是偶函数,求θ的值;(2)若()f x 在区间,π3m ⎡⎤-⎢⎥⎣⎦上恰有三条对称轴,求实数m 的取值范围.练习29.(2023·全国·高三专题练习)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若()0f =π6x =为()f x 图象的一条对称轴,则ω的最小值为______.练习30.(2022·高三课时练习)已知()()3sin f x x ωϕ=+对任意x 都有()()33ππ+=-f x f x ,则3f π⎛⎫⎪⎝⎭等于________.题型七 由图象确定三角函数解析式例13.(2023春·陕西安康·高三陕西省安康中学校考阶段练习)已知函数()()πcos 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则( )A .()7ππ2cos 123f x x ⎛⎫=+⎪⎝⎭ B .()ππ2cos 243f x x ⎛⎫=+ ⎪⎝⎭C .()11ππ2cos 243f x x ⎛⎫=-⎪⎝⎭ D .()11ππ2cos 243f x x ⎛⎫=+⎪⎝⎭例14.(2022春·福建·高二统考学业考试)(多选)函数()()sin 0y A x A ωϕ=+>的一个周期内的图象如图所示,下列结论正确的有( )A .函数()f x 的解析式是()π2sin 23f x x ⎛⎫=- ⎪⎝⎭B .函数()f x 的最大值是2C .函数()f x 的最小正周期是πD .函数()f x 的一个对称中心是π,06⎛⎫⎪⎝⎭练习31.(2023春·四川成都·高三石室中学校考期中)如图,函数()()sin f x A x =+ωϕ(0A >,0ω>,π<ϕ)的部分图象与坐标轴的三个交点分别为()1,0P -,Q ,R ,且线段RQ 的中点M 的坐标为31,22⎛⎫- ⎪⎝⎭,则()2f -等于( )A .1B .-1CD .练习32.(2023春·吉林长春·高三东北师大附中校考阶段练习)函数()()πsin (0,0,)2f x A x A ωϕωϕ=+>><的部图象如图所示,则ω=______,ϕ=______;练习33.(2023春·辽宁沈阳·高三沈阳二十中校联考期中)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭ 的部分图像如图所示,下列说法正确的是( )A .()f x 的图像关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图像关于直线5π12x =-对称 C .将函数2cos2y x =的图像向右平移π12个单位长度得到函数()f x 的图像D .若方程()f x m =在π,02⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m 的取值范围是(2,-练习34.(湖南省部分名校联盟2023届高三5月冲刺压轴大联考数学试题)(多选)如图是某质点作简谐运动的部分图象,位移y (单位:mm )与时间t (单位:s )之间的函数关系式是()sin 0,0,0,2y A t A πωϕωϕ⎛⎫⎛⎫=+>>∈ ⎪ ⎪⎝⎭⎝⎭,则下列命题正确的是( )A .该简谐运动的初相为π6B .该简谐运动的频率为12πC .前6秒该质点的位移为12mmD .当42π,33t ⎡⎤∈⎢⎥⎣⎦时,位移y 随着时间t 的增大而增大练习35.(2023春·河北衡水·高三衡水市第二中学期末)已知函数()()tan f x A x ωϕ=+π02ϕϕ⎛⎫>< ⎪⎝⎭,,()y f x =的部分图象如图,则 7π24f ⎛⎫= ⎪⎝⎭( )A .2+BC .D .题型八 描述三角函数的变换过程例15.(2022春·福建·高二统考学业考试)为了得到函数π()2cos 3f x x ⎛⎫=+ ⎪⎝⎭的图像,只需把曲线()cos f x x =上所有的点( )A .向左平移π3个单位,再把纵坐标伸长到原来的2倍B .向右平移π3个单位,再把纵坐标伸长到原来的2倍C .向左平移π3个单位,再把纵坐标缩短到原来的12D .向右平移π3个单位,再把纵坐标缩短到原来的12例16.(北京市2023届高三高考模拟预测考试数学试题)要得到cos 2xy =的图像,只要将sin 2xy =的图像( )A .向左平移π2个单位B .向右平移π2个单位C .向左平移π个单位D .向右平移π个单位练习36.(2021·高三课时练习)函数ππ()2sin(),0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示, 为了得到这个函数的图象,只要将2sin y x =的图象上所有的点 ( )A .向右平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向右平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向右平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变练习37.(2023春·江西赣州·高三校考期中)(多选)要得到函数y x =的图象,只需将函数π24y x ⎛⎫=+ ⎪⎝⎭的图象上所有的点的( )A .先向左平移π8个单位长度,再横坐标伸长到原来的2倍(纵坐标不变)B .先向左平移π4个单位长度,再横坐标缩短到原来的12倍(纵坐标不变)C .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π4个单位长度D .先横坐标伸长到原来的2倍(纵坐标不变),再向左平移π8个单位长度练习38.(2023春·贵州·高三校联考期中)为了得到函数πsin 28y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数πcos 24y x ⎛⎫=-- ⎪⎝⎭的图象( )A .向左平移5π8个单位长度 B .向右平移5π8个单位长度 C .向左平移5π16个单位长度 D .向右平移5π16个单位长度练习39.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)为得到函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象,只需把函数()cos g x x =图象上的所有点的( )A .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向左平移π6个单位长度B .横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向右平移π12个单位长度 C .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向左平移π6个单位长度D .横坐标缩短到原来的12,纵坐标不变,再把得到的图象向右平移π12个单位长度练习40.(2023春·辽宁朝阳·高二校联考期中(多选))已知函数()()2sin (π0,)f x x ωϕϕω><=+的部分图象如图所示,则()f x 的图象可以由函数()2sin g x x =的图象( )A .先纵坐标不变,横坐标变为原来的12,再向左平移11π12个单位长度得到 B .先纵坐标不变,横坐标变为原来的2倍,再向右平移π12个单位长度得到 C .先向右平移π12个单位长度,再纵坐标不变,横坐标变为原来的12得到 D .先向右平移π6个单位长度,再纵坐标不变,横坐标变为原来的12得到题型九 求图象变换前(后)的函数解析式例17.(2023·陕西榆林·统考模拟预测)将函数cos2y x =的图象向右平移π20个单位长度,再把所得图象各点的横坐标缩小到原来的12(纵坐标不变),所得图象的一条对称轴为x =( ) A .π80B .π60C .π40D .π20例18.(2023·江苏南通·统考模拟预测)将函数()πsin 13f x x ⎛⎫=++ ⎪⎝⎭的图象上的点横坐标变为原来的12(纵坐标变)得到函数()g x 的图象,若存在()0,πθ∈,使得()()2g x g x θ+-=对任意x ∈R 恒成立,则θ=( )A .π6B .π3C .2π3D .5π6练习41.(2023·河南郑州·模拟预测)把函数()y f x =图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,再把所得曲线向右平移π4个单位长度,得到函数πcos 3y x ⎛⎫=- ⎪⎝⎭的图象,则()f x =( ) A .15πsin 212x ⎛⎫+ ⎪⎝⎭B .πsin 212x ⎛⎫- ⎪⎝⎭C .5πsin 212x ⎛⎫+ ⎪⎝⎭D .1πsin 212x ⎛⎫- ⎪⎝⎭练习42.(2023·辽宁·校联考三模)(多选)已知函数()()cos 202f x x πϕϕ⎛⎫=+-<< ⎪⎝⎭图像的一条对称轴为8x π=,先将函数()f x 的图像上所有点的横坐标伸长为原来的3倍,再将所得图像上所有的点向右平移4π个单位长度,得到函数()g x 的图像,则函数()g x 的图像在以下哪些区间上单调递减( ) A .[],2ππ B .[]2,ππ--C .79,22ππ⎡⎤⎢⎥⎣⎦D .9,42ππ⎡⎤--⎢⎥⎣⎦练习43.(2023春·重庆铜梁·高三铜梁中学校校考期中)(多选)将函数π3sin()3y x =+的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移π3个单位长度,得到函数()y g x =的图象,下列结论正确的是( ) A .函数()y g x =的图象关于点π,06⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在π0,2⎡⎤⎢⎥⎣⎦上单调递增D .函数()y g x =的图象关于直线5π12x =对称练习44.(2023·江西上饶·校联考模拟预测)已知π3是函数()sin cos f x x a x =+的一个零点,将函数()2y f x =的图象向右平移π12个单位长度后所得图象的表达式为( ) A .7π2sin 26y x ⎛⎫=- ⎪⎝⎭B .π2sin 212y x ⎛⎫=+ ⎪⎝⎭C .2cos 2y x =-D .2cos2y x =。
高一数学三角函数试题
高一数学三角函数试题1.已知且则________.【答案】【解析】,因为所以,即。
所以。
【考点】同角三角函数基本关系式。
2.在中,为坐标原点,,,,则面积的最小值为_________.【答案】【解析】,所以,所以。
则,当时,。
【考点】1向量的数量积公式;2向量的模;3同角三角函数关系式;4正弦函数的最值。
3.在△ABC中,角A,B,C的对边分别为,若,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【答案】B【解析】根据正弦定理,可得,根据正弦和角公式有,即,因为三角形中,,所,可得.【考点】正弦定理.4.已知函数的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是A.B.C.D.【答案】B【解析】根据题意,由于函数的最大值为4,最小值为0,在可知A+m=4,-A+m=0,m=2,A=2,由于两个对称轴间的最短距离为为半个周期,则可知周期为,g故w=2,直线是其图象的一条对称轴,结合代入可知,,因此可知解析式为,故选B.【考点】三角函数的性质与解析式点评:主要是考查了三角函数的图象与解析式的关系的运用,属于基础题。
5.已知函数为非零实数,且,则的值为___________________.【答案】2【解析】根据题意,由于函数为非零实数,那么可知函数的周期为2,那么可知 =f(1)=-asin-bsin+4,=f(0)= asin+bsin+4=2,故答案为2.【考点】三角函数的求值点评:主要是考查了诱导公式以及函数周期性的运用,属于基础题。
6.若,则()A.B.C.D.【答案】C【解析】根据题意,由于,故可知答案为C.【考点】二倍角公式点评:主要是考查了二倍角的正弦公式的运用,属于基础题。
7.要使sin-cos=有意义,则m的范围为【答案】【解析】根据题意,由于要使sin-cos=有意义,则只需要,故可知答案为【考点】三角函数的值域点评:本题考查三角函数的值域,不等式的解法,考查计算能力,属于中档题.8.已知函数,若,则与的大小关系是()A.>B.<C.=D.大小与a、有关【答案】B【解析】根据题意,由于函数,若,,故可知=,=,故<,故选B.【考点】三角函数的性质点评:主要是考查了三角函数的性质的意义,单调性比较大小,属于基础题。
高一数学三角函数试题
高一数学三角函数试题1.已知函数,则函数的图像()A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称【答案】B【解析】时,,则此函数的对称轴为;时,,则此函数的对称中心为。
分析可知B正确。
【考点】1两角和差公式;2余弦函数图像的性质。
2.振动量y=sin(ωx+φ)(ω>0)的初相和频率分别是-π和,则它的相位是________.【答案】3πx-π【解析】∵f=,∴T=,∴ω==3π,又φ=-π,∴y=sin(3πx-π),∴振动量y的相位是3πx-π.3.若函数y=sin(2x+θ)(0≤θ≤π)是R上的偶函数,则θ的值可以是()A.0B.C.D.π【答案】C【解析】∵y=sin(2x+θ)为R上的偶函数,∴θ=kπ+ (k∈Z),∵0≤θ≤π,∴k=0,θ=4.函数f(x)=3sin(3x+φ)在区间[a,b]上是增函数,且f(a)=-2,f(b)=2,则g(x)=2cos(2x+φ)在[a,b]上()A.是增函数B.是减函数C.可以取得最大值D.可以取得最小值【答案】C【解析】由f(x)在[a,b]上为增函数及f(a)=-2,f(b)=2知,g(x)在[a,b]上先增后减,可以取到最大值.5.已知函数f(x)=A cos(ωx+φ)+b(A>0,ω>0,|φ|<)在同一个周期内的图象上有一个最大值点A和一个最小值点B.(1)求f(x)的解析式;(2)经过怎样的平移和伸缩变换可以将f(x)的图象变换为g(x)=cos x的图象.【答案】(1)f(x)=4cos-1.(2)(一)将f(x)图象上各点向上平移1个单位;(二)将所得图象上各点横坐标伸长到原来的2倍,纵坐标缩短到原来的;(三)将所得图象上各点左移个单位,即可得到g(x)=cos x的图象.【解析】(1)由f(x)的最大值点A与最小值点B可知,A==4,b==-1,=-=,∴T==π,∴ω=2.∴f(x)=4cos(2x+φ)-1.将点A代入得:4cos-1=3,∴cos=1,∴+φ=2kπ(k∈Z),∴φ=2kπ-,∵|φ|<,∴φ=-,∴f(x)=4cos-1.(2)依次按下列步骤变换:(一)将f(x)图象上各点向上平移1个单位;(二)将所得图象上各点横坐标伸长到原来的2倍,纵坐标缩短到原来的;(三)将所得图象上各点左移个单位,即可得到g(x)=cos x的图象.6.下列直线中,与函数y=tan的图象不相交的是()A.x=B.y=C.x=D.y=【答案】C【解析】由2x+=kπ+得,x=+(k∈Z),令k=0得,x=.7.ω是正实数,如果函数f(x)=2sinωx在[-,]上是增函数,那么ω的取值范围是________.【答案】0<ω≤【解析】解法一:2kπ-≤ωx≤2kπ+,k=0时,-≤x≤,由题意:-≤-①,≥②,由①得ω≤,由②得ω≥2,∴0<ω≤.解法二:∵ω>0,∴据正弦函数的性质f(x)在[-,]上是增函数,则f(x)在[-,]上是增函数,又f(x)周期T=,由≥得0<ω≤.8.求下列函数的单调区间:(1)y=tan;(2)y=tan2x+1;(3)y=3tan.【答案】(1),k∈Z(2) (k∈Z).(3)(k∈Z).【解析】(1)由kπ-<x-<kπ+得kπ-<x<kπ+ (k∈Z),所以函数的单调递增区间是,k∈Z.(2)由kπ-<2x<kπ+得-<x<+ (k∈Z),所以函数的单调递增区间是 (k∈Z).(3)y=3tan=-3tan,由kπ-<-<kπ+得4kπ-<x<4kπ+,所以函数的单调递减区间是 (k∈Z).9.要得到函数y=sin x的图象,只需将函数y=cos的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】A【解析】y=sin x=cos=cos=cos,∴须将y=cos的图象向右平移个单位.[点评]一般地,正弦与余弦异名函数图象平移时,由cos x为偶函数知,将正弦函数利用sin x=cos化余弦后,结合cos x为偶函数可调整x系数的符号,再考虑平移单位数较简便.本题也可以先作变形y=cos=sin再平移,但此解法不具有一般性.10.观察函数y=sin x的图象可知y=sin x的奇偶性为________函数.【答案】奇【解析】因为根据奇偶性的定义可知sin(-x)=-sinx,因此是奇函数。
高一数学三角函数的概念、图像与性质含答案
高一数学三角函数的概念、图像与性质【重难点知识点网络】:【重难点题型突破】:一、扇形的周长与面积例1 .(1)、(2022·全国·高三专题练习)《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧AB和弦AB所围成的图中阴影部分.若弧田所在圆的半径为2,圆心角为23,则此弧田的面积为__________.(2)、(2021·辽宁·大连二十四中高一期中)“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,转子发动机的设计就是利用了莱洛三角形,转子引擎只需转一周,各转子便有一次进气、压缩、点火与排气过程,相当于往复式引擎运转两周,因此具有小排气量就能成就高动力输出的优点.另外,由于转子引擎的轴向运动特性,它不需要精密的曲轴平衡就可以达到非常高的运转转速.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形(如图所示).设“莱洛三角形”曲边上两点之间的最大距离为4,则该“莱洛三角形”的面积为()A.8π-B.8π-C.16π-D.16π-【变式训练1-1】、(2022·全国·高三专题练习)如图所示,弧田是由圆弧AB 和其所对弦AB 围成的图形,若弧田的弧AB 长为3π,弧所在的圆的半径为4,则弧田的面积是___________.【变式训练1-2】、(2022·广东·东涌中学高三期中)古代文人墨客都善于在纸扇上题字、题画,题字、题画的部分多为扇环.如图是扇环的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若128S S =,则12l l =( )A .2B .3C .4D .5二、同角公式与诱导公式例2 .(1)、(2022·安徽·阜南县王店孜乡亲情学校高一阶段练习)172053sin cos tan 636πππ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.(2)、(2022·江苏省江浦高级中学高一阶段练习)已知π1cos 62α⎛⎫-= ⎪⎝⎭,则4πsin 3α⎛⎫+=⎪⎝⎭___________.(3)、(2022·黑龙江·密山市第四中学高三阶段练习)已知tan 3α=-,则sin(π)cos(π)αα+⋅-=( ) A .910- B .310-C .310D .910【变式训练2-1】、(2022·重庆市云阳高级中学校高一阶段练习)若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin 3πα⎛⎫-= ⎪⎝⎭( )A .45 B .35 C .35D .45-【变式训练2-2】、(2022·江苏·昆山震川高级中学高三阶段练习)若()π2cos cos π2θθ⎛⎫-=+ ⎪⎝⎭,则22cos sin 2θθ+=__________.【变式训练2-3】、(2022·陕西·宝鸡市渭滨中学高一阶段练习)已知角 α 的终边经过点 ()2,1P -,则 3cos 2πα⎛⎫+⎪⎝⎭的值为( )A B C .D .三、三角函数的图像变换例3 .(1)、(2022·江西赣州·高三阶段练习(文))已知函数π()sin()0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .π2sin 26x ⎛⎫+ ⎪⎝⎭B .π2sin 6x ⎛⎫+ ⎪⎝⎭C .π2cos 23x ⎛⎫+ ⎪⎝⎭D .cos2x(2)、(2021·陕西·礼泉县第一中学高三期中(文))下列函数中,以π为周期且在区间ππ,42⎛⎫⎪⎝⎭上单调递增的是( )A .()sin2f x x =B .()cos 2xf x =C .()sin cos f x x x =-D .()22cos 1f x x =-【变式训练3-1】、(2022·河南省体育中学高三期中)函数()sin y A ωx φ=+(0ω>,2πϕ<)的部分图象如图所示,则( )A .2sin 6y x π⎛⎫=+ ⎪⎝⎭B .2sin 26y x π⎛⎫=- ⎪⎝⎭ C .2sin 3y x π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=- ⎪⎝⎭【变式训练3-2】、(2022·宁夏·银川一中高三阶段练习(理))已知函数()π1cos (0)32f x x ωω⎛⎫=--> ⎪⎝⎭,将()f x 的图像上所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图像.已知()g x 在[]0,π上恰有5个零点,则ω的取值范围是__________.四、三角函数的单调性与最值例4 .(1)、(2022·浙江·杭州外国语学校高一期中)若函数212cos sin y x x =--的值域是[],a b ,则a b +=_____________.(2)、(2022·上海·华东师范大学第三附属中学高一期末)函数π2sin(2)6y x =+的单调递减区间是___________.(3)、(2022·广东韶关·一模)下列区间中,函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是( )A .π0,2⎛⎫⎪⎝⎭ B .π,π2⎛⎫ ⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫ ⎪⎝⎭【变式训练4-1】、(2022·黑龙江·哈尔滨市第一六二中学校高三阶段练习)函数()23cos 4f x x x =-,[],2x ππ∈的最大值是______.【变式训练4-2】、(2021·陕西渭南·高三阶段练习(文))函数()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个单调递减区间为( )A .()0,πB .()π,0-C .π0,2⎛⎫⎪⎝⎭ D .ππ,63⎛⎫- ⎪⎝⎭【变式训练4-3】、(2022·全国·高三专题练习)函数tan ,,636y x x πππ⎛⎫∈⎛⎫=+ ⎪⎝⎭- ⎪⎝⎭的值域为______.例5.(2022·山东·菏泽市定陶区明德学校(山大附中实验学校)高一阶段练习)已知函数()π2sin 2,R 4f x x x ⎛⎫=-∈ ⎪⎝⎭(1)求()f x 的最小值及对应的x 的集合; (2)求()f x 在[]0,π上的单调递减区间;【变式训练5-1】、(2022·江苏·金陵中学高一阶段练习)已知函数()π2sin 1(0)3f x x ωω⎛⎫=++> ⎪⎝⎭的最小正周期为π.(1)求π6f ⎛⎫⎪⎝⎭的值;(2)求函数()f x 的单调递减区间: (3)若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()f x 的最值.五、综合应用例6 .(1)、(2022·安徽·合肥八中教育集团铭传高级中学高一期末)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,π8x =-是函数()f x 的一个零点,π8=x 是函数()f x 的一条对称轴,若()f x 在区间ππ,54⎛⎫ ⎪⎝⎭上单调,则ω的最大值是( ) A .14 B .16 C .18 D .20(2)、(2020·辽宁沈阳·高三阶段练习)关于函数()cos 22|cos |f x x x =-有如下四个命题: ①()f x 的最小值为32-;②()f x 在2,3ππ⎛⎫⎪⎝⎭上单调递增; ③()f x 的最小正周期为π;④方程()f x =(0,)π内的各根之和为2π. 其中所有真命题的序号是________.【变式训练7-1】、(2023·全国·高三专题练习(文))已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ B .4170,8,32⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦ C .4280,8,33⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ D .5220,,823⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦【变式训练7-2】、(2020·四川眉山·高一期末)已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为图象的对称轴,且()f x 在5,412ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为________.例8.(2022·黑龙江·尚志市尚志中学高一阶段练习)已知函数()π26f x x ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的单调区间;(2)求函数()f x 在区间ππ,42⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求此时x 的值.【变式训练8-1】、(2022·浙江·温州外国语学校高一阶段练习)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期π.(1)求函数()f x 单调递增区间和对称中心; (2)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域.专题08 三角函数的概念、图像与性质【重难点知识点网络】:【重难点题型突破】: 一、扇形的周长与面积例1 .(1)、(2022·全国·高三专题练习)《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧AB 和弦AB 所围成的图中阴影部分.若弧田所在圆的半径为2,圆心角为23π,则此弧田的面积为__________.【详解】依题意,等腰AOB 底边,则AOB 的面积为3, 2423π⨯=,则有阴影部分的面积为3π-. (2)、(2021·辽宁·大连二十四中高一期中)“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,转子发动机的设计就是利用了莱洛三角形,转子引擎只需转一周,各转子便有一次进气、压缩、点火与排气过程,相当于往复式引擎运转两周,因此具有小排气量就能成就高动力输出的优点.另外,由于转子引擎的轴向运动特性,它不需要精密的曲轴平衡就可以达到非常高的运转转速.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形(如图所示).设“莱洛三角形”曲边上两点之间的最大距离为4,则该“莱洛三角形”的面积为()A.8π-B.8π-C.16π-D.16π-S=ABC面积与扇形面积之间的关系求出其面积即可=AB BC1S=ABC莱洛三角形8S=ABC故选:A.【变式训练1-1】、(2022·全国·高三专题练习)如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为3π,弧所在的圆的半径为4,则弧田的面积是___________.【变式训练1-2】、(2022·广东·东涌中学高三期中)古代文人墨客都善于在纸扇上题字、题画,题字、题画的部分多为扇环.如图是扇环的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若128S S =,则12l l =( )A .2B .3C .4D .5二、同角公式与诱导公式例2 .(1)、(2022·安徽·阜南县王店孜乡亲情学校高一阶段练习)172053sin cos tan 636πππ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.【答案】1-1-(2)、(2022·江苏省江浦高级中学高一阶段练习)已知cos 62α⎛⎫-= ⎪⎝⎭,则sin 3α⎛⎫+=⎪⎝⎭___________. 【答案】12-##0.5-(3)、(2022·黑龙江·密山市第四中学高三阶段练习)已知tan 3α=-,则sin(π)cos(π)αα+⋅-=( ) A .910-B .310-C .310D .910【变式训练2-1】、(2022·重庆市云阳高级中学校高一阶段练习)若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin 3πα⎛⎫-= ⎪⎝⎭( )A .45 B .35 C .35D .45-【变式训练2-2】、(2022·江苏·昆山震川高级中学高三阶段练习)若()2cos cos π2θθ⎛⎫-=+ ⎪⎝⎭,则22cos sin 2θθ+=__________. 【答案】45##0.8【变式训练2-3】、(2022·陕西·宝鸡市渭滨中学高一阶段练习)已知角 α 的终边经过点 ()2,1P -,则 3cos 2πα⎛⎫+⎪⎝⎭的值为( ) AB C .D .三、三角函数的图像变换例3 .(1)、(2022·江西赣州·高三阶段练习(文))已知函数π()sin()0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .π2sin 26x ⎛⎫+ ⎪⎝⎭B .π2sin 6x ⎛⎫+ ⎪⎝⎭C .π2cos 23x ⎛⎫+ ⎪⎝⎭D .cos2x(2)、(2021·陕西·礼泉县第一中学高三期中(文))下列函数中,以π为周期且在区间ππ,42⎛⎫⎪⎝⎭上单调递增的是( )A .()sin2f x x =B .()cos 2xf x =C .()sin cos f x x x =-D .()22cos 1f x x =-【变式训练3-1】、(2022·河南省体育中学高三期中)函数()sin y A ωx φ=+(0ω>,2πϕ<)的部分图象如图所示,则( )A .2sin 6y x π⎛⎫=+ ⎪⎝⎭B .2sin 26y x π⎛⎫=- ⎪⎝⎭C .2sin 3y x π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=- ⎪⎝⎭【变式训练3-2】、(2022·宁夏·银川一中高三阶段练习(理))已知函数()cos (0)32f x x ωω⎛⎫=--> ⎪⎝⎭,将()f x 的图像上所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图像.已知()g x 在[]0,π上恰有5个零点,则ω的取值范围是__________.四、三角函数的单调性与最值例4 .(1)、(2022·浙江·杭州外国语学校高一期中)若函数212cos sin y x x =--的值域是[],a b ,则a b +=_____________. 【答案】2【分析】通过换元,利用余弦函数的有界性,转化为二次函数在给定区间求值域,结合单调性解决即可. 【详解】令[]cos ,1,1x t t =∈-,则2212cos sin 12(1)y x x t t =--=---222(1)1t t t =-=--,[]1,1t ∈-, 根据二次函数的单调性可知,函数在[]1,1t ∈-上单调递减, 所以max 3y =,min 1y =-,所以值域为[]1,3-,则2a b +=. 故答案为:2(2)、(2022·上海·华东师范大学第三附属中学高一期末)函数π2sin(2)6y x =+的单调递减区间是___________.(3)、(2022·广东韶关·一模)下列区间中,函数()3sin 6f x x ⎛⎫=+ ⎪⎝⎭的单调递减区间是( )A .π0,2⎛⎫⎪⎝⎭ B .π,π2⎛⎫ ⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫ ⎪⎝⎭【变式训练4-1】、(2022·黑龙江·哈尔滨市第一六二中学校高三阶段练习)函数()23cos 4f x x x =-,[],2x ππ∈的最大值是______.【答案】14##0.25【变式训练4-2】、(2021·陕西渭南·高三阶段练习(文))函数()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个单调递减区间为( )A .()0,πB .()π,0-C .π0,2⎛⎫⎪⎝⎭ D .ππ,63⎛⎫- ⎪⎝⎭【变式训练4-3】、(2022·全国·高三专题练习)函数tan ,,636y x x πππ⎛⎫∈⎛⎫=+ ⎪⎝⎭- ⎪⎝⎭的值域为______.例5.(2022·山东·菏泽市定陶区明德学校(山大附中实验学校)高一阶段练习)已知函数()π2sin 2,R 4f x x x ⎛⎫=-∈ ⎪⎝⎭(1)求()f x 的最小值及对应的x 的集合; (2)求()f x 在[]0,π上的单调递减区间;【变式训练5-1】、(2022·江苏·金陵中学高一阶段练习)已知函数()π2sin 1(0)3f x x ωω⎛⎫=++> ⎪⎝⎭的最小正周期为π.(1)求π6f ⎛⎫⎪⎝⎭的值;(2)求函数()f x 的单调递减区间: (3)若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()f x 的最值.五、综合应用例6 .(1)、(2022·安徽·合肥八中教育集团铭传高级中学高一期末)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,π8x =-是函数()f x 的一个零点,π8=x 是函数()f x 的一条对称轴,若()f x 在区间ππ,54⎛⎫ ⎪⎝⎭上单调,则ω的最大值是( ) A .14 B .16 C .18 D .20π2ϕ-≤≤当π5x <<函数()f x (ii )当ωπ2ϕ-≤≤当π5x <<函数()f x 因此,ω故选:A.(2)、(2020·辽宁沈阳·高三阶段练习)关于函数()cos 22|cos |f x x x =-有如下四个命题:①()f x 的最小值为32-; ②()f x 在2,3ππ⎛⎫ ⎪⎝⎭上单调递增; ③()f x 的最小正周期为π;④方程()f x =(0,)π内的各根之和为2π.其中所有真命题的序号是________.【变式训练7-1】、(2023·全国·高三专题练习(文))已知函数()cos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( ) A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ C .4280,8,33⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦178,2⎤⎡⎤⎥⎢⎥⎦⎣⎦. 【点睛】在处理正弦型、余弦型三角函数性质综合问题时,通常使用整体代换的方法,将整体范围满足组对应的单调性或者对应的条件关系,罗列出等式或不等式关系,帮助我们进行求解【变式训练7-2】、(2020·四川眉山·高一期末)已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为图象的对称轴,且()f x 在5,412ππ⎛⎫ ⎪⎝⎭上单调,则ω的最大值为________.故答案为:5【点睛】本小题主要考查三角函数的单调性、周期性、零点和对称轴等知识,属于中档题.例8.(2022·黑龙江·尚志市尚志中学高一阶段练习)已知函数()π26f x x ⎛⎫=- ⎪⎝⎭. (1)求函数()f x 的单调区间;(2)求函数()f x 在区间ππ,42⎡⎤-⎢⎥上的最小值和最大值,并求此时x 的值.【变式训练8-1】、(2022·浙江·温州外国语学校高一阶段练习)已知函数()2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期π.(1)求函数()f x 单调递增区间和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域. 【答案】(1)答案见解析。
高一数学三角函数练习题
高一数学三角函数练习题1. 简答题1. 请简要说明正弦函数、余弦函数和正切函数的定义和性质。
- 正弦函数(sin)的定义:对于任意角θ,其正弦值sinθ等于对边与斜边的比值。
- 正弦函数的性质:- 值域:[-1, 1]- 周期:2π- 对称性:sin(-θ) = -sinθ- 函数图像:以原点为中心,上下振动的波形,曲线在x轴的正半轴和负半轴上交替。
- 余弦函数(cos)的定义:对于任意角θ,其余弦值cosθ等于邻边与斜边的比值。
- 余弦函数的性质:- 值域:[-1, 1]- 周期:2π- 对称性:cos(-θ) = cosθ- 函数图像:以原点为中心,左右摆动的波形,曲线在x轴的正半轴和负半轴上交替。
- 正切函数(tan)的定义:对于任意角θ,其正切值tanθ等于对边与邻边的比值。
- 正切函数的性质:- 值域:(-∞, +∞)- 周期:π- 奇偶性:tan(-θ) = -tanθ- 函数图像:周期性的上升或下降波形,曲线在x轴的正半轴和负半轴上交替。
2. 请解释单位圆与三角函数之间的关系。
- 单位圆是半径为1的圆,其圆心是原点(0,0)。
单位圆与三角函数之间的关系如下:- 正弦函数:单位圆的上半圆弧上的点的纵坐标等于该点所对应的角的正弦值。
- 余弦函数:单位圆的右半圆弧上的点的横坐标等于该点所对应的角的余弦值。
- 正切函数:单位圆的右半圆弧上的点的纵坐标等于该点所对应的角的正切值。
- 三角函数的性质和图像可以通过单位圆来计算和理解。
2. 计算题1. 求解方程sinx = 0.5在区间[0, 2π]内的所有解。
解答:sinx = 0.5根据等式sinx = 0.5,可知x等于π/6(或30°)和11π/6(或330°)两个解。
在区间[0, 2π]内,满足sinx = 0.5的解为x = π/6和x = 11π/6。
2. 已知tanθ = 2,求解θ的值,且θ满足π/2 ≤ θ ≤ π。
三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
专题15 三角函数的图象与性质(核心素养练习)(解析版)
专题十五 三角函数的图象与性质 核心素养练习一、核心素养聚焦考点一 逻辑推理-—三角函数奇偶性与周期性的综合运用例题13.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3等于( )A .-12 B.12 C .-32 D.32【答案】D【解析】f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-π=f ⎝ ⎛⎭⎪⎫2π3=f ⎝ ⎛⎭⎪⎫2π3-π=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.考点二 数学运算-求三角函数的值域例题14、函数y =cos 2x +sin x ,x ∈R 的值域为________.【答案】⎣⎢⎡⎦⎥⎤-1,54【解析】y =cos 2x +sin x =1-sin 2x +sin x =-⎝⎛⎭⎪⎫sin x -122+54.因为-1≤sin x ≤1,所以-1≤y ≤54,所以函数y =cos 2x +sin x ,x ∈R 的值域为⎣⎢⎡⎦⎥⎤-1,54。
考点三 直观想象-利用三角函数图象解三角不等式 例题15.函数y =2sin x -1的定义域为________.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z【解析】由2sin x -1≥0得sin x ≥12, 画出y =sin x 的图象和直线y =12.可知sin x ≥12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z .二、学业质量测评一、选择题1.(2012·全国高一课时练习)若函数[]cos cos ,0,2y x x x π=+∈的大致图像是( )A .B .C .D .【答案】D【解析】30,2232,0222x y cosx cosx cosx x x πππππ⎧⎪⎪=+=⎨⎪<<⎪⎩或,cos y x =在[0,)2π为减函数,在3(2π,2]π为增函数,并且函数值都大于等于0,只有D 符合,故答案为:D2.(2018·全国高一课时练习)函数sin 2y x =-,x ∈R 是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数【答案】A【解析】设()sin2,y f x x ==- 则()()()sin2sin2,f x x x f x -=--==- 故函数函数sin2y x =-,x R ∈是奇函数,由2,2T ππ== 故函数sin2y x =-,x R ∈是最小正周期为π的奇函数. 故选A.3.(2018·全国高一课时练习)函数2cos 1y x =+的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】D【解析】由2cos 1x +⩾0得1cos 2x -,∴222233k x k ππππ-+,k ∈Z. 故选D.4.(2012·全国高一课时练习)下列函数中,周期为π,且在[,]42ππ上为减函数的是( )A .sin()2y x π=+ B .cos()2y x π=+ C .cos(2)2y x π=+ D .sin(22)y x π=+【答案】D【解析】由题意得,函数的周期为π,只有C,D 满足题意,对于函数cos(2)sin 22y x x π=+=-在[,]42ππ上为增函数, 函数sin(2)cos 22y x x π=+=在[,]42ππ上为减函数,故选D. 5.(2018·全国高一课时练习)函数2sin(2)3y x π=+的图像 ( )A .关于y 轴对称B .关于直线6x π=对称C .关于点(0,0)对称D .关于点(,0)6π-对称 【答案】D 【解析】当0x =时,2sin33y π==0,且无法取到最值,选项A ,C 错误;当6x π=时,2sin 333y ππ⎛⎫=+=⎪⎝⎭0,且无法取到最值,选项B 错误; 当6x π=-时,2sin 033y ππ⎛⎫=-+= ⎪⎝⎭,函数值为0,关于点,06π⎛⎫- ⎪⎝⎭中心对称; 本题选择D 选项.6.(2016·全国课时练习)下列不等式中正确的是( ) A .3π2πtantan55> B .tan 4tan 3>C .tan 281tan 665︒>︒D .13π12πtan tan 45⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】3πtan05<,2πtan 05>,所以A 选项错误;因为π33π,π4π22<<<<,所以tan 30,tan 40<>,故B 选项正确;()()tan 281tan 79,tan 665tan 55︒=-︒︒=-︒,正切函数tan y x=在ππ,22⎛⎫-⎪⎝⎭上单调递增,所以tan 281tan 665︒<︒,C 选项错误; 13ππtan πtan 3πtan 444⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12π2πtan tan 2π55⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭2πtan 5⎛⎫- ⎪⎝⎭ ,正切函数tan y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以 13π12πtan tan 45⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 错误.7.(2016·全国课时练习)函数()πtan 23f x x ⎛⎫=+⎪⎝⎭,则( ) A .函数的最小正周期为π,且在5ππ,1212⎛⎫-⎪⎝⎭上是增函数 B .函数的最小正周期为π2,且在5ππ,1212⎛⎫-⎪⎝⎭上是减函数 C .函数的最小正周期为π,且在π7π,1212⎛⎫⎪⎝⎭上是减函数 D .函数的最小正周期为π2,且在π7π,1212⎛⎫ ⎪⎝⎭上是增函数 【答案】D【解析】对于函数()πtan 23f x x ⎛⎫=+⎪⎝⎭,因为πππtan 2223f x x ⎡⎤⎛⎫⎛⎫+=++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()ππtan π2tan 233x x f x ⎛⎫⎛⎫++=+= ⎪ ⎪⎝⎭⎝⎭,所以它的最小正周期为π2,当π7π,1212x ⎛⎫∈ ⎪⎝⎭时,ππ3π2,322x ⎛⎫+∈ ⎪⎝⎭,函数()πtan 23f x x ⎛⎫=+ ⎪⎝⎭单调递增,故选D.8.(2016·全国课时练习)若3tan 1x <≤-,则x 的取值集合为( )A .ππ2π,2π,34k k k ⎛⎫--∈ ⎪⎝⎭Z B .π3π2π+,2π+,24k k k ⎛⎫∈ ⎪⎝⎭Z C .πππ,π,34k k k ⎛⎤--∈ ⎥⎝⎦Z D .πππ,π+,34k k k ⎛⎤-∈ ⎥⎝⎦Z 【答案】C【解析】在ππ,22⎛⎫-⎪⎝⎭这个周期内,3tan 1x <≤-所对应的区间是ππ,34⎛⎤-- ⎥⎝⎦,故在R 上,3tan 1x -≤-的解集为πππ,π,34k k k ⎛⎤--∈ ⎥⎝⎦Z .9.(2016·全国课时练习)函数2cos sin 1y x x =+-的值域为( )A .11,44⎡⎤-⎢⎥⎣⎦ B .10,4⎡⎤⎢⎥⎣⎦ C .12,4⎡⎤-⎢⎥⎣⎦ D .11,4⎡⎤-⎢⎥⎣⎦【答案】C【解析】222211cos sin 11sin sin 1sin sin sin 24y x x x x x x x ⎛⎫=+-=-+-=-+=--+ ⎪⎝⎭,当sin 1x =-时,min 2;y =-当1sin 2x =时,max 14y =.所以值域为12,4⎡⎤-⎢⎥⎣⎦. 10.(2016·全国课时练习)下列关系式中正确的是( )A .sin11sin168cos77︒<︒<︒B .sin168sin11cos77︒<︒<︒C .sin11cos77sin168︒<︒<︒D .sin168cos77sin11︒<︒<︒ 【答案】A【解析】∵()sin168sin 18012sin12︒=︒-︒=︒,()cos77cos 9013sin13︒=︒-︒=︒, 由正弦函数的单调性得sin11sin12sin13︒<︒<︒,即sin11sin168cos77︒<︒<︒.11.(2016·全国课时练习)当ππ44x -≤≤时,函数()π2sin 4f x x ⎛⎫=+ ⎪⎝⎭有 ( )A .最大值为1,最小值为1-B .最大值为2,最小值为1-C .最大值为2,最小值为2-D .最大值为2,最小值为0 【答案】D 【解析】∵ππ44x -≤≤,∴ππ042x ≤+≤. ∴π02sin 24x ⎛⎫≤+≤ ⎪⎝⎭,函数()f x 有最小值0,最大值2. 12.(2016·全国课时练习)要得到函数[]3sin ,0,2πy x x =-∈的图象,只需将函数[]3sin ,0,2πy x x =∈的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线y x =对称 【答案】B【解析】由于()y f x =与()y f x =-的图象关于x 轴对称,所以要得到函数3sin ,y x =-[]0,2πx ∈的图象,只需将函数[]3sin ,0,2πy x x =∈的图象关于x 轴对称.二、填空题13.(2018·浙江省诸暨市牌头中学高一课时练习)函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 【答案】1【解析】化简三角函数的解析式, 可得()22311cos 3cos 344f x x x x x =-+-=-+= 23(cos 1x -+, 由[0,]2x π∈,可得cos [0,1]x ∈,当3cos x =时,函数()f x 取得最大值1. 14.(2016·辽宁高一课时练习(文))①函数y =cos (23x +2π)是奇函数; ②存在实数α,使得sin α+cos α=2;③若α、β是第一象限角且α<β,则tan α<tan β;④x =8π是函数y =sin (2x +54π)的一条对称轴方程; ⑤函数y =tan (2x +3π)的图象关于点(12π,0)成中心对称图形.其中正确命题的序号为__________. 【答案】①④⑤【解析】①函数22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭,而2sin 3y x =-是奇函数,故函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数,故①正确;②因为sinx ,cosx 不能同时取最大值1,所以不存在实数x 使sinx+cosx=2成立,故②错误.③令 α=3π,β=136π,则3tanβ=tan 136π=tan 6π3tanα>tanβ,故③不成立. ④把x=8π代入函数5sin 24y x π⎛⎫=+⎪⎝⎭,得y=-1,为函数的最小值,故x =8π是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的一条对称轴,故④正确;⑤因为y=tan (2x+3π)图象的对称中心在图象上,而点(12π,0)在图象上,所以⑤成立 15.(2016·全国课时练习)函数cos y x =在区间[]π,a -上为增函数,则a 的取值范围是________. 【答案】(]π,0-【解析】因为cos y x =在[]π,0-上是增函数,在[]0,π上是减函数, 所以只有π0a -<≤时满足条件,故(]π,0a ∈-.16.(2012·全国高一课时练习)函数y =√log 12tanx 的定义域是______.【答案】{x |k π<x ≤k π+π4,k ∈Z} 【解析】要使函数有意义,必须log 12tan x ≥0, ∴0<tan x ≤1,∴k π<x ≤k π+π4,k ∈Z ,∴该函数的定义域是{x |k π<x ≤k π+π4,k ∈Z}.三、解答题17.(2019·全国高一课时练习)已知函数f (x )=2sin (2x 6π-)+a ,a 为常数 (1)求函数f (x )的最小正周期;(2)若x ∈[0,2π]时,f (x )的最小值为﹣2,求a 的值. 【答案】(1)π;(2)a =-1. 【解析】(1)∵f (x )=2sin (2x 6π-)+a , ∴f (x )的最小正周期T 22π==π. (2)当x ∈[0,2π]时,2x 6π-∈[6π-,56π],故当2x 66ππ-=-时,函数f (x )取得最小值,即sin (6π-)12=-, ∴f (x )取得最小值为﹣1+a =﹣2, ∴a =﹣1.18.(2018·全国高一课时练习)已知函数f(x)2)4x π+(1)求函数f(x)的最小正周期和单调递减区间; (2)在所给坐标系中画出函数f(x)在区间4[,]33ππ上的图象(只作图不写过程).【答案】(1)π.,5,,88k k k Zππππ⎡⎤++∈⎢⎥⎣⎦(2)见解析【解析】(1)T==π.令2kπ+≤2x+≤2kπ+π,k∈Z,则2kπ+≤2x≤2kπ+π,k∈Z,得kπ+≤x≤kπ+π,k∈Z,∴函数f(x)的单调递减区间为,k∈Z.(2)列表:2x+ππ2ππxf(x)=sin0-0描点连线得图象如图:19.(2016·全国课时练习)判断下列函数的奇偶性:(1)()sin cos f x x x =+;(2)()1cos cos 1f x x x =-- 【答案】(1)偶函数 (2)既是奇函数又是偶函数【解析】(1)函数的定义域为R ,()()()()sin cos sin cos f x x x x x f x -=-+-=+=, 所以此函数是偶函数.(2)由1cos 0x -≥且cos 10x -≥,得cos 1x =,从而2πx k =,k ∈Z , 此时()0f x =,故该函数既是奇函数又是偶函数.20.(2016·全国课时练习)比较下列各组数的大小.(1)cos870,cos890︒︒;(2)37π49πsin ,sin 63⎛⎫-⎪⎝⎭. 【答案】(1)cos870cos890︒>︒(2)37π49πsin sin 63⎛⎫-< ⎪⎝⎭【解析】(1)()cos870cos 2360150cos150.︒=⨯︒+︒=︒()cos890cos 2360170cos170.︒=⨯︒+︒=︒∵余弦函数cos y x =在[]0,180︒︒上是减函数, ∴cos150cos170︒>︒,即cos870cos890︒>︒.(2)37πππ49πππsin sin 6πsin ,sin sin 16πsin ,666333⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ∵正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上是增函数, ∴ππsin sin 63⎛⎫-< ⎪⎝⎭,即37π49πsin sin 63⎛⎫-< ⎪⎝⎭. 21.(2012·全国高一课时练习)已知函数f (x )=2a sin 23x π⎛⎫- ⎪⎝⎭+b 的定义域为0,2π⎡⎤⎢⎥⎣⎦,函数最大值为1,最小值为-5,求a 和b 的值.【答案】a =12-3b =-23+3,或a =-12+3,b =19-3【解析】∵0≤x ≤2π,∴-3π≤2x -3π≤23π. ∴-32≤sin 23x π⎛⎫- ⎪⎝⎭≤1.若a >0,则21{35a b a b +=-+=-,解得1263{23123a b =-=-+,若a <0,则25{31a b a b +=-+=,解得1263{193a b =-+=-综上可知,a =12-3,b =-23+3a =-12+3b =19-322.(2018·全国高一课时练习)已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:x6π-3π 56π 43π 116π73π 176πy1- 1 3 1 1- 1 3(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m = 恰有两个不同的解,求实数m 的取值范围.【答案】(1)()2sin 13f x x π⎛⎫=-+ ⎪⎝⎭(2))31,3 【解析】(1)绘制函数图象如图所示:设()f x 的最小正周期为T ,得11266T πππ=-=.由2T πω=得1ω=. 又31B A B A +=⎧⎨-=-⎩解得21A B =⎧⎨=⎩, 令5262k ππωφπ⋅+=+,即5262k ππφπ+=+,k Z ∈, 据此可得:23k πϕπ=-,又2πφ<,令0k =可得3πφ=-.所以函数的解析式为()213f x sin x π⎛⎫=-+ ⎪⎝⎭. (2)因为函数()213y f kx sin kx π⎛⎫==-+ ⎪⎝⎭的周期为23π,又0k >,所以3k =. 令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦. sint s =在2,33ππ⎡⎤-⎢⎥⎣⎦上有两个不同的解的条件是3s ⎫∈⎪⎪⎣⎭, 所以方程()f kx m =在0,3x π⎡⎤∈⎢⎥⎣⎦时恰好有两个不同的解的条件是)31,3m ⎡∈⎣, 即实数m 的取值范围是)31,3.。
2023北京重点校高一(上)期末数学汇编:三角函数的性质与图像
x
,
所以
f
π 6
=
2
cos
π 6
=
3,
(2)由(1) f (x) = 2cos x ,又 − π x 2π ,所以 − 1 cos x 1,
3
3
2
所以
−1
2 cos
x
2 ,故当
x
−
π 3
,
2π 3
时,
f
(x)
的值域为−1, 2.
13.(1)
f
(
x)
=
2sin
2x
+
6
(2)
f
(x)
A.0
B.1
C.2
D. −1
4.(2023
秋·北京·高一清华附中校考期末)下列函数中,以
2π
为最小正周期,且在区间
0,
π 4
上单调递增
的是( )
A. y = sin 2x
B.
y
=
sin
x
−
π 4
C.
y
=
cos
x
+
π 4
D. y = tan 2x
5.(2023 秋·北京·高一清华附中校考期末)若函数 f (x) = cos(3x +) 是奇函数,使得| f (x) |取到最大值时
x
+
π 4
π 4
,
π 2
,
因为
y
=
cos
x
在
π 4
,
π 2
上单调递减,所以
y
=
cos
x
+
π 4
在
π 4
高一数学三角函数的图象与性质试题答案及解析
高一数学三角函数的图象与性质试题答案及解析1.已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.(1)求和的值;(2)若,求的值【答案】(1)ω=2,;(2).【解析】(1)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线对称,结合可得φ 的值.(2)由条件求得再根据的范围求得的值,再根据,利用两角和的正弦公式计算求得结果.试题解析:(1)因为f(x)图像上相邻两个最高点的距离为,所以f(x)的最小正周期,从而,又因f(x)的图象关于直线对称,所以,又因为得,所以.(2)由(1)得所以,又得所以,因此.【考点】三角函数的周期公式,诱导公式,三角函数的图像与性质,角的变换,两角和的正弦公式,同角三角函数的基本关系(平方关系).2.不等式的解集为 .【答案】【解析】本题主要考查三角函数的恒等变换.由得:,故不等式的解集为.【考点】三角函数的恒等变换,三角函数的性质.3.函数的一条对称轴方程是().A.B.C.D.【答案】A【解析】的对称轴方程为,即令,得.【考点】诱导公式、三角函数的图像与性质.4.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.【答案】(1);(2)最大值为,最小值为.【解析】解题思路:利用两角和与差的三角公式和二倍角公式及其变形化成的形式,再求周期与最值.规律总结:涉及三角函数的周期、最值、单调性、对称性等问题,往往先根据三角函数恒等变形化为的形式,再利用三角函数的图像与性质进行求解.注意点:求在给定区间上的最值问题,要注意结合正弦函数或余弦函数的图像求解.试题解析:(1),故的最小正周期为π.(2)函数在闭区间上的最大值为,最小值为 .【考点】1.三角恒等变形;2.三角函数的图像与性质.5.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则()A.B.C.D.【答案】A【解析】由于,又,又在区间上是增函数,所以有。
【考点】函数的单调性及三角函数值大小的比较。
高一数学三角函数试题答案及解析
高一数学三角函数试题答案及解析1.已知第二象限的角的终边与单位圆的交点,则__________.【答案】【解析】依题意有,故.2.若是方程的两根,则的值为()A. B.A.【答案】B【解析】由题设,所以可得,解之得,由于二次方程的判别式,所以(舍去),应选答案B。
点睛:解答本题时充分借助题设条件及同角三角函数之间的平方关系建立了关于参数的方程,即,当求得时,要运用二次方程的判别式进行检验,最终获得答案。
3.已知扇形的半径为,圆心角为弧度,则该扇形的面积为__________.【答案】4【解析】由于弧长,所以,应填答案。
4.已知,,则()A.B.C.D.【答案】D【解析】由题意可得,即,则,所以,即,也即,所以,应选答案D。
点睛:解答本题的关键是借助题设中的条件获得,进而得到,求得,从而求出使得问题获解。
5.已知,且向量,,则等于()A.B.C.D.【答案】D【解析】由题设可得,即,故,应选答案D。
6.已知一个扇形的半径为,圆心角为,求这个扇形的面积。
【答案】【解析】由试题解析:,……………4分……………8分7.已知函数.(1)当时,求函数的值域;(2)已知,函数,若函数在区间上是增函数,求的最大值.【答案】(1);(2).【解析】(1)借助题设条件运用正弦函数的有界性求解;(2)借助正弦函数的单调性建立不等式组求解.试题解析:(1).∵,∴,∴,∴函数的值域为(2),当,∵在上是增函数,且,∴,即,化简得,∵,∴,∴,解得,因此,的最大值为1【考点】正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.本题以三角函数的解析式为背景设置了一道综合性问题.第一问的求解过程中,先将函数进行化简为再求其值域;第二问的求解过程中,充分借助函数的单调性,建立不等式组求得的最大值为,进而使得问题获解.8.已知函数,在曲线与直线的交点中,若相邻交点距离的最小值为,则的最小正周期为()A.B.C.D.【答案】C【解析】因为原来函数即为,令,则,令,又因为若相邻交点距离的最小值为,则以正弦函数为研究对象,取符合要求的两角:,对应有,此时,所以.【考点】辅助角公式,正弦函数的图像,三角函数的周期公式.9. (08·江西)函数y=tan x+sin x-|tan x-sin x|在区间(,)内的图象大致是()【答案】D【解析】∵<x≤π时,sin x≥0,tan x≤0,∴y=tan x+sin x-(sin x-tan x)=2tan x,π<x<时,sin x<0,tan x>0,∴y=tan x+sin x-(tan x-sin x)=2sin x,故选D.10.函数y=1-sin x,x∈[0,2π]的大致图象是()【答案】B【解析】因为函数y=1-sin x,x∈[0,2π],那么当x=0时,函数值为1,排除,C,D,然后当x=2π时,则有函数值为1,排除A,选B11.函数y=cos x+|cos x|x∈[0,2π]的大致图象为()【答案】D【解析】y=cos x+|cos x|=,故选D.12.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.13.已知当时,函数取最大值,则函数图象的一条对称轴为A.B.C.D.【答案】A【解析】略14.函数的部分图象如图,则、可以取的一组值是()A.B.C.D.【答案】C【解析】由图象有,,当,所以,则时符合,选C.【考点】由三角函数图象求解析式.【方法点晴】本题主要考查由三角函数的图象求解析式, 属于中档题.确定函数(,)的解析式的步骤和方法:(1)求,确定函数的最大值和最小值,则,;(2)求,确定函数的最小正周期, ;(3)求,将图象上的特殊点(一般是最高点或最低点),此时已知.本题中,先求周期,再求,将最高点坐标代入求出. 15.(2分)圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为()A.B.C.D.2【答案】C【解析】等边三角形ABC是半径为r的圆O的内接三角形,则线AB所对的圆心角∠AOB=,求出AB的长度(用r表示),就是弧长,再由弧长公式求圆心角弧度数.解:如图,等边三角形ABC是半径为r的圆O的内接三角形,则线AB所对的圆心角∠AOB=,作OM⊥AB,垂足为M,在 rt△AOM中,AO=r,∠AOM=,∴AM=r,AB=r,∴l= r,由弧长公式l=|α|r,得,α===.故选 C.点评:本题考查圆心角的弧度数的意义,以及弧长公式的应用,体现了数形结合的数学思想.16.(5分)已知θ∈且sin θ+cos θ=a,其中a∈(0,1),则关于tan θ的值,以下四个答案中,可能正确的是(填序号).①﹣3 ②3或③﹣④﹣3或﹣【答案】③【解析】在单位圆中,由三角函数线可推断出a的范围,进而判断出θ的范围,进而根据sinθ+cosθ>0,进一步推断出θ的范围,则tanθ的范围可知.解:在单位圆中,由三角函数线可知a<1,∴θ不在第一象限,θ∈,又∵a>0,∴sinθ+cosθ>0,∴θ∈,∴tanθ∈(﹣1,0).故答案为:③点评:本题主要考查了三角函数线,三角函数的值域等问题.考查了学生综合分析问题和解决问题的能力.17.有小于360°的正角,这个角的5倍角的终边与该角的终边重合,这个角的大小是()A.90°B.180°C.270°D.90°,180°或270°【答案】D【解析】利用终边相同的角,通过k的取值求出角的大小.解:设这个角为α,则5α=k•360°+α,k∈Z,α=k•90°,又∵0°<α<360°,∴α=90°,180°或270°.故选:D点评:本题考查终边相同角的表示方法以及求解,基本知识的考查.18.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值。
人教版高中数学必修一精品讲义5.4 三角函数的图象与性质(精练)(解析版)
5.4 三角函数的图象与性质【题组一 五点画图】1.(2020·永州市第四中学高一月考)函数1sin y x =-,[]0,2x π∈的大致图像是( )A .B .C .D .【正确答案】B【详细解析】当0x =时,1y =;当2x π=时,0y =;当πx =时,1y =;当3π2x =时,2y =;当2x π=时,1y =.结合正弦函数的图像可知B 正确.故选B.2.(2020·全国高一课时练习)请用“五点法”画出函数1sin 226y x π⎛⎫=- ⎪⎝⎭的图象. 【正确答案】作图见详细解析. 【详细解析】令2X x π=-,则当x 变化时,y 的值如下表:描点画图:这是一个周期上的图像,然后将函数在13,1212ππ⎡⎤⎢⎥⎣⎦上的图像向左、向右平移周期的正整数倍个单位即得1sin 226y x π⎛⎫=- ⎪⎝⎭的图像. 3.(2020·全国高一课时练习)画出下列函数的简图: ( 1)1sin y x =+,[0,2]x π; ( 2)cos y x =-,[0,2]x π.【正确答案】(1)见详细解析(2)见详细解析( 1)按五个关键点列表:描点并将它们用光滑的曲线连接起来( 如图):( 2)按五个关键点列表:描点并将它们用光滑的曲线连接起来( 如图):5.(2020·全国高一课时练习)“五点法”作正弦函数、余弦函数在x ∈[0,2π]上的图象时是哪五个点?【正确答案】正确答案见详细解析. 【详细解析】6.(2020·全国高一课时练习)在同一直角坐标系中,画出函数sin y x =,[0,2]x π,cos y x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象.通过观察两条曲线,说出它们的异同. 【正确答案】见详细解析【详细解析】可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象,图象如图.两条曲线的形状相同,位置不同.【题组二 周期】1.(2020·永昌县第四中学高一期末)函数2cos 53y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .5πB .52πC .2πD .5π【正确答案】D【详细解析】由题意,函数2cos()53y x π=+,所以函数的最小正周期是:2525T ππ==.故选:D . 2.(2020·辽宁沈阳·高一期中)下列函数中最小正周期为π的是( )A .sin y x =B .1sin y x =+C .cos y x =D .tan 2y x =【正确答案】C【详细解析】对A 选项,令32x π=-,则33sin 122f ππ⎛⎫-=-=- ⎪⎝⎭3sin 122f πππ⎛⎫-+=-= ⎪⎝⎭,不满足3322f f πππ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭, 所以sin y x =不是以π为周期的函数,其最小正周期不为π; 对B 选项,1sin y x =+的最小正周期为:2T π=; 对D 选项,tan 2y x =的最小正周期为:2T π=;排除A 、B 、D 故选C3.(2020·河南洛阳·高一期末(文))tan 2y x =的最小正周期是( ) A .2πB .πC .2πD .3π【正确答案】A【详细解析】tan 2y x =的最小正周期是2T π=.故选:A.4.(2020·林芝市第二高级中学高二期末(文))函数()tan 23f x x ππ⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .1B .2C .3D .4【正确答案】B【详细解析】函数()tan 23f x x ππ⎛⎫=+ ⎪⎝⎭的最小正周期是22T ππ==,故选:B . 【题组三 对称性】1.(2019·伊美区第二中学高一月考)函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【正确答案】D【详细解析】函数的对称轴方程满足:()232x k k Z πππ+=+∈ ,即:()212k x k Z ππ=+∈ ,令0k = 可得对称轴方程为12x π= .本题选择D 选项. 2.(2020·山西省长治市第二中学校高一期末(文))函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π=B .2x π=C .4πx =-D .2x π=-【正确答案】C【详细解析】对称轴穿过曲线的最高点或最低点,把4πx =-代入后得到()1f x =-,因而对称轴为4πx =-,选C .3.(2020·江苏鼓楼·南京师大附中高三其他)曲线()π2sin 04y x ωω⎛⎫=+> ⎪⎝⎭的一个对称中心的坐标为()3,0,则ω的最小值为__________.【正确答案】π4【详细解析】令2sin(3)04πω+=,可得sin(3)04πω+=,3=,4πωπ+∈k k Z +,123ππω=-∈k k Z ,当1,4πω==k 最小故正确答案为:4π【题组四 单调性】 1.下列函数中,在0,2π⎡⎤⎢⎥⎣⎦内是增函数且以π为最小正周期的函数是 ( ) A .|sin |y x = B .tan 2y x =C .sin 2y x =D .cos 4y x =【正确答案】A【详细解析】由于最小正周期等于π,而tan 2y x =的周期为与cos 4y x =的周期为2π,故排除B 、D 两个选项;在0,2π⎡⎤⎢⎥⎣⎦内,sin 2y x =不是增函数,排除选项C,只有|sin |y x =在0,2π⎡⎤⎢⎥⎣⎦内是增函数且以π为最小正周期,故选A.2.(2020·全国高一课时练习)函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭B .()(),k k k Z πππ+∈C .()3,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D .()3,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【正确答案】C【详细解析】根据正切函数性质可知,当πππππ242k xk k Z 时,函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭单调递增,即3ππππ44k xk k Z ,故选:C.3.(2020·阜新市第二高级中学高一期末)设函数f ( x )=cos ( x +3π),则下列结论错误的是 A .f( x)的一个周期为−2π B .y=f( x)的图像关于直线x=83π对称 C .f( x+π)的一个零点为x=6πD .f( x)在(2π,π)单调递减 【正确答案】D【详细解析】f ( x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f ( x )的最小值,故B 正确; ∵f ( x +π)=cos ππ3x ⎛⎫++⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确;由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f ( x )的最小值,故f ( x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误.故选D.4.(2019·四川仁寿一中高三其他(文))已知函数π()sin()0,0||2f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且关于,08π⎛⎫⎪⎝⎭中心对称,则下列结论正确的是( ) A .(1)(0)(2)f f f << B .(0)(2)(1)f f f << C .(2)(0)(1)f f f << D .(2)(1)(0)f f f <<【正确答案】B【详细解析】根据()f x 的最小正周期为π,故可得2T ππω==,解得2ω=.又其关于,08π⎛⎫⎪⎝⎭中心对称,故可得sin 04πϕ⎛⎫+= ⎪⎝⎭,又0,2πϕ⎛⎫∈ ⎪⎝⎭, 故可得4πϕ=-.则()sin 24f x x π⎛⎫=-⎪⎝⎭. 令222,242k x k k Z πππππ-≤-≤+∈,解得()3,,88x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦. 故()f x 在3,88ππ⎡⎤-⎢⎥⎣⎦单调递增. 又()3224f f π⎛⎫=- ⎪⎝⎭,且30,?2,14π-都在区间3,88ππ⎡⎤-⎢⎥⎣⎦中, 且30214π<-<,故可得()()()021f f f <<. 故选:B .【题组五 奇偶性】1.(2020·全国高一课时练习)对于函数cos 22y x π⎛⎫=- ⎪⎝⎭,下列命题正确的是( ) A .周期为2π的偶函数 B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为π的奇函数【正确答案】D【详细解析】因为函数cos 2sin22y x x π⎛⎫=-=⎪⎝⎭,2ππ2T ==,且sin2y x =是奇函数,故正确答案为D. 2.(2020·山西省长治市第二中学校高一期末(文))函数()3sin(2)3f x x πϕ=-+,()0,ϕπ∈为偶函数,则ϕ的值为______ 【正确答案】56π【详细解析】因为()3sin(2)3f x x πϕ=-+为偶函数,故y 轴为其图象的对称轴,所以20,32k k Z ππϕπ⨯-+=+∈,故5,6k k Z πϕπ=+∈,因为()0,ϕπ∈,故56πϕ=,故正确答案为:56π.3.下列函数不是奇函数的是 A .y =sin x B .y =sin 2x C .y =sin x +2D .y =12sin x【正确答案】C【详细解析】当x =π2时,y =sin π2+2=3,当x =-π2时,y =sin( -π2)+2=1,∴函数y =sin x +2是非奇非偶函数.4.(2019·陕西高一期末)若函数()[]()3cos 0,223x f x πϕϕπ+⎛⎫=+∈⎪⎝⎭的图像关于y 轴对称,则ϕ=( ) A .34πB .32π C .23π D .43π 【正确答案】B【详细解析】∵函数f (x )=cos (323x πϕ++)=sin 3x ϕ+ (φ∈[0,2π])的图象关于y 轴对称,∴,32k k Zϕππ=+∈,由题知 φ32π=,故选:B .【题组六 定义域】1.(2020·全国专题练习)函数y =的定义域是( )A .{|22,}2x k x k k Z πππ≤≤+∈B .{|,}2x k x k k Z πππ≤≤+∈C .{|,}3x k x k k Z πππ≤≤+∈D .{|,}33x k x k k Z ππππ-≤≤+∈【正确答案】D【详细解析】要使原函数有意义,则2210cos x +≥ ,即122cos x ≥-, 所以2222233k x k k Z ππππ-≤≤+∈,.解得:33k x k k Z ππππ-≤≤+∈,. 所以,原函数的定义域为{|}33x k x k k Z ππππ-≤≤+∈,. 故选D . 2.(2020·内蒙古集宁一中高一期末(理))函数y =的定义域是( )A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【正确答案】C【详细解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z .所以函数y =()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈.故选:C. 3.(2020·全国高一课时练习)求函数f ( x )=lgsin x的定义域 .【正确答案】[4,)(0,)ππ--⋃【详细解析】由题意,要使f ( x )有意义,则2sin 0160x x >⎧⎨-≥⎩,由sin 0x >,得22,k x k k Z πππ<<+∈, 由2160x -≥,得44x -≤≤,所以4x π-≤<-或0πx <<所以函数f ( x )的定义域为[4,)(0,)ππ--⋃ 【题组七 值域】1.(2020·重庆高三其他(文))设函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤⎢⎥⎣⎦,则ω的取值范围为( ) A .24,33⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .2,13⎡⎤⎢⎥⎣⎦D .41,3⎡⎤⎢⎥⎣⎦【正确答案】A【详细解析】因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以,3323x ππππωω⎡⎤-∈--⎢⎥⎣⎦,所以0233πππω≤-≤,解得2433ω≤≤. 故选:A2.(2020·涡阳县第九中学高一月考)cos 6y x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为( )A .12⎡-⎢⎣⎦B .12⎡⎢⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .⎤⎥⎣⎦【正确答案】C 【详细解析】102x π≤≤,663x πππ∴-≤-≤,1cos 126x π⎛⎫∴≤-≤ ⎪⎝⎭即112y ≤≤,故选C .3.函数cos ,,62y x x ππ⎡⎤=∈-⎢⎥⎣⎦的值域是 ______. 【正确答案】[0,1]【详细解析】因为()cos f x x =在[,0]6π-上递增,在[0,]2π上递减,所以()cos f x x =有最大值()0cos01f ==,又因为0,06222f f ππ⎛⎫⎛⎫-==> ⎪ ⎪⎝⎭⎝⎭, 所以()cos f x x =有最小值0,函数()cos ,,62f x x x ππ⎡⎤=∈-⎢⎥⎣⎦的值域是[]0,1.故正确答案为[]0,1. 4.(2020·上海市进才中学高一期末)函数3cos 2,0,32y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的最小值为________.【正确答案】3-【详细解析】0,2x π⎡⎤∈⎢⎥⎣⎦,42,333x πππ⎡⎤∴+∈⎢⎥⎣⎦,1cos 21,32y x π⎛⎫⎡⎤∴=+∈- ⎪⎢⎥⎝⎭⎣⎦, 3cos 233y x π⎛⎫∴=+≥- ⎪⎝⎭所以函数的最小值为3-.故正确答案为:3-5.(2020·河南宛城·南阳中学高一月考)函数2()sin cos 2f x x x =+-的值域是________ 【正确答案】3[3,]4--【详细解析】22()sin cos 2cos cos 1f x x x x x =+-=-+-,设cos x t =,[]1,1t ∈-,则2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭, 当12t =时,函数有最大值为34-;当1t =-时,函数有最小值为3-.故函数值域为3[3,]4--.故正确答案为:3[3,]4--.6.(2020·永州市第四中学高一月考)设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 【正确答案】【详细解析】∵f (x )=cos 2x+sinx=1﹣sin 2x+sinx=﹣+,故当sinx=时,函数f (x )取得最大值为,故正确答案为. 7.(2020·河南林州一中高一月考)函数224sin 6cos 633y x x x ππ⎛⎫=+--≤≤ ⎪⎝⎭的值域________.【正确答案】16,4⎡⎤-⎢⎥⎣⎦【详细解析】224sin 6cos 64(1cos )6cos 6y x x x x =+-=-+-22314cos 6cos 24(cos )44x x x =-+-=--+, 233x ππ-≤≤,1cos 12x ∴-≤≤ ,故231164(cos )444x -≤--+≤,故正确答案为:16,4⎡⎤-⎢⎥⎣⎦ 8.(2020·广东广州·期末)已知函数f ( x )=sin( ωx +ϕ)( ω>0)的图象相邻两对称轴间的距离等于4π,若∀x ∈R .f ( x )≤6f π⎛⎫ ⎪⎝⎭,则正数ϕ的最小值为( ) A .6π B .3π C .23π D .56π 【正确答案】D 【详细解析】依题意得24T π=,所以2T π=,所以22ππω=,所以4ω=, 又对∀x ∈R .f ( x )≤6f π⎛⎫ ⎪⎝⎭,所以直线6x π=是函数()f x 的对称轴, 所以462k ππϕπ⨯+=+,k Z ∈,即6k ϕπ=π-,k Z ∈,又0ϕ>,所以1k =时,ϕ取得最小值56π.故选:D. 【题组八 正切函数性质】1.(2020·山东潍坊·高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>- ⎪⎝⎭ B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭ C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭ 【正确答案】C【详细解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+, 令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈,当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭.故选:C. 2.(2020·陕西渭滨·高一期末)函数tan(2)6y x π=-的一个对称中心是( ) A .(,0)12πB .2(,0)3πC .(,0)6πD .(,0)3π【正确答案】AD【详细解析】因为tan()01266f πππ⎛⎫=-= ⎪⎝⎭;24tan()tan 33663f ππππ⎛⎫=-== ⎪⎝⎭;tan 663f ππ⎛⎫== ⎪⎝⎭;当3x π=时, 2362πππ⨯-=. 所以(,0)12π、(,0)3π是函数tan(2)6y x π=-的对称中心.故选:AD 3.(2019·伊美区第二中学高一月考)求函数tan 23x y π⎛⎫=+⎪⎝⎭的定义域和单调区间. 【正确答案】定义域为{|2,}3x x k k Z ππ≠+∈,单调增区间为5{|22,}33x k x k k Z ππππ-<<+∈,无单调减区间. 【详细解析】令,232x k k Z πππ+≠+∈,解得2,3x k k Z ππ≠+∈, 故tan 23x y π⎛⎫=+⎪⎝⎭的定义域为{|2,}3x x k k Z ππ≠+∈; 令,2232x k k k Z πππππ-<+<+∈,解得522,33k x k k Z ππππ-<<+∈, 故tan 23x y π⎛⎫=+ ⎪⎝⎭的单调增区间为5{|22,}33x k x k k Z ππππ-<<+∈, 该函数没有单调减区间.4.(2020·全国高一课时练习)求函数1tan 24π⎛⎫=-+ ⎪⎝⎭y x 的单调区间及最小正周期.【正确答案】32,222ππππ⎛⎫-++⎪⎝⎭k k k Z∈,2Tπ=【详细解析】因为11tan tan2424ππ⎛⎫⎛⎫=-+=--⎪ ⎪⎝⎭⎝⎭y x x,又12242πππππ-+<-<+k x k,k Z∈,解得32222ππππ-+<<+k x k,k Z∈,所以1tan24π⎛⎫=-+⎪⎝⎭y x的单调减区间为32,222ππππ⎛⎫-++⎪⎝⎭k k k Z∈.因为1tan24π⎛⎫=-+⎪⎝⎭y x,所以212ππ==-T.。
高一数学三角函数试题
高一数学三角函数试题1.已知函数f(x)=cos (x∈R,ω>0)的最小正周期为,为了得到函数g(x)=sinωx的图象,只要将y=f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】∵f(x)最小正周期为,∴=,∴ω=4,∴f(x)=cos=cos4,g(x)=sin4x=cos=cos=cos4,故须将f(x)的图象右移+=个单位长度2.欲得到函数y=cos x的图象,须将函数y=3cos2x的图象上各点()A.横坐标伸长到原来的2倍,纵坐标伸长到原来的3倍B.横坐标缩短到原来的,纵坐标缩短到原来的C.横坐标伸长到原来的2倍,纵坐标缩短到原来的D.横坐标缩短到原来的,纵坐标伸长到原来的3倍【答案】C【解析】按照三角函数的图像的变换可知,将函数y=3cos2x的图象上各点横坐标伸长到原来的2倍,得到y=3cosx,纵坐标缩短到原来的得到y=cosx,可知结论,故选C3.方程sin2x=sin x在区间(0,2π)内解的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】函数y=sin2x与y=sin x的图象交点个数等于方程解的个数.在同一坐标系内作出两个函数y=sin2x,y=sin x在(0,2π)内的图象,如图所示.由图象不难看出,它们有三个交点.所以方程sin2x=sin x在(0,2π)内有三个解.故正确答案为C.4.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M对称,且在区间上是单调函数,求ω和φ的值.【答案】ω=或ω=2. φ=,【解析】∵f(x)=sin(ωx+φ)是R上的偶函数,∴φ=+kπ,k∈Z.又∵0≤φ≤π,∴φ=,∴f(x)=sin=cosωx.∵图象关于点对称,∴cosω=0.∴ω=+nπ,n∈Z.∴ω=+n,n∈Z.又∵f(x)在区间上是单调函数,∴≥-0,即×≥,∴ω≤2.又∵ω>0,∴ω=或ω=2.5.函数f(x)=的定义域为()A.B.C.D.【答案】A【解析】由 (k∈Z)得,∴x≠π且x≠π,∴x≠,k∈Z,∴选A.6.ω是正实数,如果函数f(x)=2sinωx在[-,]上是增函数,那么ω的取值范围是________.【答案】0<ω≤【解析】解法一:2kπ-≤ωx≤2kπ+,k=0时,-≤x≤,由题意:-≤-①,≥②,由①得ω≤,由②得ω≥2,∴0<ω≤.解法二:∵ω>0,∴据正弦函数的性质f(x)在[-,]上是增函数,则f(x)在[-,]上是增函数,又f(x)周期T=,由≥得0<ω≤.7.函数y=2sin x与函数y=x图象的交点有()A.2个B.3个C.4个D.5个【答案】B【解析】在同一坐标系中作出函数y=2sin x与y=x的图象可见有3个交点.8.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,则=________.【答案】【解析】由已知得sinα=-.∵α是第三象限角,∴cosα=-=-.∴原式===.9. (2010·全国卷Ⅰ理,2)设cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】因为sin80°===,所以tan100°=-tan80°=-=-.10.已知tan(π+α)=-,求下列各式的值.(1);(2)sin(α-7π)·cos(α+5π).【答案】(1)-.(2)-【解析】tan(π+α)=-⇒tanα=-,(1)原式=====-.(2)原式=sin(-6π+α-π)·cos(4π+π+α)=sin(α-π)·cos(π+α)=-sinα·(-cosα)=sinα·cosα===-.11.已知sinθ+cosθ=,θ∈(0,π),求值:(1)tanθ;(2)sin3θ+cos3θ.【答案】(1)tanθ=-,(2)sin3θ+cos3θ=.【解析】∵sinθ+cosθ=,θ∈(0,π),平方得:sinθcosθ=-<0,∴sinθ>0,cosθ<0,且sinθ,cosθ是方程x2-x-=0的两根.解方程得x1=,x2=-,∴sinθ=,cosθ=-.∴(1)tanθ=-,(2)sin3θ+cos3θ=.12.下列命题中为真命题的是()A.三角形的内角必是第一象限角或第二象限角B.角α的终边在x轴上时,角α的正弦线、正切线分别变成一个点C.终边在第二象限的角是钝角D.终边相同的角必然相等【答案】B【解析】三角形的内角有可能是,属非象限角;终边在第二象限的角不一定是钝角;终边相同的角不一定相等,故A、C、D都不正确.13.已知sinα>sinβ,那么下列命题成立的是()A.若α、β是第一象限角,则cosα>cosβB.若α、β是第二象限角,则tanα>tanβC.若α、β是第三象限角,则cosα>cosβD.若α、β是第四象限角,则tanα>tanβ【答案】D【解析】如图(1),α、β的终边分别为OP、OQ,sinα=MP>NQ=sinβ,此时OM<ON,∴cosα<cosβ,故A错;如图(2),OP、OQ分别为角α、β的终边,MP>NQ,∴AC<AB,即tanα<tanβ,故B错;如图(3),角α,β的终边分别为OP、OQ,MP>NQ即sinα>sinβ,∴ON>OM,即cosβ>cosα,故C错,∴选D.14.若α∈[0,2π),且cosα≥,则α的取值范围是______.【答案】[0,]∪[,2π)【解析】如图,OM为[0,2π)内的角和的余弦线,欲使cosα≥,角α的余弦≥OM,当OM伸长时,OP与OQ扫过部分为扇形POQ,∴0≤α≤或≤α<2π.15.利用单位圆写出满足sinα<,且α∈(0,π)的角α的集合是__________________________.【答案】∪【解析】作出正弦线如图.MP=NQ=,当sinα<时,角α对应的正弦线MP、NQ缩短,∴0<α<或<α<π.16.利用三角函数线比较下列各组数的大小:(1)sin与sin;(2)tan与tan.【答案】(1)sin>sin.(2)tan<tan.【解析】如图所示,角的终边与单位圆的交点为P,其反向延长线与单位圆的过点A的切线的交点为T,作PM⊥x轴,垂足为M,sin=MP,tan=AT;的终边与单位圆的交点为P′,其反向延长线与单位圆的过点A的切线交点为T′,作P′M′⊥x轴,垂足为M′,则sin=M′P′,tan=AT′,由图可见,MP>M′P′>0,AT<AT′<0,∴(1)sin>sin.(2)tan<tan.17.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是()A.2B.sin2C.D.2sin1【答案】C【解析】如图,∠AOB=2弧度,过O点作OC⊥AB于C,并延长OC交于D.∠AOD=∠BOD=1弧度,且AC=AB=1,在Rt△AOC中,AO==,即r=,从而弧AB的长为l=|α|·r=.∴选C.本题是据弧长公式l=|α|r求弧长,需先求半径.18.与600°角终边相同的角可表示为(k∈Z)()A.k·360°+220°B.k·360°+240°C.k·360°+60°D.k·360°+260°【答案】B【解析】与600°终边相同的角α=n·360°+600°=n·360°+360°+240°=(n+1)·360°+240°=k·360°+240°,n∈Z,k∈Z.∴选B.19.在(-360°,0°)内与角1250°终边相同的角是()A.170°B.190°C.-190°D.-170°.【答案】C【解析】与1250°角的终边相同的角α=1250°+k·360°,∵-360°<α<0°,∴-<k<-,∵k∈Z,∴k=-4,∴α=-190°20.-1445°是第________象限角.【答案】四【解析】∵-1445°=-5×360°+355°,∴-1445°是第四象限的角.。
高考数学专题《三角函数的图象与性质》习题含答案解析
专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学 三角函数的图像和性质练习题
1.若cosx=0,则角x 等于( )
A .k π(k ∈Z )
B .
2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2π+2k π(k ∈Z ) 2.使cosx=m
m -+11有意义的m 的值为( ) A .m ≥0
B .m ≤0
C .-1<m <1
D .m <-1或m >1 3.函数y=3cos (
52x -6π)的最小正周期是( ) A .5
π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( )
A .-1
B .21
C .-21
D .-5
5.下列函数中,同时满足①在(0,
2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( )
A .y=tanx
B .y=cosx
C .y=tan 2x
D .y=|sinx|
6.函数y=sin(2x+π6
)的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6
7.函数y=sin(π4
-2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8
] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8
] (k∈Z) 8.函数 y=15
sin2x 图象的一条对称轴是( )
A.x= - π2
B. x= - π4
C. x = π8
D. x= - 5π4
9.函数 y=15 sin(3x-π3
) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________.
10.函数y=sin2x 的图象向左平移 π6
,所得的曲线对应的函数解析式是____ _____.
11.关于函数f(x)=4sin(2x+π3
),(x∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4cos(2x-π6
); (2)y=f(x)是以2π为最小正周期的周期函数;
(3)y=f(x)的图象关于点(-π6
,0)对称; (4)y=f(x)的图象关于直线x=-π6
对称;其中正确的命题序号是___________. 12. 已知函数y=3sin (21x -4
π). (1)用“五点法”作函数的图象;
(2)说出此图象是由y=sinx 的图象经过怎样的变化得到的;
(3)求此函数的最小正周期;
(4)求此函数的对称轴、对称中心、单调递增区间.
13. 如图是函数y =A sin(ωx +φ)+2的图象的一部分,求它的振幅、最小正周期和初
相。
14. 已知函数.1cos sin 32sin 2)(2++=x x x x f 求:
(1))(x f 的最小正周期;(2))(x f 的单调递增区间;(3))(x f 在]2,
0[π上的最值.
参考答案:
1.B 2. B 3.D 4.C 5.A 6.B 7.D 8.B
9.(-∞,+ ∞),(-15 ,15 ), 2π3 ,15 ,15 ,32π ,-π3
; 10.y=sin2(x+π6
); 11.(1)(3)
12.解:(1)
-4y
(2)方法一:“先平移,后伸缩”.
先把y =sin x 的图象上所有的点向右平移4π个单位,得到y =sin (x -4
π)的图象;再把y =sin (x -
4π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin (21x -4π)的图象;最后将y =sin (21x -4
π)的图象上所有点的纵坐标伸长到原来的3倍(横坐
标不变),就得到y =3sin (21x -4
π)的图象. 方法二:“先伸缩,后平移”. 先把y =sin x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin (
21x )的图象;再把y =sin (
21x )图象上所有的点向右平移2π个单位,得到y =sin 21(x -2π)= sin (4π2-x )的图象;最后将y =sin (21x -4
π)的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin (
21x -4π)的图象. (3)周期T =2
1π2π2=ω=4π,振幅A =3,初相是-4
π. (4)由于y =3sin (21x -4
π)是周期函数,通过观察图象可知,所有与x 轴垂直并且通过图象的最值点的直线都是此函数的对称轴,即令
21x -4π=2π+k π,解得直线方程为x =2
π3+2k π,k ∈Z ; 所有图象与x 轴的交点都是函数的对称中心,所以对称中心为点(2
π+2k π,0),k ∈Z ; x 前的系数为正数,所以把21x -4π视为一个整体,令-2π+2k π≤21x -4π≤2
π+2k π,解得[-2π+4k π,2
π3+4k π],k ∈Z 为此函数的单调递增区间. 13. A =1,T=34π,φ=-4
3π 14. 解:(Ⅰ)因为1cos sin 32sin 2)(2++=x x x x f
1cos sin 322cos 1++-=x x x
22cos 2sin 3+-=x x
,2)6
2sin(2+-=π
x
所以)(x f 的最小正周期.2
2ππ==T (Ⅱ)因为,2)62sin(2)(+-
=πx x f 所以由),(226222Z k k x k ∈+≤-≤-
πππππ 得)Z k (3
k x 6k ∈π+π≤≤π-π 所以)(x f 的单调增区间是).](3,6[Z k k k ∈+-
ππππ (Ⅲ)因为.65626,20ππππ≤-≤-≤
≤x x 所以 所以.1)6
2sin(21≤-≤-πx 所以].4,1[2)62sin(2)(∈+-=π
x x f
即)(x f 的最小值为1,最大值为4.。