四边形专题复习——中点四边形
四边形拓展—中点应用
A D CB M 四边形拓展练习——中点应用中点,特别是线段的中点是几何图形中的一个特殊点,直角三角形斜边中线、等腰三角形三线合一、中心对称图形、三角形中位线和梯形中位线等都有其身影.那么,如何恰当地利用中点和处理与中点有关的问题呢?关键在于:充分挖掘中点所包含的信息,合理联想构造含中点的图形来解决问题.一、利用中点构造三角形中线例1.如图,在ABC 中,AB AC ,90BAC ,BD 是中线,AE BD 交BC 于点E .求证:2BE CE.例2.如图,在ABC 中,AB AC ,90BAC ,BD 是中线,AM BD 于M ,交BC 于点E .求CDES.【注】如果是等腰三角形的问题,则腰上的中点即为构造全等三角形创造了条件.三角形中线的性质是分三角形为两个面积相等的小三角形.在涉及求面积时,往往是常用的结论之一.二、利用中点构造中心对称三角形例3.如图,在梯形ABCD 中,90D ,M 为AB 中点.若 6.5CM,17BC CD DA ,求梯形ABCD 的面积.E D CAB MEDCBAB C AD M NE 例4.如图,在菱形ABCD 中,120ABC ,F 是DC 的中点,AF 的延长线交BC 的延长线于点E .求直线BF 与DE 所夹的锐角的度数.【注】:在四边形问题中,若已知条件中有一边的中点,往往可利用中点构造中心对称的全等的三角形,从而把分散的条件相对集中,为解题创造有利条件.三、利用中点构造三角形中位线例5.如图,在ABC中,7AC ,4BC ,D 为AB 的中点,E 为AC 上一点,且1902AED C .求CE 的长.例6.如图,已知AD 为ABC的角平分线,AB <AC ,在AC 上截取CE AB ,M 、N 分别为边BC 、AE 的中点.求证://MN AD .【注】:在四边形问题中,当已知条件中出现四边形对边的两个中点时,常见的方法是:另外作对角线的中点,再利用三角形的中位线来解题.F CA DBE EDACBA B C DEFA BC PD E45°A D BC E四、利用中点构造直角三角形斜边中线和三角形中位线例7.如图,在ABC中,AB AC ,AD BC ,垂足为D ,E G 、分别为AD AC 、的中点,DF BE ,垂足为F .求证:FG DG.例8.如图,在ABC内取一点P ,使PBA PCA ,作PD AB 于点D ,PE AC 于点E .求证:DE 的垂直平分线必经过BC 的中点M .【注】:当题目的条件中涉及到三角形一边的中点和直角三角形时,常用的方法是:另取一边(一般取斜边)的中点,为沟通直角三角形斜边中线定理和三角形中位线定理架起一座桥梁.五、利用中点构造梯形中位线例9.在梯形ABCD 中,90ABC DCB ,AD 上有一点E 使得BE EC ,且45CED .求证:AB CD BC .例10.如图,M N 、分别是四边形ABCD 边AB CD 、的中点,BN 与MC 交于点P ,AN 与MD 交于点Q .求证:BCPADQMQNP SSS四边形.六、利用多个中点构造三角形和四边形 例11.如图,在任意五边形ABCDE中,M N P Q 、、、分别为AB CD BC DE 、、、的中点,K L 、分别为MN PQ 、的中点.求证://KL AE 且1=4KL AE .例12.在六边形ABCDEF中,//AB DE ,//BC EF ,//CD FA ,AB DE BC EF ,1111A B D E 、、、分别是边AB BC DE EF 、、、的中点,且1111A DB E .求证:CDE AFE.QP NM AD B CK L Q PM NA BCD EE 1D 1B 1A 1EA BCD FABCD配套练习:1.如图,在菱形ABCD 中,100A ,M N 、分别是边AB BC 、的中点,MP CD于点P ,求NPC的度数.2.如图,在ABC中,D 为边BC 的中点,点E F 、分别在边AC AB 、上,且ABE ACF ,BE 与CF 交于点O ,作OP AC ,OQ AB ,P Q 、为垂足.求证:DP DQ.3.如图,在ABC 中,2A B ACB ,8BC ,D 为AB 的中点,且1972CD ,求AC 的长.PQDOABCE F PNMA B C DD BCAFE MABCDEM4.如图,在ABC 中,2B C ,AD BC 于D ,M 为BC 的中点,求证:12DM AB5.如图,在ABC中,2ABC C ,AD 平分BAC ,过BC 的中点M 作AD 的垂线,交AD 的延长线于F ,交AB 的延长线于E ,求证:12BE BD .6.如图,已知五边形ABCDE中,90,ABC AED BAC EAD。
中考数学总复习《四边形》专题基础知识回顾五
中考数学总复习专题基础知识回顾五四边形一、单元知识网络:二、考试目标要求:1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.三、知识考点梳理知识点一、多边形的有关概念和性质1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.知识点二、四边形的有关概念和性质1.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.2.四边形的性质:(1)定理:四边形的内角和是360°;(2)推论:四边形的外角和是360°.知识点三、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形(定义);(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.面积公式:S=ah(a是平行四边形的一条边长,h是这条边上的高).知识点四、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:矩形具有平行四边形的所有性质;(1)矩形的对边平行且相等;(2)矩形的四个角都相等,且都是直角;(3)矩形的对角线互相平分且相等.3.矩形的判定方法:(1)有一个角是直角的平行四边形是矩形(定义);(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.4.面积公式:S=ab(a、b是矩形的边长).知识点五、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:菱形具有平行四边形的所有性质;(1)菱形的对边平行,四条边都相等;(2)菱形的对角相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.3.菱形的判定方法:(1)有一组邻边相等的平行四边形是菱形(定义);(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.面积公式:S=ah(a是平行四边形的边长,h是这条边上的高)或s=mn(m、n是菱形的两条对角线长).知识点六、正方形1.正方形的定义:有一组邻边相等的矩形叫做正方形;或有一个角是直角的菱形叫做正方形.2.正方形的性质:正方形具有平等四边形、矩形、菱形的所有性质;(1)正方形的对边平行,四条边都相等;(2)正方形的四个角都是直角;(3)正方形的两条对角线相等,并且互相垂直平分;每条对角线平分一组对角;3.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形.4.面积公式:S=a2(a是边长)或s=b2(b正方形的对角线长).平行四边形和特殊的平行四边形之间的联系:知识点七、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等.(3)等腰梯形的对角线相等.5. 等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式:S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).知识点八、平面图形的镶嵌1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.四、规律方法指导1.数形结合思想多边形是反映了数的抽象性与形的直观性这一对矛盾的对立统一,以及在一定条件下的互相转化,由数构形,由形思数的数形结合思想.尤其在平行四边形和矩形、菱形、正方形、梯形中,图形的特点非常鲜明,与我们现实生活的联系很大,利用它们的性质和判定能解决实际中的问题.2.分类讨论思想根据题目中的已知判断是哪种特殊的平行四边形,不同的特殊的平行四边形的性质和判定不同.结合各自的特点进行分类,得出最终的结论.3.化归与转化思想要记清和分清平行四边形及特殊平行四边形的性质与判定,要体会化归思想的应用,如:多边形转化为三角形;平行四边形、梯形及特殊的平行四边形性质的讨论通过对角线转化为全等三角形等.4.注意观察、分析、总结在判断边相等或角相等的问题上,常以平行四边形、梯形及特殊的平行四边形的性质或判定为依据,当条件结论的关系无法找到时,可以通过辅助线将图形适当变化,使条件集中,以便应用条件达到解题的目的,由繁变简,一般与特殊之间的转化.5.四边形知识点间的联系经典例题透析考点一、多边形及镶嵌1.若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.考点:本题考查n边形的内角和公式:(n-2)·180°和多边形的外角和是360°.解析:设正多边形边数为n,由题意得:(n-2)·180°=360°×3,解得n=8,∴这个多边形的边数是八边.2.下列正多边形中,能够铺满地面的是( )A、正五边形B、正六边形C、正七边形D、正八边形考点:镶嵌的条件:周角是这种正多边形的一个内角的整倍数.思路点拔:在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.答案:B3.一个多边形从一个顶点共引出三条对角线,此多边形一定是( )A.四边形B. 五边形C.六边形D.三角形思路点拔:n边形的对角线从一个顶点共引(n-3)条对角线.解析:根据题意列式为n-3=3,∴n=6.故选C.4. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.思路点拔:一个多边形的内角和能被180°整除,本题内角和1125°除以180°后有余数,则少的内角应和这个余数互补.解析:设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)·180°=1125°+ x°,∴n=∵n为整数,0°<x<180°,∴符合条件的x只有135°,解得n=9.应填135、九.总结升华:多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算.举一反三:【变式1】如果一个多边形的每一个内角都相等,且每一个内角的度数为135°,那么这个多边形的边数为( )A.6B.7C.8D.以上答案都不对思路点拔:在本题可利用外角去求边数,每个外角为45°,外角和是360°,有几个外角就有几条边.解析:∵多边形的每个内角度数为135°,∴每个外角为45°又∵多边形外角和为360°,∴边数=360°÷45°=8,故选C.【变式2】多边形的内角和随着边数的增加而______,边数增加一条时,它的内角和增加_____度.解析:多边形每增加一边,内角和就增加180°. 答案:增加、180.考点二、平行四边形5. 平行四边形的周长为40,两邻边的比为2:3,则这一组邻边长分别为________.考点:平行四边形的边的性质.思路点拔:掌握平行四边形的对边相等.解析:∵□ABCD中,AB=CD,BC=AD,周长为40∴AB+BC=20,又∵AB:BC=2:3,令AB=2k,BC=3k,∴2k+3k=20,解得k=4,∴这一组邻边长分别为8和12.6. 已知O是□ABCD的对角线交点,AC=24,BD=38,AD=14,那么△OBC的周长等于_______.考点:平行四边形的对角线互相平分.解析:□ABCD中,OC=AC=12,OB=BD=19,BC=AD=14∴△OBC的周长=OB+OC+BC=19+12+14=45.7. 如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是______________.考点:平行四边形的判定.思路点拔:本题可以利用平行四边形的判定中的一组对边平行且相等;也可以利用对角线互相平分来判定等.答案不唯一.条件一:增加的条件为∠AFE=∠CEF.证明:∵∠AFE=∠CEF,∴AF∥CE,∠AFD=∠CEB∵□ABCD中,AD=BC,AD∥BC,∴∠ADF=∠CBE∴△ADF≌△CBE,∴AF=CE∴四边形AECF是平行四边形.条件二:增加的条件为BE=DF.解法一:可利用SAS证明△ABE≌△CDF,△ADF≌△CBE,得AE=CF,AF=CE∴四边形AECF是平行四边形.解法二:连结AC交BD于O□ABCD中,OA=OC,OB=OD∵BE=DF,∴OB-BE=OD-DF,得OE=OF∴四边形AECF是平行四边形.总结升华:借助平行四边形的性质进行线段或角相等的证明,或利用平行四边形的判定条件确定四边形的形状,是考查的重点.举一反三:【变式1】在平行四边形ABCD中,两条对角线AC、BD相交于点O,如右图,与△ABO面积相等的三角形有( )个.A、1B、2C、3D、4解析:两条对角线分成的四个小三角形面积都相等,等底等高.∴与△ABO面积相等的三角形有△AOD、△COD、△BOC.故选C【变式2】如图,△ABC中∠ACB=90°,点D、E分别是AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.考点:本题要求会综合运用所学的知识证明结论:(1)三角形的中位线性质;(2)直角三角形斜边的中线等于斜边的一半;(3)两组对边分别平行的四边形是平行四形.证明:∵D、E分别是AC,AB的中点,∴CE是△ABC的中位线∴AE=AB,DE∥BC 即DE∥CF∵△ABC中∠ACB=90°,E是AB的中点,∴CE=AB∴CE=AE,∴∠A=∠ECD∵∠CDF=∠A,∴∠CDF=∠ECD,∴CE∥DF∴四边形DECF是平行四边形.考点三、矩形8.如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=8,则矩形对角线的长_________.考点:矩形的性质.思路点拔:掌握矩形的对角线相等,会用一个角是60°的等腰三角形是等边三角形解析:在矩形ABCD中,AC=BD,OA=AC,OB=BD∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形∴OA=AB=8,∴AC=2OA=16,故应填16.9. 如右图,把一张矩形纸片ABCD沿BD对折,使C点落在E处且与AD相交于点O.写出一组相等的线段__________.(不包括和).思路点拔:理解折叠前后图形的变化,△BCD≌△BED,也可证出△AOB≌△EOD,找出对应量相等.解析:OD=OB或OE=OA、AB=ED、BE=AD等角形斜边的中线等于斜边的一半这一性质.举一反三:【变式1】四边形ABCD的对角线相交于点O,在下列条件中,不能判定它是矩形的是( )A.AB=CD,AD=BC,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°思路点拔:本题应结合图形去解决,掌握矩形的判定方法.解析:A选项由AB=CD,AD=BC判定是□ABCD,再利用有一个角是直角的平行四边形是矩形可得;B选项由AO=CO,BO=DO判定是□ABCD,再利用对角线相等的平行四边形是矩形;D选项由∠BAD=∠BCD,∠ABC=∠ADC判定是□ABCD,再利用有一个角是直角的平行四边形是矩形可得;而C选项却不能判定,举反例如直角梯形.故选C.【变式2】矩形一个角的平分线分矩形一边成2cm和3cm,则这个矩形的面积为__________.考点:矩形的面积公式思路点拔:在没有图形的题中,画图时应考虑全面,本题体现了分类的思想,被分的两部分长度不确定解析:如图(1)若AE=3,ED=2,则矩形边长分别3和5,面积为15cm2如图(2)若AE=2,ED=3,则矩形边长分别2和5,面积为10cm2则这个矩形面积就为10cm2和15cm2.考点四、菱形10.在菱形ABCD中,对角线AC、BD交于点O,AC、BD的长分别为5厘米、10厘米,则菱形ABCD 的面积为_________厘米2.考点:菱形面积.思路点拔:菱形的对角线互相垂直,面积公式有两个:(1)底乘高;(2)对角线乘积的一半.解:菱形ABCD的面积=AC×BD=×5×10=25cm2.11.能够判别一个四边形是菱形的条件是( )A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角考点:菱形的判定解析:A选项可判定为矩形;B选项不能判定是平行四边形,∴也不能判定是菱形;C选项只能判定是平行四边形;D选项由等角对等边和三角形全等得到四条边都相等.故选D.总结升华:菱形在平行四边形的基础上进一步特殊化,菱形的对角线互相垂直,把菱形分成四个全等的直角三角形,常利用这一性质求线段和角,以及菱形的面积.举一反三:【变式1】已知菱形的一条对角线与边长相等,则菱形的两个邻角度数分别为 ( )A. 45°, 135°B. 60°, 120°C. 90°, 90°D. 30°, 150°思路点拔:菱形的一条对角线与边长相等,则构成等边三角形,从而求出菱形的内角度数.答案:B【变式2】如图,已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5.(1)判断四边形AEDF的形状?(2)它的周长是多少?考点:菱形的判定思路点拔:利用一组邻边相等的平行四边形是菱形的判定方法证明.证明:(1)∵AD平分∠BAC,∴∠BAD=∠CAD∵DE∥AC, DF∥AB∴四边形AEDF是平行四边形,∠CAD=∠ADE∴∠BAD=∠ADE,∴AE=DE∴平行四边形AEDF是菱形.(2)∵平行四边形AEDF是菱形,AE=5∴菱形AEDF的周长=4AE=4×5=20.【变式3】如图,菱形ABCO的边长为2,∠AOC=45°,则点B的坐标为___________.思路点拔:利用数形结合的思想,可先求A点坐标,再向右平移2个单位.解析:过A作AD⊥OC于D,∵∠AOC=45°,OA=2,∴AD=OD=,∴A(,)∵AB=2,∴B(2+,).考点五、正方形12.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等思路点拔:正方形是满足矩形和菱形的所有性质.∴正方形的对角线互相垂直,而矩形对角线则不一定互相垂直.答案:C.13.如图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个思路点拔:本题考查学生解题能力,容易将AB是对角线的情况忽略,而错误的选B.解析:如图,共有3个.14.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?思路点拔:本题利用正方形的边长相等,及矩形的对边相等,设某个正方形的边长为x,并用x表示矩形的对这得出相应的方程,求出矩形的长和宽.解:设右下方正方形的边长为,则左下方正方形的边长为+1,左上方正方形的边长为+2,右上方正方形的边长为+3,根据长方形的对边相等可列方程2++1=+2++3,解这个方程得=4,∴长方形的长为13,宽为11.总结升华:正方形的性质很多,往往是在判定矩形或菱形的基础上再进一步判定正方形,∴做正方形的问题时,要考虑全面,有选择的运用正方形的知识解题.举一反三:【变式1】下列选项正确的是( )A.四边相等的四边形是正方形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.四角相等的四边形是正方形考点:正方形的判定方法.思路点拔:掌握正方形的判定方法要从边、角、对角线各方面考虑.解析:A、C选项能判定是菱形;D选项能判定是矩形;故应选B.【变式2】正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于__cm.思路点拔:本题方法很多,(1)可以利用三角形面积去求:连接PO,△ABO的面积等于△APO和△BPO 的面积之和;(2)也可证明矩形PEOF,得PF=EO,再证PE=AE,从而得出结论.总之,P在AB上移动时,点P到AC、BD的距离之和总等于对角线长的一半.解析:PE+PF=OA=8cmA、平行四边形B、矩形C、菱形D、正方形(2)顺次连结对角线相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(3)顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(4)顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形考点:中点四边形的判定由原四边形的对角线决定.思路点拔:规律:顺次连结任意四边形四边中点所得的四边形一定是平行四边形;顺次连结对角线相等的四边形四边中点所得的四边形一定是菱形;顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是矩形;顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是正方形.答案:(1)A (2)C (3)B (4)D考点六、梯形15.等腰梯形中,,cm,cm,,则梯形的腰长是_________cm.考点:等腰梯形的性质.思路点拔:梯形常作的辅助线是作梯形的高,将梯形分成一个矩形和两个直角三角形;本题也可平移一腰,将梯形分成一个平行四边形和一个等边三角形.解析:过A作AE∥CD交BC于E∵AD∥EC,∴EC=AD=5,AE=CD,∴BE=BC-EC=9-5=4∵梯形ABCD是等腰梯形,∴AB=CD,∴AB=AE∵∠C=60°,∴△ABE是等边三角形∴AB=BE=4cm,即梯形的腰长是4cm.16. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=8,AC=6,BD=8,则此梯形的面积是( )(A)24 (B)20 (C)16 (D)12思路点拔:梯形常作的辅助线还有就是平移对角线,将梯形分成一个三角形以及一个平行四边形.解析:过D作DE∥AC交BC延长线于E,可得CE=AD,DE=AC,∴BE=10,∴△BDE的三边为6、8、10,∴△BDE为直角三角形,∵△ADB和△CED等底等高,∴梯形ABCD的面积等于△BDE的面积.即梯形ABCD的面积=6×8×=24.17.如图,在等腰梯形ABCD中,AD∥BC,AC,BD相交于点O.•有下列四个结论:①AC=BD;②梯形ABCD是轴对称图形;③∠ADB=∠DAC;④△AOD≌△ABO.其中正确的是( ).(A)①③④ (B)①②④(C)①②③(D)②③④考点:本题考查的是等腰梯形的性质.答案:C总结升华:解决梯形问题时,辅助线是常用的方法,除上述辅助线之外,还可以延长两腰交于一点,构成三角形;若已知一腰中点,可连结一顶点和这个中点,构成两个全等的三角形.举一反三:【变式1】已知梯形的上底长为3,中位线长为6,则下底长为______.考点:梯形的中位线性质.思路点拔:梯形的中位线平行两底,且等于上、下底和的一半.答案:9.【变式2】如图,梯形ABCD中,AD∥BC,E、F分别是AD、BC的中点,∠ABC和∠BCD互余,若AD=4,BC=10,则EF=_________.解析:过E作EM∥AB,EN∥CD,交BC于M、N,可求MN=BC-AD=10-4=6∵∠ABC和∠BCD互余,可得Rt△MEN,再证EF是Rt△MEP斜边上的中线,可求EF的长=MN=×6=3.【变式3】已知等腰梯形ABCD,AD∥BC ,E为梯形内一点,且.求证:.思路点拔:利用梯形的性质可证明三角形全等.证明:在等腰梯形ABCD中,AB=CD,∠BAD=∠CDA∵EA=ED,∴∠EAD=∠EDA∴∠BAD-∠EAD=∠CDA-∠EDA,即∠BAE=∠CDE∴△BAE≌△CDE,∴EB=EC.中考题萃1.(北京市)(4分)若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.82.(赤峰市)(3分)分别剪一些边长相同的①正三角形,②正方形,③正五边形,④正六边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有( )A.①②③B.②③④C.①②④D.①②③④都可以3.(湖北省襄樊市)(3分)顺次连接等腰梯形四边中点所得四边形是( )A.菱形B.正方形C.矩形D.等腰梯形4.(衡阳市)(3分)如图,在平行四边形中,,为垂足,如果,那么的度数是( )A. B. C. D.5.(广州)(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.6.(永春县)(3分)四边形的外角和等于__________度.7.如图,在正五边形ABCDE中,连结AC,AD,则∠CAD的度数是__________°.8.(佳木斯市)(3分)一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是__________.9.(江苏省宿迁市)(3分)若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.10.(安顺市)(4分)若顺次连接四边形各边中点所得四边形是菱形,则原四边形可能是__________.(写出两种即可)11.(赤峰市)(4分)如图,已知平分,,,则________.12.(佛山市)(3分)如图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则∠ACP度数是__________.13.(湖南省怀化市)(2分)如图,在平行四边形ABCD中,DB=DC、,CE BD于E,则__________.14.(海南省)(3分)如图,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE=__________cm.15.(莆田市)(3分)如图,大正方形网格是由16个边长为1的小正方形组成,则图中阴影部分的面积是__________.16.(广州)(3分)如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.17.(莆田市)(3分)如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______________度.18.(湖北省荆门市)(3分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为________.19.(江苏省宿迁市)(3分)如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_________.20.(内蒙古)(6分)如图,在梯形中,AD∥BC,,,AE⊥BD于E,. 求梯形的高.21.(湖北省荆州市)(6分)如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.22.(北京市)(5分)如图,在梯形中,,,,,,求的长.23.(湖北省荆门市)(10分)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE 和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?答案与解析1.B2.C3.A4.D5.C6.3607.368.129.八边10.矩形、等腰梯形、正方形、对角线相等的四边形11.3 12.22.5度13.25°14.6 15.1016.7 17.60 18.19.520.解:∵AD∥BC,∴∠2=∠3又AB=AD,∴∠1=∠3.∠ABC=∠C=60°∴∠1=∠2=30°在Rt△ABE中,,,∴AB=2作AF⊥BC垂足为F,在Rt△ABF中,∴梯形的高为.21.证明:∵AD=AE∴∠ADE=∠FED又AD∥BC∴∠ADE=∠DEC∴∠DEC=∠DEF又DF⊥AE,四边形ABCD是矩形∴∠DFE=∠C=90°又DE=DE∴△DEF≌△DEC(AAS)∴DF=DC.22.解法一:如图1,分别过点作于点,于点..又,四边形是矩形..,,,..,在中,,.解法二:如图2,过点作,分别交于点.,.,.在中,,,,在中,,,,..在中,,.23.解:(1) 四边形EFGH是正方形.图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE=CF=CG.∴△CEF是等腰直角三角形.因此四边形EFGH是正方形.(2) 设CE=x,则BE=0.4-x,每块地砖的费用为y,那么y=x×30+×0.4×(0.4-x)×20+=10(x-0.2x+0.24)=10[(x-0.1)2+0.23] (0<x<0.4).当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.。
2022年中考数学专题复习:四边形
板块八【四边形中考】2022年长沙中考板块精炼【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.122.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.448. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3B.2+23C.3D.1+239.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=2311.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.17.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).19.(2021湘潭)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AB 的中点.已知BC =10,则OE = .20.(2021兰州)如图,在矩形ABCD 中,AB =1,AD =3.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为 .三、解答题21.(2021长沙)如图,□ABCD 的对角线AC ,BD 相交于点O ,△OAB 是等边三角形,AB =4.(1)求证:□ABCD 是矩形; (2)求AD 的长.O QP E D22.(2021怀化)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.23. (2021湘潭)如图,矩形ABCD中,E为边BC上一点,将△ABE沿AE翻折后,点B 恰好落在对角线AC的中点F上.(1)证明:△AEF≌△CEF;(2)若AB=3,求折痕AE的长度.23.(2021株洲)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=23,求线段BG的长度.24.(2021郴州)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.25. (2021衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.26.(2021邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.27.(2021岳阳)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是;(2)添加了条件后,证明四边形AECF为平行四边形.28.(2021张家界)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α <120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.29.(2020长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE-DE=2EC,记∠BAF=α,∠F AE=β.求tanα+tanβ的值.板块八【四边形中考】2022年长沙中考板块精炼【答案或简析】【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.12【答案或简析】D.2.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°【答案或简析】B.3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.【答案或简析】D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°【答案或简析】B.5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形【答案或简析】A.6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°【答案或简析】C.7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.44【答案或简析】D.8. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3+3B.2+23C.2+3D.1+23【答案或简析】B.9.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC【答案或简析】C.10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=23【答案或简析】D.解:过N作y轴和x轴的垂线NG,NH,设N(b,a),∵反比例函数y=33x(x>0)的图象经过点N,∴ab 3,∵四边形ABCD是菱形,∴BD⊥AC,DO=12BD=2,∵NH⊥x轴,NG⊥y轴,∴四边形NGOH是矩形,∴NG∥x轴,NH∥y轴,∵N为CD的中点,∴DO•CO=2a•2b=4ab43∴CO23∴tan∠CDO=33 OCDO.∴∠CDO=30°,∴∠DCO=60°,∵四边形ABCD是菱形,∴∠ADC=∠ABC=2∠CDO=60°,∠ACB=∠DCO=60°,∴△ABC是等边三角形,∵AE⊥BC,BO⊥AC,∴AE=BO=2,∠BAE=30°=∠ABO,∴AM=BM,∴OM=EM,∵∠MBE=30°,∴BM=2EM=2OM,∴3EM=OB=2,∴ME=23,故选:D.11.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.【答案或简析】A.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案或简析】C.二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).【答案或简析】①.14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.【答案或简析】12.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.【答案或简析】3.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案或简析】23317.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.【答案或简析】B.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).【答案或简析】例如AE=EC.19.(2021湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE=.【答案或简析】5.20.(2021兰州)如图,在矩形ABCD中,AB=1,AD=3.①以点A为圆心,以不大于AB长为半径作弧,分别交边AD,AB于点E,F,再分别以点E,F为圆心,以大于12EF 长为半径作弧,两弧交于点P,作射线AP分别交BD,BC于点O,Q;②分别以点C,Q为圆心,以大于12CQ长为半径作弧,两弧交于点M,N,作直线MN交AP于点G,则OG长为.【答案或简析】524三、解答题21.(2021长沙)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:□ABCD是矩形;(2)求AD的长.【答案或简析】(1)证明:∵△AOB为等边三角形,OQPE D∴∠BAO =∠AOB =60°,OA =OB , ∵四边形ABCD 是平行四边形 ∴OB =OD =12BD ,OA =OC =12AC , ∴BD =AC ,∴▱ABCD 是矩形;(2)解:∵▱ABCD 是矩形, ∴∠BAD =90°, ∵∠ABO =60°,∴∠ADB =90°﹣60°=30°, ∴AD =3AB =43.22. (2021怀化)已知:如图,四边形ABCD 为平行四边形,点E 、A 、C 、F 在同一直线上,AE =CF .求证:(1)△ADE ≌△CBF ;(2)ED ∥BF .【答案或简析】证明:(1)∵四边形ABCD 为平行四边形, ∴DA =BC ,DA ∥BC , ∴∠DAC =∠BCA ,∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°, ∴∠EAD =∠FCB , 在△ADE 和△CBF 中,,,,AE CF EAD FCB AD CB , ∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF , ∴∠E =∠F , ∴ED ∥BF .23. (2021湘潭)如图,矩形ABCD 中,E 为边BC 上一点,将△ABE 沿AE 翻折后,点B恰好落在对角线AC 的中点F 上. (1)证明:△AEF ≌△CEF ;(2)若AB =3,求折痕AE 的长度. 【答案或简析】(1)证明:∵四边形ABCD 是矩形,∴∠B =90°,∵将△ABE 沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上,∴∠AFE =∠B =90°,AF =CF , ∵∠AFE +∠CFE =180°,∴∠CFE =180°﹣∠AFE =90°, 在△AEF 和△CEF 中,,,,AF CF AFE CFE EF EF ∠∠, ∴△AEF ≌△CEF (SAS ).(2)解:由(1)知,△AEF ≌△CEF , ∴∠EAF =∠ECF ,由折叠性质得,∠BAE =∠EAF , ∴∠BAE =∠EAF =∠ECF , ∵∠B =90°,∴∠BAC +∠BCA =90°, ∴3∠BAE =90°, ∴∠BAE =30°,在Rt △ABE 中,AB =3,∠B =90°,∴AE =32cos3032AB .23.(2021株洲)如图所示,在矩形ABCD 中,点E 在线段CD 上,点F 在线段AB 的延长线上,连接EF 交线段BC 于点G ,连接BD ,若DE =BF =2. (1)求证:四边形BFED 是平行四边形; (2)若tan ∠ABD =23,求线段BG 的长度.【答案或简析】证明:(1)∵四边形ABCD 是矩形, ∴DC ∥AB , 又∵DE =BF ,∴四边形DEFB 是平行四边形; (2)∵四边形DEFB 是平行四边形, ∴DB ∥EF , ∴∠ABD =∠F ,∴tan ∠ABD =tan F =23, ∴23BG BF , 又∵BF =2, ∴BG =43.24.(2021郴州)如图,四边形ABCD 中,AB =DC ,将对角线AC 向两端分别延长至点E ,F ,使AE =CF .连接BE ,DF ,若BE =DF .证明:四边形ABCD 是平行四边形.【答案或简析】证明:在△BEA 和△DFC 中,,,,AB DC AE CF BE DF ∴△BEA ≌△DFC (SSS ), ∴∠EAB =∠FCD , ∴∠BAC =∠DCA , ∴AB ∥DC , ∵AB =DC ,∴四边形ABCD 是平行四边形.25. (2021衡阳)如图,点E 为正方形ABCD 外一点,∠AEB =90°,将Rt △ABE 绕A 点逆时针方向旋转90°得到△ADF ,DF 的延长线交BE 于H 点. (1)试判定四边形AFHE 的形状,并说明理由; (2)已知BH =7,BC =13,求DH 的长.【答案或简析】(1)四边形AFHE 是正方形,理由如下:由旋转得∠AEB =∠AED =90°,AE =AF ,∠DAF =∠EAB. ∴∠AFH =90°.∵四边形ABCD 是正方形, ∴∠DAB =90°,∴∠F AE =∠F AB +∠BAE =∠F AB +∠DAF =∠DAB =90°, ∴∠AEB =∠AFB =∠F AE =90°,∴四边形AFHE 是矩形. 又∵AE =AF ,∴四边形AFHE 是正方形. (2)连接BD ,由题意得,BC =CD =13, ∴在Rt △BCD 中,BD =22132CD CB .∵四边形AFHE 是正方形, ∴∠EHD =90°,∴∠DHB =90°, 在Rt △DHB 中,DH =22,BD BH又∵BH =7,∴DH =17.26.(2021邵阳)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE =CF .连接DE ,DF ,BE ,BF . (1)证明:△ADE ≌△CBF . (2)若AB =4,AE =2,求四边形BEDF 的周长.【答案或简析】(1)证明:由正方形对角线平分每一组对角可知:∠DAE =∠BCF =45°, 在△ADE 和△CBF 中,,,,AD BC DAE BCF AE CF ∠∠ ∴△ADE ≌△CBF (SAS ). (2)解:∵AB =AD =42, ∴BD =228AB AD ,由正方形对角线相等且互相垂直平分可得:AC =BD =8,DO =BO =4,OA =OC =4, 又AE =CF =2,∴OA ﹣AE =OC ﹣CF , 即OE =OF =4﹣2=2, 故四边形BEDF 为菱形. ∵∠DOE =90°, ∴DE =22224225DO EO .∴4DE =85,故四边形BEDF 的周长为85.27.(2021岳阳)如图,在四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F . (1)请你只添加一个条件(不另加辅助线),使得四边形AECF 为平行四边形,你添加的条件是 ;(2)添加了条件后,证明四边形AECF 为平行四边形.【答案或简析】解:(1)添加条件为:AE =CF , 故答案为:AE =CF ;(2)证明:∵AE ⊥BD ,CF ⊥BD , ∴AE ∥CF , ∵AE =CF ,∴四边形AECF 为平行四边形.28.(2021张家界)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,∠AOB =60°,对角线AC 所在的直线绕点O 顺时针旋转角α(0°< α <120°),所得的直线l 分别交AD ,BC 于点E ,F . (1)求证:△AOE ≌△COF ;(2)当旋转角α为多少度时,四边形AFCE 为菱形?试说明理由.【答案或简析】 证明:(1)∵四边形ABCD 是矩形, ∴AD ∥BC ,AO =CO , ∴∠AEO =∠CFO , 在△AOE 和△COF 中,,,,AEO CFO AOE COF AO CO ∠∠∠∠, ∴△AOE ≌△COF (AAS );(2)当α=90°时,四边形AFCE 为菱形, 理由:∵△AOE ≌△COF , ∴OE =OF , 又∵AO =CO ,∴四边形AFCE 为平行四边形, 又∵∠AOE =90°,∴四边形AFCE 为菱形.29.(2020长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE -DE =2EC ,记∠BAF =α,∠F AE =β.求tan α+tan β的值.【答案或简析】(1)证明:∵四边形ABCD 是矩形, ∴∠B =∠C =∠D =90°, ∴∠CEF +∠EFC =90°, ∵△AEF 由△AED 翻折得到, ∴∠AFE =∠D =90°, ∴∠AFB +∠EFC =90°, ∴∠CEF =∠AFB , ∴△ABF ∽△FCE ; (2)∵四边形ABCD 是矩形, ∴AB =CD =23,AD =BC =4,设CE =x ,则DE =23-x , ∵△AEF 由△AED 翻折得到, ∴AD =AF =4,DE =EF =23-x ,在Rt △ABF 中,BF =AF 2-AB 2=42-(23)2=2, ∴CF =BC -BF =4-2=2,在Rt △CEF 中,EF 2=CE 2+CF 2,即(23-x )2=x 2+22, 解得x =233,即EC =233;(3)如解图,设EC =x ,DE =a ,则易得EF =a ,AB =a +x , ∵AE -DE =2EC ,∴AE -a =2x ,即AE =2x +a ,由勾股定理得:AF =AE 2-EF 2=(2x +a )2-a 2=4ax +4x 2, CF =EF 2-CE 2=a 2-x 2,由(1)知∠CEF =∠AFB ,∴∠BAF =∠CFE =α,∴cos ∠BAF =AB AF =a +x 4ax +4x 2,cos ∠CFE =CFEF =a 2-x 2a ,∴a +x 4ax +4x2=a 2-x 2a , a +x4x (a +x )=(a +x )(a -x )a,a (a +x )=(a +x )4x (a -x ), a =4ax -4x 2, 整理得(a -2x )2=0, ∴a =2x ,∴sin ∠CFE =CE EF =x a =x 2x =12,即∠CFE =∠BAF =α=30°,∴∠DAF =60°, ∴∠EAF =β=30°.∴tan α+tan β=tan 30°+tan 30°=233.。
中考数学系统复习第五单元四边形方法技巧训练二几何中与中点有关的计算与证明练习
方法技巧训练(二) 几何中与中点有关的计算与证明方法指导1 有关中点的常见考法 (1)直角三角形斜边上的中线如图,在Rt △ABC 中,点D 是斜边AB 的中点,则BD =12AB,AD =CD =DB.反过来,在△ABC 中,点D 在AB 边上,若AD=BD =CD =12AB,则有∠ACB =90°.解题通法:直角+中点⇒直角三角斜边上的中线.(1)图 (2)图 (3)图(2)等腰三角形“三线合一”如图,在△ABC 中,若AB =AC,通常取底边BC 的中点D,则AD ⊥BC,且AD 平分∠BAC.解题通法:事实上,在△ABC 中:①AB =AC ;②AD 平分∠BAC ;③BD =CD ;④AD ⊥BC.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.(3)线段垂直平分线如图,直线l 是线段BC 的垂直平分线,则可以在直线l 上任意取一点A,得到AB =AC,即△ABC 是等腰三角形. 解题通法:遇到垂直平分线⇒线段相等⇒等腰三角形. (4)倍长中线在△ABC 中,M 为BC 的中点.①如图1,连接AM 并延长至点E,使得AM =ME,连接CE,则△ABM ≌△ECM.②如图2,点D 在AB 边上,连接DM 并延长至点E,使得ME =DM,连接CE,则△DMB ≌△EMC.解题通法:遇到三角形一边上的中点,常常倍长中线,利用“8”字形全等将题中条件集中,以达到解题的目的.图1 图2(5)构造三角形的中位线在△ABC 中,D 为AB 边的中点.①如图1,取AC 边上的中点E,连接DE,则DE ∥BC,且DE =12BC.②如图2,延长BC 至点F,使得CF =BC,连接CD,AF,则DC ∥AF,且DC =12AF.解题通法:三角形的中位线从位置关系和数量关系两个方面将图形中分散的线段关系集中起来,通常需要再找一个中点来构造中位线,或倍长某段线段构造中位线.拓展:如果已知中点的边不在一个三角形中,则需先添加辅助线构造中点,然后构造三角形的中位线解题.如在四边形ABCD 中,点E,H 分别为AB,CD 边的中点,则先连接AC,然后取AC 边的中点F,连接EF,FH,则EF 为△ABC 的中位线,FH 为△ACD 的中位线.图1 图2(6)中点四边形如图,在四边形ABCD中,点E,F,G,H分别是四边形的边AB,BC,CD,AD的中点.结论:①连接EF,FG,GH,EH,则中点四边形EFGH是平行四边形.②若对角线AC和BD相等,则中点四边形EFGH是菱形.③若对角线AC与BD互相垂直,则中点四边形EFGH是矩形.④若对角线AC与BD互相垂直且相等,则中点四边形EFGH是正方形.方法指导2中考数学中涉及“一半”的相关内容①直角三角形斜边中线等于斜边的一半;②30°角所对的直角边等于斜边的一半;③三角形的中位线平行于第三边,且等于第三边的一半;④圆周角的度数等于它所对弧圆心角度数的一半.题组11.如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=(C)A.60°B.75°C.90°D.105°2.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是(B) A.3 B.4 C.5 D.63.如图,在四边形ABCD中,∠DAB=90°,∠DCB=90°,E,F分别是BD,AC的中点,AC=6,BD=10,则EF的长为(B) A.3 B.4 C.5 D.74.如图,在钝角△ABC中,已知∠A为钝角,边AB,AC的垂直平分线分别交BC于点D,E.若BD2+CE2=DE2,则∠A的度数为135°.5.(青岛)如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为342.题组26.如图,在△ABC 中,两条中线BE,CD 相交于点O,则S △DOE ∶S △DCE =(B)A .1∶4B .1∶3C .1∶2D .2∶37.(陕西)如图,在菱形ABCD 中,点E,F,G,H 分别是边AB,BC,CD 和DA 的中点,连接EF,FG,GH 和HE.若EH =2EF,则下列结论正确的是(D)A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF8.(苏州)如图,在△ABC 中,延长BC 至D,使得CD =12BC,过AC 中点E 作EF ∥CD(点F 位于点E 右侧),且EF =2CD,连接DF.若AB =8,则DF 的长为(B)A .3B .4C .2 3D .3 29.如图,在△ABC 中,AB =10,AC =6,则BC 边上的中线AD 的取值范围是2<AD <8.10.(武汉)如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是32.11.(1)如图1,在四边形ABCD 中,F,E 分别是BC,AD 的中点,连接FE 并延长,分别与BA,CD 的延长线交于点M,N,已知∠BME =∠CNE,求证:AB =CD ;(提示:取BD 的中点H,连接FH,HE 作辅助线)(2)如图2,在△ABC 中,点O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G.若AB =DC =5,∠OEC =60°,求OE 的长度.图1 图2解:(1)证明:连接BD,取DB 的中点H,连接EH,FH. ∵F,E 分别是BC,AD 的中点, ∴EH ∥AB,EH =12AB,FH ∥CD,FH =12CD.∴∠BME =∠HEF,∠CNF =∠HFE.∵∠BME =∠CNE, ∴∠HEF =∠HFE.∴HE =HF.∴AB =CD.(2)连接BD,取DB 的中点H,连接EH,OH. ∵O,E 分别是BC,AD 的中点,∴EH 平行且等于12AB,OH 平行且等于12CD.∵AB =CD,∴HO =HE.∴∠HEO =∠HOE =∠OEC. ∵∠OEC =60°,∴∠HEO =∠HOE =60°. ∴△OEH 是等边三角形. ∵AB =DC =5,∴OE =52.。
人教版八年级数学下册第十八章四边形典型中点构造专题
⑵求四边形A5B5C5D5的周长.
【解析】⑴由三角形的中位线的性质可以推知,每得到一次四
边形,它的面积变为原来的一半,四边形
的面积为 ;
⑵根据中位线的性质易知,A5B5= A3B3= × A1B1= × × AB,
B5C5= B3C3= × B1C1= × × BC, = .
∴CF//DA且CF=DA,
CF//BD且CF=BD
∴四边形DBCF是平行四边形
∴DF//BC且DF=BC
又
∴DE//BC,且
【点评】教师可以让学生尝试不同方法证明三角形中位线,并复习了平行四边形的判定与性质.
下面方法请做参考.
方法一:如图1,过点 作 的平行线交 延长线于点 ,证明 ,再证四边形 为平行四边形.
【例5】已知:在 中, ,点 在直线 上, 与直线 垂直,垂足为 ,且点 为 中点,连接 、 .
⑴如图1,若点 在线段 上,探究线段 与 及 与 所满足的数量关系,并直接写出你得到的结论;
⑵如图2,若点 在 延长线上,你⑴中的结论是否发生变化?写出你的猜想并证明;
【解析】⑴
⑵结论不变,由题意知 ,∴
⑵取AC中点H连接FH、EH
∴
∵AB=AC、DC=AC
∴AB=CD、EH=FH
∴∠HFE=∠FEH
∵EH∥AB、FH∥CD
∴∠BGE=∠GEH,∠HFE=∠GEB
∴∠BGE=∠BEG
∴∠AGE=∠GEC
∴四边形AGEC是等邻角四边形
⑶存在,如图连接辅助线,同理可证,四边形AGHC为等邻角四边形
思维拓展训练(选讲)
【解析】取 中点 , 中点 ,连接 , , ,
可知 ,又 为梯形 中位线,∴
专题15 四边形的综合 题型全覆盖(16题)-2020-2021学年八年级数学下(人教版)(原卷版)
专题15 四边形的综合 题型全覆盖(16题)【思维导图】【考查题型】考查题型一 中点四边形1.(2020·天津河西区·八年级期中)如图,已知四边形ABCD 中,,,,E F G H 分别为,,,AB BC CD DA 上的点(不与端点重合).(1)若,,,E F G H 分别为,,,AB BC CD DA 的中点.求证:四边形EFGH 是平行四边形;(2)在(1)的条件下,根据题意填空:若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是矩形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是菱形;若四边形ABCD 的对角线AC 和BD 满足 时,四边形EFGH 是正方形.(3)判断对错:①若已知的四边形ABCD 是任意矩形,则存在无数个四边形EFGH 是菱形;( )②若已知的四边形ABCD 是任意矩形,则至少存在一个四边形EFGH 是正方形.( )2.(2020·山东济宁市·八年级期中)综合与实践问题情境:在数学活动课上,我们给出如下定义:顺次连按任意一个四边形各边中点所得的四边形叫中点四边形.如图(1),在四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.试说明中点四边形EFGH 是平行四边形.探究展示:勤奋小组的解题思路:反思交流:(1)①上述解题思路中的“依据1”、“依据2”分别是什么?依据1:;依据2:;②连接AC,若AC=BD时,则中点四边形EFGH的形状为;创新小组受到勤奋小组的启发,继续探究:(2)如图(2),点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其它条件不变,则中点四边形EFGH的形状为.3.(2020·静宁县八年级期中)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论.(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.4.(2020·广东深圳市八年级期中)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)考查题型二 特殊四边形的动点问题5.(2020·菏泽市期末)如图,在长方形ABCD 中,6AB cm =,AD 2cm =,动点P 、Q 分别从点A 、C 同时出发,点P 以2厘米/秒的速度向终点B 移动,点Q 以1厘米/秒的速度向D 移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t ,问:(1)当1t =秒时,四边形BCQP 面积是多少?(2)当t 为何值时,点P 和点Q 距离是3cm ?(3)当t =_________时,以点P 、Q 、D 为顶点的三角形是等腰三角形.(直接写出答案)6.(2020·四川成都市七年级期中)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒1cm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?7.(2020·耒阳市八年级期中)如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm、bcm,满足(a﹣3)2+|2a+b﹣9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.(1)a=cm,b=cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2.8.(2020·石阡县期末)如图,在Rt ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s 的速度向点A匀速运动.同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由.考查题型三四边形中线段最值∆沿CD所在直线折叠,9.(2020·南宁市八年级期中)如图,矩形ABCD的对角线AC,BD相交于点O,将COD∆.得到CED(1)求证:四边形OCED 是菱形;(2)若2AB =,当四边形OCED 是正方形时,OC 等于多少?(3)若3BD =,30ACD ∠=︒,P 是CD 边上的动点,Q 是CE 边上的动点,那么PE PQ +的最小值是多少? 10.(2020·北京市八年级期中)如图,长方形ABCD 中,AB =8,BC =10,在边CD 上取一点E ,将△ADE 折叠后点D 恰好落在BC 边上的点F 处(1)求CE 的长;(2)在(1)的条件下,BC 边上是否存在一点P ,使得PA +PE 值最小?若存在,请求出最小值:若不存在,请说明理由.11.(2020·福建龙岩市·八年级期中)如图,在边长为2cm 的正方形ABCD 中,Q 为BC 边的中点,P 为对角线AC 上的一个动点,连接PB ,PQ ,求△PBQ 周长的最小值.12.(2020·河南周口市期末)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,点E 是斜边AB 上的一个动点,连接CE ,过点B ,C 分别作BD ∥CE ,CD ∥BE ,BD 与CD 相交于点D .(1)当CE ⊥AB 时,求证:四边形BECD 是矩形;(2)填空:①当BE 的长为______时,四边形BECD 是菱形;②在①的结论下,若点P是BC上一动点,连接AP,EP,则AP+EP的最小值为______.考查题型四四边形其他综合问题13.(2020·黄石市八年级期中)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.14.(2020·四川广安市九年级期末)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.15.(2020·山东临沂市·八年级期中)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.16.(2020·山东德州市·八年级期末)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.。
【初中数学】人教版八年级下册专题训练(二)中点四边形(练习题)
人教版八年级下册专题训练(二)中点四边形(146) 1.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,求EG2+FH2的值.2.四边形ABCD为边长等于1的菱形,顺次连接它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连接四边形EFGH的各边中点组成第二个中点四边形……则按上述规律组成的第八个中点四边形的边长等于.3.如图所示,E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点.(1)当四边形ABCD是矩形时,四边形EFGH是形,并说明理由;(2)当四边形ABCD满足什么条件时,四边形EFGH是正方形?并说明理由.4.如图,在四边形ABCD中,E,F,G,H分别是BC,AD,BD,AC的中点.(1)求证:EF与GH互相平分;(2)当四边形ABCD的边满足条件时,EF⊥GH.5.顺次连接对角线相等的四边形的各边中点,所得四边形是()A.矩形B.平行四边形C.菱形D.任意四边形6.顺次连接菱形各边中点所得到的四边形是()A.梯形B.矩形C.菱形D.正方形7.若四边形的对角线互相垂直,则顺次连接这个四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.正方形8.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当中点四边形EFGH是菱形时,四边形ABCD是矩形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确的是(填序号).9.如图,在四边形ABCD中,AD=CD,AB=CB,E,F,G,H分别是AD,AB,CB,CD的中点.求证:四边形EFGH是矩形.10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形11.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.正方形C.对角线相等的四边形D.对角线互相垂直的四边形12.如图,在四边形ABCD中,E,F,G,H分别是BC,AC,AD,BD的中点,要使四边形EFGH是菱形,四边形ABCD的边AB,CD应满足的条件是.13.如图所示,E,F,G,H为四边形ABCD各边的中点,若对角线AC,BD的长都为20,则四边形EFGH的周长是()A.80B.40C.20D.1014.如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60∘,则四边形EFGH的面积为cm2.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.16.如图,在四边形ABCD中,AC=8,BD=6,且AC⊥BD,E,F,G,H分别是AB,BC,CD,DA 的中点,则EG2+FH2=.参考答案1.【答案】:如图,连接EF ,FG ,GH ,EH ,∵E ,H 分别是AB ,DA 的中点,∴EH 是△ABD 的中位线,∴EH =12BD =3. 同理可得EF ,FG ,GH 分别是△ABC ,△BCD ,△ACD 的中位线, ∴EF =GH =12AC =3,FG =12BD =3,∴EH =EF =GH =FG =3,∴四边形EFGH 为菱形,∴EG ⊥HF ,且垂足为O ,∴EG =2OE ,FH =2OH .在Rt △OEH 中,根据勾股定理得:OE 2+OH 2=EH 2=9,等式两边同时乘4得4OE 2+4OH 2=9×4=36,∴(2OE)2+(2OH)2=36,即EG 2+FH 2=36.【解析】:连接EH,HG,GF,FE ,根据题目条件提供的四个中点,结合中位线的性质,证明四边形EFGH 为菱形,再根据菱形的性质及勾股定理求出结果.2.【答案】:116【解析】:根据题意,结合图形寻找规律:第二、四、六、八个中点四边形为菱形,第一个菱形边长为12,第二个菱形边长为14,第三个菱形边长为18,第四个菱形边长为116,即为第八个菱形的边长3(1)【答案】当四边形ABCD 是矩形时,四边形EFGH 是菱形.理由:∵四边形ABCD 是矩形,∴AC =BD .∵E ,F ,H 分别是AB ,BC ,AD 的中点,∴EF=12AC,EH=12BD,∴EF=EH.同理可得EF=GH=GF,∴四边形EFGH是菱形【解析】:利用矩形及中位线的性质,结合菱形的判定方法进行推导证明.(2)【答案】当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH是正方形.理由:∵E,F分别是四边形ABCD的边AB,BC的中点,∴EF∥AC,EF=12AC,同理,EH∥BD,EH=12BD,GF=12BD,GH=12AC.∵AC=BD,∴EF=EH=GH=GF,∴四边形EFGH是菱形.∵AC⊥BD,∴EF⊥EH,∴菱形EFGH是正方形【解析】:根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,得到四边形ABCD满足的条件.4(1)【答案】证明:连接GE,GF,HF,EH.∵E,G分别是BC,BD的中点,∴EG=12CD.同理FH=12CD,FG=12AB,EH=12AB,∴EG=FH,GF=EH,∴四边形EHFG是平行四边形.∴EF与GH互相平分【解析】:根据题中提供的四个中点,得到几组中位线,利用中位线的性质,及平行四边形的判定方法,推导出四边形EHFG是平行四边形,进而推导出结论(2)【答案】当四边形ABCD的边满足条件AB=CD时,EF⊥GH.【解析】:理由如下:当EF⊥GH时,四边形EGFH是菱形,此时GF=EG.∵EG=12CD,FG=12AB,∴AB=CD.∴当四边形ABCD的边满足条件AB=CD时,EF⊥GH5.【答案】:C【解析】:顺次连接对角线相等的四边形的各边中点,所得四边形是菱形.如图,∵E,F,G,H分别为四边形ABCD各边的中点,∴EH为△ABD的中位线,FG为△CBD的中位线,∴EH∥BD,EH=12BD,FG∥BD,FG=12BD,∴EH∥FG,EH=FG=12BD,∴四边形EFGH为平行四边形.又∵EF为△ABC的中位线,∴EF=12AC.又∵EH=12BD,且AC=BD,∴EF=EH,∴平行四边形EFGH为菱形.故选C.6.【答案】:B【解析】:利用菱形的性质、矩形的判定方法及中位线的性质推导出结果.7.【答案】:B【解析】:如图,在四边形ABCD中,AC⊥BD,连接各边的中点E,F,G,H,则EH∥AC,FG∥AC,EF∥BD,GH∥BD.又因为对角线AC⊥BD,所以GH⊥EH,EH⊥EF,EF⊥FG,FG⊥HG.故可判定该四边形是矩形.故选B.8.【答案】:①④【解析】:如图四边形ABCD,连接AC,BD.∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形,故①正确.若四边形ABCD是矩形,则AC=BD.∵EF=12AC,EH=12BD,∴EF=EH,∴平行四边形EFGH是菱形,故②错误.若四边形EFGH是菱形,则AC=BD,但四边形ABCD不一定是矩形,故③错误.若四边形ABCD是正方形,则AC=BD,AC⊥BD,∴四边形EFGH是正方形,故④正确.∴正确的叙述是①④.9.【答案】:连接AC,BD,交于点O,如图.∵E,F,G,H分别是AD,AB,CB,CD的中点,∴EF∥BD∥GH,EH∥AC∥FG,EF=GH=12BD,EH=FG=12AC,∴四边形EFGH是平行四边形.∵AD=CD,AB=CB,∴点D,B都在线段AC的垂直平分线上,∴DB垂直平分AC,∴DB⊥AC,OA=OC.∵EF∥DB,∴EF⊥AC.∵FG∥AC,∴EF⊥FG,∴四边形EFGH是矩形【解析】:利用三角形的中位线解题.10.【答案】:D【解析】:若得到的四边形是矩形,那么邻边互相垂直,根据三角形中位线定理,故原四边形的对角线必互相垂直,由此得解.11.【答案】:C【解析】:若得到的四边形是菱形,那么四条边都相等,根据三角形中位线定理,故原四边形的对角线必相等,由此得解.12.【答案】:AB=CD【解析】:若四边形EFGH是菱形,则GH=EH,又根据题中条件所给的四个中点,利用中位线的性质推导出AB=2GH,CD=2EH,所以AB=CD.13.【答案】:B【解析】:∵E,F,G,H是四边形ABCD各边的中点,∴HG=EF=12AC,GF=HE=12BD,∴四边形EFGH的周长=HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40 14.【答案】:9√3【解析】:连接AC,BD,相交于点O,如图所示, ∵点E,F,G,H分别是菱形四边的中点,∴EH=12BD=FG,EH∥BD∥FG, EF=12AC=HG,∴四边形EHGF是平行四边形.∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.∵四边形ABCD是菱形,∠ABC=60∘,∴∠ABO=30∘.∵AC⊥BD,∴∠AOB=90∘,∴AO=12AB=3cm,∴AC=6cm.在Rt△AOB中,由勾股定理,得OB=√AB2−OA2=3√3cm, ∴BD=6√3cm.∵EH=12BD,EF=12AC,∴EH=3√3cm,EF=3cm,∴矩形EFGH的面积=EF·EH=9√3cm2. 故答案为9√315.【答案】:12【解析】:∵E,F,G,H分别为边AD,AB,BC,CD的中点,∴HE=12AC=4,HE∥AC,GF∥AC,∴HE∥GF.同理,HG∥EF,HG=12BD=3,∴四边形EFGH是平行四边形.∵AC⊥BD,∴∠EHG=90∘,∴四边形EFGH是矩形,∴四边形EFGH的面积为3×4=1216.【答案】:50【解析】:连接HG,EH,EF,FG,∵E,F,G,H分别是AB,BC,CD,DA的中点,∴HG=EF=12AC=4,EH=FG=12BD=3,∵E,H分别是AB,AD的中点,∴HE∥BD,HE=12BD,同理FG∥BD,FG=12BD,∴四边形HEFG是平行四边形.∵AC⊥BD,∴HG⊥EH,∴四边形HEFG为矩形,∴EG2+FH2=EF2+FG2+EF2+EH2=52+52=50。
第十九章专题复习-中点四边形
B
总结 中点四边形的形状与原四边形对角线有关:
(1)当原四边形对角线相等时,中点四边形是菱形
(2)当原四边形对角线垂直时,中点四边形是矩形
E
G
B
F
C
6、已知如图,点E、F、G、H分别为四边 形ABCD的各边的中点,若AC=BD,试探究 四边形EFGH的形状,并证明。 D H A G C
E B
F
7、已知如图,点E、F、G、H分别为四边 形ABCD的各边的中点,若AC⊥BD,试探 究四边形EFGH的形状,并证明。 H A 知如图,点E、F、G、H分别为矩形 ABCD的各边的中点,试探究四边形EFGH的 形状,并证明。 A E B H D G
F
C
4、已知如图,点E、F、G、H分别为菱形 ABCD的各边的中点,试探究四边形EFGH的 形状,并证明。 A E H D
G
B
F
C
5、已知如图,点E、F、G、H分别为正方 形ABCD的各边的中点,试探究四边形EFGH 的形状,并证明。 H A D
第十九章平行四边形专题复习
——中点四边形
1、已知如图,点E、F、G、H分别为任意 四边形ABCD的各边的中点,试探究四边形 EFGH的形状,并证明。
A
E B
H
D G
F
C
2、已知如图,点E、F、G、H分别为 □ABCD的各边的中点,试探究四边形EFGH 的形状,并证明。 A E B C H G D
2022年中考数学复习练习-正方形及中点四边形
课时训练(二十六) 正方形及中点四边形|夯实基础|1.根据下列条件,能判定一个四边形是正方形的是()A.对角线互相垂直且平分B.对角相等C.对角线互相垂直、平分且相等D.对角线相等2.[2022最新·滨州] 下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形3.[2016·河北] 关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形4.[2022最新·广安] 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的个数是()A.4B.3C.2D.15.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图26-5,正方形ABCD的周长为28cm,点N在对角线BD上,则矩形MNGC的周长是()图26-5A.24cmB.14cmC.18cmD.7cm7.如图26-6,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别为1和3,则正方形ABCD的边长是()图26-6A.2√2B.3C.√10D.48.[2022最新·天津] 如图26-7,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()图26-7A .AB B .DEC .BD D .AF9.[2022最新·枣庄] 如图26-8,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为()图26-8A .2B .√3C .√2D .110.[2022最新·泰安] 如图26-9,在正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E.若AB=12,BM=5,则DE 的长为()图26-9A .18B .1095C .965D .25311.[2022最新·青岛] 如图26-10,已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE=DF=2,BE 与AF 相交于点G ,H 为BF 的中点,连接GH ,则GH 的长为.图26-1012.[2022最新·德阳] 如图26-11,将边长为√3的正方形ABCD绕点B逆时针旋转30°得到正方形A'BC'D',那么图中阴影部分的面积为()图26-11A.3B.√3C.3-√3D.3-√3213.正方形的对角线长为2,则正方形的周长为,面积为.14.[2022最新·兰州] 在平行四边形ABCD中,对角线AC与DB相交于点O.要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的是(填序号).15.[2015·无锡] 如图26-12,已知矩形ABCD的对角线长为8cm,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于cm.图26-1216.[2015·广安] 如图26-13,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.图26-1317.[2022最新·宿迁] 如图26-14,正方形ABCD的边长为3,点E在边AB上,且BE=1.若点P在对角线BD上移动,则P A+PE的最小值是.图26-1418.[2022最新·包头样题二] 如图26-15,边长为6的大正方形中有两个小正方形,小正方形的顶点均在大正方形的边或对角线上.若两个小正方形的面积分别为S1,S2,则S1与S2的和为.图26-1519.[2022最新·常德] 如图26-16,正方形EFGH的顶点在边长为2的正方形ABCD的边上,若设AE=x,正方形EFGH 的面积为y,则y与x之间的函数关系式为(不必写出自变量的取值范围).图26-1620.[2022最新·白银] 如图26-17,已知矩形ABCD中,E是AD边上的一个动点,F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.图26-1721.[2022最新·聊城] 如图26-18,在正方形ABCD中,E是BC上的一点,连接AE,过点B作BH⊥AE,垂足为H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形ABCD的边长是5,BE=2,求AF的长.图26-1822.[2022最新·潍坊] 如图26-19,M是正方形ABCD的边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.图26-1923.[2022最新·眉山] 如图26-20,E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF交AC于点H,交DC于点G.(1)求证:BG=DE;(2)若G为CD的中点,求HG的值.GF图26-20|拓展提升|24.[2022最新·包头样题一] 如图26-21,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD=3,DE=1,连接CG ,AE ,并延长AE 交CG 于点H ,则EH 的长为()图26-21A .√105B .2√105C .3√55D .√55 25.[2022最新·台州] 如图26-22,在正方形ABCD 中,AB=3,点E ,F 分别在CD ,AD 上,CE=DF ,BE ,CF 相交于点G.若图中阴影部分的面积与正方形ABCD 的面积之比为2∶3,则△BCG 的周长为.图26-2226.[2022最新·青山区一模] 如图26-23,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC 分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AEAB =23,则3S△EDH=13S△DHC,其中正确的结论是(填序号).图26-2327.[2022最新·青山区二模] 如图26-24,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH·PC.其中正确的是(填序号).图26-24参考答案1.C2.D3.C4.C[解析] 根据菱形的判定定理,四边相等的四边形一定是菱形,故①正确;由于矩形的对角线相等,根据三角形的中位线定理,可得顺次连接矩形各边中点所得四边形的四条边相等,由此可判定所得四边形是菱形,故②错误;对角线相等的平行四边形是矩形,故③错误;平行四边形是中心对称图形,根据中心对称图形的性质,经过对称中心的任意一条直线都把它分成两个全等形,面积当然相等,所以经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,故④正确.综上所述,正确的说法有2个.故选C.5.D6.B7.C8.D[解析] 如图,取CD的中点E',连接AE',PE'.由正方形轴对称的性质可知EP=E'P,AF=AE',∴AP+EP=AP+E'P.∵AP+E'P≥AE',∴AP+EP的最小值是AE'的长,即AP+EP的最小值是AF的长.故选D.9.B[解析]∵四边形ABCD为正方形,AB=2,M,N分别为BC,AD的中点,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1.在Rt△BMF中,FM=√BF2-BM2=√22-12=√3,故选B.10.B[解析] 在Rt△ABM中,根据勾股定理得AM=√AB2+BM2=√122+52=13,因为四边形ABCD为正方形,所以AD=AB=12.因为ME⊥AM,所以∠AME=90°,所以∠AME=∠MBA.因为AD∥BC,所以∠EAM=∠AMB,所以△ABM∽△EMA,所以BMAM =AMAE,即513=13AE,所以AE=1695,所以DE=AE-AD=1695-12=1095.11.√342[解析]∵四边形ABCD是正方形,∴AB=AD=BC=CD=5,∠BAD=∠D=∠C=90°.又∵AE=DF,∴△ABE≌△DAF,∴∠DAF=∠ABE ,∴∠ABE+∠BAG=∠DAF+∠BAG=90°,即∠BGF=90°.在Rt △BCF 中,CF=CD -DF=3,∴BF=√52+32=√34.在Rt △BGF 中,∵H 为BF 的中点,∴GH=12BF=√342.12.C[解析] 如图,连接AM.由旋转的性质可知∠1=∠4=30°,∴∠2+∠3=60°.在Rt △ABM 和Rt △C'BM 中,∵AB=C'B ,∴Rt △ABM ≌Rt △C'BM ,∴∠2=∠3=30°.在Rt △ABM 中,∵AB=√3,∠2=30°,∴AM=tan30°·AB=1.∴S △ABM =S △BMC'=√32,∴S 阴影=S 正方形A'BC'D'-(S △ABM +S △BMC')=3-√3.13.4√2214.①③④[解析]①有一个角是直角的平行四边形是矩形;有一组邻边相等的矩形是正方形,故①正确;②BD 为平行四边形的对角线,AB 为平行四边形的其中一条边,所以AB=BD 时,平行四边形不可能是正方形,故②错误; ③由OB=OC ,得AC=BD ,由OB ⊥OC 得AC ⊥BD ,∴▱ABCD 为正方形,故③正确;④由AB=AD ,得▱ABCD 为菱形.又∵AC=BD ,∴四边形ABCD 为正方形,故④正确.15.1616.9√317.√10[解析] 连接PC.根据正方形的对称性知P A=PC ,所以当点C ,P ,E 在同一条直线上时,P A+PE=PC+PE=CE 最小,根据勾股定理求得CE=√BC 2+BE 2=√32+12=√10.18.1719.y=2x 2-4x+4[解析] 由题中条件可知,图中的四个直角三角形是全等三角形,AE=x ,则AF=2-x.在Rt △EAF 中,由勾股定理可得EF 2=(2-x )2+x 2=2x 2-4x+4,即正方形EFGH 的面积y=2x 2-4x+4.20.解:(1)证明:∵F 是BC 边的中点,∴BF=FC.∵F ,G ,H 分别是BC ,BE ,CE 的中点,∴GF ,FH 是△BEC 的中位线,∴GF=HC ,FH=BG.在△BGF 和△FHC 中,{BF =FC ,BG =FH ,GF =HC ,∴△BGF ≌△FHC (SSS).(2)当四边形EGFH 是正方形时,∠BEC=90°,GF=GE=EH=FH.∵GF ,FH 是△BEC 的中位线,∴BE=CE ,∴△BEC 是等腰直角三角形.连接EF ,则EF ⊥BC ,EF=12BC=12AD=12a ,∴S 矩形ABCD =AD ·EF=a ·12a=12a 2.21.解:(1)证明:∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=∠C=90°.∵BH ⊥AE ,垂足为H ,∴∠BAE+∠ABH=90°.∵∠CBF+∠ABH=90°,∴∠BAE=∠CBF .在△ABE 和△BCF 中,{∠ABE =∠C =90°,AB =BC ,∠BAE =∠CBF ,∴△ABE ≌△BCF (ASA),∴AE=BF .(2)∵△ABE ≌△BCF ,∴CF=BE=2.∵正方形的边长为5,∴AD=CD=5,∴DF=CD -CF=5-2=3.在Rt △ADF 中,AF=√AD 2+DF 2=√52+32=√34.22.解:(1)证明:∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°,∴∠BAE+∠EAD=90°.∵BF ⊥AM ,DE ⊥AM ,∴∠DEA=∠AFB=90°,∴∠EAD+∠ADE=90°,∴∠BAE=∠ADE.∴△ABF ≌△DAE ,∴AE=BF .(2)设EF=x ,则AE=x+2,BF=AE=x+2.∵△ABF ≌△DAE ,∴S 四边形ABED =S △BEF +S △ABF +S △DAE =S △BEF +2S △ABF =24,即12x (x+2)+12×2(x+2)×2=24,解得x 1=4,x 2=-10(舍去),∴EF=4,BF=6,∴BE=√42+62=2√13,∴sin ∠EBF=EF BE =2√13=2√1313. 23.[解析](1)要证明BG=DE ,只需证明△BCG ≌△DCE ,利用AAS 或ASA 证明即可;(2)设正方形ABCD 的边长为a ,先求出BG 的长,从而得出CE ,DE 的长,分别利用△ABH ∽△CGH 和△DFG ∽△DCE ,得到HG 和GF 的长,从而求出HGGF 的值. 解:(1)证明:∵四边形ABCD 是正方形,∴BC=DC ,∠BCD=90°,∴∠DCE=180°-90°=90°,∴∠BCD=∠DCE ,∴∠CBG+∠BGC=90°.∵BF ⊥DE ,∴∠CBG+∠E=90°,∴∠BGC=∠E ,∴△BCG ≌△DCE ,∴BG=DE.(2)设正方形ABCD 的边长为a.∵G 为CD 的中点,∴CG=GD=12a.在Rt △BCG中,BG=√BC 2+CG 2=√a 2+(a 2)2=√52a. ∵△BCG ≌△DCE ,∴CE=CG=a 2,DE=BG=√52a.∵AB ∥DC ,∴△ABH ∽△CGH ,∴BH GH =AB CG =2,∴HG BG =13,∴HG=13BG=13×√52a=√56a. 又∵∠DFG=∠DCE=90°,∠FDG=∠CDE ,∴△DFG ∽△DCE ,∴GF EC =DG DE ,即GF 12a =12a √52a ,解得GF=√510a , ∴HG GF =√56a √510a =53. 24.A 25.3+√15[解析]∵在正方形ABCD 中,AB=3,∴S 正方形ABCD =32=9.∵阴影部分的面积与正方形ABCD 的面积之比为2∶3,∴空白部分的面积与正方形ABCD 的面积之比为1∶3,∴S 空白=3.∵四边形ABCD 是正方形,∴BC=CD ,∠BCE=∠CDF=90°.又∵CE=DF ,∴△BCE ≌△CDF (SAS),∴∠CBE=∠DCF .∵∠DCF+∠BCG=90°,∴∠CBE+∠BCG=90°,即∠BGC=90°,△BCG 是直角三角形.易知S △BCG =S 四边形FGED =32,∴S △BCG =12BG ·CG=32,∴BG ·CG=3.在Rt △BCG 中,根据勾股定理,得BG 2+CG 2=BC 2,即BG 2+CG 2=9,∴(BG+CG )2=BG 2+2BG ·CG+CG 2=9+2×3=15,∴BG+CG=√15,∴△BCG 的周长=BG+CG+BC=3+√15.26.①②③④[解析]∵四边形ABCD 为正方形,EF ∥AD ,∴EF=AD=DC ,∠ACD=45°,∠GFC=90°,∴△GFC 为等腰直角三角形,∴GF=CF ,∴EF -GF=DC -CF ,即EG=DF ,故①正确;∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH=CH ,∠EFH=∠DCH=45°.又∵EF=DC ,∴△EHF ≌△DHC ,故③正确;∵△EHF ≌△DHC ,∴∠FEH=∠CDH ,∴∠AEH+∠ADH=∠AEF+∠FEH+∠ADF -∠CDH=∠AEF+∠ADF=180°,故②正确;∵AE AB =23,∴AE=2BE.在△EGH 和△DFH 中,∵EG=DF ,∠EGH=∠DFH=135°,GH=FH ,∴△EGH ≌△DFH ,∴EH=DH,∠EHG=∠DHF,∴∠EHD=∠EHG+∠AHD=∠AHD+∠DHF=∠AHF=90°,∴△EHD是等腰直角三角形.DH2=13x2,过点H作HM⊥CD于点M,设HM=x,则DM=5x,CD=6x,DH=√26x,∴S△EDH=12S△DHC=1HM·CD=3x2,∴3S△EDH=13S△DHC,故④正确.227.①②④。
专题中点四边形综合问题重难点培优八年级数学下册尖子生同步培优题典原卷版浙教版
八年级数学下册尖子生同步培优题典【浙教版】专题5.9中点四边形综合问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•兴宁市期末)若正方形ABCD各边的中点依次为E、F、G、H,则四边形EFGH是()A.平行四边形B.矩形C.菱形D.正方形2.(2021秋•成华区期末)顺次连接菱形四边中点形成的四边形是()A.矩形B.菱形C.正方形D.无法判定3.(2021春•霍林郭勒市校级月考)顺次连结对角线相等的四边形各边中点所得到的四边形一定是()A.菱形B.矩形C.平行四边形D.正方形4.(2021秋•和平区期末)顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形B.矩形C.正方形D.三角形5.(2019秋•龙岗区期末)如图,四边形ABCD中,AC=BD,顺次连接四边形各边中点得到的图形是()A.菱形B.矩形C.正方形D.以上都不对6.(2021春•宣城期末)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③四条边相等的四边形是正方形;④顺次连接菱形各边中点形成的四边形一定是矩形.其中正确的个数是()A.4B.3C.2D.17.(2020秋•岐山县期中)如图,任意四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,连接AC,BD,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若AC=BD,则四边形EFGH为菱形B.若AC⊥BD,则四边形EFGH为矩形C.若AC=BD,且AC⊥BD,则四边形EFGH为正方形D.若AC与BD互相平分,且AC=BD,则四边形EFGH是正方形8.(2021春•武昌区校级期中)如图,顺次连接四边形ABCD各边中点得到中点四边形EFGH,下列说法中正确的是()A.当AC⊥BD时,四边形EFGH为菱形B.当AC=BD时,四边形EFGH为矩形C.当AC⊥BD,AC=BD时,四边形EFGH为正方形D.以上说法都不对9.(2018•临沂)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1B.2C.3D.410.(2021春•遵化市期末)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上、11.(2021春•宜兴市月考)若顺次连接四边形各边中点所得的四边形是菱形,则原四边形.12.(2021秋•南海区月考)顺次连接矩形ABCD各边中点得到四边形EFGH,它的形状是.13.(2021春•泰兴市月考)四边形ABCD中,对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形为形.14.(2021秋•南海区月考)已知:在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,四边形EHFG是.15.(2020春•孝义市期末)如图,菱形ABCD的对角线AC,BD相交于点O,依次连接AO,BO,CO,DO的中点E,F,G,H,得到四边形EFGH,点M是EF的中点,连接OM,若AB=10,则OM的长为.16.(2021秋•榆阳区校级月考)点E、F、G、H分别是任意四边形ABCD中AD、AB、BC、CD各边的中点,对角线AC,BD交于点O,当四边形ABCD满足条件时,四边形EFGH是正方形.17.(2021•西城区校级开学)如图,点A,B,C为平面内不在同一直线上的三点,点D为平面内一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④中点四边形MNPQ不可能是正方形;所有结论正确的序号是.18.(2021春•昆明期末)如图,某小区要在一块矩形ABCD的空地上建造一个如图所示的四边形花园EFGH,点E,F,G,H分别为边AB,BC,CD,DA的中点,若AB=10m,AD=20m,则四边形EFGH的面积为m².三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•海陵区校级期中)如图,O为∠BAC内一点,E、F、G、H分别为AB,AC,OC,OB的中点.(1)求证:四边形EFGH为平行四边形;(2)当AB=AC,AO平分∠BAC时,求证:四边形EFGH为矩形.20.(2020春•工业园区期末)已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件时,四边形EGFH是菱形;②当AB与CD满足条件时,四边形EGFH是矩形.21.(2021春•滦州市期末)已知:如图,四边形ABCD中,M、N、P、Q分别是AD、BC、BD和AC的中点.(1)求证:四边形MPNQ是平行四边形.(2)若满足AB=CD.试判断MN与PQ的位置关系(不用说明理由).22.(2021春•集贤县期末)在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N.(1)如图1,试判断四边形PQMN怎样的四边形,并证明你的结论;(2)若在AB上取一点E,连结DE,CE,恰好△ADE和△BCE都是等边三角形(如图2),判断此时四边形PQMN的形状,并证明你的结论.23.(2021春•盐城期末)如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、EH.(1)求证:四边形EFGH是平行四边形;(2)再加上条件后,能使得四边形EFGH是矩形.请从①四边形ABCD是菱形,②四边形ABCD 是矩形.这两个条件中选择1个条件填空(写序号),重新画图并写出证明过程.24.(2021春•泗阳县期末)已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)当AB=CD,四边形EGFH是怎样的四边形?证明你的结论.。
2022年中考数学:几何专题复习之四边形含答案
2021年中考数学:几何专题复习之四边形1.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作▱EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中,▱EFGH的面积()A.逐渐增大B.逐渐减小C.不变D.先增大,再减小2.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载,如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,若直角三角形两直角边分别为6和8,则图中阴影部分的面积为()A.20 B.24 C.28 D.无法求出3.如图所示,已知菱形ABCD,∠B=60°,点E、F分别为AB、BC上的动点,AC为对角线,点B关于EF的对称点为点G,且点G落在边AD上,连接EG,FG.下列四个结论中正确的个数为()(1)若EG⊥AC,则;(2)若AG=DG,则;(3)若AG=DG,则;(4)在(2)成立的条件下,若菱形的边长为2,则.A.1个B.2个C.3个D.4个4.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB 上以2cm/s的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是()A.2或B.6或C.2或6 D.1或5.在矩形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是()①tan∠GFB=;②MN=NC;③;=.④S四边形GBEMA.4 B.3 C.2 D.16.如图,△ABC是边长为1的等边三角形,D、E为线段AC上两动点,且∠DBE=30°,过点D、E分别作AB、BC的平行线相交于点F,分别交BC、AB于点H、G.现有以下结论:=;②当点D与点C重合时,FH=;③AE+CD=DE;④当AE=CD时,四①S△ABC边形BHFG为菱形,其中正确结论为()A.①②③B.①②④C.①②③④D.②③④7.如图,正方形ABCD边长为3,连接BD.点E、E分别是AD、CD上的一点,AE=DF=1.连接AF、BE交于点G,AF与BD交于点P.点M是BC上一点,∠MAF=45°,连接AM交BE 于点H.将AM绕点M旋转90°交AF的延长线于点N,连接CN.下列结论:①AG=GH;②∠MCN=135°;③;④tan∠CNM=;⑤连接CP,△CNP的面积是.其中,正确结论的个数是()A.5 B.4 C.3 D.28.如图,已知正方形ABCD,E为AB的中点,F是AD边上的一个动点,连接EF将△AEF沿EF折叠得△HEF,延长FH交BC于M,现在有如下5个结论:①△EFM定是直角三角形;②△BEM≌△HEM;③当M与C重合时,有;④MF平分正方形ABCD的面积;⑤4FH •MH=AB2,在以上5个结论中,正确的有()A.2 B.3 C.4 D.59.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为()A.①④B.①②③C.②③④D.①②③④10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④,其中正确结论有()个.A.1 B.2 C.3 D.411.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2;⑤PB2+PD2=2PA2;⑥AP⊥EF.其中正确结论有几个()A.3 B.4 C.5 D.612.如图,边长为4的正方形ABCD中,对角线AC,BD交于点O,E在BD上,连接CE,作EF⊥CE交AB于点F,连接CF交BD于点H,则下列结论:①EF=EC;②CF2=CG•CA;③BE•DH=16;④若BF=1,则DE=,正确的是()A.①②④B.②③④C.①②③D.①②③④13.如图,正方形ABCD中,点E为对角线AC上一点,EF⊥DE交边AB于F,连接DF交线段AC于点H,延长DE交边BC于点Q,连接QF.下列结论:①DE=EF;②若AB=6,CQ=3,则AF=2;③∠AFD=∠DFQ;④若AH=2,CE=4,则AB=3+;其中正确的有()个.A.1个B.2个C.3个D.4个14.如图,在矩形ABCD中,AB=3,AD=4,CE平分∠ACB,与对角线BD相交于点N,F是线段CE的中点,则下列结论中正确的有()个.①OF=;②ON=;③S=;④sin∠ACE=.△CONA .1B .2C .3D .415.如图,正方形ABCD ,点F 在边AB 上,且AF :FB =2:3,CE ⊥DF ,垂足为M ,且交AD于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =BC ,连接CM .有如下结论:①DE =AF ;②S △DMC =S 四边形AFME ;③MG :AB =5:4; ④S △ANF :S 四边形CNFB =1:8.上述结论中,所有正确结论的序号是( )A .①②B .③④C .①②③D .①②③④16.如图,在正方形ABCD 中,E 、F 分别在CD 、AD 边上,且CE =DF ,连接BE 、CF 相交于G点.则下列结论:①BE =CF ;②S △BCG =S 四边形DFGE ;③CG 2=BG •GE ;④当E 为CD 中点时,连接DG ,则∠FGD =45°.正确结论的个数是( )A .1B .2C .3D .417.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E 在DC 边上,且CE =2DE ,连接AE 交BD 于点G ,过点D 作DF ⊥AE ,连接OF 并延长,交DC 于点P ,过点O 作OQ ⊥OP 分别交AE 、AD 于点N 、H ,交BA 的延长线于点Q ,现给出下列结论:①∠AFO =45°;②OG =DG ;③DP 2=NH •OH ;④sin ∠AQO =;其中正确的结论有( )A.①②③B.②③④C.①②④D.①②③④18.如图,在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,得到△PGC,边CG交AD于点E,连接BE,∠BEC=90°,BE交PC于点F,那么下列选项正确的有()①BP=BF;②若点E是AD的中点,则△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④当AD=25,可得sin∠PCB=;⑤当BP=9时,BE•EF=108.A.5个B.4个C.3个D.2个19.如图,在平行四边形ABCD中,AD=2AB,作CE⊥AB于点E,点F是AD的中点,连接CF,EF.关于下列四个结论:①∠BCF=∠DCF;②∠FEC=∠FCE;③∠AEF=∠CFD;④S△CEF ,则所有正确结论的序号是()=S△BCEA.①②③④B.①②③C.②③④D.③④20.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②;③AB+CD=AD;④M到AD 的距离等于BC的;⑤M为BC的中点;其中正确的有()A.2个B.3个C.4个D.5个参考答案1.解:设AB =a ,BC =b ,BE =c ,BF =x ,连接EG ,∵四边形EFGH 为平行四边形,∴EF =HG ,EF ∥HG ,∴∠FEG =∠HGE ,∵四边形ABCD 为矩形,∴AB ∥CD ,∴∠BEG =∠DGE ,∴∠BEG ﹣∠FEG =∠DGE ﹣∠EGH ,∴∠BEF =∠HGD∵EF =HG ,∠B =∠D ,∴Rt △BEF ≌Rt △DGH (AAS ),同理Rt △AEH ≌Rt △GFC ,∴S 平行四边形EFGH =S 矩形ABCD ﹣2(S △BEF +S △AEH )=ab ﹣2[cx +(a ﹣c )(b ﹣x )]=ab ﹣(cx +ab ﹣ax ﹣bc +cx )=ab ﹣cx ﹣ab +ax +bc ﹣cx=(a ﹣2c )x +bc ,∵E 是AB 的中点,∴a =2c ,∴a ﹣2c =0,∴S 平行四边形EFGH =bc =ab ,故选:C .2.解:将阴影部分分割如图所示:根据直角三角形的三边为6、8、10.所以阴影部分的面积为2×10+2×2=24.故选:B.3.解:(1)当EG⊥AC时,如图1:∵四边形ABCD是菱形,∴AC平分∠BAD,AB=BC=AD=CD,∠BAD=120°,∴∠BAC=∠CAD=60°,∵EG⊥AC,∴∠AEG=∠AGE=30°,∴AE=AG,∵∠AEG=30°,AC⊥EG,∴EG=AE,即EG=AE,∵B、G关于EF对称,∴BE=EG,设AE=x,则BE=EG=x,∴=,故(1)正确;(2)当AG=DG时,连接CG、BG,BG交EF于H,如图2:∵AD=CD,∠CAD=60°,∴△ACD为等边三角形,又∵AG=GD,∴CG⊥AD,∵AD∥BC,∴CG⊥BC,∴∠GBC+∠BGC=90°,∵EF⊥BG,∴∠GBC+∠BFE=90°,∴∠BFE=∠BGC,∴cos∠BFE=cos∠BGC=,设菱形的边长为2x,则GD=x,∴CG===x,∴BG===x,∴cos∠BFE=cos∠BGC=,故(2)正确;(3)如图3,连接BG,CG,过点G作NG⊥AB,交BA的延长线于N,设菱形的边长为2x,则AG=GD=x,∵∠NAG=180°﹣∠BAD=60°,∴∠AGN=30°,∴AN=AG=,NG=x,∵EG2=EN2+NG2,∴EG2=(2x+﹣EG)2+x2,∴EG=0(不合题意舍去),EG=x,∵GF2=GC2+CF2,∴BF2=3x2+(2x﹣BF)2,∴BF=x,∴,故③正确;(4)如图4,设EF与BG的交点为H,∵AB=2,∴由(2)(3)可得:BG=,BE=,BF=,∵B、G关于EF对称,∴BH=HG=,EF⊥BG,∴HF===,EH===,∴EF=HF+EH=,故④正确;故选:D.4.解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度2cm/s时能使两三角形全等.综上所述,点Q的运动速度或2cm/s时能使两三角形全等.故选:A.5.解:①tan∠GFB=tan∠EDC=,①正确;②∵∠DMN=∠NCF=90°,∠MND=∠CNF,∴∠MDN=∠CFN∵∠ECD=∠EMF,EF=ED,∠MDN=∠CFN∴△DEC≌△FEM(SAS)∴EM=EC,∴DM=FC,∠MDN=∠CFN,∠MND=∠CNF,DM=FC,∴△DMN≌△FCN(AAS),∴MN=NC,故②正确;③∵BE=EC,ME=EC,∴BE=ME,在Rt△GBE和Rt△GME中,BE=ME,GE=GE,∴Rt△GBE≌Rt△GME(HL),∴∠BEG=∠MEG,∵ME=EC,∠EMC=∠ECM,∵∠EMC+∠ECM=∠BEG+∠MEG,∴∠GEB=∠MCE,∴MC∥GE,∴,∵EF=DE=,CF=EF﹣EC=﹣1,∴,故③错误;④由上述可知:BE=EC=1,CF=5﹣1,∴BF=+1,∵tan F=tan∠EDC=,∴GB=BF=,故④正确,故选:B.6.解:①过点A作AP⊥BC于点P,如图1:∵△ABC是边长为1的等边三角形,AP⊥BC,∴BP=BC=,∴AP=,∴.故①正确;②当点D与点C重合时,H,D,C三点重合,如图2:∵∠DBE=30°,∠ABC=60°,∴BE是∠ABC的平分线,∵AB=BC,∴AE=EC=AC=,∵CF∥AB,∴∠FCA=∠A=60°,∵GF∥BC,∴∠FEC=∠ACB=60°,∴∠FCE=∠FEC=60°,∴∠FCE=∠FEC=∠F=60°,∴△EFC为等边三角形,∴FC=EC=,即FH=.故②正确;③如图3,将△CBD绕点B逆时针旋转60°,得到△ABN,连接NE,过点N作NP⊥AC,交CA的延长线于P,∴BD=BN,CD=AN,∠BAN=∠C=60°,∠CBD=∠ABN,∵∠DBE=30°,∴∠CBD+∠ABE=30°=∠ABE+∠ABN=∠EBN,∴∠EBN=∠DBE=30°,又∵BD=BN,BE=BE,∴△DBE≌△NBE(SAS),∴DE=NE,∵∠NAP=180°﹣∠BAC﹣∠NAB=60°,∴AP=AN,NP=AP=AN=CD,∵NP2+PE2=NE2,∴CD2+(AE+CD)2=DE2,∴AE2+CD2+AE•CD=DE2,故③错误;∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∵GF∥BH,BG∥HF,∴四边形BHFG是平行四边形,∵GF∥BH,BG∥HF,∴∠AGE=∠ABC=60°,∠DHC=∠ABC=60°,∴△AGE,△DCH都是等边三角形,∴AG=AE,CH=CD,∵AE=CD,∴AG=CH,∴BH=BG,∴▱BHFG是菱形,故④正确,故选:B.7.解:∵AD=AB,∠BAD=∠ADF=90°,DF=AE,∴△ADF≌△BAE(SAS),∴∠DAF=∠ABE,BE=AF,∵∠MAF=45°,∴∠DAF+∠BAM=45°,∴∠ABE+∠BAM=45°=∠AHG,∴∠AHG=∠MAF=45°,∴AG=GH,∠AGH=90°,故①正确;如图,连接AC,MF,过点A作AQ∥BE,交CB的延长线于Q,∵四边形ABCD是正方形,∴∠ACB=∠ACD=45°,AB=BC=3,∴AC=3,∵将AM绕点M旋转90°交AF的延长线于点N,∴AM=MN,∠AMN=90°,∴∠MAN=∠MNA=45°,∴∠MNA=∠MCA=45°,∴点A,点M,点C,点N四点共圆,∴∠AMN=∠ACN=90°,∴∠MCN=135°,故②正确;∵AQ∥BE,AE∥BC,∴四边形AEBQ是平行四边形,∠QAF=∠BAD=90°,∴AE=BQ=1,∠BAQ=∠DAF,AQ=BE=AF,∵∠FAM=45°,∴∠DAF+∠BAM=45°,∴∠BAQ+∠BAM=45°=∠QAM,∴∠QAM=∠MAF,又∵AM=AM,AQ=AF,∴△AQM≌△AFM(SAS),∴QM=MF,∵MF 2=CF 2+MC 2,∴(1+BM )2=(3﹣1)2+(3﹣BM )2,∴BM =,∵AD ∥BC ,∴△AEH ∽△MBH , ∴=()2=,∴设S △AEH =4a ,S △BHM =9a ,∵tan ∠DAF =,∴AG =3EG =GH ,∴S △AGH =3a , ∴=,故③正确; ∵点A ,点M ,点C ,点N 四点共圆,∴∠MNC =∠MAC ,∵∠MAC +∠CAN =45°,∠CAN +∠DAF =45°,∴∠DAF =∠MAC =∠MNC ,∴tan ∠CNM =tan ∠DAF =,故④错误;∵AB =BC ,∠ABP =∠CBP =45°,BP =BP ,∴△ABP ≌△CBP (SAS ),∴AP =CP ,∴∠PAC =∠PCA ,∵∠ACN =90°,∴∠PAC +∠ANC =90°=∠PCA +∠PCN ,∴∠PCN =∠PNC ,∴PC =PN =AP ,∵∠CAN +∠DAF =45°=∠DAF +∠BAM ,∴∠CAN =∠BAM ,∴tan ∠CAN =tan ∠BAM ,∴,∴,∴CN=,∴S=×AC×CN=,△ACN∵AP=PN,∴S=,故⑤正确;△CPN故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∵E为AB的中点,∴EA=EB,由翻折可知:FA=FH,EA=EH,∠A=∠FHE=90°,∴∠EHM=∠B=90°,∵EM=EM,EH=EB,∴Rt△EMH≅Rt△EMB(HL),∴∠MEH=∠MEB,∵∠FEH=∠FEA,∴,∴△EFM是直角三角形,故①②正确,∵∠FEM=90°=∠FHE,∴∠FEH+∠MEH=90°=∠FEH+∠EFH,∴∠EFH=∠HEM,又∵∠FHE=∠EHM=90°,∴△FHE∽△EHM,∴,又∵EH=EB=AB,∴AB2=4HF•HM,故⑤正确,如图1中,当M与C重合时,设AE=EB=2a.则AB=BC=AD=CD=4a,∵∠FEM=90°,∴∠AEF+∠CEB=90°=∠AEF+∠AFE,∴∠AFE=∠ECB,又∵∠A=∠B=90°,∴△AEF∽△BCE,∴=,∴AF=a,∴DF=3a,∴DF=3AF,∴,故③正确,如图2中,当点F与点D重合时,显然直线MF不平分正方形的面积,故④错误,综上所述,正确的有:①②③⑤,故选:C.9.解:①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,∴∠ADF+∠AFD=180°﹣∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠ADF=∠EFC,∴∠BDE=∠EFC,故结论①正确;②如图,连接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故结论②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,∵OE′=OD=AD=AB•tan∠ABD=6•tan30°=2,∴点E运动的路程是2,故结论④正确;故选:D.10.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°,∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°,∴∠BAE+∠DAF=30°,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∠BAE=∠DAF,故①正确;∵∠BAE+∠DAF=30°,∴∠DAF+∠DAF=30°,即∠DAF=15°,故②正确;∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵Rt△ABE≌Rt△ADF,∴AE=AF,∴AC垂直平分EF,∴EG=FG,故③正确;∵∠ECF=90°,EG=FG,∴CG=EF,设EC=FC=x,由勾股定理,得EF==x,∴CG=EF=x=CE,故④正确;综上所述,正确的有①②③④,共4个.故选:D.11.解:过点P作PM⊥AB于点M,过点A作AN⊥BE于点N,连接AP、PC,①∵BD是正方形的对角线,则∠PDF=45°,而PF⊥CD,则△PDF为等腰直角三角形,∴PD=PF=CE,故①正确;②∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,由正方形为轴对称图形,∴AP=PC,∴AP=EF,故③正确;④由EF=PC=AP,∴当AP最小时,EF最小,则当AP⊥BD时,即AP=BD==2时,EF的最小值等于2,故④正确;⑤在Rt△PBM和Rt△PDF中,PB2=PM2+MB2,PD2=PF2+FD2,∴PB2+PD2=2PA2;故⑤正确;⑥∵BD平分∠ABC,PG⊥AB,PE⊥BC,∴PG=PE,∵AP=PC,∠AGP=∠EPF=90°,∴△AGP≌△FPE(SAS),∴∠BAP=∠PFE,∵GF∥BC,∴∠AGP=90°,∴∠BAP+∠APG=90°,∵∠APG=∠HPF,∴∠PFH+∠HPF=90°,∴AP⊥EF,故⑥正确;综上,①②③④⑤⑥正确,故选:D.12.解:如图,连接AE,∵四边形ABCD是正方形,∴AD=CD,∠ADB=∠CDB=∠BAC=∠DAC=45°,又∵DE=DE,∴△ADE≌△CDE(SAS),∴AE=EC,∠DAE=∠DCE,∴∠EAF=∠BCE,∵∠ABC+∠FEC+∠EFB+∠BCE=360°,∴∠BCE+∠EFB=180°,又∵∠AFE+∠BFE=180°,∴∠AFE=∠BCE=∠EAF,∴AE=EF,∴EF=EC,故①正确;∵EF=EC,∠FEC=90°,∴∠EFC=∠ECF=45°,∴∠FAC=∠EFC=45°,又∵∠ACF=∠FCG,∴△FCG∽△ACF,∴,∴CF2=CG•CA,故②正确;∵∠ECH=∠CDB,∠EHC=∠DHC,∴△ECH∽△CDH,∴,∴,∵∠ECH=∠DBC,∠BEC=∠CEH,∴△ECH∽△EBC,∴,∴,∴,∴BC•CD=DH•BE=16,故③正确;∵BF=1,AB=4,∴AF=3,AC=4,∵∠ECF=∠ACD=45°,∴∠ACF=∠DCE,又∵∠FAC=∠CDE=45°,∴△AFC∽△DEC,∴,∴,∴DE=,故④正确,故选:D.13.解:如图,连接BE,∵四边形ABCD为正方形,∴CB=CD,∠BCE=∠DCE=45°,在△BEC和△DEC中,,∴△DCE≌△BCE(SAS),∴DE=BE,∠CDE=∠CBE,∴∠ADE=∠ABE,∵∠DAB=90°,∠DEF=90°,∴∠ADE+∠AFE=180°,∵∠AFE+∠EFB=180°,∴∠ADE=∠EFB,∴∠ABE=∠EFB,∴EF=BE,∴DE=EF,故①正确;∵∠DEF=90°,DE=EF,∴∠EDF=∠DFE=45°,如图:延长BC到G,使CG=AF,连接DG,在△ADF和△CDG中,,∴△ADF≌△CDG(SAS),∴∠AFD=∠G,∠ADF=∠CDG,DF=DG,∵∠ADF+∠CDQ=90°﹣∠FDQ=45°,∴∠CDG+∠CDQ=45°=∠GDQ,∴∠GDQ=∠FDQ,又∵DG=DF,DQ=DQ,∴△QDF≌△QDG(SAS),∴FQ=QG,∠G=∠DFQ,∴∠DFA=∠DFQ,故③正确;∵AB=6,CQ=3,∴BQ=3,FB=6﹣AF,FQ=QG=3+AF,∵FQ2=FB2+BQ2,∴(3+AF)2=9+(6﹣AF)2,∴AF=2,故②正确;如图:将△CDE绕点A顺时针旋转90°得到△ADM,连接MH,∴△CDE≌△ADM,∴AM=CE=4,∠DCE=∠DAM=45°,∠ADM=∠CDE,DM=DE,∴∠MAH=90°,∠ADM+∠ADH=∠CDE+∠ADH=45°=∠MDH,又∵DH=DH,∴△DMH≌△DEH(SAS),∴EH=MH,∵MH===2,∴EH=MH=2,∴AC=AH+EH+EC=6+2,∴AB==3+,故④正确;故选:D.14.解:①如图,过点E作EH⊥AC于H,∵AB=3,AD=4,∴AC===5,∵四边形ABCD是矩形,∴AO=CO=DO=BO=,∵CE平分∠ACB,EH⊥AC,∠ABC=90°,∴BE=EH,∵S△ABC =S△AEC+S△BCE,∴×AB×BC=×AC×EH+×BC×BE,∴3×4=5×EH +4×EH ,∴EH ==BE ,∴AE =AB ﹣BE =,∵F 是线段CE 的中点,AO =CO ,∴OF =AE =,OF ∥AB ,故①正确;②∵OF ∥AB , ∴==,∴ON =BN ,∵ON +BN =BO =,∴BN =,NO =,故②正确;③∵S △BOC =S 矩形ABCD ,∴S △BOC =×3×4=3,∵ON =BN ,∴S △CON ==, 故③正确;④∵BE =,BC =4,∴EC ===, ∴sin ∠ACE ===, 故④错误,故选:C .15.解:①∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF,故①正确;②∵△ADF≌△DCE,∴S△ADF =S△DCE,∴S△DMC =S四边形AFME;故②正确;③如图,过点G作GH⊥EC于H,∵AF:FB=2:3,∴设AF=2x=DE,BF=3x,∴AB=BC=5x=CD,∵BG=BC,∴BG=x,∴CE===x,∵cos∠DCE=,∴,∴CM=x,∵AD∥BC,∴∠DEC=∠BCE,又∵∠CDE=∠GHC,∴△CDE∽△GHC,∴,∴==,∴CH=x,∴MH=CH=x,又∵GH⊥CH,∴MG=GC=5x+x=x,∴MG:AB=5:4,故③正确;④∵AF:FB=2:3,∴设AF=2x,BF=3x,∴AB=BC=5x=CD,∵BG=BC,∴BG=x,∵AB∥CD,∴△ANF∽△CND,∴,=,∵S△ABC =S△ACD=,∴S△CND=x2,∴S△ANF=x2,∴S四边形BCNF=,∴S△ANF :S四边形CNFB=4:31,故④错误;故选:C.16.解:∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CDF=90°,又∵CE=DF,∴△BCE≌△CDF(SAS),∴BE=CF,故①正确,∵△BCE≌△CDF,∴S△BCE =S△CDF,∴S△BCG =S四边形DFGE;故②正确,∵△BCE≌△CDF,∴∠DCF=∠EBC,∵∠DCF+∠BCG=90°,∴∠EBC+∠BCG=90°,∴∠BGC=∠EGC=90°,∴△BCG∽△CEG,∴,∴CG2=BG•GE;故③正确;如图,连接EF,∵点E是CD中点,∵△BCE≌△CDF,∴DF=CE=DE,∴∠DFE=∠DEF=45°,∵∠ADC=∠EGF=90°,∴点D,点E,点G,点F四点共圆,∴∠DEF=∠DGF=45°,故④正确;故选:D.17.解:∵四边形ABCD是正方形,∴AO=DO=CO=BO,AC⊥BD,∵∠AOD=∠NOF=90°,∴∠AON=∠DOF,∵∠OAD+∠ADO=90°=∠OAF+∠DAF+∠ADO,∵DF⊥AE,∴∠DAF+∠ADF=90°=∠DAF+∠ADO+∠ODF,∴∠OAF=∠ODF,∴△ANO≌△DFO(ASA),∴ON=OF,∴∠AFO=45°,故①正确;如图,过点O作OK⊥AE于K,∵CE=2DE,∴AD=3DE,∵tan∠DAE=,∵△ANO≌△DFO,∴AN=DF,∴NF=2DF,∵ON=OF,∠NOF=90°,∴OK=KN=KF=FN,∴DF=OK,又∵∠OGK=∠DGF,∠OKG=∠DFG=90°,∴△OKG≌△DFG(AAS),∴GO=DG,故②正确;③∵∠DAO=∠ODC=45°,OA=OD,∠AOH=∠DOP,∴△AOH≌△DOP(ASA),∴AH=DP,∵∠ANH=∠FNO=45°=∠HAO,∠AHN=∠AHO,∴△AHN∽△OHA,∴,∴AH2=HO•HN,∴DP2=NH•OH,故③正确;∵∠NAO+∠AON=∠ANQ=45°,∠AQO+∠AON=∠BAO=45°,∴∠NAO=∠AQO,∵OG=GD,∴AO=2OG,∴AG==OG,∴sin∠NAO=sin∠AQO==,故④正确,故选:D.18.解:①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE===20,BE===15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=∴BP=,在Rt△PBC中,PC===,∴sin∠PCB==,故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108;故⑤正确,所以本题正确的有①②③⑤,共4个,故选:B.19.解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴∠DFC=∠BCF,∵点F是AD的中点,∴AD=2DF,∵AD=2AB,∴AD=2CD,∴DF=CD,∴∠DFC=∠DCF,∴∠BCF=∠DCF,故①正确;取EC的中点G,连接FG,则FG为梯形AECD的中位线,∴FG∥AB,∵CE⊥AB,∴FG⊥CE,∴EF=CF,∴∠FEC=∠FCE,故②正确;∵CE⊥AB,AB∥CD,∴CE⊥CD,∴∠AEC=∠DCE=90°,即∠AEF+∠FEC=∠DCF+∠FCE=90°,∵∠DCF=∠CFD,∴∠AEF=∠CFD,故③正确;∵S△CEF=CE•BE,S△BCE=CE•FG=CE•(AE+CD)=CE•(AE+AB)=CE•(2AE+BE),而2AE+BE不一定等于2BE∴S△CEF 不一定等于S△BCE,故错误④.故选:B.20.解:过M作ME⊥AD于E,∵∠DAB与∠ADC的平分线相交于BC边上的M点,∴∠MDE=∠CDA,∠MAD=∠BAD,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠MDA+∠MAD=(∠CDA+∠BAD)=×180°=90°,∴∠AMD=180°﹣90°=90°,故①正确;∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,∴MC=ME,同理ME=MB,∴MC=MB=ME=BC,故⑤正确;∴M到AD的距离等于BC的一半,故④错误;∵由勾股定理得:DC2=MD2﹣MC2,DE2=MD2﹣ME2,又∵ME=MC,MD=MD,∴DC=DE,同理AB=AE,∴AD=AE+DE=AB+DC,故③正确;∵在△DEM和△DCM中,∴△DEM≌△DCM(SSS),同理S 三角形AEM =S 三角形ABM , ∴S 三角形AMD =S 梯形ABCD ,故②正确; 故选:C .。
2021年九年级中考数学三轮综合复习专题:四边形专项(一)
2021年九年级中考数学三轮综合复习专题:四边形专项(一)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,H是AF的中点,CH=3,那么CE的长是()A.3 B.4 C.D.2.如图,正方形ABCD中,AC、BD相交于点O,P是BC边上的一点,且PC=2PB,连接AP、OP、DP,线段AP、DP分别交对角线BD、AC于点E、F.过点E作EQ⊥AP,交CB的延长线于Q.下列结论中:①∠PAO+∠PDO+∠APD=90°;②AE=EQ;③sin∠PAC=;④S正方形ABCD =10S四边形OEPF,其中正确的结论有()A.1个B.2个C.3个D.4个3.如图,在菱形ABCD中,O、E分别是AC、AD的中点,连接OE,若AB=3,AC=4,则tan ∠AOE的值为()A.B.C.D.4.如图,已知菱形OABC的顶点O(0,0),C(2,0)且∠AOC=60°,若菱形绕点O逆时针旋转,每秒旋转45°,则第2020秒时,菱形的对角线交点D的坐标为)A.(3,﹣)B.(﹣1,﹣)C.()D.()5.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD 一定是等腰三角形.其中正确的结论有()A.①②④B.①②③C.②③④D.①②③④6.如图,在平行四边形ABCD中,∠ABC=60°,过对角线BD上任意一点P作EF∥BC,GH ∥AB,且AH=2HD,若S=1,则S▱ABCD=()△HDPA.9 B.C.12 D.187.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当四边形ABCD的中点四边形EFGH是菱形时,则四边形ABCD也是菱形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=10cm,点P从点A出发,以1cm/s的速度向D运动,同时,点Q从点C以相同的速度向B运动.当点P运动到点D时,点Q 随之停止运动.若设运动的时间为t秒,以点A、B、C、D、P、Q任意四个点为顶点的四边形中同时存在两个平行四边形,则t的值是()A.2 B.3 C.4 D.59.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE 的度数为()A.22.5°B.27.5°C.30°D.35°10.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF,AF.若AB=2,AD=3,则∠AEF的大小为()A.30°B.45°C.60°D.不能确定11.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,S=24,则OH的长为()菱形ABCDA.B.3 C.D.12.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和213.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,sinα等于()A.B.C.D.14.如图所示,AB⊥AD于点A,CD⊥AD于点D,∠C=120°.若线段BC与CD的和为12,则四边形ABCD的面积可能是()A.24B.30C.45 D.15.在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC,垂足为E,交BC于点E,若AC=,AE=2,则菱形ABCD的面积为()A.5 B.4 C.2D.316.某小区打算在一块长80m,宽7.5m的矩形空地的一侧,设置一排如图所示的平行四边形倾斜式停车位若干个(按此方案规划车位,相邻车位间隔线的宽度忽略不计).已知规划的倾斜式停车位每个车位长6m,宽2.5m,如果这块矩形空地用于行走的道路宽度不小于4.5m,那么最多可以设置停车位()A.16 个B.15 个C.14 个D.13 个17.如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,OC=4,∠AOC=60°且以点O 为圆心,任意长为半径画弧,分别交OA、OC于点D、E;再分别以点D、点E为圆心,大于DE的长度为半径画弧,两弧相交于点F,过点O作射线OF,交BC于点P.则点P 的坐标为()A.(4,2)B.(6,2)C.(2,4)D.(2,6)18.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE,添加一个条件,使四边形AEBD是菱形,这个条件是()A.∠BAD=∠BDA B.AB=DE C.DF=EF D.∠BDC=∠BAD 19.如图,五边形ABCDE中,AE∥BC,AC,BE交于点O,四边形OCDE是平行四边形,若△ABE的面积是5,四边形OCDE的面积是6,则△AOE的面积是()A.2 B.2.5 C.3 D.420.如图,在边长为的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=5的点P的个数是()A.0 B.4 C.8 D.16参考答案1.解:连接AC,CF,如图,∵四边形ABCD和四边形CEFG为正方形,∴AB=BC=1,CE=EF,∠ACD=∠GCF=45°.∴∠ACF=45°×2=90°.∵H是AF的中点,CH=3,∴AF=2CH=6.在Rt△ABC中,AC=BC=.在Rt△ACF中,CF==.在Rt△ECF中,∵CE2+EF2=CF2,CE=EF,∴CE=CF==.故选:D.2.解:①∵∠POB=∠PDO+∠OPD,∠POC=∠PAO+∠APO,∠POB+∠POC=∠BOC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠PDO+∠OPD+∠PAO+∠APO=90°,∴∠PAO+∠APO+∠PDO=90°,∴①正确;②连接AQ,∵QE⊥AP,∴∠QEP=∠AEQ=∠ABQ=90°,∴A、Q、B、E四点共圆,∴∠AQE=∠ABE=∠ABC=45°,∴∠QAE=45°,∴AE=EQ,∴②正确;③过P作AC的垂线于点G,设BP=a,PC=2a,∴BC=3a,∴AP==a,∴AC=3a,∴AO=BO=a,∵BD⊥AC,PE⊥AC,∴BD∥PG,∴===,∴PG=×a=a,∴sin∠PAC==,∴③错误;④∵AD∥BC,∴△BEP∽△DEA,△PFC∽△DFA,∴BE:DE=1:3,CF:AF=2:3,∴BE:ED=1:1,OF:CF=1:4,设设S △BEP =s ,则S △OEP =s ,S △BPO =2s ,S △POC =4s ,∴S △OPE =s ,∴S △BCO =2s +4s =6s ,∴S 四边OPEQ =s +s =s ,S 正方形ABCD =4s ×6=24s ,∴④错误,综上①②正确,故选:B .3.解:连接OD ,如图所示:∵四边形ABCD 为菱形,∴AD =CD =AB =3,∵O 是AC 的中点∴OD ⊥AC ,OA =OC =AC =2, 由勾股定理得,OD ===,∵O 、E 分别是AC 、AD 的中点,∴OE 是△ACD 的中位线,∴OE ∥CD ,∴∠AOE =∠ACD ,∴tan ∠AOE =tan ∠ACD ==, 故选:B .4.解:连接AC 、OB 交于点D ,过A 作AE ⊥OC 于E ,如图所示: ∵C (2,0),∴OC =2,∵四边形OABC 是菱形,∴OA=OC,AD=CD,∵∠AOC=60°,∴△AOC是等边三角形,∴OA=OC=2,∵AE⊥OC,∴OE=OC=1,∴AE===,∴A(1,),∴D(,),∵菱形绕点O逆时针旋转,每秒旋转45°,45°×8=360°,∴转8秒回到原位置,∵2020÷8=252.5(周),即菱形OABC旋转了252周半,此时位于第三象限,∴此时菱形的对角线交点的坐标为(﹣,﹣),故选:D.5.解:延长PF交AB于点G,∵PF⊥CD,AB∥CD,∴PG⊥AB,即∠PGB=90°.∵PE⊥BC,PF⊥CD,∴四边形GBEP为矩形,又∵∠PBE=∠BPE=45°,∴BE=PE,∴四边形GBEP为正方形,四边形PFCE为矩形.∴GB=BE=EP=GP,∴GP=PE,AG=CE=PF,又∠AGP=∠C=90°,∴△AGP≌△FPE(SAS).∴AP=EF,∠PFE=∠BAP,故①、②正确;在Rt△PDF中,由勾股定理得PD=,故③正确;∵P在BD上,∴当AP=DP、AP=AD、PD=DA时,△APD才是等腰三角形,∴△APD是等腰三角形共有3种情况,故④错误.∴正确答案有①②③,故选:B.6.解:由题意可得,四边形HPFD是平行四边形,四边形AEPH、四边形PGCF均为平行四边形,且它们的面积相等,四边形EBGP是平行四边形,∵S=1,△HDP∴S▱HPDF=2,∵AH=2HD,∴S▱AEPH=S▱PGFC=4,∴S▱EBGP=8,∴S▱ABCD=2+4+4+8=18,故选:D.7.解:连接AC,BD,∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形;(①正确)∵四边形ABCD是矩形,∴AC=BD,∵EF=AC,EH=BD,∴EF=EH,∴四边形EFGH是菱形;(②错误)∵四边形EFGH是菱形,∴AC⊥BD,∴四边形ABCD不一定是矩形;(③错误)∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,∴四边形EFGH是正方形.(④正确)∴正确的是①④.故选:B.8.解:A.t=2时,AP=2cm,PD=3cm,CQ=2cm,BQ=8cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;B.t=3时,AP=3cm,PD=2cm,CQ=3cm,BQ=7cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;C.t=4时,AP=4cm,PD=1cm,CQ=4cm,BQ=6cm,因AD∥BC,此时只构成一个平行四边形APCQ,不符合题意.D.t=5时,AP=5cm,CQ=5cm,BQ=5cm,则CQ=BQ=AD,因AD∥BC,此时有2个平行四边形:平行四边形ADCQ和平行四边形ADQB,符合题意.故选:D.9.解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°.故选:A.10.解:∵四边形ABCD是矩形,AD=3,AB=2,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵点E是CD的中点,FC=2BF,∴CE=DE=1,BF=1,CF=2,∴AB=CF=2,CE=BF=1,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴AF=EF,∠BAF=∠CFE,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣(∠CFE+∠AFB)=180°﹣9°=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,故选:B.11.解:∵四边形ABCD是菱形,∴AC⊥BD,DO=BO,AO=OC,∵OA=4,∴AC=2OA=8,=24,∵S菱形ABCD∴8×BD=24,解得:BD=6,∵DH⊥BC,∴∠DHB=90°,∵DO=BO,∴OH=BD=6=3,故选:B.12.解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.13.解:如图,∵四边形ABCD和四边形EFGH是矩形,∴∠ADC=∠HDF=90°,CD=AB=2cm,∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°,∴△CDM≌△HDN(ASA),∴MD=ND,且四边形DNKM是平行四边形,∴四边形DNKM是菱形,∴KM=MD,∵sinα=sin∠DMC=,∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=KM=acm,则CM=8﹣a(cm),∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=(cm),∴sinα=sin∠DMC===,故选:B.14.解:过C作CH⊥AB于H,∵AB⊥AD,CD⊥AD,∴∠A=∠ADC=∠AHC=90°,CD∥AB,∴四边形ADCH是矩形,四边形ABCD是直角梯形,∴∠DCH=90°,CD=AH,∵∠BCD=120°,∴∠BCH=30°,设BC=x,则CD=12﹣x,∴AH=12﹣x,BH=x,CH=x,∴四边形ABCD的面积=(CD+AB)•CH=(12﹣x+12﹣x+x)×x,∴四边形ABCD的面积=﹣(x﹣8)2+24,∴当x=8时,四边形ABCD的面积有最大值24,即四边形ABCD的面积可能是24,故选:A.15.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=,∵AE⊥BC,∴△ABC的面积=BC×AE=AC×OB,∴==,设BC=x,则OB=2x,在Rt△OBC中,由勾股定理得:(x)2﹣(2x)2=()2,解得:x=,∴BC=,∴菱形ABCD的面积=BC×AE=×2=5;故选:A.16.解:如图,根据题意可知:AB=7.5,BC≥4.5,∴AC≤3,当AC=3时,∵AD=GF=6,∴∠ADC=30°,CD=3,∴∠EFD=∠ADC=30°,∵DE=2.5,∴DF=5,设最多可以设置停车位x个,根据题意可得,∵S=DF•AC=5×3=15,平行四边形ADFGS=CD•AC=,△ADC∴15x+2×≤80×3,解得x≤14.96,所以最多可以设置停车位14个.故选:C.17.解:延长BC交y轴于E,如图所示:则BE⊥y轴,∴∠OEC=90°,∵∠AOC=60°,∴∠COE=30°,∴CE=OC=2,OE=CE=2,由题意得:OP平分∠AOC,∴∠AOP=∠COP,∵四边形OABC是平行四边形,∴OA∥BC,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴PC=OC=4,∴PE=PC+CE=6,∴点P的坐标为(6,2);故选:B.18.解:添加一个条件∠BDC=∠BAD,使四边形AEBD是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠BAD=∠C,∴AD∥BE,∴∠ADF=∠BEF,∵点F是AB的中点,∴AF=BF,在△ADF和△BEF中,,∴△ADF≌△BEF(AAS),∴AD=BE,又∵AD∥BE,∴四边形AEBD是平行四边形,∵∠BDC=∠BAD,∠BAD=∠C,∴∠BDC=∠C,∴BD=BC,∵AD=BC,AD=BE,∴BD=BE,∴四边形AEBD是菱形;故选:D.19.解:连接EC,如图:∵AE∥BC,∴△ABE和△ACE同底等高,∴S△ACE =S△ABE=5.∵四边形OCDE是平行四边形,∴OE=DC,OC=DE.在△OCE和△DEC中,,∴△OCE≌△DEC(SSS).∴S△OCE =S△DEC=S四边形OCDE=×6=3,∴S△AOE =S△ACE﹣S△OCE=5﹣3=2.故选:A.20.解:作点F关于BC的对称点M,连接CM,连接EM交BC于点P,如图所示:则PE+PF的值最小=EM;∵点E,F将对角线AC三等分,且边长为,∴AC=15,∴EC=10,FC=5=AE,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=,同理:在线段AB,AD,CD上都存在1个点P,使PE+PF=5;∴满足PE+PF=5的点P的个数是4个;故选:B.。
第07讲 模型构建专题:中点模型之斜边中线、中点四边形-2024年新九年级数学提升讲义(北师大版)
第07讲模型构建专题:中点模型之斜边中线、中点四边形中点模型是初中数学中一类重要模型,主要是结合三角形、四边形、圆的运用,在各类考试中都会出现中点问题,有时甚至会出现在压轴题当中,我们不妨称之为“中点模型”,它往往涉及到平分、平行、垂直等问题,因此探寻这类问题的解题规律对初中几何的学习有着十分重要的意义.常见的中点模型:①垂直平分线模型;②等腰三角形“三线合一”模型;③“平行线+中点”构造全等或相似模型(与倍长中线法类似);④中位线模型;⑤直角三角形斜边中点模型;⑥中点四边形模型.本专题就中点模型的后两类模型进行梳理及对应试题分析,方便掌握.模型1:直角三角形斜边中线模型定理:直角三角形斜边上的中线等于斜边的一半.如图1,若AD为Rt ABC△斜边上的中线,则:(1)12AD BC=BD DC==;(2)ABD△,ACD△为等腰三角形;(3)2ADB C∠=∠,2ADC B∠=∠.图1图2拓展:如图2,在由两个直角三角形组成的图中,M为中点,则(1)AM MD=;(2)2AMD ABD∠=∠.模型运用条件:连斜边上的中线(出现斜边上的中点时)模型2:中点四边形模型中点四边形:依次连接四边形四边中点连线的四边形得到中点四边形.中点四边形是中点模型中比较经典的应用.中点四边形不仅结合了常见的特殊四边形的性质,而且还会涉及中位线这一重要知识点,总体来说属于比较综合的几何模块.结论1:顺次连结任意四边形各边中点组成的四边形是平行四边形.如图1,已知点M 、N 、P 、Q 是任意四边形ABCD 各边中点,则四边形MNPQ 为平行四边形.图1图2图3图4结论2:顺次连结对角线互相垂直四边形各边中点组成的四边形是矩形.(特例:筝形与菱形)如图2,已知点M 、N 、P 、Q 是四边形ABCD 各边中点,AC ⊥DB ,则四边形MNPQ 为矩形.结论3:顺次连结对角线相等四边形各边中点组成的四边形是菱形.(特例:等腰梯形与矩形)如图3,已知点M 、N 、P 、Q 是四边形ABCD 各边中点,AC =DB ,则四边形MNPQ 为菱形.结论4:顺次连结对角线相等且垂直的四边形各边中点组成的四边形是正方形.如图4,已知点M 、N 、P 、Q 是四边形ABCD 各边中点,AC =DB ,AC ⊥DB ,则四边形MNPQ 为正方形.推广与应用1)中点四边形的周长:中点四边形的周长等于原四边形对角线之和.2)中点四边形的面积:中点四边形的面积等于原四边形面积的12.【题型一利用斜边的中线等于斜边的一半求角度】例1.(2023·四川成都·模拟预测)如图,在ABC 中,32A ∠=︒,大于12AC 长为半径画弧,直线MN 与AC 相交于点E ,过点C 作CD AB ⊥,CD 与BE 相交于点F ,若BD CE =,则BFC ∠的度数是.【答案】106︒/106度【分析】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分线的性质.连接DE ,如图,利用基本作图得到E 点为AC 的中点,则根据斜边上的中线性质得到DE CE AE ==,则32EDA A ∠=∠=︒,再证明BD ED =得到DBE DEB ∠=∠,然后根据三角形外角性质计算出16DBE ∠=︒,接着计算出BFC ∠.【详解】解:连接DE ,,由作法得MN 垂直平分AC ,∴E 点为AC 的中点,∵CD AB ⊥,∴90ADC BDC ∠=∠=︒,∴DE CE AE ==,∴32EDA A ∠=∠=︒,∵BD CE =,∴BD ED =,∴DBE DEB ∠=∠,∵EDA DBE DEB ∠=∠+∠,∴1162DBE ADE ∠=∠=︒,∴BFC DBF BDF ∠=∠+∠=故答案为:106︒.【变式1-1】(2024八年级下则BCD ∠=度.【答案】70【分析】本题主要考查了直角三角形斜边上的中线等于斜边的一半,以及等腰三角形的性质.在Rt ABC △中,根据CD 是斜边AB 上的中线,得CD AD =,可求出20ACD ∠=︒即可解决问题.【详解】解:在Rt ABC △中,CD 是斜边AB 上的中线,CD AD ∴=,20A ACD ∴∠=∠=︒,902070BCD ACB ACD ∴∠=∠-∠=︒-︒=︒,故答案为:70.【变式1-2】(23-24八年级下·山东德州·期中)如图,在Rt AEB 和Rt AFB 中,90AEB AFB ∠=∠=︒,O为AB 的中点,连接EF ,OE ,若50EAF ∠=︒,则OEF ∠=.∵90AEB AFB ∠=∠=︒,O 为∴12OE OF AB OA OB ====∴,EAO OEA OAF OFA ∠=∠∠=∠∴EOB FOB OAE ∠+∠=∠+∠即:100EOF ∠=︒∵OE OF =,∴()1180100402OEF ∠=︒-︒=故答案为:40︒.【变式1-3】(23-24八年级下·全国点E ,F 分别为AC ,CD 的中点,12BE AC =,D α∠=,则BEF ∠的度数为(用含α的式子表示).【答案】2703α︒-【分析】本题考查了角平分线的定义、三角形中位线定理、直角三角形的性质、等边对等角,求出90DAC α∠︒=-,结合角平分线的定义得出90CAB DAC α∠=∠=︒-,由直角三角形的性质得出BE AE EC ==,由等边对等角得出90EAB EBA α∠=∠=︒-,推出1802CEB α∠=︒-,由三角形中位线定理得出90CEF DAC α∠=∠=︒-,即可得出答案.【详解】解:∵=90ACD ∠︒,D α∠=,∴9090DAC D α∠=︒-∠=︒-,∵AC 平分BAD ∠,∴90CAB DAC α∠=∠=︒-,∵90ABC ∠=︒,E 为AC 的中点,12BE AC =,∴BE AE EC ==,∴90EAB EBA α∠=∠=︒-,∴1802CEB EAB EBA α∠=∠+∠=︒-,∵点E ,F 分别为AC ,CD 的中点,∴EF AD ∥,∴90CEF DAC α∠=∠=︒-,∴1802902703BEF BEC CEF ααα∠=∠+∠=︒-+︒-=︒-,故答案为:2703α︒-.【题型二利用斜边的中线等于斜边的一半求线段长】例2.(23-24八年级下·北京·期中)如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为2.4km ,则MC =km .【答案】1.2【分析】本题主要考查了直角三角形斜边的中线等于斜边的一半,由AC BC ⊥,得出90ACB ∠=︒,由点M点F 在线段DE 上,且AF BF ⊥.若4AB =,7BC =,则EF 的长为.连接BE ,点F 为BE 上一动点,连接HF DF DF 、,的延长线交AB 于点P ,若PB PF =,则HF 的长为.【答案】3【分析】延长BE CD 、,交于点G ,连接CF ,如图所示,结合矩形性质,利用两个三角形全等的判定得到()AAS ABE DGE ≌,从而得到AB DG =,进而由矩形性质得到GD CD =,再由等腰三角形的判定与性质得到12FD GD CD GC ===,再由直角三角形的判定确定90CFG ∠=︒,最后由直角三角形斜边上的中线等于斜边的一半即可得到答案.【详解】解:延长BE CD 、,交于点G ,连接CF ,如图所示:在矩形ABCD 中,AB CD ∥,则,G ABE GDA BAD ∠=∠∠=∠,点E 为边AD 的中点,AE DE ∴=,()AAS ABE DGE ∴ ≌,AB DG ∴=,在矩形ABCD 中,AB CD =,则GD CD =,PB PF =,ABE PFB ∴∠=∠,GFD PFB ∠=∠,ABE G ∠=∠,GFD G ∴∠=∠,FD GD ∴=,则12FD GD CD GC ===,DFC DCF ∴∠=∠,在CFG △中,()()180G GFC GCF DFC DCF GFD G ∠+∠+∠=∠+∠+∠+∠=︒,即90G GFD CF F D C ∠︒+=,∴90CFB ∠=︒,点H 为边BC 的中点,ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中6AB =,2BC =.运动过程中点D 到点O 的最大距离是.∵90MON ∠=︒,矩形ABCD ∴13,2OE AE AB AD ===∴2213DE AE AD =+=∵OD OE DE ≤+,∴当点D ,点E ,点O 共线时,∴点D 到点O 的最大距离故答案为:313+.【题型三利用斜边的中线等于斜边的一半证明】∥交DC的延长线于点E.过点D作例3.(2024·北京·三模)如图,矩形ABCD,过点B作BE AC⊥于F,G为AC中点,连接FG.DF BE=.(1)求证:BE AC(2)若24,,求FG的长.==AB BCA作BC的垂线,垂足为点E,延长BC到点F,使CF BE=,连接DF.(1)求证:四边形AEFD 是矩形;(2)连接OE ,若10AD =,6OE =,求AE 的长.【答案】(1)见解析(2)485【分析】(1)根据菱形的性质可得AD BC ∥且AD BC =,等量代换得到AD EF =,推出四边形AEFD 是平行四边形,再根据矩形的判定定理即可得出结论;(2)由菱形的性质可得AC BD ⊥,AO CO =,10AB BC AD ===,由直角三角形斜边上的中线的性质可得212AC OE ==,由勾股定理可得22222AB BE AC CE AE -=-=,计算出BE 的长,最后再由勾股定理计算出AE 的长即可.【详解】(1)证明: 四边形ABCD 是菱形,AD BC ∴∥且AD BC =,BE CF = ,BC EF ∴=,AD EF ∴=,AD EF ∥ ,∴四边形AEFD 是平行四边形,AE BC ⊥ ,90AEF ∴∠=︒,∴四边形AEFD 是矩形;(2)解: 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,10AB BC AD ===,AE BC ⊥ ,90AEB AEC ∴∠=∠=︒,212AC OE ∴==,22222AB BE AC CE AE -=-= ,()2222101210BE BE ∴-=--,145BE ∴=,AO OC =,OB OD =.(1)直接..写出AB 与CD 的数量关系和位置关系;(2)当CD AD =时,四边形ABCD 是什么特殊四边形?并说明理由;(3)在(2)的基础上,过点A 作AE BC ⊥于点E ,连接OE ,若10AD =,4EC =,求OE 的长.点E 在AB 上,连接DE 交AC 于点K ,EF AD ⊥于点F ,EF 交AC 于点U ,G 为AC 的中点,连接DG ,且2DGC FED ∠=∠.(1)如图1,求证:DE AC ⊥;(2)如图2,当ED AU =时,求BCD ∠的度数;(3)如图3,在(2)的条件下,连接BD ,BD =2CK =,求BC 的长.【题型四中点四边形中的规律探究问题】例4.(23-24八年级下·山东德州·期中)如图,在菱形ABCD 中,边长为1,60A ∠=︒.顺次连接菱形ABCD 各边中点,可得四边形1111D C B A ;顺次连接四边形1111D C B A 各边中点,可得四边形2222A B C D ,顺次连接四边形2222A B C D 各边中点,可得四边形3333A B C D ;…;按此规律继续下去.四边形2024202420242024A B C D 的面积是.【答案】202532/2025132【分析】本题考查了菱形以及中点四边形的性质,找到中点四边形的面积与原四边形的面积之间的关系是解题的关键.根据菱形的性质,三角形中位线的性质,勾股定理,依次求出四边形的面积,得出规律,即可解答.【详解】解: 菱形ABCD ,ADB ∴ ,CDB △为等边三角形,1BD ∴=,【变式4-1】(23-24八年级下·广东惠州·期中)如图,顺次连接矩形11112222,再顺次连接四边形2222A B C D 四边的中点得四边形3333A B C D ,…,按此规律得到四边形n n n n A B C D ,若矩形1111D C B A 的面积为15,那么四边形n n n n A B C D 的面积为.【题型五与中点四边形有关的证明问题】例5.(23-24八年级下·广西玉林·期中)已知:如图1,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG GH HE、、,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是__________,证明你的结论.(2)如图2,请连接四边形ABCD的对角线AC与BD,当AC与BD满足__________条件时,四边形EFGH是正方形,证明你的结论.∴EH BD∥,12 EH BD=同理,FG BD∥,FG∴EH FG∥,EH FG=∴四边形EFGH是平行四边形;(2)解:互相垂直且相等(如图2,连结AC BD、同理(1)可知,四边形∵AC BD⊥,∴EH HG⊥,∴平行四边形EFGH是矩形,∵AC BD=,∴EH HG=,∴四边形EFGH是正方形.【变式5-1】(23-24八年级下的新四边形叫做原四边形的“中点四边形”,如果原四边形的中点四边形是个正方形,那么我们把原四边形叫做“中方四边形”.(1)下列四边形中一定是“中方四边形”的是________;A .平行四边形B .矩形C .菱形D .正方形(2)如图1,以锐角ABC 的两边,AB AC 为边长,分别向外侧作正方形ABDE 和正方形ACFG ,连结,,BE EG GC ,求证:四边形BCGE 是“中方四边形”;(3)如图2,四边形ABCD 是“中方四边形”,若2AC 的值为32,则AB CD +的最小值是________.(不需要解答过程)∵四边形BCGE 各边中点分别为∴MN NR RL LM 、、、分别是BCG ∴1,,2MN BG MN BG RL BG =∥∥∴,,MN RL MN RL RN ML =∥∥∥∴四边形MNRL 是平行四边形,∵四边形ABCD 是“中方四边形∴四边形ENFM 是正方形,∴,90FM FN MFN =∠=︒,∴222MN FM FN FM =+=的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是_____________.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论;问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连接BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.【答案】概念理解:D ;性质探究:①AC BD =,②AC CD ⊥;问题解决:见解析;拓展应用:(1)22MN AC =,理由见解析;(2)22【分析】概念理解:根据定义“中方四边形”,即可得出答案;性质探究:由四边形ABCD 是“中方四边形”,可得EFGH 是正方形且E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,利用三角形中位线定理即可得出答案;问题解决:如图2,取四边形BCGE 各边中点分别为P 、Q 、R 、L 并顺次连接成四边形MNRL ,连接CE 交AB 于P ,连接BG 交CE 于K ,利用三角形中位线定理可证得四边形MNRL 是平行四边形,再证得△EAC ≌△BAG (SAS ),推出▱MNRL 是菱形,再由∠LMN =90°,可得菱形MNRL 是正方形,即可证得结论;拓展应用:(1)如图3,分别作AD 、BC 的中点E 、F 并顺次连接EN 、NF 、FM 、ME ,可得四边形ENFM 是正方形,再根据等腰直角三角形性质即可证得结论;(2)如图4,分别作AD 、BC 的中点E 、F 并顺次连接EN 、NF 、FM 、ME ,连接BD 交AC 于O ,连接OM 、ON ,当点O 在MN 上(即M 、O 、N 共线)时,OM +ON 最小,最小值为MN 的长,再结合(1)的结论即可求得答案.【详解】解:概念理解:在平行四边形、矩形、菱形、正方形中只有正方形是“中方四边形”,理由如下:因为正方形的对角线相等且互相垂直,故选:D ;性质探究:①AC =BD ,②AC ⊥BD ;理由如下:如图1,∵四边形ABCD 是“中方四边形”,∴EFGH 是正方形且E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∵四边形BCGE 各边中点分别为∴MN 、NR 、RL 、LM 分别是△∴MN ∥BG ,MN =12BG ,RL ∥BG ,RL =12BG ,RN ∥CE ,RN =12CE ,ML ∥CE ,ML =12CE ,∴MN ∥RL ,MN =RL ,RN ∴四边形MNRL 是平行四边形,∵四边形ABDE 和四边形∴AE =AB ,AG =AC ,∠EAB 又∵∠BAC =∠BAC ,∴∠EAB +∠BAC =∠GAC 即∠EAC =∠BAG ,在△EAC 和△BAG 中,AE AB EAC BAG AC AG =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△BAG (SAS ∴CE =BG ,∠AEC =∠ABG 又∵RL =12BG ,RN =12CE ∴RL =RN ,∴▱MNRL 是菱形,∵M,F分别是AB,BC∴FM=12 AC,∴MN=22 AC;(2)如图4,分别作AD 连接BD交AC于O,连接当点O在MN上(即M得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.【概念理解】:(1)下列四边形中一定是“中方四边形”的是______.A .平行四边形B .矩形C .菱形D .正方形【性质探究】:(2)如图1,四边形ABCD 是“中方四边形”,观察图形,直接写出四边形ABCD 的对角线AC ,BD 的关系;【问题解决】:(3)如图2.以锐角ABC 的两边AB ,AC 为边长,分别向外侧作正方形ABDE 和正方形ACFG ,连接BE ,EG ,GC .求证:四边形BCGE 是“中方四边形”;【拓展应用】:如图3,已知四边形ABCD 是“中方四边形”,M ,N 分别是AB ,CD 的中点.(4)试探索AC 与MN 的数量关系,并说明理由.(5)若2AC =,求AB CD +的最小值.【答案】(1)D ;(2)AC BD =,AC BD ⊥;(3)证明见解析;(4)22MN AC =,理由见解析;(5)AB CD +的最小值为22.【分析】(1)由正方形对角线相等且互相垂直可得答案;(2)由中位线的性质可得:12EF AC =,EF AC ∥,12FG BD =,FG BD ∥,结合正方形的性质可得结论;(3)如图,取四边形BCGE 各边中点分别为M 、N 、R 、L 并顺次连接成四边形MNRL ,连接CE 交AB 于P ,连接BG 交CE 于K ,利用三角形中位线定理可证得四边形MNRL 是平行四边形,再证得EAC BAG △≌△,推出MNRL 是菱形,再由90LMN ∠=︒,可得菱形MNRL 是正方形,即可证得结论;(4)如图,记AD 、BC 的中点分别为E 、F ,可得四边形ENFM 是正方形,再根据等腰直角三角形性质与三角形的中位线的性质即可证得结论;(5)如图,记AD 、BC 的中点分别为E 、F ,连接BD 交AC 于O ,连接OM 、ON ,当点O 在MN 上(即M 、O 、N 共线)时,OM ON +最小,最小值为MN 的长,再结合(1)(4)的结论即可求得答案.【详解】解:(1)在平行四边形、矩形、菱形、正方形中只有正方形是“中方四边形”,理由如下:因为正方形的对角线相等且互相垂直,所以其中点四边形是正方形;(2)AC BD =,AC BD ⊥.理由如下:∵四边形ABCD 是“中方四边形”,∴四边形EFGH 是正方形,∴EF FG HG EH ===,90EFG FGH GHE HEF ∠=∠=∠=∠=︒,∵E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,∴12EF AC =,EF AC ∥,12FG BD =,FG BD ∥,∴AC BD =,AC BD ⊥.(3)如图,设四边形BCGE 的边BC CG GE BE 、、、的中点分别为M 、N 、R 、L ,连接CE 交AB 于P ,连接BG 交CE 于K ,∵四边形BCGE 各边中点分别为M ∴MN 、NR ,RL ,LM 分别是BCG ∴MN BG ∥,12MN BG =,RL ∥∴MN RL ∥,MN RL =,RN CE ∥∴四边形MNRL 是平行四边形,∵四边形ABDE 和四边形ACFG 都是正方形,∴AE AB =,AG AC =,EAB GAC ∠=∠∴EAC BAG ∠=∠,∴()SAS EAC BAG ≌,∴CE BG =,AEC ABG ∠=∠,又∵12RL BG =,12RN CE =,∴RL RN =,∴平行四边形MNRL 是菱形,∵90EAB ∠=︒,∴90AEP APE ∠+∠=︒.又∵AEC ABG ∠=∠,APE BPK ∠=∠∴90ABG BPK ∠+∠=︒,∴90BKP ∠=︒,又∵MN BG ∥,ML CE ∥,∴90LMN ∠=︒.∴菱形MNRL 是正方形,即原四边形(4)如图,记AD 、BC 的中点分别为∵四边形ABCD 是“中方四边形∴四边形ENFM 是正方形,∴FM FN =,MFN ∠∴22MN FM FN =+=∵M ,F 分别是AB ,BC ∴12FM AC =,∴22MN AC =;(5)如图,连接BD 当点O 在MN 上(即M 、∴()2OM ON +的最小值由性质探究(1)知:AC 又∵M ,N 分别是AB ,∴2AB OM =,2CD ON =∴()2OM ON AB CD +=+∴AB CD +的最小值2MN =由拓展应用(4)知:MN 又∵2AC =,∴2MN =,∴AB CD +的最小值为2【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,平行四边形的判定和性质,三角形的中位线的性质,正方形的判定和性质,勾股定理,两点之间线段最短等知识,理解“中方四边形”的定义并运用是本题的关键.一、单选题1.(2024·广东深圳·模拟预测)一技术人员用刻度尺(单位,cm )测量某三角形部件的尺寸.如图所示,已知90ACB ∠=︒,点D 为边AB 的中点,点A B 、对应的刻度为17、,则CD =()A .3.5cmB .3cmC .4.5cmD .6cmFD GH 、上,若斜边AB 与直线GH 交于AB 的中点E ,则EAD ∠的大小为()A .60︒B .55︒C .45︒D .30︒的中点.请你添加一个条件,使四边形EFGH 为矩形,应添加的条件是()A .AB CD=B .AC BD ⊥C .CD BC =D .AC BD=【答案】B 【分析】先利用三角形中位线定理证明四边形EFGH 为平行四边形,然后添加每个选项的条件,根据矩形的判定定理判定即可.【详解】解:应添加的条件是AC BD ⊥,理由为:证明:E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,EH BD ∴∥,FG BD ∥,HG AC ∥,EF AC ∥,∴EH FG ∥,HG EF ∥,∴四边形EFGH 为平行四边形,A 、添加的条件是AB CD =时,四边形EFGH 为平行四边形,故此选项不符合题意;B 、添加的条件是AC BD ⊥,则EH EF ⊥,所以四边形EFGH 为矩形,故此选项符合题意;C 、添加的条件是CD BC =,四边形EFGH 为平行四边形,故此选项不符合题意;D 、添加的条件是AC BD =,是边BC 的中点,连接EF ,若16AC =,菱形ABCD 的面积96,则EF BD 的值是()A .12B .13C .712D .512一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q,在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在无数个中点四边形MNPQ是正方形.其中,所有正确的有()A.①②③B.②③④C.①②④D.①③④【答案】A【分析】根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂直的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,由此即可判断.【详解】①AC与BD不平行时,中点四边形MNPQ是平行四边形,故存在无数个中点四边形MNPQ是平行四边形,所以①正确;②AC与BD相等且不平行时,中点四边形MNPQ是菱形,故存在无数个中点四边形MNPQ是菱形,所以②正确;③AC与BD互相垂直(B,D不重合)时,中点四边形MNPQ是矩形,故存在无数个中点四边形MNPQ是矩形,所以③正确;④如图所示,当AC与BD相等且互相垂直时,中点四边形MNPQ是正方形,故存在两个中点四边形MNPQ 是正方形,所以④错误.故选A.【点睛】本题考查中点四边形,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题6.(2024·福建泉州·模拟预测)如图,在ABC 中,90,BAC D ∠=︒是BC 的中点,若5AD =,则BC =.点O ,DH AB ⊥于H ,连接OH ,则DHO ∠=度.为AB ,BC 的中点,若C α∠=,则DEF ∠的度数为(用含α的式子表示).【答案】290α-︒【分析】根据三角形中位线的性质求出EF AC ∥,根据平行线的性质得出BFE C a ∠=∠=,90BEF BAC ∠=∠=︒,根据直角三角形斜边中线等于斜边的一半得出DE BE =,根据等腰三角形的性质得出90BDE B a ∠=∠=︒-,根据三角形外角的性质得出()90290DEF BFE EDF a aa ∠=∠-∠=-︒-=-︒.【详解】解:∵E ,F 分别为AB ,BC 的中点,∴EF AC ∥,∴BFE C a ∠=∠=,90BEF BAC ∠=∠=︒,∴9090B BFE a ∠=︒-∠=︒-,∵AD 是高,∴90ADB ∠=︒,∵E 为AB 的中点,∴DE BE =,∴90BDE B a ∠=∠=︒-,∵BFE DEF EDF ∠=∠+∠,∴()90290DEF BFE EDF a aa ∠=∠-∠=-︒-=-︒.故答案为:290α-︒.【点睛】本题主要考查了等腰三角形的性质,直角三角形的性质,三角形中位线的性质,平行线的性质,解题的关键是熟练掌握相关的性质.9.(23-24八年级下·广东河源·期中)如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,将四边形ABCD 各边中点依次相连,得到四边形1111D C B A ,若四边形1111D C B A 的面积为15,则四边形ABCD 的面积为.【答案】30【分析】根据三角形的中位线定理证明四边形1111D C B A 是矩形,从而根据矩形的面积和三角形的每件公式进行计算.此题主要考查中点四边形和三角形的面积,注意三角形中位线定理这一知识点的灵活运用,此题难易程度适中,是一道典型的题目.【详解】解:1A ,1B ,1C ,1D 是四边形ABCD 的中点四边形,四边形ABCD 的对角线AC 、BD 互相垂直,∴四边形1111D C B A 为矩形,设AC x =,BD y =,11A D ∴是ABD △的中位线,111122A D BD x ∴==,同理可得1112A B y =,∴四边形1111D C B A 的面积为11111154A D AB xy ⨯==.60xy ∴=,∴四边形ABCD 的面积1302xy ==,故答案为:30.10.(23-24八年级下·陕西安康·期中)如图,在矩形ABCD 中,E ,F 分别是边AB ,AD 上的动点,连接EF ,P 是线段EF 的中点,PG BC ⊥,PH CD ⊥,G ,H 为垂足,连接GH .若12AB =,9AD =,6EF =,则GH 的最小值是.【答案】12【分析】本题考查了矩形的性质与判定,直角三角形斜边上的中线性质,勾股定理等知识,熟练掌握矩形的性质与判定,求出GH 的最小值是解本题的关键.连接AP ,CP ,AC ,由勾股定理得到AC ,再根据直角三角形斜边上的中线性质得AP ,然后证四边形PGCH 是矩形,得HG PC =,当A ,P ,C 三点共线时,∴9BC AD ==,DC AB ==2215AC AB BC ∴=+=,P 是线段EF 的中点,∴132AP EF ==, PG BC ⊥,PH CD ⊥,90PHC PGC ∴∠=∠=︒=∴四边形PGCH 是矩形,HG PC ∴=,当A ,P ,C 三点共线时,此时,15PC AC AP =-=∴GH 的最小值是12,故答案为:12.三、解答题11.(23-24八年级下·山东泰安·期中)如图,在四边形ABCD 中,90ABC ∠=︒,AB CD ∥,AB CD =.(1)求证:四边形ABCD 是矩形;(2)点E 是AD 上一点,点F 是BC 的中点,连接BE CE EF ,,,若10AD =,8BE =,6CE =,求EF 的长.【答案】(1)见解析(2)5EF =.【分析】本题考查了矩形的判定与性质,直角三角形斜边上的中线性质,勾股定理的逆定理;解决本题的关键是掌握矩形的性质.(1)根据有一个角是直角的平行四边形是矩形即可解决问题;AB AD =,AC 平分BAD ∠.(1)求证:四边形ABCD 是菱形.(2)过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE 交BC 于点F ,若20ACB ∠=︒,求CFE ∠的度数.垂足为O ,顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ;再顺次连接四边形1111D C B A 各边的中点,得到四边形2222A B C D ,…如此下去得到四边形n n n n A B C D .(1)判断四边形1111D C B A 的形状,并说明理由.(2)求四边形1111D C B A 的面积.(3)直接写出四边形n n n n A B C D 的面积(用含n 的式子表示).【答案】(1)四边形1111D C B A 是矩形,理由见解析两个三角形组成四边形ABCD(如图1),这是一种特殊的四边形——筝形,请你根据学习平行四边形的经验来研究筝形.(1)首先请你给出筝形的一种定义:______;(文字语言描述)(2)如图1,在边、角、对角线的关系方面直接写出两条对筝形性质的猜想(定义除外);,,,边的中点.求证:四边形PQRT是矩(3)如图2,在筝形ABCD中,P,Q,R,T分别为AB BC CD AD形.【答案】(1)把两组邻边分别相等的四边形叫做“筝形”(2)见解析(3)见解析【分析】本题是四边形综合题,主要考查了矩形的判定,平行四边形的判定和性质,全等三角形的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.(1)根据折叠的性质得出答案;(2)先判断出ABC ADC△≌△,即可得出结论;(3)利用三角形中位线定理证明即可.【详解】(1)解:根据观察可得,两组邻边分别相等的四边形叫做“筝形”.故答案为:两组邻边分别相等的四边形叫做“筝形”;(2)解:如图2,①筝形的一条对角线平分一组对角;②筝形的一组对角相等;证明:①由折叠知,ABC ADC△≌△,PQ AC∴∥,12PQ= AT TD=,CR RD=TR AC ∴∥,12 RT AC=PQ RT∴=,PQ RT∥∴四边形PQRT是平行四边形,AB AD=,CB CD=AC∴垂直平分线段BDAP PB=,AT TD=PT BD∴∥,PT AC∴⊥,AC PQ∥,PT PQ∴⊥,90TPQ∴∠=︒,∴四边形PQRT是矩形.15.(23-24八年级下·G是线段CE上的点(不与C E,重合),连接FG交AC于点H,连接AE CF EH,,.(1)求证:四边形AECF 是菱形;(2)求证:CGF AEH ∠=∠;(3)当610AB BC AH AE ===,,时,求EH 的长.【答案】(1)见解析(2)见解析(3)10【分析】本题考查了平行四边形的性质、菱形的判定与性质、三角形全等的判定与性质、勾股定理、直角三角形的性,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由平行四边形的性质得出AD BC =,AB CD ,AD BC ∥,由平行线的性质得出90ACD BAC ∠=∠=︒,再根据直角三角形的性质得出AE CE CF AF ===,即可得证;(2)由菱形的性质得出AE AF =,FAH EAH ∠=∠,证明()SAS AEH AFH ≌得出AEH AFH ∠=∠,再由平行线的性质得出AFH CGF ∠=∠,即可得证;(3)连接EF 交AC 于点O ,由(1)可得152BE AE EC BC ====,由勾股定理可得8AC =,由菱形的性质可得142AO OC AC ===,求出1OH =,再由勾股定理计算即可.【详解】(1)证明:BA AC ⊥ ,90BAC ∴∠=︒,四边形ABCD 是平行四边形,AB CD ∴∥,AD BC ∥,AD BC =,90ACD BAC ∠∠∴==︒,E F ,分别是BC AD ,的中点,12AE CE BC ∴==,12CF AF AD ==,AE CE CF AF ∴===,∴四边形AECF 是菱形;(2)证明: 四边形AECF 是菱形,∴AE AF =,FAH EAH ∠=∠,在AEH △和AFH 中,由(1)可得BE AE EC ==∵BA AC ⊥2222106AC BC AB ∴=-=- 四边形AECF 是菱形,142AO OC AC ∴===,EF 5AH AE == ,541OH AH AO ∴=-=-=2225OE AE AO ∴=-=-2223EH OE OH ∴=+=+16.(22-23八年级下·湖南益阳使PC PA =,PD PB =,APC BPD ∠=∠,连接CD ,点E ,F ,G ,H 分别是AC ,AB ,BD ,CD 的中点,顺次连接E ,F ,G ,H .(1)猜想四边形EFGH 的形状,直接回答,不必说明理由;(2)点P 在线段AB 的上方时,如图2,在APB △的外部作APC △和BPD △,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,90APC BPD ∠=∠=︒,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由.∵APC BPD∠=∠∴∠+∠=∠+APC CPD BPD 又∵PC PA =,PD PB =,∴PAD PCB ≌,∴AD BC =,∵点E ,F ,G ,H 分别是∴1,2EH PG AD EF HG ===∴EH PG EF HG ===,∴四边形EFGH 是菱形.(2)成立.理由:连接AD ,BC .APC CPD BPD ∴∠+∠=∠+判断四边形EFGH是正方形.理由:连接AD,BC.(2)中已证:APD≌△PAD PCB∴∠=∠.,∠=︒90APC∴∠+∠=︒.PAD190又12,∠=∠PCB∴∠+∠=︒,290∴∠=︒.390(2)中已证GH,EH分别是∴∥,EH ADGH BC∥.EHG∴∠=︒.90又 (2)中已证四边形EFGH∴菱形EFGH是正方形.【点睛】本题考查了全等三角形的性质与判定,菱形的性质与判定,正方形的判定,三角形中位线的性质与判定,熟练掌握以上知识是解题的关键.。
专题01 中点四边形模型(全国通用)(原卷版)
专题01 中点四边形模型中点四边形:依次连接四边形四边中点连线的四边形得到中点四边形O。
结论1: 点M、N、P、Q 是任意四边形的中点,则四边形MNPQ 是平行四边形结论2: 对角线垂直的四边形的中点四边形是矩形结论3:对角线相等的四边形的中点四边形是菱形结论4: 对角线垂直且相等的四边形的中点四边形是正方形【典例1】(2024•长沙模拟)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形【典例2】(2023•阳春市二模)若顺次连接四边形ABCD各边的中点所得的四边形是菱形,则四边形ABCD 的两条对角线AC,BD一定是()A.互相平分B.互相平分且相等C.互相垂直D.相等【典例3】(2023•铜川一模)如图,AC、BD是四边形ABCD的两条对角线,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AC⊥BD B.AB=CD C.AB∥CD D.AC=BD1.(2023春•宿豫区期中)顺次连接对角线相等且垂直的四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形2.(2023春•福山区期末)如图,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则下列结论一定正确的是()A.四边形EFGH是矩形B.四边形EFGH的面积等于四边形ABCD面积的C.四边形EFGH的内角和小于四边形ABCD的内角和D.四边形EFGH的周长等于四边形ABCD的对角线长度之和3.(2023春•覃塘区期末)在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=3,AD=4,则中点四边形EFGH的面积为()A.8B.6C.4D.34.(2023春•费县期末)顺次连接四边形ABCD各边中点所得四边形是菱形.则四边形ABCD一定是()A.矩形B.对角线相等的四边形C.菱形D.对角线互相垂直的四边形5.(2023•商丘模拟)一个四边形四边中点的连线所构成的中点四边形是菱形,那么这个原四边形是()A.矩形B.菱形C.正方形D.对角线相等6.(2023春•路北区期末)顺次连接矩形各边中点,所得图形的对角线一定满足()A.互相平分.B.互相平分且相等C.互相垂直.D.互相平分且垂直7.(2023春•达州期末)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长是()A.7B.9C.11D.138.(2023•浦东新区二模)顺次连接四边形ABCD各边中点所得的四边形是矩形,那么四边形ABCD一定是()A.菱形B.对角线相等的四边形C.对角线互相垂直的四边形D.对角线互相垂直且平分的四边形9.(2023•晋中模拟)如图,顺次连接正六边形纸板ABCDEF各边中点得到一个新的正六边形.若将一个飞镖随机投掷到正六边形纸板ABCDEF上,则飞镖落在阴影区域的概率为()A.B.C.D.10.(2023•佛山模拟)如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件是()A.AC⊥BD B.AC=BDC.AC⊥BD且AC=BD D.不确定11.(2023春•南京期中)如图,在四边形ABCD中,E、F、G、H分别是线段AD、BD、BC、AC的中点,要使四边形EFGH是菱形,需添加的条件是()A.AC=BD B.AC⊥BD C.AB=CD D.AB⊥CD12.(2022春•惠城区校级期中)在四边形ABCD中,E,F,G,H分别为各边的中点,顺次连结E,F,G,H,得到中点四边形EFGH.当AC=BD时,则四边形EFGH是()A.平行四边形B.矩形C.菱形D.正方形13.(2022•老河口市模拟)如图,四边形ABCD是矩形,E,F,G,H分别为各边的中点,则四边形EFGH 一定是()A.菱形B.矩形C.正方形D.对角线相等的四边形14.(2022春•青白江区校级月考)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A.48B.24C.32D.1215.(2023春•金湖县期中)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=8,AD=10,则AO的长为.16.(2022春•皇姑区期末)在四边形ABCD中,AC=6cm,BD=9cm,E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长为cm.17.(2023秋•丹东期末)【问题初探】数学活动课上,张老师引导学生探究中点四边形的形状及性质.首先,张老师给出中点四边形的定义:顺次连接任意四边形各边中点所得的四边形叫做中点四边形.接下来张老师提出问题:如图1,在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,则中点四边形EFGH是什么形状?中点四边形EFGH的面积与原四边形ABCD的面积有怎样的关系?请各组讨论,并给出证明过程.班级的“希望小组”经讨论发现:中点四边形EFGH是平行四边形,且中点四边形EFGH的面积是原四边形ABCD面积的一半.证明如下:证明:如图2,连接AC,BD∵点H,G分别为AD,CD的中点∴HG是△ADC的中位线,根据三角形中位线定理可得:HG与AC的位置关系为,数量关系为.同理可得:EF∥AC,∴HG∥EF,HG=EF∴四边形EFGH是平行四边形根据线段HG,AC的关系,进而可得△DHG∽△DAC,且=同理∴(1)请你将“希望小组”的证明过程补充完整.【类比探究】(2)在(1)问的讨论过程中,“善思小组”有了新的发现:中点四边形EFGH的形状还可能是菱形、矩形或正方形,中点四边形EFGH的周长与对角线AC,BD长度有一定的数量关系.张老师把这个问题同时给了其它小组进行研究.请你结合(1)的分析过程,解决下面的问题:(其中①,②问直接填空)①当对角线AC,BD满足关系时,中点四边形EFGH为菱形?②当对角线AC,BD满足关系时,中点四边形EFGH为矩形?③中点四边形EFGH的周长与对角线AC,BD长度有怎样的数量关系,并说明理由.【学以致用】(3)如图3,在四边形ABCD内部有一点O,连接OA,OB,OC,OD,点H,G分别是AD,BC的中点,连接HG,若∠AOB=∠COD=90°,∠BOC=150°,OA=OB=2,OC=OD=3,求HG的长.18.(2023春•盐城期中)阅读理解,我们把依次连接任意一个四边形各边中点得到的四边形叫中点四边形,如图1,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是;(2)如图2,在四边形ABCD中,点M在AB上且△AMD和△MCB为等边三角形,E、F、G、H分别为AB、BC、CD、AD的中点,试判断四边形EFGH的形状并证明.19.(2022春•仙居县期末)如图,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.(1)求证:四边形EFGH是平行四边形.(2)若四边形ABCD的对角线互相垂直且它们的乘积为48,求四边形EFGH的面积.。
人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)
第十九讲特殊的四边形【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分1、有一个角是直角的平行四边形是矩形;2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角1、有一组邻边相等的平行四边形是菱形;2、四条边都相等的四边形是菱形;3、对角线互相垂直的平行四边形是菱中心、轴对称图形.形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称图形等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【要点诠释】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.考点二、梯形1.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5【要点诠释】解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在学习时注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.2.特殊的梯形1)等腰梯形:两腰相等的梯形叫做等腰梯形.性质:(1)等腰梯形的同一底边上的两个角相等;等腰梯形的两条对角线相等.(2)同一底边上的两个角相等的梯形是等腰梯形.(3)等腰梯形是轴对称图形,它的对称轴是经过两底中点的一条直线.2)直角梯形:有一个角是直角的梯形叫做直角梯形.考点三、中点四边形相关问题1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【典型例题】类型一、特殊的平行四边形的应用1. 在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.【思路点拨】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【答案与解析】(1)四边形EGFH是平行四边形;证明:∵平行四边形ABCD的对角线AC、BD交于点O,∴点O是平行四边形ABCD的对称中心;∴EO=FO,GO=HO;∴四边形EGFH是平行四边形;(2)菱形;(提示:菱形的对角线垂直平分)(3)菱形;(提示:当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2))(4)四边形EGFH是正方形;证明:∵AC=BD,∴平行四边形ABCD是矩形;又∵AC⊥BD,∴平行四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.【总结升华】主要考查了平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.2.动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?【思路点拨】(1)、要证所折图形是菱形,只需证四边相等即可.(2)、按照图形用面积公式计算S=30和S=35.21,可知方案二小明同学所折的菱形面积较大. 【答案与解析】(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形, 小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB , 又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA , ∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4×12×6×52=30(cm )2, 方案二:设BE=x ,则CE=12-x , ∴AE=22BE AB +=225x +由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2, ∴x=11924, S 菱形=S 矩形-2S △ABE =12×5-2×12×5×11924≈35.21(cm )2, 比较可知,方案二小明同学所折的菱形面积较大.【总结升华】本题考查了矩形的性质和菱形的判定,以及图形面积的计算与比较. 举一反三:【变式】如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ).A.B.C.4 D.5【答案】A.类型二、梯形的应用3.(•黄州区校级模拟)如图,△ABC中,∠BAC=90°,延长BA至D,使AD=AB,点E、F分别是边BC、AC的中点.(1)判断四边形DBEF的形状并证明;(2)过点A作AG∥BC交DF于G,求证:AG=DG.【思路点拨】(1)利用梯形的判定首先得出四边形DBEF为梯形,进而得出四边形HFEB是平行四边形,得出BE=FD进而得出答案;(2)利用四边形DBEF为等腰梯形,得出∠B=∠D,利用AG∥BG,∠B=∠DAG,得出答案.【答案与解析】(1)解:四边形DBEF为等腰梯形,理由如下:如图,过点F作FH∥BC,交AB于点H,∵FH∥BC,点F是AC的中点,点E是BC的中点,∴AH=BH=AB,EF∥AB,显然EF<AB<AD,∴EF≠AD,∴四边形DBEF为梯形,∵AD=AB,∴AD=AH,∴CA是DH的中垂线,∴DF=FH,∵FH∥BC,EF∥AB,∴四边形HFEB是平行四边形,∴FH=BE,∴BE=FD,故四边形DBEF为等腰梯形;(2)证明:∵四边形DBEF为等腰梯形,∴∠B=∠D,∵AG∥BG,∠B=∠DAG,∴∠D=∠DAG,∴AG=D G.【总结升华】此题主要考查了等腰梯形的判定以及其性质和平行四边形的判定与性质等知识,得出BE=FD 是解题关键.举一反三:【变式】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为().C. 2.5D.2.3A.22B. 231类型三、特殊四边形与其他知识结合的综合运用4. (•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【思路点拨】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【总结升华】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【思路点拨】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF 全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【答案与解析】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=12BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACDCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFDBF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【总结升华】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.6 . 如图,己知ABC的顶点B、C为定点,A为动点(不在直线BC上).是点B关于直线AC的对称点,是点C关于直线AB的对称点.连结、、、.(1)猜想线段与'的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形为菱形?这样的位置有几个?请用语言对这样的位置进行描述;(不用证明)(3)当点A在线段BC的垂直平分线l(BC的中点及到BC的距离为的点除外)上运动时,判断以点B、C、、为顶点的四边形的形状,画出相应的示意图.(不用证明)【思路点拨】本题考查轴对称的基本性质,综合考查菱形、正方形、等腰梯形的判定.在运动变化过程中,认识图形之间的内在联系.【答案与解析】(1)猜想:BC′=CB′∵B′是点B关于直线AC的对称点∴AC垂直平分B B′∴BC= CB′同理BC= BC′∴B C′=C B′(2)要使BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点∴AC垂直平分B B′,AB垂直平分C C′,∴B B′、C C′应该同时过A点∴∠BAC=90°∴只要AB⊥AC即可满足要求,这样的位置有无数个.(3)如图,当A是BC的中点时,没有形成四边形;当A到BC时,∵l是BC的垂直平分线,∴∠ACB=∠ABC=30°,∴∠BAC=120°,∴∠BOC=60°,∴BC=C B′= B′C′=B C′.∴BC B′C′为菱形,当BC的中点及到BC BC的点除外时,∵∠BOC= B′O C′,OB=OC O B′=O C′,∴∠OBC=∠OCB=∠O B′C′=∠O C′B′,∴BC∥B′C′.∵B C′不平行C B′,B C′=C B′,四边形BC B′ C′为等腰梯形.【总结升华】本题可以很好的培养观察推理能力,按照要求画出图形可以更清楚的解题.举一反三:【变式】(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.【答案】(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=3,∴S菱形AECD=EC•AG=2×3=23.第十九讲特殊的四边形一、选择题1.(•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.82.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A.B.C.2 D.第3题第4题4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是().A.一组对边平行而另一组对边不平行B.对角线相等C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于().A.7B.5C.4D.3第5题第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为().A.15° B.18° C.36° D.54°二、填空题7.(春•西城区期末)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC 于F,则线段EF长度的最小值是_______________.第10题第11题第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________.三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时:①猜想DE与EF满足的数量关系是__________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;③请证明你的上述两个猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时 DE 与EF有怎样的数量关系.14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.15. (•青岛模拟)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.【答案与解析】一.选择题1.【答案】C.【解析】将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,32346.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】3.【解析】如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】125.【解析】连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.12.【答案】3+3.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°, ∴∠DBC=30°,∴BC=2CD=6cm.由已知得:梯形ABCD是等腰梯形,∴∠ABC=∠C=60°,∴∠ABD=∠ABC-∠DBC=30°.∵AD∥BC,∴∠ADB=∠DBC=30°,∴∠ABD=∠ADB,∴AD=AB=3cm.(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t, ∴PC=6-2t,过Q作QE⊥BC于E,则QE=CQsin60°=32t,∴S梯形ABCD-S△PCQ=2734-34(6-2t)t=34(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.∵S梯形ABCD=2734,S△ABD=12×3×32×3,∴S△ABD=13×S梯形ABCD,∴五边形ABPQD的面积不可能是梯形ABCD面积的16.∴S△PCQ:S五边形ABPQD=1:5,即S五边形ABPQD=56S梯形ABCD∴34(2t2-6t+27)=56×2734,整理得:4t2-12t+9=0,∴t=32,即当t=32秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】解:(1)是定值,∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos45°=a.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE﹣PF=OF﹣BF=OB=acos45°=a.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.因矩形对边相等,所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.化简上述的两个方程得到z=13y-4x,4z=2x+3y,消去z得18x=49y.因为18与49互质,所以x、y的最小自然数解是x=49,y=18,此时z=38.以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,得长、宽分别为593和422.此时得最小面积值是593×422=250246.。
中点四边形教案
《探究中点四边形形状》教案教学目标:1.知识与技能:(1)了解中点四边形的概念;(2)利用三角形中位线定理证明中点四边形是平行四边形,理解特殊的平行四边形的中点四边形的特征;(3)理解中点四边形的形状与原四边形的对角线的关系。
2. 过程与方法:(1)经历观察、猜想、证明中点四边形是平行四边形的过程熟练运用三角形中位线定理;(2)经历由一般到特殊的思维进程,发现并证明特殊的平行四边形的中点四边形的特征;3.情感态度与价值观:(1)通过数学活动培养学生观察、猜想、证明的探索精神;(2)通过小组讨论活动,培养学生合作的意识。
教学重点:1、任意四边形的中点四边形形状的判定和证明;2、特殊平行四边形的中点四边形形状的判定和证明。
教学难点:影响中点四边形形状的主要因素的分析和概括。
教学过程:一、复习旧知,情境引入1、回顾三角形中位线性质定理。
2、问题1:出示问题:一块白铁皮零料形状如图,工人师傅要从中裁出一块平行四边形白铁皮,并使四个顶点分别落在原白铁皮的四条边上,可以如何裁?(学生思考、讨论、分析,想出解决办法)师:你能证明吗?生:已知:如图,点E、F、G、H分别是四边形ABCD各边中点。
求证:四边形EFGH为平行四边形。
(学生可连接AC,也可连接AC、BD)二、探索活动1、中点四边形的定义:顺次连接四边形各边中点所得的四边形叫做中点四边形。
2、结合引例得出结论:任意一个四边形的中点四边形,都为平行四边形。
问题2:观察这个图形,平行四边形EFGH各边与什么有关?各个内角又与什么有关?在问题2的基础上,完成下列三个探究。
探究1:四边形对角线满足什么条件时,它的中点四边形是矩形?探究2:四边形对角线满足什么条件时,它的中点四边形是菱形形?探究3:四边形对角线满足什么条件时,它的中点四边形是正方形形?学生四人小组合作探究并得出结论:(1)中点四边形的形状与原四边形的有密切关系;(2)只要原四边形的两条对角线,就能使中点四边形是菱形;(3)只要原四边形的两条对角线,就能使中点四边形是矩形;(4)要使中点四边形是正方形,原四边形要符合的条件是。
2020年中考数学复习 第五单元 四边形 方法技巧训练(五)与中点有关的基本模型练习
方法技巧训练(五)与中点有关的基本模型题组11.如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=(C)A.60°B.75°C.90°D.105°第1题图第2题图2.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是(B)A.3B.4C.5D.63.如图,在四边形ABCD中,∠DAB=90°,∠DCB=90°,E,F分别是BD,AC的中点,AC=6,BD=10,则EF 的长为(B)A.3B.4C.5D.7第3题图第4题图4.如图,在钝角△ABC中,已知∠A为钝角,边AB,A C的垂直平分线分别交BC于点D,E.若BD2+CE2=DE2,则∠A的度数为135°W.5.(2018·青岛)如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH2.题组26.如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE∶S△DCE=(B)A.1∶4B.1∶3C.1∶2D.2∶3第6题图第7题图7.(2018·陕西)如图,在菱形ABCD中.点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE.若EH=2EF,则下列结论正确的是(D)A.AB=2EFB.AB=2EFC.AB=3EFD.AB=5EF8.(2018·苏州)如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E 作EF∥CD (点F 位于点E 右侧),且EF =2CD ,连接DF.若AB =8,则DF 的长为(B )A .3B .4C .2 3D .3 29.如图,在△ABC 中,AB =10,AC =6,则BC 边上的中线AD 的取值范围是2<AD <8W.第9题图 第10题图10.(2018·武汉)如图,在△ABC 中,∠ACB=60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 2. 11.(1)如图1,在四边形ABCD 中,E ,F 分别是BC ,AD 的中点,连接FE 并延长,分别与BA ,CD 的延长线交于点M ,N ,则∠BME=∠CNE,求证:AB =CD.(提示:取BD 的中点H ,连接FH ,HE 作辅助线)(2)如图2,在△ABC 中,点O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G.若AB =DC =5,∠OEC=60°,求OE 的长度.图1 图2 解:(1)证明:连接BD ,取DB 的中点H ,连接EH ,FH. ∵E,F 分别是BC ,AD 的中点,∴EH∥AB,EH =12AB ,FH∥CD,FH =12CD ,∴∠BME=∠HEF,∠CNF=∠HFE.∵∠BME=∠CNE, ∴∠HEF=∠HFE. ∴HE=HF. ∴AB=CD.(2)连接BD ,取DB 的中点H ,连接EH ,OH. ∵AB=CD ,∴HO=HE. ∴∠HEO=∠HOE=∠OEC. ∵∠OEC=60°,∴∠HEO=∠HOE=60°. ∴△OEH 是等边三角形. ∵AB=DC =5, ∴OE=52.【以下方法指导排版时是在边栏】 方法指导1 有关中点的常见考法 (1)直角三角形斜边上的中线如图,在Rt △ABC 中,点D 是斜边AB 的中点,则BD =12AB ,AD =CD =DB.反过来,在△ABC 中,点D 在AB 边上,若A D =BD =CD =12AB ,则有∠ACB=90°.解题通法:直角+中点⇒直角三角斜边上的中线.(1)图 (2)图 (3)图 (2)等腰三角形“三线合一”如图,在△ABC 中,若AB =AC ,通常取底边BC 的中点D ,则AD⊥BC,且AD 平分∠BAC.解题通法:事实上,在△ABC 中:①AB=AC ;②AD 平分∠BAC;③BD=CD ;④AD⊥BC.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.(3)线段垂直平分线如图,直线l 是线段BC 的垂直平分线,则可以在直线l 上任意取一点A ,得到AB =AC ,即△ABC 是等腰三角形.解题通法:遇到垂直平分线⇒线段相等⇒等腰三角形. (4)倍长中线在△ABC 中,M 为BC 的中点.①如图1,连接AM 并延长至点E ,使得AM =ME ,连接CE ,则△ABM≌△ECM.②如图2,点D 在AB 边上,连接DM 并延长至点E ,使得ME =DM ,连接CE ,则△DMB≌△EMC.解题通法:遇到三角形一边上的中点,常常倍长中线,利用“8”字形全等将题中条件集中,以达到解题的目的.图1 图2(4)图图1 图2(5)图(5)拓展图 (6)图(5)构造三角形的中位线 在△ABC 中,D 为AB 边的中点.①如图1,取AC 边上的中点E ,连接DE ,则DE∥BC,且DE =12BC.②如图2,延长BC 至点F ,使得CF =BC ,连接CD ,AF ,则DC∥AF,且DC =12AF.解题通法:三角形的中位线从位置关系和数量关系两个方面将图形中分散的线段关系集中起来,通常需要再找一个中点来构造中位线,或倍长某段线段构造中位线.拓展:如果已知中点的边不在一个三角形中,则需先添加辅助线构造中点,然后构造三角形的中位线解题.如在四边形ABCD 中,点E ,H 分别为AB ,CD 边的中点,则先连接AC ,然后取AC 边的中点F ,连接EF ,FH ,则EF 为△ABC 的中位线,FH 为△ACD 的中位线.(6)中点四边形如图,在四边形ABCD 中,点E ,F ,G ,H 分别是四边形的边AB ,BC ,CD ,AD 的中点. 结论:①连接EF ,FG ,GH ,EH ,则中点四边形EFGH 是平行四边形. ②若对角线AC 和BD 相等,则中点四边形EFGH 是菱形. ③若对角线AC 与BD 互相垂直,则中点四边形EFGH 是矩形.④若对角线AC 与BD 互相垂直且相等,则中点四边形EFGH 是正方形. 方法指导2中考数学中涉及“一半”的相关内容 ①直角三角形斜边中线等于斜边的一半;②30°所对的直角边等于斜边的一半;③三角形的中位线平行与第三边,且等于第三边的一半;④圆周角的度数等于它所对弧圆心角度数的一半.。
数学人教版八年级下册平行四边形课题活动——中点四边形
第十七章平行四边形复习教学设计五大连池市第一中学孙洪臣教材分析:本课是《平行四边形》活动课,在平行四边形判定和性质学习的基础上利用类比的方法提出了四边形各边中点所成图形的形状、周长、面积问题,让学生经历猜想、证明的过程,并形成一般性结论,以发展学生的创新精神和实践能力。
教学中应让学生充分思考和体验,使学生思维能力、情感态度、价值观等协同发展。
教学方法:尝试发现、自主探究,小组合作教具媒体:三角尺、课程ppt一、教学目标1. 知识技能:掌握中点四边形的性质,能快速判断形状,会计算周长和面积。
2. 数学思考: 经历观察、实验、猜想、证明等活动过程,引导学生发展合情推理能力、初步的演绎推理能力和语言表达能力。
体会证明过程中所运用的归纳概括以及转化等思想方法。
3. 问题解决:通过问题解决,使学生初步了解把“未知”化为“已知”,把复杂问题化为简单问题的转化思想,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。
4. 情感态度:在合作中体验探索,收获快乐,在学习活动中获得成功的体验,在推理中感悟数学内在美,巩固逻辑思维。
发展学生的类比转化等思维,培养学生的探索精神和合作意识。
二、学情分析:初二学生已具备了一定的逻辑思维能力,但是思维依赖于具体形象直观,综合运用知识的能力较弱,特别是及时归纳总结,新旧知识联系起来的能力较弱,为此在教学中采取小组合作、探索发现等教学方法,引导,总结,训练。
对于复杂几何语言的应用,以及逻辑程度较高的几何问题的论证,教学中应予以简单明白,层层深入的分析。
三、教学重点难点重点是掌握中点四边形的性质,能快速判断形状,会计算周长和面积。
难点是中点四边形性质在具体问题中的应用与拓展。
四、教学过程:【活动一】、创设情景上几节课我们研究了平行四边形、矩形、菱形、正方形等几类特殊的四边形,这节课我们来探讨一类更为特殊的四边形-----中点四边形。
【学生活动】学生思考,带着问题进入学习。
四边形的中点专题
四边形的中点专题四边形的中点专题1..如图,正方形ABCD中,E为AB边上一点,过点D作DF丄DE与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=2 ,求BE的长;(2)若M是EF中点,求证:MC垂直平分DB(1)解:•••四边形ABCDE方形,•••/ BCD=90,••• Rt△ BCD中, BC2 CD2 BD2,2 2即BC22 2 • BC=AB=1T DF丄DE, ADE y EDC=90 =Z EDC k CDF•/ ADE y CDFADE CDF在^ ADE?3 CDF中, AD CD ,A DCF 90•△ ADE^A CDF(ASA,-——2•AE=CF=BF-BC=2 1 • BE=AB-AE=1-1 .2 =21(2)证明:如图:连接DM BM T DF丄DE M为EF中点,• DM= EF,2vZ EBF=90,M 为EF 中点,• BM」EF,:BM=DM2• M在BD的垂直平分线上v BC=CD,.C在BD的垂直平分线上• MC垂直平分DB2.如图,在平行四边形ABCD中,对角线丄AC于点E,求证:AD=2OE证明:取CD的中点F,连接EF, OFv四边形ABCD是平行四边形,•AO=COV DE I AC••/ DEC=90•••EF=FCV CD// AB•••/ CAB2 DCA=x.•••/ FEC K DCE= x.•••/ DAC K FOC=2 x.•••/ FEO K EFO= x••• OE=OFAD=2OE3.在平行四边形ABC冲,对角线相交于点O. E、F、P分别OB OC AD的中点, 且AC=2AB 求证:EP=EF证明:连接AE, V四边形ABCD是平行四边形3题••• AD=BC AC=2OA=2OC: AC=2AB•••OA=AB V E 为OB中点,••• AE! BD (三线合一定理),•••K AED=90 , V P 为AD中点,••• AD=2Ep v BC=AD •- BC=2EPV E、F分别是OB OC中点,• BC=2EF • EP=EF4.如图,点E为正方形ABCD外一点,/ BCE K BAE=15 ,AE=T3,O为BD的中点,连接OE,求OE的长。
中考数学二轮复习压轴专题:四边形
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学二轮复习压轴专题《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE =CE +OC =2+3=5,在Rt △BOE 中,由勾股定理得:DG =BE ==;综上所述,若A 、C 、E 三点共线,DG 的长为或.4.如图,在△ABC 中,∠B =90°,AB =6cm ,BC =8cm ,动点D 从点C 出发,沿CA 方向匀速运动,速度为2cm /s ;同时,动点E 从点A 出发,沿AB 方向匀速运动,速度为1cm /s ;当一个点停止运动,另一个点也停止运动.设点D ,E 运动的时间是t (s )(0<t <5).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)t 为何值时,DE ⊥AC ?(2)设四边形AEFC 的面积为S ,试求出S 与t 之间的关系式;(3)是否存在某一时刻t ,使得S 四边形AEFC :S △ABC =17:24,若存在,求出t 的值;若不存在,请说明理由;(4)当t 为何值时,∠ADE =45°?解:(1)∵∠B =90o ,AB =6 cm ,BC =8 cm , ∴AC ===10(cm ),若DE ⊥AC ,∴∠EDA =90°, ∴∠EDA =∠B , ∵∠A =∠A , ∴△ADE ∽△ABC , ∴=,即:=,∴t =,∴当t =s 时,DE ⊥AC ;(2)∵DF ⊥BC , ∴∠DFC =90°, ∴∠DFC =∠B , ∵∠C =∠C , ∴△CDF ∽△CAB , ∴=,即=,∴CF =, ∴BF =8﹣,BE =AB ﹣AE =6﹣t ,∴S =S △ABC ﹣S △BEF =×AB •BC ﹣×BF •BE =×6×8﹣×(8﹣t )×(6﹣t )=﹣t 2+t ;(3)若存在某一时刻t ,使得S 四边形AEFC :S △ABC =17:24, 根据题意得:﹣t 2+t =××6×8,解得:t 1=,t 2=(不合题意舍去),∴当t =s 时,S 四边形AEFC :S △ABC =17:24; (4)过点E 作EM ⊥AC 与点M ,如图所示: 则∠EMA =∠B =90°, ∵∠A =∠A , ∴△AEM ∽△ACB ,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH 是菱形, 由△EGM ≌△FHN ,可知EG =FH , ∴四边形EFGH 的形状为正方形. ∴∠HEF =90°∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°, ∴∠2=∠4. 在△AEH 与△BFE 中,,∴△AEH ≌△BFE (ASA ) ∴AE =BF .故答案为正方形,AE =BF .(4)利用①中结论,易证△AEH 、△BFE 、△CGF 、△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4﹣x .∴y =S 正方形ABCD ﹣4S △AEH =4×4﹣4×x (4﹣x )=2x 2﹣8x +16. ∴y =2x 2﹣8x +16(0<x <4) ∵y =2x 2﹣8x +16=2(x ﹣2)2+8,∴当x =2时,y 取得最小值8;当x =0时,y =16, ∴y 的取值范围为:8≤y <16.8.已知:如图1,在平面直角坐标系中,长方形OABC 的顶点B 的坐标是(6,4).(1)直接写出A 点坐标( 6 , 0 ),C 点坐标( 0 , 4 );(2)如图2,D 为OC 中点.连接BD ,AD ,如果在第二象限内有一点P (m ,1),且四边形OADP 的面积是△ABC 面积的2倍,求满足条件的点P 的坐标;(3)如图3,动点M 从点C 出发,以每钞1个单位的速度沿线段CB 运动,同时动点N 从点A 出发.以每秒2个单位的速度沿线段AO 运动,当N 到达O 点时,M ,N 同时停止运动,运动时间是t 秒(t >0),在M ,N 运动过程中.当MN =5时,直接写出时间t 的值. 解:(1)∵四边形OABC 是长方形, ∴AB ∥OC ,BC ∥OA , ∵B (6,4),∴A (6,0),C (0,4), 故答案为:6,0,0,4;(2)如图2,由(1)知,A (6,0),C (0,4), ∴OA =6,OC =4, ∵四边形OABC 是长方形, ∴S 长方形OABC =OA •OC =6×4=24, 连接AC ,∵AC 是长方形OABC 的对角线, ∴S △OAC =S △ABC =S 长方形OABC =12, ∵点D 是OC 的中点, ∴S △OAD =S △OAC =6,∵四边形OADP 的面积是△ABC 面积的2倍, ∴S 四边形OADP =2S △ABC =24,∵S 四边形OADP =S △OAD +S △ODP =6+S △ODP =24, ∴S △ODP =18,∵点D 是OC 的中点,且OC =4, ∴OD =OC =2, ∵P (m ,1),∴S=OD•|m|=×2|m|=18,△ODP∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,=•OA•OC=××2=.∴S△AOC故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF =S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题复习:中点四边形教学设计
教学目标:
1.激发学生的学习兴趣,培养学生勇于探索、勇于创新的精神。
2.培养学生独立分析问题、解决问题的能力以及研究能力和创新意识。
3.理解中点四边形的概念,掌握中点四边形判定、证明及应用。
教学重点:中点四边形形状判定和证明
教学难点:对确定中点四边形形状的主要因素的分析和概括
如果我们依次连接任意一个四边形各边中点,得到的图形又是什么呢?
今天我们就来研究这个问题。
问题:连结三角形的各边中点的线段叫做 ,他们组成的图形与原三角形 。
B
C
例题:(2012•孝感)我们把依次连接任意一个四边形各边中点得到的四边
形叫做中点四边形.如图,在四边形ABCD 中,E 、F 、G 、H 分别是边A B 、BC 、CD 、DA 的中点,依次连接各边中点得到的中点四边形EFGH.(1)这个中点四边形EFGH 的形状是________;(2)请证明你的结论.
问题1:在 中,四边的中点分别为
E,F,G,H,请猜想四边形EFGH 是什么四边形?并证明你的结论?
B
问题2:如果这个四边形是菱形呢,请猜想四边形EFGH 是什么四边形?并证明你的结论?矩形呢?正方形
呢?
B
A D B
A
归纳:
原四边形的对角线
中点四边形形状正方形
菱形
矩形平行四边形
任意四边形
原四边形
探究:1、对于任意的四边形,只要满足什么条件,它所构成的中点四边形图形可能是矩形?或者菱形?2、如何证明?请说明理由。
••••••
⇒⇒
⇒
1、如图,依次连结第一个矩形的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积是1,则第n 个图形的面积是 。
应用与实践:
A
B
B
A
2、如图,四边形ABCD 中,AC=a ,CD=b ,且AC ⊥BD ,顺次连结四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连结A 1B 1C 1D 1各边中点,
得到A 2B 2C 2D 2,•••,如此进行下去,得到四边形A n B n C n
(1)证明:证明A 1B 1C 1D 1是矩形;
(2)写出四边形A 1B 1C 1D 1面积和A 2B 2C 2D 2面积;
(3)写出四边形A n B n C n D n 面积和四边形A 5B 5C 5D 5.
B
D。