人教版高二数学知识点总结

合集下载

人教版高二数学各章知识点

人教版高二数学各章知识点

人教版高二数学各章知识点因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。

小编高二频道为你整理了《人教版高二数学重点知识归纳》,助你金榜题名!人教版高二数学各章知识点公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαco t(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)人教版高二数学各章知识点an=a1+(n-1)d(1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometricprogression).这个常数叫做等比数列的公比(commonratio),公比通常用字母q表示(q≠0).注:q=1时,an为常数列.人教版高二数学各章知识点解不等式问题的分类解一元一次不等式.解一元二次不等式.可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.解不等式时应特别注意下列几点:正确应用不等式的基本性质.正确应用幂函数、指数函数和对数函数的增、减性.注意代数式中未知数的取值范围.不等式的同解性|f(x)|0)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)。

人教版高二年级数学知识点总结

人教版高二年级数学知识点总结

【一】一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關係;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關係式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質;10.週期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的座標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質。

高二人教版数学知识点

高二人教版数学知识点

高二人教版数学知识点一、直角三角形的性质1. 直角三角形的定义:一个角为直角的三角形称为直角三角形。

2. 勾股定理:直角三角形中,直角边的平方等于其他两边平方的和。

即a² + b² = c²,其中a、b为直角边,c为斜边。

3. 特殊直角三角形:a) 等腰直角三角形:两个直角边相等的直角三角形。

b) 30-60-90特殊直角三角形:一个角为30度,一个角为60度,另一个角为90度的直角三角形。

c) 45-45-90特殊直角三角形:两个直角边相等,并且每个直角角度为45度的直角三角形。

二、向量的基本概念和运算1. 向量的定义:有大小和方向的量称为向量。

2. 向量的表示方法:用有向线段表示向量,线段的方向表示向量的方向,线段的长度表示向量的大小。

3. 向量的运算:a) 向量的加法:将两个向量的相对起点放在一起,以第一个向量的终点和第二个向量的起点之间绘制一条线段,该线段就是这两个向量的和向量。

b) 向量的数乘:将向量的大小与一个实数相乘,得到一个新的向量,其方向与原来的向量相同(或相反),大小为原来的向量大小的绝对值与实数的乘积。

c) 向量的减法:将减去向量看作加上其相反向量,即a - b = a + (-b)。

d) 基本向量的概念:分别沿着x轴、y轴和z轴正方向的单位向量分别为i、j和k。

三、平面向量的数量积和坐标表示1. 平面向量的数量积:设有两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积(内积)定义为a·b = x₁x₂ + y₁y₂,也可以表示为|a||b|cosθ,其中θ为a、b之间的夹角。

2. 数量积的性质:a) a·b = b·a(数量积的交换律)b) a·(b + c) = a·b + a·c(数量积的分配律)c) (k·a)·b = k·(a·b) = a·(k·b)(数量积与数乘的结合律)3. 数量积的应用:a) 判断两个向量是否垂直:若a·b = 0,则a与b垂直。

2024年人教版高二数学复习知识点总结

2024年人教版高二数学复习知识点总结

2024年人教版高二数学复习知识点总结第一章函数与方程1.1 函数与映射函数的定义、函数的性质、函数的四则运算、复合函数、反函数映射的定义、映射的性质、一一映射、单射、满射1.2 一元二次函数及其应用一元二次函数的定义、一元二次函数的图像、一元二次函数的性质、一元二次函数的解析式、一元二次函数的图像与解析式的关系、一元二次函数的最值、一元二次函数的应用1.3 不等式不等式的定义、解不等式、不等式的性质、不等式的运算、一元一次不等式、一元二次不等式1.4 线性规划线性规划的定义、线性规划中的常见问题、线性规划的解法、线性规划的应用第二章三角函数与解三角形2.1 三角函数三角函数的定义、三角函数的性质、三角函数的图像、三角函数的周期、三角函数的关系式2.2 平面向量平面向量的定义、平面向量的运算、平面向量的线性运算、平面向量的数量积、平面向量的夹角、平面向量的投影、平面向量的正交2.3 解三角形解直角三角形、解一般三角形、解等腰三角形、解等边三角形、解特殊三角形、解复合三角形第三章数列与数项级数3.1 数列的概念数列的定义、数列的性质、数列的通项、数列的分类、数列的极限3.2 数列的通项公式等差数列、等比数列、等差数列与等比数列的关系、通项公式的推导方法、通项公式的应用3.3 数列的求和部分和、数列的前n项和、无穷数列的求和、等差数列的求和、等比数列的求和、部分和公式的应用3.4 级数级数的定义、级数的性质、无穷级数的收敛性、级数的求和、级数的应用第四章导数与导数应用4.1 导数的基本概念导数的定义、导数的性质、导数的基本运算、导数与函数的图像关系4.2 导数的应用函数的单调性、函数的极值、函数的曲线与切线、函数的凹凸性、函数的拐点、函数的极限与导数4.3 高阶导数和隐函数高阶导数的定义、高阶导数的求法、高阶导数的性质、隐函数的导数、隐函数的高阶导数第五章积分与积分应用5.1 不定积分不定积分的定义、不定积分的性质、不定积分的基本公式、不定积分的线性运算5.2 定积分定积分的定义、定积分的性质、定积分的线性运算、定积分的几何意义、定积分的求法5.3 微分方程微分方程的定义、微分方程的解、一阶微分方程、二阶微分方程、线性微分方程、微分方程的应用5.4 积分应用反常积分、曲线长度、曲线面积、体积、几何应用、物理应用以上是____年人教版高二数学的复习知识点总结,共计____字。

人教版高二数学备考知识点归纳

人教版高二数学备考知识点归纳

【篇一】1.求導法則:(c)/=0這裏c是常數。

即常數的導數值為0。

(xn)/=nxn-1特別地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)2.導數的幾何物理意義:k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。

V=s/(t)表示即時速度。

a=v/(t)表示加速度。

3.導數的應用:①求切線的斜率。

②導數與函數的單調性的關係已知(1)分析的定義域;(2)求導數(3)解不等式,解集在定義域內的部分為增區間(4)解不等式,解集在定義域內的部分為減區間。

我們在應用導數判斷函數的單調性時一定要搞清以下三個關係,才能準確無誤地判斷函數的單調性。

以下以增函數為例作簡單的分析,前提條件都是函數在某個區間內可導。

③求極值、求最值。

注意:極值≠最值。

函數f(x)在區間[a,b]上的值為極大值和f(a)、f(b)中的一個。

最小值為極小值和f(a)、f(b)中最小的一個。

f/(x0)=0不能得到當x=x0時,函數有極值。

但是,當x=x0時,函數有極值f/(x0)=0判斷極值,還需結合函數的單調性說明。

4.導數的常規問題:(1)刻畫函數(比初等方法精確細微);(2)同幾何中切線聯繫(導數方法可用於研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於次多項式的導數問題屬於較難類型。

2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。

九、不等式一、不等式的基本性質:注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。

(2)注意課本上的幾個性質,另外需要特別注意:①若ab>0,則。

即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。

高二数学知识点总结新教材人教版

高二数学知识点总结新教材人教版

高二数学知识点总结新教材人教版高二数学是中学数学学科中的重要一年,学生需要在这一年巩固和拓展他们在高一所学的数学知识。

以新教材人教版为教材,以下是高二数学的重要知识点总结。

一、函数与方程1. 函数及其性质函数是数学中的一种重要关系,表示不同数值之间的依赖关系。

在高二数学中,学生需要了解函数的定义,并掌握函数的性质,如奇偶性、单调性、周期性等。

2. 一次函数与二次函数一次函数是指最高次幂为一次的函数,二次函数是指最高次幂为二次的函数。

高二数学中,学生需要学习如何表示和绘制一次函数和二次函数,并掌握求解一次方程和二次方程的方法。

3. 指数函数与对数函数指数函数和对数函数是高二数学中的重要内容。

学生需要理解指数函数和对数函数的定义,并学会求解指数方程和对数方程。

4. 不等式不等式是高二数学中的重要内容,学生需要学会解不等式,并掌握不等式的性质和图像表示方法。

5. 数列与数列的通项公式数列是一组按照一定规律排列的数,数列的通项公式表示第n 个数与n之间的关系。

学生需要掌握求解数列的通项公式以及利用通项公式解决实际问题的方法。

二、解析几何1. 平面与空间直角坐标系平面与空间直角坐标系是解析几何的基础。

学生需要理解坐标系的定义和性质,并学会在坐标系中表示和计算点、线、圆等几何图形的相关属性。

2. 直线与圆的方程直线和圆是解析几何中的基本图形。

学生需要学习直线和圆的方程及其性质,并能够根据已知信息写出直线和圆的方程。

3. 二次曲线二次曲线是解析几何中的重要内容,包括抛物线、椭圆、双曲线等。

学生需要学会表示和计算二次曲线的相关属性,如焦点、顶点、离心率等。

4. 空间几何体的性质空间几何体包括球、柱体、锥体等,学生需要掌握这些几何体的性质及其相关计算方法。

三、数学推理与证明1. 数学归纳法数学归纳法是数学推理中的重要方法,学生需要理解数学归纳法的原理,并能够灵活运用数学归纳法解决问题。

2. 数学证明数学证明是高二数学中的重要内容,学生需要学会用严谨的推理和论证方法证明数学命题。

人教版高二年级数学知识点归纳

人教版高二年级数学知识点归纳

高二年級數學知識點歸納(一)第一章:解三角形。

掌握正弦余弦公式及其變式和推論和三角面積公式即可。

第二章:數列。

考試必考。

等差等比數列的通項公式、前n項和及一些性質。

這一章屬於學起來很容易,但做題卻不會做的類型。

考試題中,一般都是要求通項公式、前n項和,所以拿到題目之後要帶有目的的去推導。

第三章:不等式。

這一章一般用線性規劃的形式來考察。

這種題一般是和實際問題聯繫的,所以要會讀題,從題中找不等式,畫出線性規劃圖。

然後再根據實際問題的限制要求求最值。

選修中的簡單邏輯用語、圓錐曲線和導數:邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是後者,四種命題的真假性關係,邏輯連接詞,及否命題和命題的否定的區別,考試一般會用選擇題考這一知識點,難度不大;圓錐曲線一般作為考試的壓軸題出現。

而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的運算式難度就不大。

後面兩到三問難打一般會很大,而且較費時間。

所以不建議做。

這一章屬於學的比較難,考試也比較難,但是考試要求不高的內容;導數,導數公式、運算法則、用導數求極值和最值的方法。

一般會考察用導數求最值,會用導數公式就難度不大。

高二年級數學知識點歸納(二)第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。

次一級的知識點就是集合的韋恩圖,會畫圖,集合的“並、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。

在第一輪復習中一定要反復去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。

第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質及圖像。

函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。

關於這三大函數的運算公式,多記多用,多做一點練習基本就沒多大問題。

函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。

人教版高二数学知识点总结(必备6篇)

人教版高二数学知识点总结(必备6篇)

人教版高二数学知识点总结(必备6篇)人教版高二数学知识点总结第1篇1、不等式的定义:a—b>;0a>;b,a—b=0a=b,a—b;bb(2)a>;b,b>;ca>;c(传递性)(3)a>;ba+c>;b+c(c∈R)(4)c>;0时,a>;bac>;bcc;bac运算性质有:(1)a>;b,c>;da+c>;b+d。

(2)a>;b>;0,c>;d>;0ac>;bd。

(3)a>;b>;0an>;bn(n∈N,n>;1)。

(4)a>;b>;0>;(n∈N,n>;1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

人教版高二数学知识点总结第2篇直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。

当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长人教版高二数学知识点总结第3篇分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

人教版高二年级数学知识点

人教版高二年级数学知识点

【一】單調性⑴若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。

需代入駐點左右兩邊的數值求導數正負判斷單調性。

⑵若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。

根據微積分基本定理,對於可導的函數,有:如果函數的導函數在某一區間內恒大於零(或恒小於零),那麼函數在這一區間內單調遞增(或單調遞減),這種區間也稱為函數的單調區間。

導函數等於零的點稱為函數的駐點,在這類點上函數可能會取得極大值或極小值(即極值可疑點)。

進一步判斷則需要知道導函數在附近的符號。

對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。

x變化時函數(藍色曲線)的切線變化。

函數的導數值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。

凹凸性可導函數的凹凸性與其導數的單調性有關。

如果函數的導函數在某個區間上單調遞增,那麼這個區間上函數是向下凹的,反之則是向上凸的。

如果二階導函數存在,也可以用它的正負性判斷,如果在某個區間上恒大於零,則這個區間上函數是向下凹的,反之這個區間上函數是向上凸的。

曲線的凹凸分界點稱為曲線的拐點。

【二】導數是微積分中的重要基礎概念。

當函數y=f(x)的引數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與引數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函數的局部性質。

一個函數在某一點的導數描述了這個函數在這一點附近的變化率。

如果函數的引數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函數進行局部的線性逼近。

例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。

人教版高二数学必考知识点

人教版高二数学必考知识点

人教版高二数学必考知识点一、函数及其表示方法函数的定义及表示方法函数的定义域、值域和图像初等函数的性质和图像函数的奇偶性及对称性反函数的概念与性质二、函数的运算函数的四则运算法则复合函数的概念及其性质函数的逆运算函数的映射图象与逆映射图象三、函数的极限函数极限的概念及性质常用函数的极限无穷小量的概念与性质无穷大量的概念与性质极限的运算法则函数的连续性及其判定四、导数与微分导数的概念及其计算公式导数的几何意义导数的运算法则函数的单调性与极值函数的凹凸性与拐点函数的微分及其应用五、不定积分与定积分不定积分的定义与性质不定积分的基本公式定积分的概念及性质定积分的计算方法定积分的应用六、向量及其运算向量的定义及性质向量的线性运算向量的数量积与夹角向量的投影与正交七、平面解析几何点、直线、平面的向量方程点、直线、平面的参数方程直线与直线的位置关系直线与平面的位置关系平面与平面的位置关系八、空间解析几何空间几何体的向量方程空间几何体的参数方程平面与直线的位置关系平面与平面的位置关系直线与直线的位置关系九、三角函数及其应用三角函数的定义及性质三角函数的图像与周期性三角函数的单调性与奇偶性三角恒等式的证明三角方程的解法三角函数在解决实际问题中的应用十、数列与数学归纳法数列及其表示方法数列的极限数列极限与函数极限数列的递推公式常用数列的性质与计算以上是人教版高二数学的必考知识点的简要概述。

熟练掌握这些知识点,将有助于提高数学学科的理解和应用能力。

通过认真学习和练习,相信大家能够在高二数学考试中取得好成绩。

祝愿大家学业进步!。

人教版高二数学知识点总结

人教版高二数学知识点总结

人教版高二数学知识点总结高二数学知识点总结高二数学是中学阶段重要的学科之一,它的学习内容涉及到多个知识点。

本文将对人教版高二数学课程的各个知识点进行总结和归纳,以帮助同学们更好地理解和掌握这门学科。

1. 函数与极限函数与极限是高中数学的基石,也是解析几何、微积分等后续学科的重要基础。

高二数学主要学习了以下几个知识点:1.1 函数的概念和性质:函数的定义、函数的图像、函数的性质等;1.2 函数的运算与复合:函数的加减乘除、复合函数的概念与性质等;1.3 极限的概念:数列极限、函数极限的定义和性质等;1.4 极限的计算:极限运算法则、洛必达法则等。

2. 三角函数与解三角形三角函数是高中数学的另一个重要知识点,它有广泛的应用于几何、物理、工程等领域。

高二数学主要学习了以下几个知识点:2.1 三角函数的定义与性质:正弦函数、余弦函数、正切函数等;2.2 三角函数的基本关系式:同角三角函数间的关系,三角函数的周期性等;2.3 解三角形的基本方法:正弦定理、余弦定理、解三角形的一般步骤等。

3. 平面向量与立体几何平面向量和立体几何是数学中的两个独立模块,它们分别研究了平面和空间中的点、直线、面等几何对象。

高二数学主要学习了以下几个知识点:3.1 平面向量的概念与运算:平面向量的定义、向量的加减乘除等;3.2 平面向量的坐标表示与共线定理:平面向量的坐标表示、平面向量共线判定等;3.3 立体几何的基本概念与性质:点、线、面的定义与性质,平行与垂直等。

4. 概率与统计概率与统计是高中数学的实用模块,它们广泛应用于日常生活和科学研究中,能够帮助我们进行数据的分析与预测。

高二数学主要学习了以下几个知识点:4.1 随机事件与概率:事件与样本空间,事件的概率计算等;4.2 离散型随机变量:离散型随机变量的定义、概率分布、期望等;4.3 统计与抽样:统计的基本概念、样本调查与推断等。

综上所述,人教版高二数学涵盖了函数与极限、三角函数与解三角形、平面向量与立体几何以及概率与统计等多个知识点。

高二数学人教版知识点归纳

高二数学人教版知识点归纳

高二数学人教版知识点归纳高二数学是中学数学学习的重要阶段,学生需要在这一阶段掌握一系列的基础知识和解题方法。

本文将以人教版教材为基础,对高二数学的知识点进行归纳总结。

一、函数与导数1. 函数的概念与表示:函数的定义域、值域,函数的图像与性质。

2. 函数的运算:函数的加法、乘法、复合运算。

3. 三角函数:正弦函数、余弦函数、正切函数及其性质。

4. 导数与导数公式:导数的定义、导数的几何意义,导数的四则运算、复合函数的求导法则。

5. 函数的单调性与极值:函数的增减性,函数的极值与最值。

二、平面向量与解析几何1. 平面向量的基本概念:向量的表示、模、方向角,零向量、单位向量,向量的加法与减法。

2. 向量的数量积与夹角:数量积的定义与性质,数量积与夹角的关系。

3. 平面解析几何:点、直线、圆的方程及性质,直线与圆的相交关系,曲线的参数方程。

三、概率与数理统计1. 随机事件与概率:随机事件的基本概念,概率的定义与性质,事件的独立性。

2. 随机变量:随机变量的概念与分类,离散型随机变量与连续型随机变量,随机变量的数学期望与方差。

3. 列联表与条件概率:列联表的分析与应用,条件概率的计算与性质。

四、立体几何1. 空间直线与平面:直线与平面的位置关系,直线与平面的交点,平面与平面的交线。

2. 空间几何体:长方体、正方体、棱柱、棱锥、圆锥、球的表面积与体积的计算。

五、数列与数学归纳法1. 数列的概念与性质:数列的定义与表示,等差数列与等比数列,通项公式与前 n 项和公式。

2. 递归数列与数学归纳法:递推公式与递归数列,数学归纳法的基本思想与应用。

六、三角恒等变换与解三角形1. 三角函数的恒等变换:基本恒等式、和差化积、积化和差。

2. 解三角形:已知三角形的一些条件,求解三角形的边长与角度。

以上仅为高二数学人教版教材的知识点归纳,详细学习还需参考教材中的相关内容,并进行大量的练习和实际应用。

通过系统的学习和不断的实践,相信同学们能够在高二数学学习中取得优异的成绩。

人教版高二数学复习知识点.doc

人教版高二数学复习知识点.doc

人教版高二数学复习知识点人教版高二数学复习知识点(一)等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

面积公式若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:S=ab/2。

且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:S=ch/2=c2/4。

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

人教版高二数学复习知识点(二)第一章:三角函数。

考试必考题。

诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。

第二章:平面向量。

个人觉得这一章难度较大,这也是我掌握最差的一章。

向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。

向量共线和垂直的数学表达,这是计算当中经常要用的公式。

向量的共线定理、基本定理、数量积公式。

难点在于分点坐标公式,首先要准确记忆。

向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。

有同样情况的同学建议多看有关题的图形。

第三章:三角恒等变换。

这一章公式特别多。

和差倍半角公式都是会用到的公式,所以必须要记牢。

由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。

而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。

除此之外,就是多练习。

要从多练习中找到变换的规律,比如一般都要化等等。

这一章也是考试必考,所以一定要重点掌握。

人教版高二数学复习知识点(三)反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。

人教版高二知识点大全数学

人教版高二知识点大全数学

人教版高二知识点大全数学人教版高中数学是我国教育部颁发的一套教材系列,供高中二年级学生使用。

以下将总结出人教版高二数学全部的知识点,帮助学生更好地学习和复习。

1. 二次函数与二次方程1.1 二次函数的概念和性质1.2 二次函数的图像和图像的性质1.3 二次函数的最值问题1.4 二次方程的定义和基本性质1.5 二次方程的求解方法和实际应用1.6 二次函数与二次方程的关系2. 平面向量2.1 平面向量的概念和表示方法2.2 平面向量的运算法则2.3 平面向量的数量积和数量积的性质2.4 平面向量的应用和几何意义2.5 平面向量的线性运算和线性运算的性质3. 指数与对数函数3.1 指数函数的定义和性质3.2 对数函数的定义和性质3.3 指数与对数的运算法则3.4 指数方程和对数方程的求解3.5 指数函数与对数函数的图像和性质4. 三角函数4.1 角度的概念和性质4.2 三角函数的定义和性质4.3 三角函数的图像和性质4.4 三角函数的诱导公式和通解4.5 三角函数的运算法则和应用5. 数列与数学归纳法5.1 数列的概念和性质5.2 等差数列和等比数列的求和公式 5.3 数学归纳法的基本思想和应用6. 概率与统计6.1 随机事件和概率的定义和性质6.2 概率的加法和乘法原理6.3 排列与组合与概率的关系6.4 统计的基本概念和统计图表的应用7. 解析几何7.1 平面直角坐标系和空间直角坐标系 7.2 点、向量和坐标的应用7.3 二次曲线的方程和性质7.4 空间几何体的性质和计算8.导数与微分8.1 导数的概念和定义8.2 函数的导数和导数的基本运算法则 8.3 高阶导数和导数的应用8.4 微分的概念和性质8.5 导数与函数的极值和曲线的特性8.6 泰勒展开式和微分中值定理9. 不等式与线性规划9.1 不等式的性质和基本解法9.2 一元和二元一次不等式的解法和应用 9.3 线性规划的定义和基本解法9.4 线性规划的凸优化和背包问题的应用10. 三角恒等变换和三角方程10.1 三角恒等变换的基本公式和证明10.2 三角方程的定义和解法10.3 三角方程的应用和相关解析几何问题综上所述,以上是人教版高二数学的全部知识点大全。

2024年人教版高二数学复习知识点总结样本(三篇)

2024年人教版高二数学复习知识点总结样本(三篇)

2024年人教版高二数学复习知识点总结样本一、函数与方程组1. 函数的概念及性质- 函数的定义和标志- 函数的自变量、因变量和值域- 奇函数和偶函数的定义与性质- 单调性与函数的单调区间- 周期函数的概念与性质2. 一次函数的性质与图像- 一次函数的定义与表达式- 一次函数的斜率和截距- 一次函数的图像及其性质- 利用函数图像求解问题3. 二次函数的性质与图像- 二次函数的定义与表达式- 二次函数的顶点、轴和对称性- 二次函数的图像及其性质- 求解二次函数方程- 利用函数图像求解问题4. 绝对值函数的性质与图像- 绝对值函数的定义与表达式- 绝对值函数的图像及其性质- 求解绝对值函数方程- 利用函数图像求解问题5. 方程组的解法与应用- 二元一次方程组的解法(代入法、消元法)- 三元一次方程组的解法(消元法、代入法)- 利用方程组解决实际问题6. 不等式的解法与图像- 一元一次不等式的解法- 一元二次不等式的解法- 绝对值不等式的解法- 不等式组的解法- 不等式的图像表示二、数列与数学归纳法1. 数列的概念及性质- 数列的定义与表示- 数列的前n项与通项公式- 数列的等差性与等比性- 数列的递推公式与递推关系- 数列的前n项和与求和公式- 数列的极限概念与性质2. 等差数列的性质与应用- 等差数列的通项公式与性质- 等差数列的前n项和与求和公式- 等差数列的应用问题(如等差中数、等差求和等)3. 等比数列的性质与应用- 等比数列的通项公式与性质- 等比数列的前n项和与求和公式- 等比数列的应用问题(如等比中数、等比求和等)4. 递推数列的性质与应用- 递推数列的递推公式与性质- 递推数列的前n项和与递推公式的应用5. 数学归纳法及其应用- 数学归纳法的基本思想与步骤- 利用数学归纳法证明数学命题- 利用数学归纳法求证数列的性质三、三角函数1. 角度与弧度的换算- 角度的定义、表示与换算- 弧度的定义、表示与换算2. 正弦函数、余弦函数与正切函数- 正弦函数的图像及其性质- 余弦函数的图像及其性质- 正切函数的图像及其性质3. 三角函数的基本关系式- 正弦函数、余弦函数与正切函数之间的关系- 余弦函数与正切函数之间的关系- 正弦函数与余弦函数之间的关系4. 三角函数的性质与变换- 三角函数的奇偶性与周期性- 三角函数的图像变换(平移、伸缩、翻转)- 三角函数的最值与性质5. 三角函数的应用- 三角函数的应用问题(如物体抛射运动、测量问题等)- 三角函数与图像的应用问题四、平面向量1. 平面向量的概念与性质- 平面向量的几何表示与坐标表示- 平面向量的模与方向角- 平面向量的加法、减法和数乘- 平面向量的数量积与向量积2. 平面向量的运算与应用- 平面向量的分解与合成- 平面向量的共线与垂直- 平面向量的平行与夹角- 平面向量的应用问题(如力的合成与分解、平面几何问题等)五、立体几何1. 空间几何体的表示与性质- 点、直线、平面的定义与表示- 空间几何体的二面角与三面角2. 空间中的位置关系- 点与直线的位置关系- 点与平面的位置关系- 直线与平面的位置关系3. 空间几何体的投影与旋转- 点在直线上的投影- 点在平面上的投影- 点关于直线的镜像与旋转- 点关于平面的镜像与旋转4. 空间几何体的证明- 空间几何体的证明与判定- 使用向量证明空间几何体之间的关系六、概率与统计1. 随机事件与概率- 随机事件的定义与表示- 随机事件的基本运算(并、交、差)- 概率的定义与性质- 概率的运算法则(加法公式、乘法公式)2. 条件概率与事件编排- 条件概率的定义与性质- 事件编排与乘法公式的应用- 全概率公式与贝叶斯公式的应用3. 随机变量与概率分布- 随机变量的定义与分类- 离散型随机变量的概率分布列- 连续型随机变量的概率密度函数4. 随机变量的数学期望与方差- 随机变量的数学期望与性质- 随机变量的方差与性质5. 正态分布与正态分布的应用- 正态分布的性质与标准正态分布- 正态分布的计算与应用问题以上就是____年人教版高二数学复习的知识点总结,希望对你有所帮助!2024年人教版高二数学复习知识点总结样本(二)一、函数与导数1. 函数的概念及表示方法:- 函数的定义:函数是一种特殊的关系,每一个自变量只对应一个因变量。

人教版高二数学重要知识点

人教版高二数学重要知识点

【一】集合一、集合概念(1)集合中元素的特徵:確定性,互異性,無序性。

(2)集合與元素的關係用符號=表示。

(3)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實數集。

(4)集合的表示法:列舉法,描述法,韋恩圖。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

函數一、映射與函數:(1)映射的概念:(2)一一映射:(3)函數的概念:二、函數的三要素:相同函數的判斷方法:①對應法則;②定義域(兩點必須同時具備)(1)函數解析式的求法:①定義法(拼湊):②換元法:③待定係數法:④賦值法:(2)函數定義域的求法:①含參問題的定義域要分類討論;②對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。

(3)函數值域的求法:①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如:的形式;②逆求法(反求法):通過反解,用來表示,再由的取值範圍,通過解不等式,得出的取值範圍;常用來解,型如:;④換元法:通過變數代換轉化為能求值域的函數,化歸思想;⑤三角有界法:轉化為只含正弦、余弦的函數,運用三角函數有界性來求值域;⑥基本不等式法:轉化成型如:,利用平均值不等式公式來求值域;⑦單調性法:函數為單調函數,可根據函數的單調性求值域。

⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。

三、函數的性質:函數的單調性、奇偶性、週期性單調性:定義:注意定義是相對與某個具體的區間而言。

判定方法有:定義法(作差比較和作商比較)導數法(適用於多項式函數)複合函數法和圖像法。

應用:比較大小,證明不等式,解不等式。

奇偶性:定義:注意區間是否關於原點對稱,比較f(x)與f(-x)的關係。

f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。

判別方法:定義法,圖像法,複合函數法應用:把函數值進行轉化求解。

人教版高二数学必考知识点

人教版高二数学必考知识点

人教版高二数学必考知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!人教版高二数学必考知识点本店铺高二频道为你整理了《人教版高二数学必考知识点》希望对你的学习有所帮助!【篇一】一、随机事件主要掌握好(三四五)(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

人教版高二数学知识点总结

人教版高二数学知识点总结

人教版高二数学知识点总结一、函数及应用1. 函数的概念和表示方法- 函数的概念:函数是一种对应关系,它将每一个自变量(输入值)映射到一个因变量(输出值)上。

- 函数的表示方法:函数可以用方程、表格、图像和文字描述等多种方式表示。

2. 函数的性质及分类- 奇偶性:若对任意x∈D有f(-x)=-f(x),则称f(x)为奇函数;若对任意x∈D有f(-x)=f(x),则称f(x)为偶函数。

- 单调性:定义域上若对任意的x1<x2有f(x1)<f(x2),则称函数f(x)在该区间上为增函数;若对任意的x1<x2有f(x1)>f(x2),则称函数f(x)在该区间上为减函数。

- 周期性:若存在正数T,使得对任意x∈R都有f(x+T)=f(x),则称函数f(x)是周期函数。

- 反函数:若y=f(x)是一个单射函数,则存在唯一的函数x=g(y)与之对应,称函数g(y)为函数f(x)的反函数,记为y=f-1(x)。

3. 函数的运算- 四则运算:函数之间可以进行加、减、乘、除等运算。

- 复合函数:若f和g是两个函数,那么对任意x,有(f∘g)(x)=f(g(x))。

4. 应用问题- 函数的极值:通过求导或者求导数为0的点,可求得函数在定义域上的极大值和极小值。

- 函数的应用:例如用函数描述某物体运动的速度、加速度,用函数模拟某一事件的规律、用函数描述某种物质的变化规律等。

二、导数与微分1. 导数的概念及计算- 导数的定义:函数y=f(x)在x0点处的导数定义为f'(x0)=lim⁡(Δx→0)(f(x0+Δx)-f(x0))/Δx,如果该极限存在。

若函数在定义域上处处可导,则称该函数具有导函数。

- 导数的几何意义:在x0点处的函数的导数f'(x0)表示函数图像在点(x0, f(x0))处的切线斜率。

2. 导数的性质与运算- 导数存在的条件:若函数f(x)在x0点处可导,则f(x)在x0点处一定连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高二数学知识点总结
在人教版高二数学的课本中,涉及了很多重要的知识点,内容也比较多,同学们要认真学好高二数学的内容,尤其是理科的学生。

下面是小编给大家带来的人教版高二数学知识点,希望能帮助到大家!
高二数学知识点1
数学概率
(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的根本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

(5)通过阅读材料,了解人类认识随机现象的过程。

高二数学知识点2
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。

如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

高二数学知识点3
等差数列等比数列
定义式
()
通项公式及推广公式
中项公式若成等差,则
若成等比,则
运算性质若,则
若,则
前项和公式
一个性质成等差数列
成等比数列
86、解不等式
(1)、含有绝对值的不等式
当a>0时,有.[小于取中间]
或.[大于取两边]
(2)、解一元二次不等式的步骤:
①求判别式
②求一元二次方程的解:两相异实根一个实根没有实根
③画二次函数的图象
④结合图象写出解集
解集r
解集
注:解集为r对恒成立
(3)高次不等式:数轴标根法(奇穿偶回,大于取上,小于取下)
(4)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。

如解分式不等式:先移项通分
再除变乘,解出。

87、线性规划:
(1)一条直线将平面分为三局部(如图):
(2)不等式表示直线
某一侧的平面区域,验证方法:取原点(0,0)代入不
等式,若不等式成立,则平面区域在原点所在的一侧。

假设
直线恰好经过原点,则取其它点来验证,例如取点(1,0)。

(3)线性规划求最值问题:一般情况可以求出平面区域各个顶点的坐标,代入目标函数,的为值。

高二数学知识点4
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴ox、oy。

画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中
的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①外表积:s=s侧+2s底;②侧面积:s侧=;③体积:v=s底h
⑵锥体:①外表积:s=s侧+s底;②侧面积:s侧=;③体积:
v=s底h:
⑶台体①外表积:s=s侧+s上底s下底②侧面积:s侧=
⑷球体:①外表积:s=;②体积:v=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。

核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------ⅰ.找或作角;ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
高二数学知识点5
1.不等式的定义:a-b>;0a>;b,a-b=0a=b,a-b;bb
(2)a>;b,b>;ca>;c(传递性)
(3)a>;ba+c>;b+c(c∈r)
(4)c>;0时,a>;bac>;bc
c;bac
运算性质有:
(1)a>;b,c>;da+c>;b+d.
(2)a>;b>;0,c>;d>;0ac>;bd.
(3)a>;b>;0an>;bn(n∈n,n>;1)。

(4)a>;b>;0>;(n∈n,n>;1)。

应注意,上述性质中,条件与结论的逻篇关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

相关文档
最新文档