用树状图或表格求概率同步测试含答案

合集下载

北师大版九年级数学3.1 第1课时 用树状图或表格求概率1(含答案)

北师大版九年级数学3.1 第1课时  用树状图或表格求概率1(含答案)

3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;(2)“两颗的点数相同”的概率是16; (3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.A. (1)、(2)B. (3)、(4)C. (1)、(3)D. (2)、(4)二、填空题: 用列表的方法求下列各事件发生的概率,并用所得的结果填空. 1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D. 二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14.三、415 . 【综合练习】(1)7;(2)14 ;(3)12 .【探究练习】14 .。

初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)

初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)

初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率一、单选题1.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.2.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A. B. C. D.3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、综合题5.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.6.九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:15 20 10已知前面两个小组的人数之比是.解答下列问题:(1)________.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)7.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)________,________;(2)扇形统计图中“科学类”所对应扇形圆心角度数为________ ;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.8.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.9.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)答案解析部分一、单选题1. A解:用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场馆的有3种情况,∴两人恰好选择同一场馆的概率=故答案为:A【分析】由题意可知,此事件是抽取放回,列出树状图,根据树状图求出所有等可能的结果数及两人恰好选择同一场馆的可能数,然后利用概率公式求解。

北师大版九年级数学《用树状图或表格求概率》同步练习1(含答案)

北师大版九年级数学《用树状图或表格求概率》同步练习1(含答案)

3.1 用树状图或表格求概率同步练习◆基础训练1.下列事件中可作为机会均等的结果的事件来计算概率的是()①某篮球运动员投篮一次命中目标;②抛一枚图钉,钉尖朝上;③一副扑克牌(去掉大小王)中任抽一张是红桃;④号码由1,2,3三个数字组成的内线电话,任意拨其中的三个数字电话接通A.②③④B.②③C.③④D.①②③④2.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是()A.15B.25C.23D.133.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.154.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为______.5.九年级(1)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是_______;(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.6.某商店举办有奖销售活动,办法如下:凡购货满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是多少?7.在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一些的所有4位数中,任意..猜一个,求他猜中该商品价格的概率.8.小红与父母一起从杭州乘火车去上海,火车车厢里每排有左、中、右三个座位.小红一家三口随意坐在某排的三个座位,则小红恰好坐在中间的概率是多少?◆提高训练9.小刚与小亮一起玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别有“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小刚获胜的概率是()A.12B.49C.59D.2310.从分别写有1,3,5,7,9的五张卡片中任取一张恰好是3的倍数的概率是_______.11.如图,三张卡片上分别写有一个代数式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分式,第二次抽取的卡片上的整式做分母,用列表法或画树状图法求能组成分式的概率是多少?2 5 83 9 64 1 712.一枚质地均匀的正方体骰子,六个面分别标有1,2,3,4,5,6,连续投掷两次.(1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字分别为p、q,若p、q分别作为点A的横坐标和纵坐标,求点A(p,q)在函数y=12x的图象上的概率.13.一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意摸出1个球是红球的概率为12.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.14.请你依据图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.◆拓展训练15.抽屉中有2个白球,3个红球,它们只有颜色不同,任意摸出一球,大家知道摸到白球的概率为25,摸到红球的概率为35,现在把这5个球分别放到两个相同的盒子中,其中一个盒子中放有1个白球,1个红球,而另一个盒子中放有1个白球和2个红球,再把两个盒子放到抽屉中,问任意摸一球,摸到白球的概率还是25吗?为什么?若不是25,请求出此时摸到白球的概率.参考答案1.C 2.B 3.A4.1 25.(1)12(2)166.151 100007.1 68.1 39.B10.2 511.2 312.(1)略(2)1 913.(1)1个(2)1 614.(1)略(2)1 615.不是,5 12。

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为( )A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是( )A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是( )A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是( )A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是( )A.14B.13C.12D.1参考答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为(B)A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是(D)A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.【解析】略·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(A)A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是16.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是(D)A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是(B)A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于13.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是13.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【解析】略【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是(C)A.14B.13C.12D.1。

3.1 用树状图或表格求概率 课时练习(含答案解析)

3.1 用树状图或表格求概率 课时练习(含答案解析)

第一节用树状图或表格求概率同步测试一、选择题1.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为() A.41 B.43 C.81 D.83答案:A解析:解答:设两层楼分别为A ,B ,共有8种情况,在一层的共有2种情况,所以甲乙丙同在一层楼吃饭的概率是41. 故选A分析:列举出所有情况,让甲、乙、丙三名学生在同一个楼层餐厅用餐的情况数即AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,除以总情况数即为所求的概率.2.如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为() A.12 B.13 C.14D.18答案:C解析:解答:列表得:共有16种情况,两个指针同时落在标有奇数扇形内的情况有4种情况,所以概率是14,故选C .分析:本题考查了树状图来求概率,列举出所有情况,看两个指针同时落在标有奇数扇形内的情况占总情况的多少即可.3.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.则两次取的小球的标号相同的概率为() A.31 B.61 C.21 D.91 答案:A解析:解答:列表,得:所以共有9种情况,两次取的小球的标号相同的有3种情况; 所以两次取的小球的标号相同的概率为3193 . 故选A .分析:本题考查了列表法求概率,本题是抽取再放回,用表格列出所有的9种情况是解决问题的关键.4.学校准备从甲、乙、丙、丁四位同学中选两位参加数学竞赛,则同时选中甲、乙两位同学的概率是() A.61 B.41 C.21 D.81 答案:A解析:解答:解:画树状图得:∵共有12种等可能的结果,同时选中甲、乙两位同学的有2种情况, ∴同时选中甲、乙两位同学的概率是:21126=.所以选A . 分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与同时选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案5.随机闭合开关S 1、S 2、S 3中的两个,能让灯泡⊙发光的概率是( )A.43 B.32 C.21 D.31 答案:B解析:解答:随机闭合开关S 1、S 2、S 3中的两个出现的情况列表得,所以概率为32,故选B .开关S 1S 2 S 1S 3 S 2S 3, 结果亮 亮 不亮分析:本题首先要明确,并联电路的特点,用列表法,求出三个开关的所有闭合情况,再分析出灯泡亮的情况,即可解决问题.6.小兰和小潭分别用掷A 、B 两枚骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小谭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y=-2x+6上的概率为() A.366 B.181 C.121 D.91 答案:B解析:解答:列表得:∴一共有36种情况,她们各掷一次所确定的点落在已知直线y=-2x+6上的有(1,4), (2,2).∴她们各掷一次所确定的点落在已知直线y=-2x+6上的概率为181362 . 故选B分析:用列表法先列出所有的36种坐标,然后再分别代入直线,找出满足解析式的点的坐标,问题即可得到解决.7小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.21B.31C.41D.81答案:D解析:解答:解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是81. 故选D .分析:本题可理解为两步实验,用树状图列出这两步实验的所有情况8种,问题即可得到解决.8.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y=x-2图象上的概率是( )A.21B.31C.41D.61答案:D解析:解答:画树状图如上:共有6种等可能的结果,其中只有(1,-1)在一次函数y=x-2图象上, 所以点在一次函数y=x-2图象上的概率=16. 故选D .分析:用树状图列出这四个数作为点的坐标的所有情况,注意有顺序性,再代入找出满足解析式的点,问题即可得到解决.9.一枚质地均匀的昔通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B. 12C. 13D. 14答案:D 解析:解答:共有4种情况,落地后两次都是正面朝上的情况数有1种,所以概率为14.故选D . 分析:用树状图列出所有可能出现的情况(正正;正反;反正;反反)这是解决问题的关键. 10.任意掷一枚均匀的硬币两次,则两次都不是正面朝上的概率是() A.0 B. 14C. 13D. 13答案:B解析:解答: ∵任意掷一枚均匀的硬币两次,等可能的结果有:正正,正反,反正,反反, ∴两次都不是正面朝上的概率是14.故选B . 分析:首先利用列举法可得任意掷一枚均匀的硬币两次,等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.11. 将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上,放在桌面上,随机抽取一张(不放回),接着再随机抽取一张,恰好两张卡片上的数字相邻的概率为( ) A.15 B.14 C.13 D.12答案:D 解析:解答:第一次可有4种选择,那么第二次可有3种选择,那么知共有4×3=12种可能,恰好两张卡片上的数字相邻的有6种,所以概率是61122=,故选D .分析:首先利用列举法可得抽取不放回的等可能的结果有:12种,相邻的有6种,然后利用概率公式求解即可求得答案.12.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b)在第二象限的概率为( ) A.16 B.13 C 12 D.23答案:B解析:解答:解:根据题意,画出树状图如上:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,所以,2163P ==. 故选B .分析:首先利用树形图可得等可能的结果有6种,然后利用概率公式求解即可求得答案. 13.一个盒子中有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( ) A.61 B.31 C.21D.1 答案:A解析:解答:共12种等可能的情况,2次都是白球的情况数有2种, 所以概率为.故选A .分析:列举出所有情况,看这两个球都是白球的情况数占总情况数的多少即可.14.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A.13 B.16 C.815D.56 答案:A 解析:解答:显然和为3的倍数的概率为.故选A.分析:本题可理解为两步实验,用列表法求出36种所有可能的情况,然后找出和为3的倍数个数问题即可得到解决.15.甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,如果任意安排四位同学的跑步顺序,那么恰好由甲将接力棒交给乙的概率是( )A.14B.16C.18D.524答案:A解析:解答:画树状图得:一共有24种情况,恰好由甲将接力棒交给乙的有甲乙丙丁、甲乙丁丙、丙甲乙丁、丁甲乙丙、丙丁甲乙、丁丙甲乙6种情况,∴恰好由甲将接力棒交给乙的概率是61244=,故选A.分析:用树形图列举出所有情况,看恰好由甲将接力棒交给乙的情况数占总情况数的多少即可.二、填空题16.由1,2,3组成不重复的两位数,十位数字是2的概率是_____.答案:31解析:解答:由1,2,3组成不重复的两位数有:12、13、21、23、31、32共六种情况;则十位数字是2的情况有:21、23两种;∴十位数字是2的概率是2÷6=13.故答案为13.分析:先根据题意列出符合条件的两位数有6种,其中十位数字是2的情况有2种,然后根据概率公式求解即可.17.如图,是两个可以自由转动的均匀圆盘A 和B ,A 、B 分别被均匀的分成三等份和四等份.同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是_____.答案:23解析:解答:画树状图得:∵由12种等可能的结果,指针分别指向的两个数字的积为偶数的有8种情况,∴指针分别指向的两个数字的积为偶数的概率是:32128 . 故答案为:32. 分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与指针分别指向的两个数字的积为偶数的情况,再利用概率公式求解即可求得答案.18.有四条线段,长度分别为1、3、4、5,任意取其中三条,能构成三角形的概率是_____ 答案:14解析:解答:四条线段,长度分别为1、3、4、5,任意取其中三条情况为:1,3,4;1,3,5;1,4,5;3,4,5;能构成三角形的情况有:3,4,5只有1种情况, 则P=14.故答案为:14分析:找出四条选段,任意取其中三条的情况数,再找出能构成三角形的情况,即可求出所求的概率.19.从1cm、3cm、5cm、7cm、9cm的五条线段中,任选三条可以构成三角形的概率是_____.答案:3 10解析:解答:∵从1cm、3cm、5cm、7cm、9cm的五条线段中,任选三条,等可能的结果有:1cm、3cm、5cm,1cm、3c m、7cm,1cm、3cm、9cm,1cm、5cm、7cm,1cm、5cm、9cm,1cm、7cm、9cm,3cm、5cm、7cm,3cm、5cm、9cm,3cm、7cm、9cm,5cm、7cm、9cm 共10种,能构成三角形的有以上情况:3cm,5cm,7cm,3cm,7cm,9cm,5cm,7cm,9cm,∴任选三条可以构成三角形的概率是:3 10.故答案为:3 10.分析:首先利用列举法可得:任选三条,等可能的结果有:1cm、3cm、5cm,1cm、3cm、7cm,1cm、3cm、9cm,1cm、5cm、7cm,1cm、5cm、9cm,1cm、7cm、9cm,3cm、5cm、7cm,3cm、5cm、9cm,3cm、7cm、9cm,5cm、7cm、9cm共10种,能构成三角形的有以上情况:3cm,5cm,7cm,3cm,7cm,9cm,5cm,7cm,9cm,再利用概率公式即可求得答案.20.如果有两组牌,它们牌面数字分别为1、2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于4的牌概率是____.答案:1 3解析:解答:解:画树状图如上:共有9种情况,两张牌的牌面数字和等于4的牌有3种,∴P (两张牌的牌面数字和等于4)=3193 . 故答案为:31. 分析:用树形图按两步实验的方法列出9种情况,数字之和等于4的有3种,即可得出答案. 概率三.解答题21.有两组牌,每组牌都是4张,牌面数字分别是1,2,3,4,从每组牌中任取一张,求抽取的两张牌的数字之和等于5的概率,并画出树状图.答案:解:,共有16种等可能的情况,和为5的情况有4种,∴P (和为5)=41.解析:分析:画出树状图.列举出所有情况,看抽取的两张牌的数字之和等于5的情况占所有情况的多少即可.22.一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;答案:72(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.答案:712解析:解答:(1)∵在7张卡片中共有两张卡片写有数字1,∴从中任意抽取一张卡片,卡片上写有数字1的概率是72;(2)组成的所有两位数列表为:十位数 个位数12 3 4 111 21 31 41 212 22 32 42 3 13 23 33 43 或列树状图为:∴这个两位数大于22的概率为712. 分析:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 依据题意先用列表法或画树状图法分析所有等可能和出现所有结果的可能,然后根据概率公式求出该事件的概率.23.现将红、黄、蓝各一球放入不透明的盒子中,这三个球除颜色外完全相同,每次摇匀后,从中摸出一个球记录颜色并放回,共摸两次,求摸到同种颜色球的概率.答案:解:由树状图可知共有3×3=9种可能,摸到同种颜色球的有3种,所以概率是3193 . 图法解析:分析:用树形图,先求出摸两次所有可能出现的情况共9种,再找出同颜色的有3种,计算即可得到答案.24.“十一”黄金周期间,小明要与父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.问题为:(1)小明随意拿出一条裤子和一件上衣配成一套,用(画树状图或列表格)中的一种列出所有可能出现结果;答案:6种;(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少;答案:31 (3)他任意拿出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?答案:13解析:解答:解:(1)列表如上: 裤子 红色 黑色 黄色上衣红色红色,红色 红色,黑色 红色,黄色 黄色 黄色,红色 黄色,黑色 黄色,黄色所以小明随意拿出一条裤子和一件上衣配成一套,所有可能出现的结果有6种;(2)黑色长裤的有两种,所以概率是31; (3)颜色相同的占两种,所以概率是13. 分析:因为此题需要两步完成,所以采用列表法或者采用树状图法都比较简单;解题时要注意是放回实验还是不放回实验.此题属于放回实验.(1)根据表格可得所有情况;(2)找到黑色长裤占全部情况的多少; (3)颜色相同的情况占全部情况的多少.25.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为21.(1)试求袋中蓝球的个数;答案:1个.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.答案:16解析:解答:(1)设蓝球个数为x 个,则由题意得21212x =++,x=1 答:蓝球有1个;(2)∴两次摸到都是白球的概率=21 126=.分析:求概率时要理解概率值等于出现的次数比上总的次数,由于给出了概率求个数,所以可列方程解之.。

初中数学例题:用树状图或表格求概率

初中数学例题:用树状图或表格求概率

初中数学例题:用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .B .C .D .【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少. 举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( )A .B .C .D .【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ).A . BCD【答案】D.2. (2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )13141234141312143413A .B .C .D .【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【答案】C.【解析】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=. 故选C .【总结升华】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 举一反三:【变式1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为( )A .B .C .D .【答案】D.【变式2】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是19182913_____.【答案】P (停在阴影部分)=.23。

3.1 用树状图或表格求概率 练习题 2024-2025学年北师大版九年级数学上册

3.1 用树状图或表格求概率 练习题 2024-2025学年北师大版九年级数学上册

3.1 用树状图或表格求概率一、单项选择题1.从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为( ) A .15 B .25 C .35 D .452.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和白色围巾的概率是( ) A .12 B .23 C .16 D .563.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A .13B .23C .12D .1 4.现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A .16B .18C .110D .1125.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指(每次只能出一只手),若两人出拳的手指数之和为偶数时小李获胜,则小李获胜的概率为( )A .1325B .1225C .425D .126.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面——小明赢1分;抛出其他结果——小刚赢1分;谁先得到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( ) A .把“抛出两个正面”改为“抛出两个同面” B .把“抛出其他结果”改为“抛出两个反面” C .把“小明赢1分”改为“小明赢3分” D .把“小刚赢1分”改为“小刚赢3分”7.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .18B .16C .14D .128.转动两个转盘,当指针分别指向红色和蓝色时称为配紫色成功.如图,转动两个分别被均匀分成4等份和3等份的转盘各一次,配紫色成功的概率是( )A .12B .13C .14D .23二、填空题9.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是__________.10.端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,则爷爷奶奶吃到同类粽子的概率为____________.11.如图,管中放置着三根同样的绳子AA1,BB1,CC1,小明在左侧随机选两个绳头打一个结,小红在右侧也随机选两个绳头打一个结,则这三根绳子能连接成一根长绳的概率为____________.12.在拼图游戏中,从如图①所示的4张卡片中任取2张卡片,若能拼成如图②所示的“房子”,则小静赢,否则小敏赢.判断这个游戏对双方____________ (填“公平”或“不公平”).13.用图中两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是______.14.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是_____.15.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为___.三、解答题16.甲、乙两位同学去食堂就餐,如图是食堂内的一张餐桌的示意图,甲、乙两位同学随机地坐在①,②,③,④这四个座位上,请用画树状图或列表的方法求甲、乙两位同学恰好坐在正对面的概率.17.小莉的爸爸买了一张某演唱会的门票,她和哥哥两人都很想去看,可门票只有一张,读九年级的哥哥想了一个抽牌游戏来决定谁去看演唱会:拿8张扑克牌,将数字为1,2,3,5的4张牌给小莉,将数字为4,6,7,8的4张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的4张牌中随机抽出一张,然后将抽出的2张牌的数字相加,如果和为偶数,则小莉去;否则哥哥去.(1)请用画树状图或列表的方法求小莉去看演唱会的概率;(2)哥哥设计的这个游戏对双方公平吗?为什么?若不公平,请你修改这个游戏,使其对双方公平.18.在一次数学兴趣小组活动中,小明和小刚两位同学设计了如图所示的两个转盘做游戏,游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后(若指针停在分界线上,则重转),若指针所指区域内两数之和小于11,则小明获胜;若指针所指区域内两数之和等于11,则为平局;若指针所指区域内两数之和大于11,则小刚获胜.(1)请用列表或画树状图的方法表示出上述游戏中两数之和的所有可能出现的结果;(2)这个游戏规则公平吗?为什么?答案 一、1-8 BCBAA DCC 二、 9. 12 10. 2511. 2312. 不公平 13. 51214. 5915. 14三、16. 解:画树状图如下:由树状图可知共有12种等可能的结果,其中甲、乙两位同学恰好坐在正对面的结果共有①②,②①,③④,④③这4种,∴甲、乙两位同学恰好坐在正对面的概率为412 =1317. 解:(1)画树状图如下:由树状图可知共有16种等可能的结果,其中小莉去看演唱会的结果有6种,∴小莉去看演唱会的概率为616 =38(2)不公平,理由如下:∵哥哥去看演唱会的概率为1-38 =58 ,而38 <58 ,∴小莉去看演唱会的概率低于哥哥去看演唱会的概率,∴哥哥设计的这个游戏对双方不公平.修改游戏的方法不唯一,合理即可,如:把小莉的数字5的牌与哥哥数字4的牌对调 18. 解:(1)上述游戏中两数之和的所有可能出现的结果如如下的树状图所示:(2)不公平,理由如下:由树状图可知共有12种等可能的结果,其中小明获胜、小刚获胜的结果分别有5种、3种,∴小明获胜的概率为512 ,小刚获胜的概率为312 =14 .∵512 >14 ,∴这个游戏规则不公平。

《3.1用树状图或表格求概率》同步练习含答案解析

《3.1用树状图或表格求概率》同步练习含答案解析

《3.1用树状图或表格求概率》同步练习含答案解析《3.1 用树状图或表格求概率》一、选择题1.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A .B .C .D .2.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A .B .C .D .3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A .B .C .D .4.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( )A .B .C .D .5.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A .B .C .D .6.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( ) A .点数都是偶数 B .点数的和为奇数 C .点数的和小于13 D .点数的和小于27.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是( )A .B .C .D .8.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A.B.C.D.9.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.10.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.11.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C. D.12.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.13.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A.B.C.D.14.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.15.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.二、填空题16.掷两枚质地均匀的骰子,其点数之和大于10的概率为.17.同时投掷两个骰子,它们点数之和不大于4的概率是.18.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.19.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.20.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是.21.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.22.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.23.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.24.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.25.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.三、解答题26.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.27.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.28.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)《3.1 用树状图或表格求概率》参考答案与试题解析一、选择题1.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】统计与概率.【分析】根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到至少有两枚硬币正面向上的概率.【解答】解:由题意可得,所有的可能性为:∴至少有两枚硬币正面向上的概率是: =, 故选D .【点评】本题考查列表法与树状图法,解题的关键是明确题意,写出所有的可能性.3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A .B .C .D .【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为: =.故选C .【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( )A.B.C.D.【考点】列表法与树状图法;等边三角形的判定.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等边三角形的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有27种等可能的结果,构成等边三角形的有3种情况,∴以a、b、c为边长正好构成等边三角形的概率是: =.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两次抽取的数字的积为奇数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次抽取的数字的积为奇数的结果数为9,所以随机抽取一张,两次抽取的数字的积为奇数的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.6.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A.点数都是偶数 B.点数的和为奇数C.点数的和小于13 D.点数的和小于2【考点】列表法与树状图法;可能性的大小.【分析】先画树状图展示36种等可能的结果数,然后找出各事件发生的结果数,然后分别计算它们的概率,然后比较概率的大小即可.【解答】解:画树状图为:共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0,所以点数都是偶数的概率==,点数的和为奇数的概率==,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13.故选C.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.7.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于5的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是:.故选C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.8.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.9.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.【考点】列表法与树状图法.【分析】画出树状图,得出共有12种等可能的结果,颜色相同的有2种情形,即可得出结果.【解答】解:树状图如图所示:共有12种等可能的结果,颜色相同的有2种情形,故小赖抽出的两颗球颜色相同的机率==;故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.10.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)展示所有9种等可能的结果数,再找出小波和小睿选到同一课程的结果数,然后根据概率公式求解.【解答】解:画树状图为:(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)共有9种等可能的结果数,其中小波和小睿选到同一课程的结果数为3,所以小波和小睿选到同一课程的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】统计与概率.【分析】根据题意可以通过列表的方法写出所有的可能性,从而可以得到所得结果之和为9的概率.【解答】解:由题意可得,同时投掷这两枚骰子,所得的所有结果是:(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、(2,6)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(3,6)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),则所有结果之和是:2、3、4、5、6、7、3、4、5、6、7、8、4、5、6、7、8、9、5、6、7、8、9、10、6、7、8、9、10、11、7、8、9、10、11、12,∴所得结果之和为9的概率是:,故选C.【点评】本题考查列表法和树状图法,解题的关键是明确题意,列出相应的表格,计算出相应的概率.13.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A.B.C.D.【考点】列表法与树状图法;绝对值;概率的意义.【分析】先求出绝对值方程|x﹣4|=2的解,即可解决问题.【解答】解:∵|x﹣4|=2,∴x=2或6.∴其结果恰为2的概率==.故选C.【点评】本题考查概率的定义、绝对值方程等知识,解题的关键是理解题意,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,属于中考常考题型.14.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是: =.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;【解答】解:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,=,则所求概率P1故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题16.掷两枚质地均匀的骰子,其点数之和大于10的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为:.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意此题是放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.同时投掷两个骰子,它们点数之和不大于4的概率是.【考点】列表法与树状图法.【分析】根据题意,设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,由分步计数原理可得(x,y)的情况数目,由列举法可得其中x+y≤4的情况数目,进而由等可能事件的概率公式计算可得答案.【解答】解:设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,x、y都有6种情况,则(x,y)共有6×6=36种情况,而其中点数之和不大于4即x+y≤4的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种情况,则其概率为=.故答案为.【点评】本题考查等可能事件的概率计算,注意用列举法分析点数之和不大于4的情况时,做到不重不漏是解题的关键.18.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的都是合格品的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,抽到的都是合格品的有6种情况,∴抽到的都是合格品的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.此题属于不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是黄球的概率是,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是.【考点】列表法与树状图法.【分析】首先根据题意可得共有4种等可能的结果,蚂蚁从A出发到达E处的2种情况,然后直接利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,蚂蚁从A出发到达E处的2种情况,∴蚂蚁从A出发到达E处的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两枚都出现反面朝上的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,两枚都出现反面朝上的有1种情况,∴两枚都出现反面朝上的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.【考点】列表法与树状图法.【分析】根据树状图判断出蚂蚁一共有多少种路可以选择,有几种可能可以获取食物即可解决问题.【解答】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.【点评】本题考查树状图、概率等知识,记住概率的定义是解决问题的关键,考虑问题要全面,属于中考常考题型.24.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有6种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中两次都摸到红球的结果数为2,所以随机摸出1个球,两次都摸到红球的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.。

北师大版九年级数学上册--第三单元 《用树状图或表格求概率》练习1题(含答案)

北师大版九年级数学上册--第三单元 《用树状图或表格求概率》练习1题(含答案)

用树状图或表格求概率一、填空题: 用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .4.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.5.已知函数5y x =-,令12x =,1,32,2,52,3,72,4,92,5,可得函数图象上的十个点.在这十个点中随机取两个点11()P x y ,,22()Q x y ,,则P Q ,两点在同一反比例函数图象上的概率是___________. 二、选择题:1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率为( )A.112 B.13 C.512 D.122.同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;(2)“两颗的点数相同”的概率是16; (3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.A. (1)、(2)B. (3)、(4)C. (1)、(3)D. (2)、(4)三、解答题:1.有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.2.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.23. 在一次数学竞赛中,某选手对其中的两道“四选一”的单项选择题(即每题给出,,,四个选项,其中有且只有一个正确选项)毫无把握,便从给定的四个选项中随机选择一个作为答案.(1)请你用树状图表示该同学对这两道题选项的选择的所有可能结果;(2)求这两道试题都被该同学选对的概率.24. 一不透明的袋子中装有个大小、质地都相同的乒乓球,球面上分别标有数字,,.先从袋中任意取出一球后放回,搅匀后再从袋中任意取出一球.若把两次号码之积作为一个两位数的十位上的数字,两次号码之和作为这个两位数的个位上的数字,求所组成的两位数是偶数的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)25. “石头、剪刀、布”是广为流传的游戏,游戏时比赛各方每次做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人每次都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?红 蓝 红 黄 红 蓝 黄26. 一个不透明的口袋中装有个分别标有数字,,,的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为;小颖在剩下的个小球中随机摸出一个小球记下数字为.(1)小红摸出标有数字的小球的概率是________;(2)请用列表法或画树状图的方法表示出由,确定的点所有可能的结果;(3)若规定:点在第一象限或第三象限小红获胜;点在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.。

3.1+用树状图或表格求概率 同步练习 +2024—2025学年北师大版数学九年级上册

3.1+用树状图或表格求概率 同步练习 +2024—2025学年北师大版数学九年级上册

1 用树状图或表格求概率课时1用树状图或表格求概率过基础知识点 1 用列表法求概率1“敬老爱老”是中华民族的优秀传统美德. 小刚、小强计划利用暑期从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A 12B 13C 16D 292某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100 米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是( )A 12B 14C 16D 1123 投掷两枚骰子,朝上一面的点数之和为7 的概率是 .4某校七年级举行了国庆手抄报比赛,七(1)班要从获得一等奖的4名学生作品中随机抽取2 份进行展览,已知这4 名学生中,男生和女生各2 名,求所抽2 份作品恰好是来自1 名男生和1 名女生的概率.知识点2用画树状图法求概率5山西省有三处世界文化遗产:①平遥古城;②云冈石窟;③五台山.哥哥和妹妹从中分别随机选取一个在五一期间参观,则正好选五台山和云冈石窟的概率为 ( )A 13B 29C 49D 236在6,7,8,9 四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是 ( ) A 13 B 12 C 23 D 147将一副扑克牌中的两张牌红桃 A 和黑桃2 都从中间剪开,分成四块,这四块背面完全一样,将它们背面朝上,洗匀后,任取两块,恰好能拼成一张完整的牌的概率是 .8某校组织学生去敬老院表演节目,表演形式有舞蹈、情景剧和唱歌3 种类型.小明、小丽2 人积极报名参加,从3 种类型中随机挑选一种类型.求小明、小丽选择不同类型的概率.过能力1 从甲、乙、丙、丁4 名同学中随机抽取2 名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2 名同学都是男生的概率为 ( )A 13B 12C 23D 342随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成. 现对由三个小正方形组成的“□□”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为 ( )A 13B 38C 12D 233在一个不透明的口袋中装有3个完全一样的小球,小球上分别标有数字1,2,3.先摸出一个小球,上面的数字记为a ,放回袋子中摇匀后再摸出一个小球,上面的数字记为c ,则使得关于x 的一元二次方程 ax²+4x +c =0有实数解的概率为 ( )A 16B 13C 12D 23 4 如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是 ( )A 13B 23C 12 D.15端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是 .6有同型号的A ,B 两把锁和同型号的a ,b ,c 三把钥匙,其中a 钥匙只能打开A 锁,b 钥匙只能打开 B 锁,c 钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c 钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.7 骰子六个面上的点数分别是1,2,3,4,5,6.如图,正六边形ABCDEF 顶点处各有一个圈,跳圈游戏的规则为:游戏者掷一次骰子,骰子向上一面的点数是几,就沿正六边形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得的点数为3,就顺时针连续跳3个边长,落到圈D;若第二次掷得的点数为2,就从圈 D 开始顺时针连续跳2个边长,落到圈F……设游戏者从圈A 起跳.(1)小明随机掷一次骰子,求落回到圈A 的概率P₁;(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈 A 的概率P₂,并指出他与小明落回到圈A 的可能性一样吗?课时2 利用概率判断游戏的公平性过能力1 如图是两个可以自由转动的质地均匀的转盘A,B,每个转盘被分成3个相同的扇形,游戏规定:小美与小丽分别转动转盘 A,B,指针指向的数字较大者获胜. 你认为这个规则 ( )A.公平B.对小美有利C.对小丽有利D.无法确定对谁有利2甲,乙两名同学玩“石头、剪子、布”的游戏,随机出手一次,甲获胜的概率是 .3小明和小刚一起做游戏,先制定游戏规则:每人事先从1,2,…,12这12个数中任意选一个数,然后两人各掷一枚质地均匀的骰子,谁事先选择的数恰好等于二人掷出的点数之和,谁就获胜.如果两人选择的数都不等于所掷点数之和,就再做一次上述游戏,直到决出胜负.小明根据所学习的概率知识知道一定不能选择1,那他应该选择哪个数更合适呢? 请说明理由.4甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4 个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1 个,求乙选中球拍C的概率.(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平? 为什么?课时3 利用概率玩“配紫色”游戏过能力1小明要用如图所示的两个转盘做“配紫色(红色和蓝色在一起能配成紫色)”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好能配成紫色的概率为( )A16 B14C13D 122用如图所示的两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则可配成紫色的概率是 ( )A12 B14C512D723 小明和小亮用如图所示的两个可以自由转动的转盘做“配紫色”游戏,同时随机转动两个转盘,若配成紫色,则小明胜,否则小亮胜,这个游戏对双方公平吗? 请用列表法或画树状图法说明理由.4如图,三个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.小强和小亮用转盘 A 和转盘 B 做一个转盘游戏:同时转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,则小强获胜;若两个转盘转出的颜色相同,则小亮获胜;在其他情况下,小强和小亮不分胜负.(1)用画树状图或列表的方法表示此游戏所有可能出现的结果;(2)小强认为此游戏不公平,请你帮他说明理由;(3)请你在转盘C 的空白处,涂上适当颜色,使得用转盘C 替换转盘 B 后,游戏对小强和小亮是公平的(在空白处填写表示颜色的文字即可,不要求说明理由,只需给出一种结果即可).。

北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率同步练习及答案

北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率同步练习及答案

用树状图或表格求概率(典型题汇总)知识点 1 利用列表法求概率1.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A.14B.12C.34D.232.国家出台全面二孩政策,自2016年1月1日起家庭生育无须审批.如果一个家庭已有一个孩子,再生一个孩子,那么两个都是女孩的概率是( )A.12B.13C.14D.无法确定3.一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从该口袋中随机摸出一个小球记下字母.用列表的方法,求小园同学两次摸出的小球上的字母相同的概率.知识点 2 利用画树状图法求概率4.小明和小亮在玩“石头、剪刀、布”的游戏,两人一起做同样手势的概率是( )A.12B.13C.14D.155.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A.38B.58C.23D.126.三名九年级学生坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原座位的概率为( )A.19B.16C.14D.127.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.8.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.9.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的2倍的概率是( )A.13B.12C.14D.1610.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中恰有两只雌鸟的概率是( )A.16B.38C.58D.2311.在一个不透明的袋子中装有四个小球,它们除分别标有的号码1,2,3,4不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是( )A.13B.12C.23D.16图3-1-112.如图3-1-1,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是________.13.如图3-1-2,管中放置着三根同样的绳子AA1,BB1,CC1.小明在左侧选两个打一个结,小红在右侧选两个打一个结,则这三根绳子能连接成一根长绳的概率为__________.图3-1-214.如图3-1-3是“密室逃脱俱乐部”的通路俯视图,一同学进入入口后,可任选一条通道过关.(1)他进入A密室或B密室的可能性哪个大?请说明理由(利用画树状图或列表法来求解);(2)求该同学从中间通道进入A密室的概率.图3-1-315.端午节的早晨,小文妈妈为小文准备了四个粽子做早点:一个枣馅粽、一个肉馅粽、两个花生馅粽,四个粽子除内部馅料不同外,其他均相同.(1)小文吃前两个粽子刚好都是花生馅粽的概率为________;(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请利用列表或画树状图的方法来说明理由.详解1.C2.C [解析] 列表如下:∵共有4种等可能的结果,两个都是女孩的有1种情况,∴两个都是女孩的概率是14.故选C.3.解:列表如下:所有等可能的情况有9种,其中两次摸出的小球上的字母相同的情况有3种. 所以小园同学两次摸出的小球上的字母相同的概率为39=13.4.B [解析] 画树状图如下:共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3种,故两人一起做同样手势的概率是39=13.故选B.5.D [解析] 画树状图如下:∴至少有两枚硬币正面向上的概率是48=12.6.D [解析] 画树状图为(用A ,B ,C 表示三位同学,用a ,b ,c 表示他们原来的座位):共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3种, 所以恰好有两名同学没有坐回原座位的概率=36=12.故选D.7.解:(1)画树状图如下:共有9种等可能的结果数,其中两次取出小球上的数字相同的结果数为3种, 所以两次取出小球上的数字相同的概率=39=13.(2)由(1)中树状图可知:两次取出小球上的数字之和大于3的结果数为6种, 所以两次取出小球上的数字之和大于3的概率=69=23.8.解:(1)小丽从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14.(2)画树状图如下:共有12种等可能的结果,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.9.A [解析] 画树状图如下:∵共有12种等可能的结果,其中一个数是另一个数的2倍的有4种情况, ∴其中一个数是另一个数的2倍的概率是:412=13.故选A.10.B [解析] 画树状图如图所示:因为所有等可能的情况有8种,其中三只雏鸟中恰有两只雌鸟的情况有3种,所以三只雏鸟中恰有两只雌鸟的概率是38.11.B [解析] 画树状图如下:共有12种等可能的结果数,其中第二次摸出球的号码比第一次摸出球的号码大的结果数为6种,所以第二次摸出球的号码比第一次摸出球的号码大的概率=612=12.故选B.12.1513.23 [解析] 小明在左侧选两个打一个结有三种可能:AB ,AC ,BC ,小红在右侧选两个打一个结有三种可能:A 1B 1,A 1C 1,B 1C 1,画树状图如下:共有9种等可能的结果数,其中这三根绳子能连接成一根长绳的结果数为6种, 所以这三根绳子能连接成一根长绳的概率=69=23.故答案为23.14.解:(1)该同学进入B 密室的可能性大. 理由如下:画树状图如图:共有6个等可能的结果,∴P (进入A 密室)=26=13,P (进入B 密室)=46=23,∴该同学进入B 密室的可能性大.(2)由(1)中的树状图可知该同学从中间通道进入A 密室的概率为16.15.解:(1)16(2)会增大.理由:分别用A ,B 表示一个枣馅粽、一个肉馅粽,用C 1,C 2,C 3表示三个花生馅粽,画树状图如下:∵共有20种等可能的结果,两个都是花生馅粽的有6种情况, ∴小文吃前两个粽子都是花生馅粽的概率为620=310>16,∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性会增大.。

2020年3.1 用树状图或表格求概率秋《练闯考》同步练习(含答案)

2020年3.1 用树状图或表格求概率秋《练闯考》同步练习(含答案)

3.1 用树状图或表格求概率第1课时 用树状图或表格求简单事件的概率利用__树状图__或__表格__,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.知识点:用树状图或表格求概率1.一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( C )A.116B.316C.14D.5162.(2014·玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( C )A.12B.14C.16D.1123.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( D ) A.12 B.13 C.14 D.164.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动.那么两人选到同一社区参加实践活动的概率是( B )A.12B.13C.16D.195.现有四张完全相同的卡片,上面分别标有数字-1、-2、3、4,将卡片背面朝上洗匀,然后从中随机地抽取两张,则这两张卡片上数字之积为负数的概率是__23__.6.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄,若从中一次随机抽取两个,则这两个粽子都没有蛋黄的概率是__12__.7.(2014·齐齐哈尔)从2、3、4这三个数中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是__13__.8.有双白手套和一双黑手套(不分左右),小明夜里出门,因天气寒冷要戴手套,可恰好停电,则小明左手戴白手套,右手戴黑手套的概率是__13__.9.小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)解:画树状图:∵小明出的是手心,甲、乙两人出手心、手背的所有可能有4种,其中都是手背的情况只有1种,∴P (小明获胜)=1410.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( B )A.13B.23C.16D.3411.中考体育男生抽测项目是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50米×2米、100米中随机抽取一项.恰好抽中实心球和50米的概率是( D )A.13B.16C.23D.1912.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片中的数字之积为正偶数的概率是( C )A.49B.112C.13D.1613.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( B )A.16B.13C.12D.2314.某校举行以“保护环境,从我做起”为主题的比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是__16__.15.在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”敬老院为老人服务,准备从九(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出所有可能出现的结果;(2)求出恰好选中男生小明与女生小丽的概率.解:(1)即出现了6种结果:小亮、小丽,小亮、小敏,小明、小丽,小明、小敏,小伟、小丽,小伟、小敏 (2)P (小明、小丽)=1616.在一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从中随机摸出一个乒乓球(不放回),再从剩下的三个球中随机摸出第二个乒乓球.(1)共有__12__种可能的结果;(2)请求出两次摸出乒乓球数字之积为奇数的概率. 解:(2)画树状图得P (两次摸出球之积为奇数)=212=1617.田忌赛马为我们所熟知,小亮与小明学习了概率初步知识后,设计了如下的游戏:小亮手中有方块10,8,6三张牌,小明手中有方块9,7,5三张牌,每人从各自的手中取一张牌比较,数字大的为“本局”获胜,每次取的牌不放回.(1)若每人随机取手中的一张牌进行比赛,求小明“本局”获胜的概率;(2)若比赛采用三局两胜制,即胜2局或3局者胜.当小亮的出牌顺序为6,8,10时,小明随机出牌应对,求小明比赛获胜的概率.解:(1)画树状图得P (小明胜)=39=13(2)画树状图得:P (小明胜)=16第2课时 判断游戏是否公平若某游戏不计得分情况,当双方获胜的概率__相等__,则游戏公平;当双方获胜的概率__不相等__,则游戏不公平.知识点一:求较复杂事件的概率1.若从长度是3,5,6,9的四条线段中任取三条,则能构成三角形的概率是( A ) A.12 B.34 C.13 D.142.在x 2□4x □4的空格中,任意填上“+”或“-”,在所得到的整式中,恰好是完全平方式的概率是( B )A .1 B.12 C.13 D.143.假定鸟蛋孵化后,雏鸟为雌与雄时概率相同,如果三枚蛋全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是( B )A.16B.38C.58D.234.我市辖区内景点较多,李老师和刚高中毕业的儿子准备从A ,B ,C 列三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站,那么他们都选择B 景点的概率是__19__.5.从甲地到乙地有A 1,A 2两条路线,从乙地到丙地有B 1,B 2,B 3三条路线,从丙地到丁地有C 1,C 2两条路线,一个人任意选了一条从甲地经乙地、丙地到丁地的路线,求他选到B 2路线的概率.解:画树状图得:∴P (恰好选到B 2路线)=412=13知识点二:判断游戏的公平性6.甲、乙两人用两个骰子做游戏,将两个骰子同时抛出,如果出现两个5点,那么甲赢;如果出现一个4点和一个6点,那么乙赢;如果出现其他情况,那么重新抛掷.你对这个游戏公平性的评价是__对乙有利__.(填“公平”“对甲有利”或“对乙有利”)7.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙胜.这个游戏__不公平__.(填“公平”或不公平)8.(2014·云南)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.解:(1)画树状图:(2)P (和为奇数)=816=12,P (和为偶数)=816=12,P (小明)=P (小亮),故这个游戏对双方是公平9.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( C )A.38B.12C.58D.3410.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( C )A .对小明有利B .对小亮有利C .游戏公平D .无法确定对谁有利11.(2014·舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为__19__.12.(2014·南宁)第45届世界体操锦标赛于2014年10月3日至12日在南宁市隆重举行,某校从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是__23__.13.(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率; (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为13 (2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为2314.(2014·徐州)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为__14__;(2)如果随机抽取2名同学共同展示,求同为男生的概率. 解:(2)列表如下:男 男 男 女 男 —— (男,男) (男,男) (女,男) 男 (男,男) —— (男,男) (女,男) 男 (男,男) (男,男) —— (女,男) 女(男,女)(男,女)(男,女)——所有等可能的情况有12种,其中同为男生的情况有6种,则P =612=1215.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.解:(1)树状图如下:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432 (2)这个游戏不公平.理由:组成的三位数中有“伞数”的有:132,142,143,231,241,243,341,342,其有8个,所以,甲胜的概率为824=13,而乙胜的概率为1624=23.所以这个游戏不公平第3课时 利用概率玩“配紫色”游戏用树状图或列表的方法求概率时应注意各种结果出现的可能性务必__相同__.“配紫色”游戏体现了概率模型的思想,它启示我们:__概率__是对随机现象的一种数学,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.知识点:用树状图或列表的方法求“配紫色”的概率1.用如图的两个转盘(均匀分成五等份)进行“配紫色”游戏,配成紫色(也就是两个转盘分别转出的一个是红,一个是蓝)的概率是( A )A.1325B.625C.3625D.652.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B ) A.16 B.13 C.12 D.23,第2题图) ,第3题图)3.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为( A )A.13B.23C.19D.164.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( C )A.13B.23C.19D.125.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( C )A.14B.310C.12D.346.(2014·襄阳)从长度分别为2,4,6,7的四条线段中随机抽取三条,能构成三角形的概率是__12__.7.如图是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,你认为配成紫色与配不成紫色的概率相同吗?解:画树状图如下:结果:(红,红)(红,蓝)(红,蓝)(红,红)(红,蓝)(红,蓝)(蓝,红)(蓝,蓝)(蓝,蓝),所以P (配成紫色)=59,P (配不成紫色)=49,所以配成紫色与配不成紫色的概率不相同8.(2014·枣庄)一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为P ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是( A )A.12B.13C.23D.569.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x ,乙立方体朝上一面上的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线y =6x上的概率为( C )A.118B.112C.19D.1610.形状大小一样、背面相同的四张卡片,其中三张卡片正面分别标有数字“2”“3”“4”,小明和小亮各抽一张,前一个人随机抽一张记下数字后放回,混合均匀,后一个人再随机抽一张记下数字算一次,如果两人抽一次的数字之和是8的概率为316,则第四张卡片正面标的数字是__5或6__.11.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是__14__;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.解:(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:212=1 612.小英和小丽用两个转盘玩“配紫色”的游戏,配成紫色小英赢,否则小丽赢,这个游戏对双方公平吗?请说明理由.(注:红色+蓝色=紫色)解:列表如下:转盘2转盘1红红黄蓝红(红,红)(红,红)(红,黄)(红,蓝)黄(黄,红)(黄,红)(黄,黄)(黄,蓝)蓝(蓝,红)(蓝,红)(蓝,黄)(蓝,蓝)∵P(小英)=312=14,P(小丽)=912=34,∴P(小英)≠P(小丽),∴这个游戏对双方是不公平的13.在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其他区别.从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二个球并记录颜色.求两次都摸出白球的概率.解:画树状图如下:∵共有16种等可能情况,两次都摸出白球的情况有4种,∴两次都摸出白球的概率为416=1414.某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人.(1)用树状图或列表法列出所有可能情形; (2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.解:(1)九(1)班的男生用a 11,a 12表示,九(1)班的女生用b 1表示,九(2)班的男生用a 2表示,九(2)班的女生用b 2表示,画树状图如下:(2)总共有20种等可能的结果,2名主持人来自不同班级的结果数有12个,P (2名主持人来自不同班级)=1220=35 (3)总共有20种等可能的结果,2名主持人恰好1男1女的结果数有12个,P (2名主持人恰好1男1女)=1220=35专题(七) 概率与放回、不放回问题1.(2014·昆明)九年级某班同学在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1,2,3.随机摸出一个小球记下标号后,放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率. 解:(1)画树状图:(2)可能出现的结果共有9种,两次摸出标号相同的有(1,1)(2,2)(3,3)3种,∴P (中奖)=39=132.(2014·陕西)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市.由于时间仓促,他们只能去其中一个城市,到底去哪个城市三个人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.请回答下面的问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?解:(1)由题意共有16种等可能的结果,其中母女都摸出白球的结果有1种,∴P (都是白球)=116(2)画树状图得:∴P(至少有一人摸出黄球)=7 163.(2014·武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)分别用R1,R2表示2个红球,G1,G2表示两个绿球,列表如下:第一次第二次R1R2G1G2R1R1R1R2R1G1R1G2R1R2R1R2R2R2G1R2G2R2G1R1G1R2G1G1G1G2G1G2R1G2R2G2G1G2G2G2摸到红球)=416=14,②P(一个绿球,一个红球)=816=12(2)23专题(八) 概率与方程、不等式、函数一、概率与方程1.(2014·黄石)已知甲同学手中藏有三张分别标有数字12,14,1的卡片,乙同学手中藏有三张分别标有数字1,2,3的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a ,b.(1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则:若所选出的a ,b 能使得ax 2+bx +1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.解:(1)画树状图如图所示,故所有可能的结果为(12,1),(12,3),(12,2),(14,1),(14,3),(14,2),(1,1),(1,3),(1,2) (2)这样的游戏规则不公平.∵P (甲获胜)=59,P (乙获胜)=49,∴P (甲获胜)>P (乙获胜),∴这样的游戏规则不公平二、概率与不等式2.(2014·重庆)从-1,1,2这三个数字中随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a ,1-x≤2a 有解的概率为__13__.3.小华和小丽两人玩数字游戏,先由小丽心中任意想一个数字记为x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为y ,且他们想和猜的数字只能在1,2,3,4这四个数中选择.(1)请用树状图或列表法表示了他们想和猜所有的情况;(2)如果他们想和猜的数相同,则称他们“心有灵通”,求他们“心有灵通”的概率; (3)如果他们想和猜的数字满足|x -y |≤1,则称他们“心有灵犀”,求他们“心有灵犀”的概率.解:(1)画树状图得:(2)由图知共有16种等可能的结果,其中相同的有4种,∴P (心有灵通)=416=14(3)P (心有灵犀)=1016=58三、概率与函数4.一个不透明的袋子里装有编号分别为1,2,3的球(除编号以外,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为13.(1)求袋子里2号球的个数;(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x ,乙摸出球的编号记为y ,用列表法求点A (x ,y )在直线y =x 下方的概率.解:(1)设袋中2号球有x 个,则x 1+3+x =13,x =2,经检验x =2是原方程的解,即2号球有2个 (2)列表:下方)=1130。

3.1用树状图或表格求概率(第1课时)同步练习(含答案)

3.1用树状图或表格求概率(第1课时)同步练习(含答案)

第三章 概率的进一步认识 1 用树状图或表格求概率 第1课时 用树状图或表格求概率关键问答①何时用列表法或画树状图法求概率?1.①2020·大连 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( ) A.14 B.13 C.12 D.342.甲口袋中装有2个小球,分别标有号码1,2;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字不同外,其余完全相同.从甲、乙两个口袋中分别随机地摸出一个小球,求这两个小球上的号码都是1的概率.命题点 1 直接列举法求概率 [热度:93%]3.②2020·恩施州 小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.23 易错警示②利用列举法求事件的概率,所列结果要准确,不要出现遗漏或重复.4.③如图3-1-1,有以下三个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2.从这三个条件中任选两个作为条件,另一个作为结论,则组成的命题是真命题的概率是( )图3-1-1A .0 B.13 C.23 D .1方法点拨③概率问题经常与其他知识综合在一起考查,求解过程中一定要注意回顾所学知识. 5.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________. 命题点 2 用列表法或画树状图法求“两步”试验的概率 [热度:93%]6.④从分别标有数字2,3和4,5的两组卡片中的一组中随机地抽取一张作为十位上的数字,再从另一组中抽取一张作为个位上的数字,组成的两位数恰好是“5”的倍数的概率为________.方法点拨④列表时,把其中的一次操作或一个条件作为横行,另一次操作或另一个条件作为竖列,列出表格计算概率.7.⑤一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再从剩下的小球中随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为________.易错提示⑤不放回,就是第一次摸出的球,在第二次摸时不会出现,所以在画树状图时一定要注意这一点.8.一个不透明的袋中有3张形状和大小完全相同的卡片,编号分别为1,2,3,先从中任取一张,将其编号记为m ,再从剩下的两张中任取一张,将其编号记为n ,则关于x 的方程x 2+mx +n =0有两个不相等的实数根的概率是________.9.某市今年中考需进行体育测试,其中男生测试项目有“1000米跑”“立定跳远”“掷实心球”“一分钟跳绳”“引体向上”五个项目.考生须从这五个项目中选取三个项目.要求:“1000米跑”必选,“立定跳远”和“掷实心球”二选一,“一分钟跳绳”和“引体向上”二选一.(1)写出男生在体育测试中所有可能选择的结果;(2)若小明和小亮都做不了引体向上,请你用列表法或画树状图法求他们在体育测试中所选项目完全相同的概率.命题点3利用画树状图法求“三步”试验的概率[热度:92%]10.⑥2020·台州三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每名运动员的出场顺序都发生变化的概率为________.方法点拨⑥在遇到“三步”或“三步”以上的问题时,用列表法已经不能解决,只能用画树状图的方法来解决.11.2020·镇江改编某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每名学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1)小丽参加实验A考查的概率是________;(2)小明、小丽都参加实验A考查的概率是________;(3)他们三人都参加实验A考查的概率是________.12.⑦某乳品公司最近推出一款果味酸奶,共有红枣、木瓜两种口味,若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少?(请用画树状图的方法给出分析过程,并求出结果) 解题突破⑦本题只能用画树状图的方法来做,不适合用列表法.13.⑧为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.解题突破⑧解决这个问题分几步走?应该选用哪种方法分析?“乙投放的两袋垃圾不同类”在分析时需要注意什么?详解详析【关键问答】①当一次试验涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法;当一次试验涉及多个因素(三个或三个以上)时,通常采用画树状图法求概率.1.A [解析] 画树状图如下:共有4种等可能的结果,其中两枚硬币全部正面向上的结果有1种,所以两枚硬币全部正面向上的概率为14.故选A .2.解:列表如下.由表可知,共有4种等可能的结果,其中两个小球上的号码都是1的结果仅有1种, ∴P(两个小球上的号码都是1)=14.3.D [解析] 设小明为A ,爸爸为B ,妈妈为C ,则所有的可能结果是(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是46=23.故选D.4.D [解析] 构成如下三个命题:如果①AC =AB ,②AB ∥CD ,那么③∠1=∠2;如果②AB ∥CD ,③∠1=∠2,那么①AC =AB ;如果①AC =AB ,③∠1=∠2,那么②AB ∥CD .这三个命题都是真命题.故选D.5.12[解析] 从四条线段中随机取三条,有如下四个不同的结果:①2,4,6;②2,4,7;③2,6,7;④4,6,7.因为这四个结果出现的可能性相等,其中,能构成三角形的结果有两个,所以,从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率P =24=12.故答案为12.6.14[解析] 列表格,得:∴一共有8种等可能的结果,其中是“5”的倍数的结果有两种,∴组成的两位数恰好是“5”的倍数的概率为28=14.7.13[解析] 画树状图如下:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是412=13.8.13[解析] 依题意列表如下:当m 2-4n >0时,关于x 的方程x 2+mx +n =0有两个不相等的实数根,而使得m 2-4n >0成立的m ,n 有2组,即(3,1)和(3,2),则关于x 的方程x 2+mx +n =0有两个不相等的实数根的概率是13.9.解:(1)将“立定跳远”“掷实心球”“一分钟跳绳”和“引体向上”分别用A ,B ,C ,D 表示,画树状图如下:由树状图可知可能选择的结果有四种:①“1000米跑”“立定跳远”和“一分钟跳绳”;②“1000米跑”“立定跳远”和“引体向上”;③“1000米跑”“掷实心球”和“一分钟跳绳”;④“1000米跑”“掷实心球”和“引体向上”.(2)因为他们都做不了引体向上,所以不会选②④.列表如下:∵所有可能出现的结果共有4种,其中所选项目完全相同的有2种,∴他们在体育测试中所选项目完全相同的概率为24=12.10.13[解析] 画树状图如下:∵共有6种等可能的结果,抽签后每名运动员的出场顺序都发生变化的有2种情况, ∴抽签后每名运动员的出场顺序都发生变化的概率为26=13.11.(1)12 (2)14 (3)18 [解析] (1)小丽参加实验A 考查的概率是12.(2画树状图如图所示.∵两人参加的实验考查共有四种等可能的结果,而两人均参加实验A 考查的结果有1种,∴小明、小丽都参加实验A 考查的概率为14.(3)画树状图如图所示.三人参加的实验考查共有8种等可能的结果,其中三人都参加实验A 考查的结果只有1种,∴他们三人都参加实验A 考查的概率为18.12.解:画树状图如下:共有8种等可能的结果,其中至少有两瓶为红枣口味的结果数为4,所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率为48=12.13.解:(1)∵垃圾要按A ,B ,C 三类分别装袋,甲投放了一袋垃圾, ∴甲投放的垃圾恰好是A 类的概率为13.(2)画树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是1218=23.。

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1用树状图或表格求概率分层练习考查题型一列表法或树状图法求概率(1)求:吉祥物“冰墩墩(2)求:吉祥物“冰墩墩【详解】(1)吉祥物1故答案为:考查题型二判断游戏公平性1.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;(1)随机地摸出一张,求摸出牌面图形是轴对称图形的概率;(2)小华和小明玩游戏,规则是:随机地摸出一张,放回洗匀后再摸一张.若摸出两张牌面图形都是轴对称图形的纸牌,则小华赢;否则,小明赢.你认为该游戏公平吗?请用画树状图或列表法说明理由.用A,B,C表示)【详解】(1)解:由题意,随机地摸出一张共有3种等可能的结果,其中摸出牌面图形是轴对称图形的结果有纸牌,A B,共2种,则摸出牌面图形是轴对称图形的概率为23 P=.由图可知,摸出两张牌共有9种等可能的结果,其中摸出两张牌面图形都是轴对称图形的结果有考查题型三概率在转盘游戏的应用(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,请说明理由.【详解】(1)解:由题意可知,转盘中有所以转得非负数的概率为(2)解∶由题意可知,转盘中有9所以转得整数的概率为(1)求转动一次转盘获得购物券的概率;(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200【详解】解:(1)整个圆周被分成了∴获得一等奖的概率为:整个圆周被分成了16份,黄色为∴获得二等奖的概率为:1.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;。

北师大版九年级数学《用树状图或表格求概率》综合练习(含答案)

北师大版九年级数学《用树状图或表格求概率》综合练习(含答案)

3.1 用树状图或表格求概率综合练习利用实验方法估计事件的概率1.口袋中装有1个红球,1个白球,从中任意取1个球,问用试验的方法估计摸到白球的概率是()A.大于12B.小于12C.等于12D.约为122.把一对骰子掷一次,得到不同的结果有()A.6种B.36种C.1种D.无数种3.下列说法中,错误的是()A.试验所得的概率一定等于理论概率B.试验所得的概率不一定等于理论概率C.试验所得的概率有可能为0D.试验所得的概率有可能为14.下面情况,出现的概率是13的事件是()A.抛一质地均匀的正方体骰子,出现偶数点B.在26个英文字母中,随机抽取一个,为元音字母C.在1,2,3,4,5,6六个数字中,随机抽取一张能被6整除D.在1,2,3,4,5,6六个数字中,随机抽取一张数字能被3整除利用树形图求事件发生的概率5.口袋中有1个1元硬币和2个5角硬币,搅匀后从中摸出1个硬币,可能会出现的结果为,将硬币放回再搅匀后摸出1个硬币,2次都是1元硬币的机会为,都是5角硬币的机会为.若用树形图表示如下,请填全:6.口袋中装有一个圆球及两个骰子,搅匀后从中摸出一样,出现结果用下列哪幅树状图表示准确()7.图是“配紫色”游戏的两个转盘,你能用树状图的方法求出配成紫色的概率吗?[互动探究,拓展延伸]8.张丽的口袋里有一元硬币和五角硬币,现每次拿一枚,然后放回,连续拿两次,可能会出现哪些结果,出现的机会各是多少?画树形图予以说明.9.掷两枚普通的正六面体骰子,所得点数之和有多少种可能,点数之和是多少出现的概率最大?[创新思维](一)新型题10.抛三枚普通硬币,有几种等可能的结果,用树形图表示出来,都是正面的概率是多少?(二)准题巧解11.“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方每次做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负需继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次比赛时两人分出胜负的概率是多少?甲胜的概率是多少?请用树状图的方法解决.(三)易错题12.足球比赛规则如下:胜一场,得二分;平一场,得一分;负一场,得。

北师大版九年级数学《用树状图或表格求概率》同步测试(含答案)

北师大版九年级数学《用树状图或表格求概率》同步测试(含答案)

3.1 用树状图或表格求概率同步测试题一、选择题(共30分)1.下列说法不正确的是()A.某事件发生的概率为1,则它不一定必然会发生B.某事件发生的概率为0,则它必然不会发生C.抛一个普通纸杯,杯口不可能向上D.从一批产品中任取一个为次品是可能的2.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.12B.13C.14D.163.一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200 张,那么任一位抽奖者(仅买一张奖券)中奖的概率是()A.150B.225C.15D.3104.往返与A、B两市之间的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么有()种不同的票价.A.4 B.6 C.10 D.125.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是()A.公平的B.不公平的C.先摸者赢的可能性大D.后摸者赢的可能性大6.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1、2、3、4、5这五个数字中任取一个数,取得奇数比取得偶数的可能性大7.如图,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是()A.1 2B.13C.14D.0 8.某班学生在颁奖大会上得知该班获得奖励的情况如下表.已知该班共有28人获得奖励,其中获得两项奖励的13人,那么该班获得奖励最多的一位同学可能获得的奖励为()A.3 项B.4 项C.5 项D.6 项二、填空题(共20分)9.某校有一支由12 人组成的篮球队,年龄结构如下表.从中抽取1人,年龄不小于15岁的概率是.10.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数为5的概率是.11.一个科室有3名男士、2名女士,从中任选2人做一项接待工作,则选到的人都女士的概率为.12.去掉大小王一副牌共52张,任取两张,则两张为同色的概率等于.年龄(岁)14 15 16 17人数(人) 2 6 3 1三、解答题(共50分)13.某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣众人抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?14.两家商厦搞节日促销活动,A商厦进行有奖销售,凡购物满100元可摸一张奖券,每一万张奖券设一等奖10个,奖金5000元;二等奖100个,奖金500元;三等奖200个,奖金20元.B商厦,全场八五折酬宾.问顾客参加哪一家商厦的节日促销活动期望值较高?15.保险公司对某地区人们的寿命调查后发现活到50岁的有69800人,在该年龄死亡的人数为980人,活到70岁的有38500人,在该年龄死亡的有2400人.(1)某人今年50岁,则他活到70岁的概率为多少?(2)若有20000个50岁的人参加保险,当年死亡的赔偿金为每人2万元,预计保险公司该年赔付总额为多少?.16.小明有3双黑袜子和1双白袜子,假设袜子不分左右,那么从中随机抽取2只恰好配成一双的概率是多少?如果袜子分左右呢?17.请你在如图转盘内涂上红、黄、蓝三种颜色,要求任意旋转一次指针落在红色区域的概率是512,落在黄色区域和蓝色区域的概率之比是3 : 418.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等.现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:(1)列举(用列表或画树状图)所有可能得到的数字之积.(2)求出数字之积为奇数的概率.19.某商场搞促销活动,设计了一个游戏:在一只黑色的口袋里装有颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球.搅拌均匀后,每花2元钱可摸1个球.奖品的情况为:摸得红球奖金8元;摸得黄球奖金5元;摸得绿球奖金l元;摸得白球无奖金.(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?20.一个口袋里有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200 次,其中有50次摸到红球.参考答案。

北师大版九年级数学《用树状图或表格求概率》同步练习2(含答案)

北师大版九年级数学《用树状图或表格求概率》同步练习2(含答案)

3.1 用树状图或表格求概率同步练习一、仔仔细细,记录自信1.下列事件发生的概率为0的是()A.随意掷一枚均匀的硬币两次,至少有一次反面朝上B.今年冬天黑龙江会下雪C.随意掷两个均匀的骰子,朝上面的点数之和为1D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域2.在100张奖券中,有4张中奖,小红从中任抽1张,他中奖的概率是()A.14B.120C.125D.11003.下列说法正确的是()A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大B.为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行C.彩票中奖的机会是1%,买100张一定会中奖D.泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论4.如图1是一个可以自由转动的转盘,转动这个转盘,指针最有可能指向的颜色是()A.黄色B.红色C.紫色D.绿色5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A.1100B.11000C.110000D.111100006.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是3 57.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.12B.13C.14D.168.以下说法合理的是()A.小明在10次抛图钉的实验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D.在一次课堂进行的实验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51二、认认真真,书写快乐9.任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是.10.小刚和小明按如下规则做游戏:桌面上放有53支铅笔,每次取1支或2支,由小刚先取,最后取完铅笔的人获胜.如果小刚获胜的概率为1,那么小刚第一次应该取走支.11.某校初三(2)班想举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出10份为一等奖,那么该班某位同学获一等奖的概率为.12.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是.13.某班有49位学生,其中有23位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=,P(摸到奇数)=.15.盒子里装有大小、形状相同的3个白球和2个红球,搅匀后从中摸出一个球,放回搅匀后,再摸出第二个球,则取出的恰是两个红球的的概率是.三、平心静气,展示智慧16.李红和张明正在玩掷骰子游戏,两人各掷一枚骰子.(1)当两枚骰子点数之积为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗?为什么?(2)当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗?为什么?17.如图2是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.参考答案一、1~5 CCBDB 6~8 ADD二、9.1210.211.1512.1313.234914.110,1215.4 25三、16.(1)这个游戏对双方公平.(2)不公平,略.17.P牌面数字之和等于514 .。

北师大版-数学-九年级上册-3.1 用树状图或表格求概率同步检测3

北师大版-数学-九年级上册-3.1 用树状图或表格求概率同步检测3

用树状图或表格求概率1.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( )A.1 16B.18C.14D.122.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.14B.12C.34D.13.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.354.如图,A、B是数轴上的两个点,在线段AB上任取一点C,则点C到表示-1的点的距离不大于...2的概率是()A.21B.32C.43D.545.下列说法正确的是()A.在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是1136.某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是()第4题图A.12B.13C.14D.167.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.558.某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:奖金(元) 1 000 500 100 50 10 2数量(个)10 40 150 400 1 000 10 000 如果花2元钱买1张彩票,那么所得奖金不少于50元的概率是()A.12 000B.1200C.1500D.35009. 青青的袋中有仅颜色不同的红、黄、蓝、白球若干个,晓晓又放入5个除颜色外其他都相同的黑球,通过多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球()A.5个B.10个C.15个D.30个10.航空兵空投救灾物资到指定的区域(大圆)如图所示,若要使空投物资落在中心区域(小圆)的概率为14,则小圆与大圆的半径比值为()A.14B.4C.12D.2第10题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用树状图或表格求概率同步测试含答案
九年级数学(上)第三章《概率的进一步认识》同步测试
用树状图或表格求概率
一、选择题
1.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()
A.1
6
B.
1
3
C.
1
2
D.
2
3
2.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()
A.3
8
B.
5
8
C.
2
3
D.
1
2
3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()
A.2
5
B.
2
3
C.
3
5
D.
3
10
4.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()
A.1
9
B.
1
27
C.
5
9
D.
1
3
5.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()
A.1
2
B.
1
4
C.
3
10
D.
1
6
6.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()
A.点数都是偶数 B.点数的和为奇数
C.点数的和小于13 D.点数的和小于2
7.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()
A.1
2
B.
1
3
C.
1
4
D.
1
5
8.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()
A.1
8
B.
1
6
C.
3
8
D.
1
2
9.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()
A.1
3
B.
1
6
C.
2
7
D.
7
12
10.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()
A.1
3
B.
2
3
C.
1
6
D.
1
9
11.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()
A.1
2
B.
1
3
C.
1
6
D.
1
9
12.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()
A.1
3
B.
1
6
C.
1
9
D.
1
12
13.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()
A.1
6
B.
1
4
C.
1
3
D.
1
2
14.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()
A.1
6
B.
5
16
C.
1
3
D.
1
2
15.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()
A.1
4
B.
1
3
C.
1
2
D.
3
4
二、填空题
1.掷两枚质地均匀的骰子,其点数之和大于10的概率为.
2.同时投掷两个骰子,它们点数之和不大于4的概率是.
3.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.
4.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.
5.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是.
6.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.
7.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.
8.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.
9.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.
10.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.
三、解答题
1. 甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之和能被3整除的概率.
2. 甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.
(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;
(2)求出现平局的概率.
3. 一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
参考答案
一、选择题
1.B
2.D
3.C
4.A
5.B
6.C
7.C
8.B
9.B 10.A 11.B 12.C 13.C 14.C 15.A
二、填空题
1.
1
12
2.
1
6
;3.
1
2
;4.
4
9
;5.
1
2
;6.
1
4
;7.
1
4
;8.
1
3
;9.
1
3
;10.
4
9
三、解答题
1. 解:(1)树状图如下:
(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,
∴两个数字之和能被3整除的概率为21 =
63

即P(两个数字之和能被3整除)=1
3

2. 解:(1)画树状图得:
则共有9种等可能的结果;(2)∵出现平局的有3种情况,
∴出现平局的概率为:31 =
93

3.解:(1)设袋子中白球有x个,
根据题意得:
2
13
x
x
=
+

解得:x=2,
经检验,x=2是原分式方程的解,∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:5
9
.。

相关文档
最新文档