函数的综合应用课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

4.5.3函数模型的应用课件(人教版)

4.5.3函数模型的应用课件(人教版)

16
已知函数模型解决实际问题,往往给出的函数解析式含有参数,需要 将题中的数据代入函数模型,求得函数模型中的参数,再将问题转化为已 知函数解析式求函数值或自变量的值.
17
1.某种商品在近 30 天内每件的销售价格 P(元)和时间 t(天)的函数关 系为:
P=t-+t2+0100<0t<2255≤,t≤30. (t∈N*) 设该商品的日销售量 Q(件)与时间 t(天)的函数关系为 Q=40- t(0<t≤30,t∈N*),求这种商品的日销售金额的最大值,并指出日销售金 额最大是第几天?
31
2.某地区不同身高的未成年男性的体重平均值如表:
身高 60 70 80 90 100 110 120 130 140 150 160 170
/cm
体重 6.13 7.90 9.90 12.15 15.02 17.50 20.92 26.86 31.11 38.85 47.25 55.05
/kg
第四章 指数函数与对数函数
4.5 函数的应用(二)
第3课时 函数模型的应用
2
学习目标
核心素养
1.会利用已知函数模型解决实际问
题.(重点) 通过本节内容的学习,使学生认识函
2.能建立函数模型解决实际问 数模型的作用,提高学生数学建模、
题.(重点、难点) 数据分析的素养.
3.了解拟合函数模型并解决实际问
车有营运利润的时间不超过
解 y≥0,得 6- 11≤x≤6+
________年.
11,所以有营运利润的时间为 2 11.
又 6<2 11<7,所以有营运利润的时
间不超过 7 年.]
12
合作探究 提素养
13

三角函数的综合应用+课件-2025届高三数学一轮复习

三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C

函数的应用课件ppt课件ppt课件ppt

函数的应用课件ppt课件ppt课件ppt

大数据与函数应用
随着大数据技术的不断发展,函 数应用将更多地涉及到大规模数 据的处理和分析,需要更加高效
和稳定的技术支持。
大数据技术将促进函数应用的个 性化发展,使得函数能够更好地 满足不同用户的需求,提升用户
体验。
大数据技术将提升函数应用的预 测能力和决策支持能力,使得函 数能够更好地服务于商业智能和
05
未来函数应用的发展趋势
深度学习与函数应用
深度学习技术将进一步拓展函数应用的领域,特别是在图像识别、语音识别、自然 语言处理等领域,将会有更多的函数应用出现。
深度学习技术将提升函数应用的精度和效率,使得函数能够更好地满足复杂场景的 需求。
深度学习技术将促进函数应用的自动化和智能化,使得函数能够更好地适应不断变 化的环境和需求。
成本与收益
经济增长
在经济增长研究中,函数可以描述国 民生产总值、人均收入等经济指标随 时间的变化规律,用于预测经济发展 趋势和制定经济政策。
在经济分析中,函数用于表示成本、 收益与产量或销售量之间的关系,用 于制定经济决策和评估经济效益。
03
函数的应用实例
三角函数在物理中的应用
总结词 正弦函数 余弦函数 正切函数 应用实例
运动学
在物理学中,函数可以描述物体运动的速度、加速度、位移等物理量随时间的变化规律。
波动
函数可以描述波动现象,如正弦波、余弦波、波动方程等。
热力学
在热力学中,函数可以描述温度、压力、体积等物理量之间的关系,用于研究热力学的性质和变 化规律。
工程领域
控制系统
在工程控制系统中,函数用于描 述系统的输入和输出之间的关系 ,通过调节系统参数实现控制目
解决周期性问题
描述简谐振动、交流电等周 期性现象。

(中考数学复习)第18讲-二次函数综合应用-课件-解析

(中考数学复习)第18讲-二次函数综合应用-课件-解析
图18-7 (1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值 范围);
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围. 解:(1)把x=0,y=2,及h=2.6代入到y=a(x-6)2+h中,
B.4 s
C.3 s
D.2 s
B
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 B
图18-1
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考

4.(2013·宁波)如图18-2所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
图18-2 A.abc<0 B.2a+b<0 C.a-b-c<0 D.4ac-b2<0
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
5.某公园草坪的防护栏是由100段形状相同的抛物线组成 的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈 钢的支柱,防护栏的最高点距底部0.5 m(如图18-3所示), 则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
函数图象得
∴函数关系式为y=-x+180.
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是 商场负责人,会将售价定为多少,来保证每天获得的利润最 大,最大利润是多少? 解: W=(x-100)y=(x-100)(-x+180) =-x2+280x-18 000 =-(x-140) 2+1 600, 当售价定为140元,W最大=1 600. ∴售价定为140元/件时,每天最大利润W=1 600元.

函数的应用课件(共20张PPT)

函数的应用课件(共20张PPT)
解 设提高x个2元,则将有10x辆电瓶车空出,且租金 总收人为
y=(20+2x)(300-10x) =-20x2+600x-200x+6000 =-20(x2-20x+100-100)十6000 =-20(x-10)2+8000.(x∈N且x≤30)
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2=a(0-6)2+5,
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
解 如果x∈[0,180],则 f(x)=5x;如果x∈(180,260],
按照题意有
f(x)=5×180+7(x-180)=7x-360.
因此
f
x
7
x
5x , x 0 360 , x
2. 北京市自2014年5月1日起,居民用水实行阶梯水 价制度、其中年用水量不超过180m3的部分,综合用水 单价为5元/m3;超过180m3但不超过 260m3的部分,综合用水单价为7元/m3. 如果北京市一居民年用水量为xm3,其要 缴纳的水费为f(x)元。假设0≤x≤260, 试写出f(x)的解析式,并作出f(x)的图象.
由此得到,当x=10时,ymax=8000,即每辆电瓶车 的租金为
20+10×2=40 元时,毎天租金的总收人最高,为8000元.
ห้องสมุดไป่ตู้
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?

八年级函数ppt课件ppt课件

八年级函数ppt课件ppt课件
八年级函数ppt课件
CATALOGUE
目 录
• 函数基本概念 • 一次函数与正比例函数 • 反比例函数 • 二次函数及其图像和性质 • 函数在实际问题中应用举例 • 总结回顾与拓展延伸
01
CATALOGUE
函数基本概念
函数定义与性质
函数定义
详细解释函数的定义,包括函数 的概念、定义域、值域等。
实际问题中的综合应用
在某些实际问题中,可能需要同时考虑反比例函数和一次函数的关系。例如,在研究电路中电流、电 压和电阻之间的关系时,可能需要同时考虑欧姆定律和反比例函数来描述这种关系。通过综合应用这 两种函数,可以更全面地理解和解决这类问题。
04
CATALOGUE
二次函数及其图像和性质
二次函数表达式及图像特点
导入
通过实际问题引入最大( 小)值的概念,如利润最 大化、成本最小化等。
建立函数模型
将实际问题转化为函数模 型,明确目标函数和约束 条件。
求解方法
介绍求解最大(小)值问 题的常用方法,如导数法 、不等式法等,并举例说 明其应用。
方案设计类问题解决方法与策略
导入
通过实际问题引入方案设计类问 题的概念,如产品设计、工程规
03
工程中的速率与时间关系
在工程问题中,有时需要计算某个任务在不同速率下完成所需的时间。
当任务量一定时,速率与时间成反比关系。因此,可以用反比例函数来
描述这种关系。
反比例函数与一次函数综合应用
图像交点问题
当反比例函数与一次函数在同一坐标系中作图时,可能会存在交点。这些交点满足两个函数的方程组 ,因此可以通过解方程组来求解交点的坐标。
函数性质
介绍函数的奇偶性、单调性、周 期性等基本性质,并举例说明。

函数奇偶性及单调性的综合应用课件

函数奇偶性及单调性的综合应用课件
定义
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则 称$f(x)$为增函数。
性质
增函数的图像是上升的,即随着$x$的 增大,$y$的值也增大。
单调减函数的定义与性质
定义
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称 $f(x)$为减函数。
奇偶性与单调性在数学问题中的应用实例
函数图像分析
通过分析函数的奇偶性和 单调性,可以更好地理解 函数的图像和性质,进而 解决相关的数学问题。
数值计算优化
在数值计算中,利用函数 的奇偶性和单调性,可以 更高效地求解数学问题和 优化算法。
数学建模应用
在数学建模中,结合奇偶 性和单调性,可以建立更 精确的数学模型,解决实 际问题。
THANKS
感谢观看
性质
减函数的图像是下降的,即随着$x$的增大,$y$的值减小。
单调性在函数图像中的应用
1 2 3
判断函数图像的单调性
通过观察函数图像的走势,可以判断函数的单调 性。
利用单调性判断函数值大小
在单调增函数中,如果$x_1 < x_2$,则有 $f(x_1) < f(x_2)$;在单调减函数中,如果$x_1 < x_2$,则有$f(x_1) > f(x_2)$。
对于函数$f(x) = x^{2}$,其在区间 $(-infty, 0)$上单调递减,在区间$(0, +infty)$上单调递增。对于函数$f(x) = frac{1}{x}$,其在区间$(-infty, 0)$ 和$(0, +infty)$上均为单调递减。

高中函数的应用ppt课件ppt课件ppt

高中函数的应用ppt课件ppt课件ppt

在生物学中,二次函数可以用于描述 种群增长、生物繁殖和生态平衡等现 象。
物理学
在物理学中,二次函数可以用于描述 物体的运动轨迹、振动和波动等现象 。
二次函数与其他数学知识的结合
与导数结合
通过求导数,可以研究二次函数的单调性、极值 和拐点等性质。
与三角函数结合
通过与三角函数的结合,可以研究一些周期性和 对称性问题。
的交叉也将越来越深入。例如,在物理学、工程学、经济学等领域中,
函数都有广泛的应用。
02
数学建模的普及
随着数学建模的普及,函数作为数学建模的重要工具之一,其应用也将
越来越广泛。通过数学建模,学生能够更好地理解现实世界中的问题,
并运用数学方法来解决这些问题。
03
新函数类型的出现
随着数学的发展,新的函数类型也将不断出现。例如,分形函数、混沌
分式函数在交通工程中的应用
在交通工程中,分式函数可以用来描述车辆行驶的速度和时 间之间的关系,以及道路通行能力与车辆数量之间的关系。 通过分式函数的分析,可以优化交通流量的分配和管理。
分式函数与其他数学知识的结合
分式函数与导数的结合
分式函数的导数可以用来研究函数的单调性、极值和拐点等问题。通过导数的计 算和分析,可以更好地理解分式函数的性质和变化规律。
度、长度、面积和体积等。
三角函数在解析几何中的应用
02

通过三角函数,可以将几何问题转化为代数问题,从而利用代
数方法求解。
三角函数在复数中的应用
03
复数中的三角函数可以用于解决与周期性、波动性和旋转相关
的问题。
三角函数在实际生活中的应用
航海和航空中的应用
通过三角函数,可以计算航行路线、飞行轨迹和高度等。

部编人教版九年级数学上册3 二次函数在学科内的综合应用(课件)

部编人教版九年级数学上册3 二次函数在学科内的综合应用(课件)

解:(1)令y=0,得x2-(2m-1)x+m2+3m+4=0,
Δ=(2m-1)2-4(m2+3m+4)=-16m-15.
当Δ>0时,方程有两个不相等的实数根,
即-16m-15>0,
∴m<-
15 ,
16
此时二次函数的图象与x轴有两个交点;
当Δ=0时,方程有两个相等的实数根,
即-16m-15=0,∴m=-
3
9
3
解∴当得a点=Q的83 坐或标a=为0((-舍去52 ,),58∴)或Q2((
1 12 2
,- 7 ,- 78
8
). )时,Q,
A,C,N四点能构成平行四边形.
①当点Q1在y轴左侧时,由四边形AQ1CN 为平行四边形,得AC与Q1N互相平分, 则点Q1与点N关于原点(0,0)对称,而
而N( 4a ,- a ),A(0,a),C(0,-a),
故+Qa,2 (得343a-,7a-=3 -73a
).将点Q2的坐标代入y=-x2-2x 16 a2- 8 a+a,
∴A(0,a).
由y=-(x+1)2+1+a,得M(-1,1+a).
(2)将△NAC沿着y轴翻折,若点N的对称点P恰好落在抛 物线上,AP与抛物线的对称轴相交于点D,连接CD, 求a的值及△PCD的面积.
设直线MA对应的函数解析式为y=kx+b,
将点A(0,a),M(-1,1+a)的坐标分别代入

解:∵抛物线y=x2-3x+
5 4
与x轴相交于A,B两点,
与y轴相交于点C,
∴令y=0,得x= 1 或x= 5 ,
2
2
∴A( 1 ,0),B( 5 ,0);
2
令x=0,得y=
5 4

excel函数应用 ppt课件ppt课件

excel函数应用 ppt课件ppt课件

计算库存量
使用SUM函数计算各产品 的库存量。
计算库存价值
使用VLOOKUP和SUM函 数计算各产品的库存价值 。
预警库存不足
使用IF和AND函数判断是 否需要预警库存不足。
计算库存周转率
使用SUMIF和IF函数计算 各产品的库存周转率。
Excel函数使用技巧和注意事
04

函数的嵌套使用
总结词
理解嵌套函数的逻辑关系
=VLOOKUP(E2, A:C, 3, FALSE) 在 A:C 范围内查 找 E2 的值,并返回对 应行的第3列的值。
Excel函数在实际工作中的应
03

工资计算
计算基本工资
使用SUM函数计算员工的基本工资总额 。
计算税费
使用VLOOKUP和IF函数查找税率并计算 税费。
计算加班费
使用IF和SUM函数计算员工的加班费。
计算总工资
使用SUM和SUMIF函数计算员工的总工 资。
销售数据分析
01 计算销售额
使用SUM函数计算各产品 的销售额。
03 计算销售量
使用SUM函数计算各产品
的销售量。
02 计算平均售价
使用AVERAGE函数计算
各产品的平均售价。
04 筛选异常数据
使用IF和ISNUMBER函数
筛选出异常数据。
库存管理
官方帮助
充分利用微软官方的帮助 文档和教程资源。
学习方法分享
刻意练习
针对难点和重点,进 行有针对性的练习, 强化记忆和理解。
制作笔记
将学习过程中的重要 知识点和操作技巧整 理成笔记,方便复习 。
小组学习
与同学或朋友组建学 习小组,共同探讨问 题,提高学习效率。

函数的应用-高一数学教材配套教学课件(人教A版必修第一册)

函数的应用-高一数学教材配套教学课件(人教A版必修第一册)

2.函数零点存在定理
【函数零点存在定理】 条件:①f(x)在[a,b]连续,②f (a)·f (b)<0 结论:函数f(x)在(a,b)内至少有1个零点.
①两个条件缺一不可; 若二缺一,则f(x)在(a,b)内可能有零点、也可能无零点. ②其逆定理不成立. 即:若f(x)在(a,b)内有零点,f(a)·f(b)<0不一定成立.
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
x -1 0 1 2 3 设f(x)=ex-(x+2)
ex 0.37 1 2.72 7.39 20.09 f(-1)=0.37-1<0 x+2 1 2 3 4 5 f(0)=1-2<0
f(1)=2.72-3<0
f(2)=7.39-4>0 f(3)=20.09-5>0
一元二次方程 01 根的分布问题
一元二次方程根的分布问题①
设方程ax2 bx c 0(a 0)的两根为x1, x2,
两根与0比较(a>0):
两根与0比较(a<0):
两个负根 两个正根 一正根一负根 两个负根 两个正根
一正根一负根
0
b 2a
0
f 0 0
0
x1
x2
b a
0
x1x2
开口系数±、△、
对称轴、临界点函数值±
0
b 2a
k0
ff (0k)00
0
b 2a
k0
ff(0k)00
f (k) 0 0
一元二次方程根的分布问题③
设方程ax2 bx c 0(a 0)的两根为x1, x2,
两根在区间上的分布(a>0):
两根都在 两根仅有一根 一根在(m,n)内

高一数学复习知识讲解课件62 正弦函数、余弦函数的性质(第3课时) 综合应用

高一数学复习知识讲解课件62 正弦函数、余弦函数的性质(第3课时)  综合应用

5.4.2正弦函数、余弦高一数学复习知综合应余弦函数的性质(第3课时)
复习知识讲解课件
综合应用
探究1 形如y =a sin 2
x +b sin x +c 设t =sin x ,从而转化为二次函数在给定区间
(a ≠0)的函数的处理思路是:利用换元法定区间上的最值问题.
探究2 正弦曲线、余弦曲线的对称轴高点或最低点,即此时的正弦值、余弦值取曲线的对称中心一定是正弦曲线、余弦曲线弦值为0.考查了整体代换的数学思想.
对称轴一定分别过正弦曲线、余弦曲线的最弦值取最大值或最小值;正弦曲线、余弦弦曲线与x 轴的交点,即此时的正弦值、余
探究3 整体研究三角函数的性质时性、奇偶性、对称性、单调性、最值、值域
质时,我们要从函数的定义域、图象、周期
值域等几个方面综合考虑.
自 助 餐
探究探究 已知三角函数单调区间求参数范子集法:求出原函数的相应单调区间等式
(组)求解. 参数范围的方法:
区间,由已知区间是该区间的子集,列不。

人教版高中数学第一章函数的概念(第2课时)(共42张PPT)教育课件

人教版高中数学第一章函数的概念(第2课时)(共42张PPT)教育课件

类型 三 求形如f(g(x))的函数的定义域
• 例6.已知函数 f(x) 5x 1
x2 (1)求f(x)的定义域; (2)求f(x+3)的表达式,以及f(x+3)的定义域。 (3)求f(2x+1)的表达式,以及f(2x+1)的定义域。
注意: 1. 函数f(x+3)的定义域指的是x的取值范围,而不是x+3 的取值范围。 2.本题中函数f(x+3)的定义域为-1<x≤2,则2<x+3 ≤5
[1,2]还是2x+1∈[1,2]? f(x),f(2x+1)和f(2x-1)中的
x,2x+1和2x-1的取值范围有何关系?
探究提示:
1.x+ 1 ∈[0,2],x- 1∈[0,2].
2
2
2.定义域就是自变量的取值范围.y=f(2x+1)的定义域为
[1,2],它的含义是x∈[1,2].f(x),f(2x+1)和f(2x-1)
【变式训练】(2013·武汉高一检测)已知集合 A={1,2,3},B={4,5,6},f:A→B是从集合A到集合B的一个函数, 那么该函数的值域C的不同情况有( ) A.6种 B.7种 C.8种 D.9种 【解题指南】依据函数的定义来判断函数个数,进而求值域. 【解析】选B.结合函数定义,可知能构成7个函数,其值域有7 种不同情况. 即值域为{4},{5},{6},{4,5},{4,6},{5,6},{4,5,6}.
【变式训练】若函数y=f(x)的定义域是[0,2],则函数g(x)
= f 2 x 的定义域是(
x-1
A.[0,1]
) B.[0,1)
C.[0,1)∪(1,4]

2023年中考数学专项突破之函数的实际应用课件(共50张PPT)

2023年中考数学专项突破之函数的实际应用课件(共50张PPT)
要防止轻易放弃.
方法点拨
解决这类问题一般遵循这样的方法:
返回主目录

二次函数的实际应用
(1)运用转化的思想.由于函数与几何结合的问题都具有较强的综合性,因此在解决这
类问题时,要善于把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把
“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题.
返回主目录

二次函数的实际应用
题型讲解
二次函数在中考数学中常常作为压轴题,具有一定的综合性和较大的难度,学生往往
因缺乏思路,感到无从下手,难以拿到分数.事实上,我们只要理清思路,方法得当,稳步
推进,力争少失分、多得分,同时需要心态平和,切忌急躁,当思维受阻时,要及时调整
思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又
解:∵a=0.1时,s=500,
k
∴500= ,解得k=50.
0.1
则该轿车可行驶的总路程s与平均耗油量a之间的函数解析式是s=
50
.a返回主目录源自(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
50
50
解:将a=0.08代入s= ,得s=
=625.
a
0.08
答:当平均耗油量为0.08升/千米时,该轿车可以行驶625千米.
提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔
记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少元时,才能使该文具
若y是x的反比例函数,其图象如图所示:
(1)求y与x的函数解析式;
分析:用待定系数法确定反比例函数解析式.
k
解析:设y与x的函数关系式为y= (k≠0),

函数与方程及函数的综合应用课件——高三数学一复习

函数与方程及函数的综合应用课件——高三数学一复习
-1 200,已知每千件商
2
x 1
品售价为50万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
解析 (1)当0<x<50时,L(x)=50x- 1 x 2 10 x -200=- 1 x2+40x-200,
6
4 3
3 2
6
2
函数f(x)的一个零点位于 , 内,即x0∈ , .故选C.


6 4
答案 C


6 4
考法二 已知函数有零点(方程有根)求参数值(或取值范围)
1.直接法:利用零点构建关于参数的方程(组)或不等式(组),直接求解.
2.参数分离法:将参数与自变量分离,转化为求函数的最值或值域.
2
2

当x≥50时,L(x)=50x-52x- 7 200 +1 200-200=1 000- 2 x 7 200 ,
x 1
1 2
x 40 x 200,0 x 50,
所以L(x)= 2

1 000 2 x 7 200 , x 50.
3.5专题三、函数与方程及
函数的综合应用
知识梳理
基础篇
考点一 函数的零点
1.函数的零点
1)函数零点的定义:对于一般函数y=f(x),把使f(x)=0的实数x叫做函数y=
f(x)的零点.
注意:零点不是点,是满足f(x)=0的实数x.
2)三个等价关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的

反比例函数与一次函数的综合-完整版课件

反比例函数与一次函数的综合-完整版课件

为学生后续学习更复 杂的数学知识和解决 实际问题打下基础。
培养学生的数学思维 和解决问题的能力, 提高学生的数学素养 。
课件内容概述
01
02
03
04
反比例函数的基本概念、图像 和性质。
一次函数的基本概念、图像和 性质。
反比例函数与一次函数的综
通过实例和练习题,加深学生 对反比例函数和一次函数的理
下节课预习提示和作业布置
预习提示
下节课将学习反比例函数与二次函数的综合应用,请学生提前预习相关内容,了 解基本概念和性质
作业布置
布置与反比例函数与一次函数综合应用相关的练习题和思考题,要求学生认真完 成并提交作业
THANKS FOR WATCHING
感谢您的观看
反比例函数的图像关于原点对称,即 满足奇函数的性质 $f(-x) = -f(x)$。
反比例函数在其定义域内具有单调性 :在第一、三象限内单调递减,在第 二、四象限内单调递增。
反比例函数在其定义域内没有极值点 ,也没有拐点。
CHAPTER 03
一次函数基本概念与性质
一次函数定义及表达式
一次函数定义
可导性
一次函数的导数为常数 $k$, 即其斜率。
对称性
一次函数图像关于点 $(h, k)$ 中心对称,其中 $h = b/2a$,$k = f(h)$。
线性变换性质
一次函数具有线性变换性质, 即 $f(ax+b) = k(ax+b) + b
= akx + (ab+b)$。
CHAPTER 04
反比例函数与一次函数综合 应用
一次函数是形如 $y = kx + b$(其 中 $k neq 0$)的函数,它描述了两 个变量之间的线性关系。

【优质】初三九年数学:《专题十九)二次函数与一次函数的综合应用》ppt课件

【优质】初三九年数学:《专题十九)二次函数与一次函数的综合应用》ppt课件

当 y=-3 时,由-12x2+32x+2=-3,解得 x=-2(舍去)或 x=5,此时 D
点坐标为(5,-3).综上可知存在满足条件的点 D,其坐标为(1,3)或(2,3)或(5, -3) (3)∵AO=1,OC=2,OB=4,AB=5,∴AC= 5,BC=2 5,∴AC2 +BC2=AB2,∴△ABC 为直角三角形,即 BC⊥AC,
如图,设直线 AC 与直线 BE 交于点 F,过 F 作 FM⊥x 轴于点 M,由题意
可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2 5,∴OAMO=ACCF,即O1M=
2
5 ,解得 5
OM=2,FOMC=AACF,即F2M=3
5 ,解得 5
FM=6,∴F(2,6),且
B(4,
0),可得直线 BE 的表达式为 y=-3x+12,联立直线 BE 和抛物线表达式可得
4. (滨州中考)如图,直线y=kx+b(k,b为常数)分别与x轴,y轴交于点A(-4, 0),B(0,3),抛物线y=-x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数表达式; (2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的 距离为d,求d关于x的函数表达式,并求d取最小值时点P的坐标; (3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动, 求CE+EF的最小值.
5. (深圳中考)如图,抛物线 y=ax2+bx+2 经过点 A(-1,0),B(4,0), 交 y 轴于点 C;
(1)求抛物线的表达式(用一般式表示);
(2)点 D 为 y 轴右侧抛物线上一点,是否存在点 D 使 S△ABC=23S△ABD?若 存在请直接给出点 D 坐标;若不存在请说明理由;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1) A(-1,-2)∴反比例函数的解析式为 y=2x.
(3) OA= 5.点 C(2,1).∴OC= 5,
∴OC=OA,∴四边形 OABC学是习交菱流P形PT .
18
例 4(2014·威海)如图,已知抛物线 y=ax2+bx+c(a≠0)经 过 A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;
学习交流PPT
7
3.二次函数y=ax2+bx+c 的图象如图所示,则
反比例函数y=
a x
与一次函数y=bx+c在同一坐标系中
的大致图象是( D )
学习交流PPT
8
2.如图,二次函数y=x2+bx+c的图象过点 B(0,-2),它与反比例函数y=-8x的图象交于点 A(m,4),则这个二次函数的解析式为( A )
学习交流PPT
5
4.(2013·呼和浩特)在同一平面直角坐标系中,函 数 y=mx+m 和函数 y=-mx2+2x+2(m 是常数,且 m≠0)的图象可能是( D )
A
B
C
D
学习交流PPT
6
3.(2014·泸州)已知抛物线 y=x2-2x+m+1 与 x 轴有两个不同的交点,则函数 y=mx 的大致图象是 (A )
函数的综合应用
学习交流PPT
1
学习交流PPT
2
1.若反比例函数 y=kx与一次函数 y=x+2 的图象
没有交点,则 k 的值可以是( A )
A.-2
B.-1
C.1
D.2
1.已知反比例函数 y=bx(b 为常数,且 b≠0),当
x>0 时,y 随 x 的增大而增大,则一次函数 y=x+b 的
图象不经过第______象限.( B )
∵GCMG=-n2n=-n,MDHH=mm2=m1 =-n, ∴GCMG =MDHH.∵ ∠CGM=∠ MHD=90°, ∴△CGM∽△MHD,∴∠CMG=∠MDH. ∵∠MDH+∠DMH=90°, ∴∠CMG+∠DMH=90°, ∴∠CMD=90°,即 MC⊥MD.
学习交流PPT
16
三、解答题(共 52 分) 13.(12 分)(2014·襄阳)如图,一次函数 y1=-x+2 的图象与反比例函数 y2=kx的图象相交于 A,B 两点, 与 x 轴相交于点 C. 已知 tan∠ BOC=12,点 B的坐标为(m, n). (1)求反比例函数的解析式; (2)请直接写出当 x<m 时, y2 的取值范围.
学习交流PPT
13
8.(2014·桂林)如图①,在等腰梯形 ABCD 中,∠B=60°,
P,Q 同时从点 B 出发,以 1 个单位长度分别沿 B→A→D→C 和
B→C→D 方向运动至相遇时停止,设运动时间 t(秒),△BPQ 的
面积为 S(平方单位),S 与 t 的函数图象如图②所示,则下列结论
错误的是( C )
(1)求双曲线和直线的解析式; (2)直接写出不等式>kx+b的解集.
(1)∴双曲线的解析式为 y=-6x.
∴点 B 的坐标为(1,-6).
直线的解析式为 y=-2x-4.
(2)不等式mx >kx+b 的解集为
-3<x<0 或 x>1.
学习交流PPT
15
(2) 抛物线的解析式为 y=x2-1,△MAB 是等腰直角三角形. 设 D(m,m2-1),C(n,n2-1),∴OE=-n,CE=1-n2,OF=m, DF=m2-1,∵OM=1,∴CG=n2,DH=m2,∵EG∥DH,∴EDCF=OOEF, 即m1-2-n12=-mn,解得 m=-1n.
A.y=x2-x-2 B.y=x2-x+2 C.y=x2+x-2 D.y=x2+x+2
学习交流PPT
9
5.(2014·潍坊)已知一次函数 y1=kx+b(k<0)与反 比例函数 y2=mx (m≠0)的图象相交于 A,B 两点,其横 坐标分别是-1 和 3,当 y1>y2 时,实数 x 的取值范围 是( A )
学习交流PPT
17
14.(12 分)(2013·十堰)如图,已知正比例函数 y=2x 和反 比例函数的图象交于点 A(m,-2).
(1)求反比例函数的解析式; (2)观察图象,直接写出正比例函数值大于反比例函数值时, 自变量 x 的取值范围; (3)若双曲线上的点 C(2,n)
沿 OA 方向平移 5个单位长度 得到点 B,判断四边形 OABC 的形状,并证明你的结论.
A.x<-1 或 0<x<3 B.-1<x<0 或 0<x<3 C.-1<x<0 或 x>3 D.0<x<3
学习交流PPT
10
6.函数 y=x2+bx+c 与 y=x 的图象如图所示, 有以下结论:①b2-4c>0;②b+c+1=0;③3b+c+6 =0;④当 1<x<3 时,x2+(b-1)x+c<0.其中正确的个 数是( B )
A.当 t=4 秒时,S=4 3,
B.AD=4
C.当 4≤t≤8 时,S=2 3t D.当 t=9 时,BP 平分梯形 ABCD 的面积
学习交流PPT
14
5.如图,在平面直角坐标系中,双曲线 y=mx 和直线 y=kx +b 交于 A,B 两点,点 A 的坐标为(-3,2),BC⊥y 轴于点 C, 且 OC=6BC.
A.一
B.二
C.三
遵义 )已知抛物线 y=ax2+bx 和直线 y=ax+b 在同一坐标系内的图象如图所示,其中正确的 是( D )
学习交流PPT
4
2.二次函数 y=ax2+bx 的图象如图所示,那么一 次函数 y=ax+b 的大致图象是( C )
A
B
C
D
A.1
B.2
C.3
D.4
学习交流PPT
11
7.某种正方形合金板材的成本 y(元)与它的面积
成正比,设边长为 x 厘米,当 x=3 时,y=18,那么
当成本为 72 元时,边长为( A )
A.6 厘米
B.12 厘米
C.24 厘米
D.36 厘米
学习交流PPT
12
10.(2014·常州)在平面直角坐标系 xOy 中,一次 函数 y=10-x 的图象与函数 y=6x(x>0)的图象相交于 点 A,B,设点 A 的坐标为(x1,y1),那么长为 x1, 宽为 y1 的矩形的面积为 6 ,周长为 20 .
(2)E 为抛物线上一动点,是否存在点 E,使以 A,B,E 为 顶点的三角形与△COB 相似.若存在,试求出点 E 的坐标;若 不存在,请说明理由;
相关文档
最新文档